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1 - General information

Topic ERC-ADG-2014 Type of action ERC-ADG

Proposal title* Beyond Double Precision

Call identifier ERC-2014-ADG

Note that for technical reasons, the following characters are not accepted in the Proposal Title and will 
be removed: < > " &

Duration in months* 60

Acronym* BeDoP

Primary ERC Review Panel* PE6 - Computer Science and Informatics

Secondary ERC Review Panel (if applicable)

ERC Keyword 1*     Theoretical computer science, formal methods, and quantum computing

ERC Keyword 2         Scientific computing, simulation and modelling tools

ERC Keyword 3         Numerical analysis

ERC Keyword 4         Scientific computing and data processing

Please select, if applicable, the ERC keyword(s) that best characterise the subject of your proposal in order 
of priority.

Free keywords
formal proof, arbitrary precision, floating-point number, IEEE 754 standard, quadruple precision, 
correct rounding
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Abstract

On May 25, 2008, IBM's Roadrunner supercomputer reached the petaflop milestone, i.e., 10 to the power 15 floating-point 
operations per second (flops). We anticipate that the exaflop milestone of 10 to the power 18 flops will be reached around 
2020. Given that current hardware uses a double precision floating-point format of 53 bits corresponding to about 16 
decimal digits, and that rounding errors usually increase linearly with the number of operations, we need to reconsider the 
final accuracy of results obtained on future exascale computers. 
 
We strongly believe that (i) the scientific community has a blind confidence in double precision arithmetic, (ii) even today 
some scientific computations are fast but wrong, with some potential disastrous consequences, and (iii) in the near future 
the world will realize that double precision is not enough. 
  
It is therefore our responsibility as computer scientists to (i) warn the scientific community about the limits of double 
precision for large computations, (ii) design or improve software tools that will enable scientists to go beyond double 
precision in the parts of their programs that require it, and (iii) make those software tools efficient and robust. 
 
The BeDoP project will address these crucial issues by: (i) demonstrating the limits of double precision on large-scale 
applications, (ii) making multiple-precision tools easier to use in modern computer languages, and (iii) improving the 
efficiency and robustness of those tools, in particular by using formal proof techniques. 
 
Our dream with the BeDoP project is that scientific computations on exascale computers will no longer give very fast and 
very wrong results, but instead give very fast and very accurate results.  
 

Remaining characters 254

In order to best review your application, do you agree that the above non-confidential proposal title 
and abstract can be used, without disclosing your identity, when contacting potential reviewers? Yes No

Yes No
Has this proposal (or a very similar one) been submitted in the past 2 years in response to a call for 
proposals under the 7th Framework Programme, Horizon 2020 or any other EU programme(s)?
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Declarations

1) The Principal Investigator declares to have the explicit consent of all applicants on their participation and on the content of 
this proposal.*

2) The information contained in this proposal is correct and complete. 

3) This proposal complies with ethical principles (including the highest standards of research integrity — as set out, for 
instance, in the European Code of Conduct for Research Integrity  — and including, in particular, avoiding fabrication, 
falsification, plagiarism or other research misconduct).

4) The Principal Investigator hereby declares that (please select one of the three options below):

- in case of multiple participants in the proposal, the coordinator has carried out the self-check of the financial capacity of the 
organisation on http://ec.europa.eu/research/participants/portal/desktop/en/organisations/lfv.html. Where the result was 
“weak” or “insufficient”, the Principal Investigator confirms being aware of the measures that may be imposed in accordance 
with the H2020 Grants Manual (Chapter on Financial capacity check).

- in case of multiple participants in the proposal, the Principal Investigator is exempt from the financial capacity check being 
a public body including international organisations, higher or secondary education establishment or a legal entity, whose 
viability is guaranteed by a Member State or associated country, as defined in 
the H2020 Grants Manual (Chapter on Financial capacity check).

- in case of a sole participant in the proposal, the applicant is exempt from the financial capacity check.

5) The Principal Investigator hereby declares that each applicant has confirmed to have the financial and operational 
capacity to carry out the proposed action. Where the proposal is to be retained for EU funding, each beneficiary applicant 
will be required to present a formal declaration in this respect.

The Principal Investigator is only responsible for the correctness of the information relating to his/her own organisation. Each applicant 
remains responsible for the correctness of the information related to him and declared above. Where the proposal to be retained for EU 
funding, the coordinator and each beneficiary applicant will be required to present a formal declaration in this respect.

According to Article 131 of the Financial Regulation of 25 October 2012 on the financial rules applicable to the general budget of the Union 
(Official Journal L 298 of 26.10.2012, p. 1) and Article 145 of its Rules of Application (Official Journal L 362, 31.12.2012, p.1) applicants 
found guilty of misrepresentation may be subject to administrative and financial penalties under certain conditions. 
  
Personal data protection 
Your reply to the grant application will involve the recording and processing of personal data (such as your name, address and CV), which 
will be processed pursuant to Regulation (EC) No 45/2001 on the protection of individuals with regard to the processing of personal data by 
the Community institutions and bodies and on the free movement of such data. Unless indicated otherwise, your replies to the questions in 
this form and any personal data requested are required to assess your grant application in accordance with the specifications of the call for 
proposals and will be processed solely for that purpose. Details concerning the processing of your personal data are available on the 
privacy statement. Applicants may lodge a complaint about the processing of their personal data with the European Data Protection 
Supervisor at any time. 
  
Your personal data may be registered in the Early Warning System (EWS) only or both in the EWS and Central Exclusion Database (CED) 
by the Accounting Officer of the Commission, should you be in one of the situations mentioned in:  
- the Commission Decision 2008/969 of 16.12.2008 on the Early Warning System 
 (for more information see the Privacy Statement), or 
- the Commission Regulation 2008/1302 of 17.12.2008 on the Central Exclusion Database 
 (for more information see the Privacy Statement).
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2 - Administrative data of participating organisations

Host Institution
PIC
999547074

Legal name
INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Short name: INRIA 
  
Address of the organisation

Town LE CHESNAY Cedex

Postcode 78153

Street   Domaine de Voluceau, Rocquencourt

Country France

Webpage www.inria.fr

Legal Status of your organisation

Research and Innovation legal statuses

Public body .................................................... yes Legal person .............................. yes

Non-profit ...................................................... yes

International organisation .................................. no

International organisation of European interest ...... no

Secondary or Higher education establishment ....... no

Research organisation ..................................... yes

Small and Medium-sized Enterprises (SMEs) ........ no

Nace code 72 - Computer & related activities
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Department(s) carrying out the proposed work

Department name Inria - Centre de Recherche Nancy Grand Est

Street Rue du Jardin Botanique, 615

Town Villers Les Nancy

Same as organisation 
address

Department 1

Country France

Postcode 54600
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Principal Investigator
The following information of the Principal Investigator is used to personalise the communications to applicants and the 
evaluation reports. Please make sure that your personal information is accurate and please inform the ERC in case your e-
mail address changes by using the call specific e-mail address:

For Advanced Grant Applicants: ERC-2014-AdG-applicants@ec.europa.eu

The name and e-mail of contact persons including the Principal Investigator, Host Institution contact are read-only in 
the administrative form, only additional details can be edited here. To give access rights and contact details of 
contact persons, please save and close this form, then go back to Step 4 of the submission wizard and save the 
changes. 
 

Researcher ID If you have a researcher identifier number (e.g. ResearcherID, ORCID) please enter it here.

Last Name* Zimmermann Last Name at Birth Zimmermann

First Name(s)* Paul Male FemaleGender*

Title Dr.

Nationality* France

Country of residence* France

Date of Birth* (DD/MM/YYYY) 13/11/1964 Place of Birth SAINT AVOLD

Contact address Same as organisation address

Current organisation name Inria - Centre de Recherche Nancy Grand Est

Current Department/Faculty/Institute/ 
Laboratory name CARAMEL Team

Street* Rue du Jardin Botanique, 615

Postcode/Cedex* 54600

Country* France

Town* Villers Les Nancy

Country of Birth* France

Phone*                        +33383593041

Phone2 / Mobile         +xxxx xxxxxxxxxxxx

E-mail paul.zimmermann@inria.fr

Qualifications
Earliest award (PhD, Doctorate) Date of award (DD/MM/YYYY) 06/03/1991
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Contact address of the Host Institution and contact person

The name and e-mail of Host Institution contact persons are read-only in the administrative form, only additional 
details can be edited here. To give access rights and contact details of Host Institution, please save and close this 
form, then go back to Step 4 of the submission wizard and save the changes. Please note that the submission is 
blocked without a contact person and e-mail address for the Host Institution.

Organisation Legal Name INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Town Villers Les Nancy Postcode 54600

Street Rue du Jardin Botanique, 615

First name* Armelle

E-Mail* polecaf-nancy@inria.fr

Position in org. Administrative and Financial Representative

Department Administrative and Financial Service

Phone2/Mobile +xxxx xxxxxxxxxxxx

Same as organisation 
address

Last  name* Demange

Country France

Phone    +33383593026
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3 - Budget

Participant Number 
in this proposal Organisation Short Name Organisation Country

Total eligible 
costs/€ 

 (including 25% 
indirect costs)

?

Requested 
grant/€

1 INRIA FR  2 302 781  2 302 781

Total  2 302 781  2 302 781
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4 - Ethics issues table

1. HUMAN EMBRYOS/FOETUSES Page

Does your research involve Human Embryonic Stem Cells (hESCs)? Yes No

Does your research involve the use of human embryos? Yes No

Does your research involve the use of human foetal tissues / cells? Yes No

2. HUMANS Page

Does your research involve human participants? Yes No

Does your research involve physical interventions on the study participants? Yes No

   Does it involve invasive techniques? Yes No

3. HUMAN CELLS / TISSUES Page

Does your research involve human cells or tissues (other than from Human Embryos/
Foetuses, i.e. section 1)?

Yes No

4. PERSONAL DATA  (ii) Page

Does your research involve personal data collection and/or processing?   Yes No

Does your research involve further processing of previously collected personal data 
(secondary use)?

Yes No

5. ANIMALS (iii) Page

Does your research involve animals? Yes No
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6. THIRD COUNTRIES Page

Does your research involve non-EU countries? Yes No

Do you plan to use local resources (e.g. animal and/or human tissue samples, genetic 
material, live animals, human remains, materials of historical value, endangered fauna or 
flora samples, etc.)? (v)

Yes No

Do you plan to import any material from non-EU countries into the EU? 
For data imports, please fill in also section 4. 
For imports concerning human cells or tissues, fill in also section 3.

Yes No

Do you plan to export any material from the EU to non-EU countries? 
For data exports, please fill in also section 4. 
For exports concerning human cells or tissues, fill in also section 3.  

Yes No

If your research involves low and/or lower middle income countries, are benefits-sharing 
measures foreseen? (vii)

Yes No

Could the situation in the country put the individuals taking part in the research at risk? Yes No

7. ENVIRONMENT & HEALTH and SAFETY 
See legal references at the end of the section. (vi)

Page

Does your research involve the use of elements that may cause harm to the 
environment, to animals or plants? 
For research involving animal experiments, please fill in also section 5.

Yes No

Does your research deal with endangered fauna and/or flora and/or protected areas? Yes No

Does your research involve the use of elements that may cause harm to humans, 
including  research staff? 
For research involving human participants, please fill in also section 2.

Yes No

8. DUAL USE   (vii) Page

 Does your research have the potential for military applications? Yes No

9. MISUSE Page

 Does your research have the potential for malevolent/criminal/terrorist abuse? Yes No

10. OTHER ETHICS ISSUES Page

Are there any other ethics issues that should be taken into consideration? Please specify Yes No

I confirm that I have taken into account all ethics issues described above and that, if any ethics issues 
apply, I will complete the ethics self-assessment and attach the required documents. ✖
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5 - Call specific questions
Eligibility

I acknowledge that I am aware of the eligibility requirements for applying for this ERC call as specified in 
the ERC Work Programme 2014, and certify that, to the best of my knowledge my application is in 
compliance with all these requirements. I understand that my proposal may be declared ineligible at any 
point during the evaluation or granting process if it is found not to be compliant with these eligibility 
criteria.*

Data-Related Questions and Data Protection 
(Consent to any question below is entirely voluntary. A positive or negative answer will not affect the evaluation of your 

project proposal in any form and will not be communicated to the evaluators of your project.)

For communication purposes only, the ERC asks for your permission to publish your name, the proposal 
title, the proposal acronym, the panel, and host institution, should your proposal be retained for funding.

Yes No

Some national and regional public research funding authorities run schemes to fund ERC applicants that 
score highly in the ERC's evaluation but which can not be funded by the ERC due to its limited budget. In 
case your proposal could not be selected for funding by the ERC do you consent to allow the ERC to 
disclose the results of your evaluation (score and ranking range) together with your name, non-
confidential proposal title and abstract, proposal acronym, host institution and your contact details to such 
authorities? 

Yes No

The ERC is sometimes contacted for lists of ERC funded researchers by institutions that are awarding 
prizes to excellent researchers. Do you consent to allow the ERC to disclose your name, non-confidential 
proposal title and abstract, proposal acronym, host institution and your contact details to such 
institutions? 

Yes No

The Scientific Council of the ERC has developed a monitoring and evaluation strategy in order to help it 
fulfil its obligations to establish the ERC's overall strategy and to monitor and quality control the 
programme's implementation from the scientific perspective. As provided by section 3.10 of the ERC 
Rules for Submission, a range of projects and studies may be initiated for purposes related to monitoring, 
study and evaluating the implementation of ERC actions. Do you consent to allow the third parties 
carrying out these projects and studies to process the content of your proposal including your personal 
data and the respective evaluation data?                                                                   
The privacy statement on grants (http://erc.europa.eu/document-library) explains further how your 
personal data is secured.

Yes No
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Excluded Reviewers

You can provide up to three names of persons that should not act as an evaluator in the evaluation of the proposal for 
potential competitive reasons.
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ERC Advanced Grant

Research Proposal (Part B1)

Beyond Double Precision (BeDoP)

Principal Investigator (PI): Dr Paul Zimmermann
PI’s host institution: Inria, France
Proposal full title: Beyond Double Precision
Proposal short name: BeDoP
Project duration: 60 months
Targeted Review Panel: PE6 (Computer Science and Informatics)

Proposal Abstract

On May 25, 2008, IBM’s Roadrunner supercomputer reached the petaflop milestone, i.e., 1015

floating-point operations per second (flops). We anticipate that the exaflop milestone of
1018 flops will be reached around 2020. Given that current hardware uses a double precision
floating-point format of 53 bits corresponding to about 16 decimal digits, and that rounding
errors usually increase linearly with the number of operations, we need to reconsider the final
accuracy of results obtained on future exascale computers.

We strongly believe that (i) the scientific community has a blind confidence in double
precision arithmetic, (ii) even today some scientific computations are fast but wrong, with
some potential disastrous consequences, and (iii) in the near future the world will realize
that double precision is not enough.

It is therefore our responsibility as computer scientists to (i) warn the scientific com-
munity about the limits of double precision for large computations, (ii) design and improve
software tools that will enable scientists to go beyond double precision in the parts of their
programs that require it, and (iii) make those software tools efficient and robust.

The BeDoP project will address these crucial issues by: (i) demonstrating the limits of
double precision on large-scale applications, (ii) making multiple-precision tools easier to
use in modern computer languages, and (iii) improving the efficiency and robustness of those
tools, in particular by using formal proof techniques.

Our dream with the BeDoP project is that scientific computations on exascale computers
will no longer give very fast and very wrong results, but instead give very fast and very
accurate results.

This proposal version was submitted by Paul Zimmermann on 21/10/2014 14:35:45 CET. Issued by the Participant Portal Submission Service.
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Extended Synopsis of the scientific proposal

1 Motivation and State of the Art

Most numerical computations performed nowadays use standard double precision arithmetic
provided by hardware. Each year, as the hardware becomes faster, and as processors include
more computing cores, the number of flops increases. At the same time, since each operation
induces a tiny roundoff error, and as we perform larger and larger computations, the relative
roundoff error of each computation increases. If nothing changes, in the near future we are at
risk of computing very fast but very wrong. We are driving faster and faster cars, but with
tyres limited to 100 miles per hour: at some point we will crash. One example of such a disaster
due to insufficient precision is the Patriot anti-ballistic missile failure during Gulf War in 1991,
with the death of 28 soldiers [10]: the constant 1/10 was approximated with a 24-bit register,
which resulted in a constant drift which became significant after a few days.

As already pointed out by the European Exascale Software Initiative [1], the ability to per-
form floating-point arithmetic with different precisions (e.g., 32-, 64-, and 128-bit) will likely
be necessary in Exascale systems. [...] The fundamental challenge of library software design is
to develop and provide robust and reliable algorithms and implementations that deliver accurate
results or at least compute results with accuracy estimates. Several applications already require
more than double precision [2]: evolution of the solar system over billions of years, supernova
simulations, climate modeling, studying the fine structure constant of physics, ... In most of
those applications, the need for larger precision is limited to a small part of the program, thus
is not time-critical. However, the accuracy of this small part is critical for the accuracy of
the final result.

The accuracy of floating-point computations heavily relies on small building blocks like the
following theorem (which is a simplified version of a more general one):

Theorem. Let x be a 5-digit decimal floating-point number. Convert x to the nearest q-bit
binary floating-point number, say y. Convert back y to the nearest 5-digit decimal floating-point
number, say z. Then if q ≥ 18 we have z = x.

For example, if we convert x = 3.1415 to the nearest 18-bit binary floating-point number,
we find y = 205881/216 ≈ 3.141495. Then if we convert back y to the nearest 5-digit decimal
floating-point number, we find x again. For x = 3.1415, a binary precision of 15 bits is enough
in fact. But for x = 8.0003, the nearest 17-bit approximation is y = 32769/212 ≈ 8.000244,
which rounds back to 8.0002; this demonstrates that the q ≥ 18 bound is optimal. Proving
such theorems is not enough, since we also have to ensure that the conversions from decimal to
binary and from binary to decimal both return the nearest number in the target radix. This is
why formal proof technology applied to the real end-user code becomes crucial.

Several researchers have proposed ways to overcome the limitations of double precision
and the dangers of human proofs. On the one hand, interval arithmetic is a way to be warned
when the uncertainty becomes of the same order of magnitude as the value itself; double-double
arithmetic enables one to get almost quadruple precision with a slowdown of a factor 2 to 10
with respect to double precision. Finally, arbitrary precision is the ultimate solution. Several
software tools provide some of those techniques, but they are not sufficiently used to identify
critical parts of current programs where double precision is not enough. On the other hand,
formal proof techniques have been used successfully in the last 20 years in several domains,
such as proving the four-color theorem and the Feit-Thomson theorem about the classification
of finite groups. This was possible thanks to the advent of formal proof environments like HOL,
PVS, and Coq. In the domain of computer arithmetic itself, Harrison and Russinoff were hired
by Intel and AMD, respectively, to use formal proof techniques to check the design of hardware
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chips after the Pentium FDIV bug, which cost Intel $500 million in 1994 [5, 9]. Boldo and
Melquiond designed the Flocq library for proving floating-point algorithms, which is intensively
used by the CompCert verified compiler designed by Leroy and his team [4]; people around
Filliâtre designed the Why3 platform for deductive program verification.

Using arbitrary precision arithmetic is not enough if your arbitrary precision code is not
correct. Using formal proof techniques is not enough if the accuracy of the final result is not
sufficient. To avoid future exascale computations giving very fast but very wrong results,
we must warn the scientific community about the limits of double precision, and we need
to investigate arbitrary precision and formal proof techniques in order to build accurate
and bug-free numerical tools for exascale computations.

2 Grand Challenge and Research Targets

Our Grand Challenge is to investigate next-generation arbitrary precision
floating-point algorithms and software tools, which will be required not
only to be fast but also bit-accurate and bug-free.

It is very unlikely that hardware will provide more than double precision in the next ten
years because the next standard format would be quadruple precision, which would require an
increase by a factor of 2 to 4 in the number of gates in the chip, and a corresponding slowdown
of arithmetic operations. To fill this gap, only software solutions can avoid a big crash when
we hit the limiting wall of double precision accuracy, assuming we avoid the reliability
wall for Mean Time Between Failures (MTBF) [11]. However, those software tools need to be
efficient, otherwise they won’t be used by the scientific community, and free of design or
implementation bugs or we will hit the wall in a different way. The BeDoP project will be
the first one to address the formal proof of floating-point arbitrary precision.

Our first scientific objective is formalising low-level arbitrary precision floating-point
arithmetic; this is Target 1. Our second scientific objective addresses quadruple precision
floating-point arithmetic, which is the next standard format beyond double precision; this is
Target 2. Our third scientific objective is to address generic arbitrary precision floating-
point arithmetic, which will be useful for all applications where quadruple precision is not
enough; this is Target 3. Both Targets 2 and 3 will depend on Target 1, since they will use
the algorithms and implementations designed in Target 1. However, Targets 2 and 3 will be
independent.

Targets 1, 2, and 3 are described in more detail below. Targets 2 and 3 will include validation
on large scale computations.

Research Target 1: Formalising Low-Level Arbitrary Precision Floating-Point Arith-
metic

The Heartbleed bug, discovered on April 1st, 2014 in the OpenSSL implementation of the Secure
Sockets Layer (SSL) protocol, affected about half a million of the world’s “secure” web servers.
Libraries such as OpenSSL rely on multiple-precision integer arithmetic for cryptographic com-
putations, e.g., RSA signature or encryption. It is thus of utmost importance to check that
such multiple-precision implementations are free of bugs, especially “out-of-bound reads” like
the Heartbleed bug which might leak some data to the attackers.

• Design a language (called MPS) of multiple-precision integer routines that is
sufficient for floating-point applications. This will include the basic arithmetic
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operations on multiple-precision integers (addition, subtraction, multiplica-
tion, division, square root, and radix conversion), with a well-defined interface
in the C language.

• Formally prove, using a proof assistant, the correctness of MPS routines, both
at the C-language level for those written in C, and at the assembly language
level for those written in assembly.

Previous work includes a proof in Coq of a square root algorithm by Bertot, Magaud and
the PI in 2002 [3]. The formal proof will have to take into account the memory management of
input, output, and temporary objects for each routine.

A binary floating-point number can be represented as m ·2e, with m and e integers, m being
the significand and e the exponent. MPS routines will be used as building blocks to compute
efficiently on the significands of floating-point numbers in Targets 2 and 3. Therefore, Target 1
is crucial for attacking Targets 2 and 3.

Research Target 2: Formalising Quadruple-Precision Arithmetic

The IEEE 754 standard, revised in 2008, defines three binary floating-point formats: binary32
with a significand of 24 bits (single precision), binary64 with a significand of 53 bits (double
precision), and binary128 with a significand of 113 bits (quadruple precision). Only the single
and double precision formats are implemented on current hardware. The standard also defines
which operations should be correctly rounded, i.e., should return the unique number in the output
format that is closest to the (infinite precision) exact mathematical result. The following table
gives the average number of cycles for different operations in double and quadruple precision on
an Intel i5-4570 processor, with MPFR 3.1.2, GMP 6.0.0 and GCC 4.8.2.

precision add sub mul div sqrt
double (53 bits) 39 49 37 130 159

quadruple (113 bits) 41 53 56 144 264

Our goal is to save a significant factor on the average number of cycles, using code simplifications
for the specific case of quadruple precision.

• Design a quadruple-precision floating-point library which both returns the best
possible — i.e., correctly rounded — results, and is much faster than existing
libraries.

• Formally prove, using a proof assistant, that this library returns correctly
rounded values. Both the algorithms (at the mathematical level) and their
implementation (in the C language) will be considered by the proof.

This quadruple-precision library will be designed on top of the MPS language designed in Target
1. Thus, its proof will rely on the formal proof of the corresponding MPS routines. It is thus
crucial for the success of Target 2 that the interface to the MPS routines is fixed once for all.
However, the correctness of the MPS routines might be considered as axiomatic here (assuming
no flaw is found later on).

Research Target 3: Formalising Arbitrary-Precision Arithmetic

While Target 2 addresses specifically quadruple precision, some large scale applications will
require larger precision, or operations with mixed precisions. Therefore, we need a generic
arbitrary precision library, allowing mixed-precision operations, which is both efficient and has
guaranteed correct rounding.
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Implementing such a library leads to several technical difficulties. For example, the signif-
icand has to be split among several machine words, which usually store 32 or 64 bits each.
Contrary to the hardware case, both the precision and the exponent might be huge here.

• Design arbitrary-precision floating-point routines on top of MPS routines. This
will include basic arithmetic operations (addition, subtraction, multiplication,
division), square root, mathematical functions (sin, exp, log).

• Formally prove, using a proof assistant, that those arbitrary-precision floating-
point routines return correctly rounded values for any input values.

For most existing arbitrary-precision software tools, which have no formal specification, a
formal proof makes no sense. This is the main originality (and difficulty) of this project: to
design efficient bit-accurate arbitrary-precision routines, and formally prove their correctness.
As in Target 2, the routines we will design here will heavily depend on the MPS routines designed
in Target 1, and thus the formal specification of MPS routines will enable to share the formal
proof work between Target 1 and Target 3.

3 Methodology and Organisation

The detailed BeDoP work plan (including work packages) is presented in Part B2 of this pro-
posal. We sketch here the dependencies between the Research Targets.

The very first task of the BeDoP project will be to carefully design the MPS language. We
need a minimal language that enables to easily implement routines for Targets 2 and 3, but also
enables an efficient implementation in C or assembly language. Since the whole project will
depend on MPS routines, the necessary time will be dedicated to that task.

Once the MPS language is fixed, all other tasks can start: the real implementation of MPS
routines, in C or assembly language, the formal proof of this implementation; the design of
quadruple-precision routines and their formal proof (Target 2); the design of arbitrary-precision
routines and their formal proof (Target 3).

4 Risk Assessment and Management

The originality of the BeDoP project is to make a bridge between two scientific domains:
arbitrary-precision arithmetic and formal proof theory. Given that one of the PI’s main re-
search topics is arbitrary-precision arithmetic (both on integers and floating-point numbers),
the risk is quite limited in this part of the project.

On the formal proof side, the PI is already well aware of the main theoretical and practical
aspects of proof assistant systems [3], and through well chosen cooperations he will keep aware
of the latest progress in this very active topic. He will recruit postdoctoral researchers and
PhD students who are knowledgeable in formal proof systems and have good skills in computer
arithmetic. Two such specialists have already been hired by the host institution (Inria) at
the Nancy centre, a research engineer (Stéphane Glondu) and a research associate (Jasmin
Blanchette, who will start in 2015). Both of them will contribute to the BeDoP project. Finally,
the Coq proof assistant is now a mature tool, and several researchers at Inria are available to
help on technical issues related to Coq, among them Xavier Leroy and his group.

5 Expected Impact

Scientific Impact. We expect this project will reveal several bugs in existing libraries like
GMP, or MPFR. Indeed, when a routine contains a bug, the formal proof will necessarily fail.
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Thus, we will investigate why it fails, and at some point we will discover the bug. We also
expect this will lead to new original research at the interface between computer arithmetic
and formal proof, in particular about memory management issues. This will lead to new
algorithms and a new formal proof methodology. And of course, the output of this
project will be reference implementations that are formally proven, and thus can be used
in critical applications on exascale computers.

Societal Impact. In [6, Table 1], He and Ding report very different results in an ocean circu-
lation model, where they obtain numerical values ranging from 0.32 to 34.41, and conclude: In
fact, we do not know what is the exact correct result [...] On different number of processors, the
order of summation is not guaranteed, and the results are not reproducible!

We want to avoid similar issues. We want to avoid computing very fast but very wrong.
We want numerical computations to be reproducible from one exascale computer to another
one. Therefore, we need quality assurance about the accuracy of numerical values computed
by exascale computers. The BeDoP project will raise the awareness of the scientific com-
munity that double arithmetic is not enough in some applications, and will investigate bug-free
software tools for the next-generation floating-point arithmetic.

6 Commitment of the PI

The PI will dedicate at least 75% of his work time to the BeDoP project.
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7 Curriculum Vitae

Personal Information. Paul Zimmermann, born 13/11/1964.
Email Paul.Zimmermann@inria.fr, home page http://www.loria.fr/~zimmerma.

Education.

• Habilitation (highest French academic degree), Nancy, France, 2001.

• PhD in Computer Science from École Polytechnique, Palaiseau, France, 1991.
• Master in Computer Science, University Paris VII, France, 1988.
• Engineer from École Polytechnique (a major French high school), Palaiseau, France, 1987.

Positions.

• 1988-present: Researcher at Inria, 1988-1993 in Rocquencourt, 1993-present in Nancy (1988-
1998 Junior Researcher, 1998-2008 Research Director, 2008-present Senior Research Director).
• 1994-1995: Sabbatical in the MuPAD group, Paderborn, Germany.
• 1987-1991: Master and PhD Grant from DRET, Inria, Rocquencourt, France.
• 1984-1987: Engineer Student at École Polytechnique, Palaiseau, France.

Fellowships and Awards.

• Holder of “Prix La Recherche”, France, 2012, for the record factorisation of RSA-768.
• Winner of the Many Digits competition, Nijmegen, Netherlands, 2005.

Supervision of Graduate Students and Postdoctoral Fellows.

• 1994-present: supervised 5 PhD students (all as sole advisor). Among the four who already

defended, one has been hired by Google, and one is Professor at ÉNS Lyon, France.
• 1997-present: supervised 3 postdoctoral students.

Teaching Activities. 1992-present: about 300 teaching hours at different levels (Master in
Computer Science, engineering schools) and different thematics (computer algebra, algorithmic
number theory) in Paris and Nancy, France. In particular, the PI created a new course on
Algorithmic Number Theory, Coding and Cryptography in the computer science Masters in
Nancy (2000-2005), and in 2005-2006 he created a new course “Introduction to Cryptology” in
this Masters.

Organisation of Scientific Meetings. Co-organized a workshop on discrete tomography, Pont-
à-Mousson, France, 1999; a workshop on open-source computer algebra in Lyon, France, 2002;
the RNC’7 (Real Numbers and Computers) conference in Nancy, France, 2006; the Sage Days
10 and the CADO workshop on integer factorisation in Nancy, France, 2008; and the Ninth
Algorithmic Number Theory Symposium (ANTS-IX), Nancy, France, 2010. Organized the
Fast Algorithms track at the workshop Computing by the Numbers: Algorithms, Precision, and
Complexity for the 60th birthday of Richard Brent, Berlin, Germany, 2006.

Institutional Responsibilities and Research Leadership.

• 2013-present: Scientific Director and Chair of the Projects Committee at the Inria-Nancy
research centre (21 research teams and 175 scientists).
• 2011-2014: Elected member of the Inria Scientific Board.
• 2011-2012: Head of a team of 8 tenure track engineers, Inria Nancy, France.
• 1999-2001 and 2005-2007: Elected member of the Inria Evaluation Committee.
• Since his arrival in Nancy in 1993, the PI was at the origin of several research teams on discrete
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mathematics and algorithmic number theory. Several full-time researchers were recruited in
those teams, where a dozen PhD or postdoctoral students were trained. The PI was in particular
at the origin of a joint project involving several French research teams on reliable computer
arithmetic (1999-2000).

Commissions of Trust.

• Member of the ARITH program committee in 2001 (ARITH’15), 2003 (ARITH’16), 2005
(ARITH’17), 2007 (ARITH’18) and 2009 (ARITH’19).
• Member of the program committee of AfricaCrypt in 2010, and of ISSAC in 2013.
• Program co-chair of the RNC’7 conference in Nancy, France, 2006.

International Recognition. Invited presentations at:
• Computational Number Theory workshop at the Foundations of Computer Mathematics con-
ference in Oxford, UK, 1999;
• SCAN conference in Paris, France, 2002 (main conference on interval arithmetic);
• PARI/GP workshop, Paris, France, 2004;
• IEEE 754 revision committee, Silicon Valley, USA, 2005 and 2006;
• Grand Challenges of Informatics conference Budapest, Hungria, 2006;
• Algorithmic Number Theory conference, Turku, Finland, 2007;
• colloquium in honour of Henri Cohen, Bordeaux, France, 2007;
• Central European Conference on Cryptography, Graz, Austria, 2008;
• MSR Talk Series, Microsoft Research, Redmond, USA, 2009;
• International Congress on Mathematical Software, Kobe, Japan, 2010;
• Euroscipy 2013 conference (advanced tutorial), Bruxelles, 2013.
Invited to write an entry on the Elliptic Curve Method in the Encyclopedia of Cryptography
and Security, Springer, 2005;
Invited to write an article in the Notices of the American Mathematical Society, 2011.

Major Collaborations.

• Coordinator in 1997 of a German-French project Procope with the MuPAD group in Pader-
born, Germany, led by Prof. Benno Fuchssteiner.
• Head of an associate team co-funded by the University of Canberra and Inria with the group
of Richard Brent, 2008-2010.

Past Funding. The development of the MPFR library was supported by Inria in several forms
(ARC Fiable 1999-2000, ARC AOC 2000-2002, engineer grants 2003-2005 and 2007-2009, post-
doctoral grant 2009-2010) and by the “Conseil Régional de Lorraine” (2002). The PI was a main
participant of the CADO and CATREL projects supported by the French National Research
Agency (ANR). On-going funding and submitted proposals are to be found in the Appendix.
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8 Tenure Track-Record

The publication list reflects the three domains of the PI research: analysis of algorithms and
computer algebra [1, 3, 7, 9], computer arithmetic [2, 4, 8, 10], and the applications of number
theory to cryptography [5, 6]. References [2, 8] are the more relevant ones for the BeDoP
project.

Top 10 Paper Publications. The main publications are written with co-authors, because new
ideas are first discussed with colleagues to improve them and only then published. Almost all
of these publications correspond to important developments or experimental work. The PI’s
contribution to all articles is comparable to that of the co-authors, except for [2] where the PI
was the main designer and author. The number of citations are from Google Scholar, and were
measured on September 24th, 2014, with corresponding h-index 26.

1. Gfun: a Maple package for the manipulation of generating and holonomic functions in one
variable, with B. Salvy, ACM Transactions on Mathematical Software, 1994. 317 citations.

2. MPFR: A multiple-precision binary floating-point library with correct rounding, with L.
Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, ACM Transactions on Mathematical Software,
2007. 314 citations.

3. A calculus for the random generation of labelled combinatorial structures, with Ph. Flajolet
and B. Van Cutsem, Theoretical Computer Science, 1994. 275 citations.

4. Efficient isolation of polynomial’s real roots, with F. Rouillier, Journal of Computational
and Applied Mathematics, 2004. 236 citations.

5. Factorization of a 768-bit RSA modulus, with T. Kleinjung, K. Aoki, J. Franke, A. K.
Lenstra, E. Thomé, J. W. Bos, P. Gaudry, A. Kruppa, P. L. Montgomery, D. A. Osvik,
H. te Riele and A. Timofeev, Crypto’2010, 2010. 210 citations.

6. Factorization of a 512-bit RSA modulus, with S. Cavallar, B. Dodson, A. K. Lenstra,
W. Lioen, P. L. Montgomery, B. Murphy, H. te Riele, K. Aardal, J. Gilchrist, G. Guillerm,
P. Leyland, J. Marchand, F. Morain, A. Muffett, Ch. Putnam and Cr. Putnam, Euro-
crypt’2000, 2000. 170 citations.

7. Automatic average-case analysis of algorithms, with Ph. Flajolet and B. Salvy, Theoretical
Computer Science, 1991. 127 citations.

8. Modern computer arithmetic, with R. P. Brent, Cambridge University Press, 2010. 99
citations.

9. Uniform random generation of decomposable structures using floating-point arithmetic,
with A. Denise, Theoretical Computer Science, 1999. 70 citations.

10. The middle product algorithm I, with G. Hanrot and M. Quercia, Applicable Algebra in
Engineering, Communication and Computing, 2004. 55 citations.

Top 5 Software Publications. As a computer scientist, the PI cannot consider his research
without writing programs or libraries either to experiment with a new idea, as a proof-of-concept
of a new algorithm, or as a general tool which will be useful to himself, to his research team, or
to other people. Most of his software contributions are distributed under an open-source licence
to allow other people to use them in other tools, either free or commercial:
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• 1998-present: main designer and main author of MPFR, a library for multiple-precision
floating-point arithmetic with correct rounding. Shipped within all Linux distributions.
Prerequisite to build the GCC and Gfortran compilers. Used by Magma, Sage, and the
MPFI and MPC libraries.

• 2002-present: main designer and main author of MPC, a library for multiple-precision
complex floating-point arithmetic with correct rounding. Shipped within all Linux distri-
butions. Prerequisite to build the GCC compiler.

• 2005-present: main designer and main author of CADO-NFS, an integer factorisation
program using the Number Field Sieve.

• 1998-present: main designer and main author of GMP-ECM, an integer factorisation pro-
gram using the Elliptic Curve Method (ECM). GMP-ECM holds the record of the largest
prime found with ECM (83 digits).

• several contributions to the GMP library for arbitrary-precision arithmetic: the “Karat-
suba square root” algorithm, the REDC-based modular powering code, the original Schön-
hage-Strassen FFT code (and an improved version with Gaudry and Kruppa in 2007), an
improved Toom-Cook multiplication code, and a new nth root code.

Invited Presentations (selection of).

• SCAN conference in Paris, France, 2002 (main conference on interval arithmetic)
• IEEE 754 revision committee, Silicon Valley, USA, 2005 and 2006;
• Grand Challenges of Informatics conference Budapest, Hungria, 2006
• Algorithmic Number Theory conference, Turku, Finland, 2007
• Central European Conference on Cryptography, Graz, Austria, 2008
• MSR Talk Series, Microsoft Research, Redmond, USA, 2009
• International Congress on Mathematical Software, Kobe, Japan, 2010
• Euroscipy 2013 conference (advanced tutorial), Bruxelles, 2013

Conference (Co-)Organisation.

• Fast Algorithms track at the conference for the 60th birthday of Richard Brent, Berlin, Ger-
many, 2006
• Sage Days 10, Nancy, France, 2008
• CADO-NFS workshop on integer factorisation, Nancy, France, 2008
• Ninth Algorithmic Number Theory Symposium (ANTS-IX), Nancy, France, 2010

Major contributions to the early careers of excellent researchers. A PhD student super-
vised by the PI (Laurent Fousse) is now hired by Google at the Mountain View headquarters;
another PhD student (Damien Stehlé) is now full Professor in Lyon and obtained an ERC
Starting Grant in 2013.
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9 Appendix: on-going funding and submitted proposals

The PI is currently involved in the CATREL project Sieve Algorithms: Theoretical Advances,
and Effective Resolution of the Discrete Logarithm Problem. This project funded by the French
National Research Agency (ANR) started in January 2013 and will end in December 2015
(http://catrel.loria.fr). The PI involvement in this project is 42% (15 months over 36).
This is the only on-going grant of the PI, and there is no submitted proposal.

To be able to dedicate enough time to the BeDoP project, in agreement with Inria’s manage-
ment, the PI will resign from his responsibilities of Scientific Director and Chair of the Projects
Committee of the Inria-Nancy research centre as soon as the BeDoP project will start.
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Reproducible research is now a big concern in the scientific community (see for example the
special issue of Nature [1] and the workshop organised at ICERM in 2012 [39]). Indeed, numerical
reproducibility and accuracy have been identified as critical concerns by the International Exascale
Software Project (IESP) [17] and by the computer arithmetic community [14, 18, 25]:

Exascale systems will be advanced scientific instruments. As part of the scientific
process, scientists need to know how the devices work for scientific reproducibility
and accuracy. Treating the system software as a black box run by code that cannot
be examined or verified does not accomplish this goal.

In [8] and [27], high-precision arithmetic is considered to be crucial for applications in climate
modelling, astrophysics, mathematical physics and dynamics. At the European level,
the European Exascale Software Initiative (EESI) reports [4]:

The ability to perform floating-point arithmetic with different precisions (e.g., 32-, 64-,
and 128-bit) will likely be necessary in Exascale systems. [...] The fundamental
challenge of library software design is to develop and provide robust and reliable
algorithms and implementations that deliver accurate results or at least
compute results with accuracy estimates.

The BeDoP project will precisely address this fundamental challenge. In Section 1 we describe
the state of the art concerning technologies and software tools, and we state our Grand Challenge.
In Section 2 we detail the three Research Targets we need to focus on, in order to solve this Grand
Challenge. The corresponding resources are described in Section 3.

1 State of the art and Scientific Objectives

We review here the main existing technologies relevant to the BeDoP project (binary floating-
point formats, double-double arithmetic, interval arithmetic) and corresponding software tools.
For an exhaustive description, we refer the reader to the habilitation thesis of Sylvie Boldo [12].

Let us mention that the NSF (National Science Foundation) supports similar projects in the
United States, like that of Michela Taufer (University of Delaware) on Studying the impact of
rounding errors on result reproducibility when concurrent executions burst and workflow deter-
minism vanishes in cutting-edge multicore architectures.
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1.1 Binary Floating-Point: the IEEE 754 Standard

The IEEE 754 standard defines how binary and decimal floating-point arithmetic should be per-
formed. We will only focus on binary formats here, which are the formats used in scientific
applications. Originally designed in 1985, the IEEE 754 standard was revised in 2008; we re-
fer to this revision as IEEE 754-2008 [24]. The standard defines three main binary formats:
binary32 (single precision), binary64 (double precision) and binary128 (quadruple precision),
with significands of 24 bits, 53 bits and 113 bits respectively.

The IEEE 754-2008 standard defines five rounding attributes (sometimes also called round-
ing modes): (round)TiesToEven, TiesToAway, TowardPositive, TowardNegative, TowardZero.
The last three (directed) modes round to the nearest floating-point number in the direction of
+∞, −∞ and 0 respectively; TiesToEven rounds to the nearest representable floating-point num-
ber below or above, and if both such numbers are equally distant, it rounds to the unique one
whose last bit is 0; TiesToAway is similar except in that special case it rounds away from zero (see
Table 1). Current environments (compilers and operating systems) usually provide support for
four rounding modes — without roundTiesToAway —, as in the C language through the fenv.h

header. IEEE 754-2008 requires correct rounding for each of the available rounding modes and
arithmetic operations. Correct rounding means that for a given mathematical function, say exp,
and a given floating-point input, say x, the implementation returns the closest floating-point num-
ber y to the infinite precision value exp(x) according to the given rounding mode, for example
y = TiesToEven(expx). Therefore, there is a unique possible value y, which is called the correct

t TiesToEven(t) TiesToAway(t) TowardPositive(t) TowardNegative(t) TowardZero(t)
2.4 2 2 3 2 2
-2.5 -2 -3 -2 -3 -2
2.6 3 3 3 2 2

Table 1: Correct rounding with a target of 2 bits for the IEEE 754-2008 rounding modes.

rounding of exp(x). For mathematical functions, correct rounding is only recommended by IEEE
754-2008; some libraries (for example the GNU libc) have started to provide correct rounding for
some functions, but we are far from correct rounding for all supported mathematical functions
and all possible inputs. In current processors, the only binary IEEE 754 formats that have been
implemented in hardware are single precision (binary32) and double precision (binary64). The
x86 and x86_64 processors also provide a 80-bit format called double extended (long double in
the C language) with a 64-bit significand.

GCC Quadruple-Precision Library. Since 2008, GCC provides a quadruple precision data type
(__float128) with basic arithmetic operations (+,−,×,÷). Since 2011, mathematical functions
are available for the __float128 type through the libquadmath library, which originates from
the FDLIBM library developed by Sun around 1993. While GCC seems to guarantee correct
rounding for the four basic arithmetic operations and the fused-multiply-add, it does not do
so for the mathematical functions. For example, with version 4.9.1 of GCC, the square-root
function sqrtq with input 2.0 gives an output which is off by one ulp (unit in last place). For
other functions, similar discrepancies from correct rounding can be found, ranging from one ulp
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to hundreds of thousands ulps. Table 2 compares the speed of different kinds of arithmetic and
different precisions.

53 bits double: 0.54s MPFR: 43.5s (ratio 81 over double)
64 bits long double: 2.9s MPFR: 53.2s (ratio 18 over long double)
113 bits float128: 38.2s MPFR: 47.1s (ratio 1.2 over float128)

Table 2: Time for multiplying two 1000 × 1000 matrices, with GCC -O3 (version 4.9.1) on a 3.2Mhz
Intel Core i5-4570.

Arbitrary-Precision. Arbitrary-precision floating-point arithmetic is available in most com-
puter algebra systems (Maple, Mathematica, Sage) and in special-purpose libraries (MPFUN,
Pari/GP, ARPREC, MPF within GMP, NTL, CLN, MPFR, ARB). MPFR guarantees correct
rounding for all mathematical functions it implements, following IEEE 754-2008 [19]. ARB pro-
vides ball arithmetic, also known as mid-rad arithmetic, i.e., it returns tight intervals [y− ε, y+ ε]
which are guaranteed to contain the exact result. A comparison of the efficiency of those libraries
for 100, 1000 and 10000 digits shows that MPFR is usually the fastest library [40].

1.2 Double-Double Arithmetic

Double-double arithmetic enables the accuracy of the hardware double precision format to be
doubled, with a slowdown of a factor 2 to 10 with respect to hardware [15, 34]. A double-double
number is the simplest case of a floating-point expansion [32], which is the approximation of a real
number x by a sum t1+t2+· · ·+tn of floating-point numbers, ordered by decreasing magnitude. In
the double-double case, x ≈ t1 + t2, where t1, t2 are double-precision numbers. The precision of a
double-double number is at least twice that of double precision, i.e., 106 bits. Efficient algorithms
exist to add, subtract, multiply and divide two double-double numbers, using the hardware for
efficiency, such as Knuth’s TwoSum algorithm [26] and Dekker’s TwoProd algorithm [16].

The QD package, developed by the group of David Bailey (Lawrence Berkeley National Lab-
oratory), includes routines to perform “double-double” and “quad-double” arithmetic. However,
QD is mainly designed for speed, and no guarantee is given concerning the maximal roundoff
error made in each arithmetic operation. Moreover, since it relies on double-precision arithmetic,
double-double arithmetic (and thus QD) suffers from the exponent limitation of this arithmetic,
and therefore cannot handle numbers larger than about 10308 or smaller than 10−324, which is a
severe limitation, especially in combinatorics, for example.

1.3 Interval Arithmetic

In interval arithmetic, each arithmetic operation is performed on an interval [a, b] instead of a
scalar, where both a and b are floating-point numbers. For example, when adding two intervals
[a, b] and [c, d], interval arithmetic guarantees that the result [e, f ] satisfies the inclusion property :

∀x ∈ [a, b], ∀y ∈ [c, d], e ≤ x + y ≤ f.

Interval arithmetic always return an interval containing the exact mathematical result (as would
be obtained with infinite precision), and in most cases it is enough to prove the desired properties.
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For example if the result interval [e, f ] is [0.3, 0.7], we are sure that the corresponding value x+y is
positive. However, interval arithmetic is known to produce wide intervals, in particular when there
are dependencies between variables in the same expression. A simple example is the expression
(x−1)(x+1) on the interval [−0.4, 0.6]. If evaluated as such, one obtains [−1.4,−0.4]× [0.6, 1.6],
which yields [−2.24,−0.24]. However, if computed as x2−1, the same expression gives [−1,−0.64],
which is the smallest interval satisfying the inclusion property. A working group sponsored by
IEEE is currently developing a standard for interval arithmetic [2]. An implementation of interval
arithmetic in arbitrary-precision is MPFI, also available within the Sage computer algebra system.
As for issues with interval arithmetic in parallel computations, we refer the reader to [33].

1.4 Formalisation of Floating-Point Arithmetic

Hardware Level. After the Pentium FDIV bug, which cost Intel $500 million in 1994, both
Intel and AMD hired engineers, respectively Harrison and Russinoff, to produce a formal proof
of the algorithms implemented on chip before manufacturing them. Harrison used HOL Light
[22], whereas Russinoff used ACL2 [35]. Harrison also developed a complete proof of a full
implementation of the exponential function in double precision.

More recently, Russinoff verified the SRT quotient and square root algorithms [36], and while
doing so he revealed several errors in previous work by Kornerup published in 2005 in IEEE
Transactions on Computers.

Software Level. Several tools exist at the software level, we mention here the most relevant
ones for the BeDoP project. The Frama-C platform, designed by CEA and Inria, is an extensible
and collaborative platform dedicated to source-code analysis of C software (part of the STANCE
multi-disciplinary initiative [37]). Astree is a C program analyzer using abstract interpretation.
Fluctuat is another tool, developed by CEA (France), and dedicated to the analysis of floating-
point programs. Sollya is a library for safe floating-point code development. Gappa is a tool
intended to help verify and formally prove properties of numerical programs dealing with floating-
point and fixed-point arithmetic. Flocq (Floats for Coq) is a floating-point formalisation for
the Coq system; it provides a comprehensive library of theorems on multi-radix multi-precision
arithmetic; it also supports efficient numerical computations inside Coq. Melquiond formalised
IEEE 754 arithmetic in the Coq system, and was able to prove such theorems [29]:

Theorem Fdiv_correct :

forall radix mode prec (x y : float radix), 1 < radix ->

Fdiv mode prec x y = round radix mode prec (x / y).

Table 3 gives a summary of the status of current implementations with respect to correct
rounding and formal proof. For double precision, usually only the four basic operations are
implemented in hardware, and the mathematical functions (exp, log, sin, ...) are computed in
software (for example by the GNU libc for the C language under Linux). For quadruple precision
with the __float128 type in the C language, the basic arithmetic operations are provided by
the GCC runtime (the libgcc library), and seem to be correctly rounded. The mathematical
functions provided by libquadmath are not correctly rounded: some errors up to hundreds of
thousands units in last place were observed. The MPFR library provides correct rounding for all
operations and mathematical functions, but only a paper proof is provided [41].
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implementation precision correct rounding formal proof

hardware +,−,×,÷ 53 bits yes yes
libc math. functions 53 bits no no

libgcc +,−,×,÷ 113 bits yes no
libquadmath math. functions 113 bits no no

MPFR +,−,×,÷ arbitrary yes no
MPFR math. functions arbitrary yes no

Table 3: Status of current implementations with respect to correct rounding and formal proof.

In short, the Grand Challenge of the BeDoP project is to replace all “no” entries by “yes” in
Table 3 beyond double precision, i.e., for quadruple and arbitrary-precision. Several difficulties
have to be overcome to reach this Grand Challenge, which will require (i) expertise of researchers
in computer arithmetic, (ii) expertise of researchers in formal proof, and (iii) fruitful interactions
between both domains of research. The detailed steps that we believe will allow us to solve this
Grand Challenge are described in the next section.

Our Grand Challenge is to investigate next-generation arbitrary-precision
floating-point algorithms and software tools, which will be required not
only to be fast, but also bit-accurate and bug-free.

2 Methodology: The BeDoP Scientific Roadmap

It is very unlikely that hardware will provide more than double precision in the next ten years
because the next standard format (quadruple precision) would require an increase by a factor of
2 to 4 in the number of gates in the chip, and a corresponding slowdown of arithmetic operations.
To fill this gap, only software solutions can avoid a big crash when we hit the limiting wall of
double precision accuracy. However, those software tools need to be efficient, otherwise they
won’t be used by the scientific community, and free of design or implementation bugs or we
will hit the wall in a different way. The BeDoP project will be the first one to address the formal
proof of floating-point arbitrary-precision.

Our first scientific objective is formalising low-level arbitrary-precision floating-point
arithmetic; this is Target 1. Our second scientific objective addresses quadruple precision
floating-point arithmetic, which is the next standard format beyond double precision; this is
Target 2. Our third scientific objective is to address generic arbitrary-precision floating-
point arithmetic, which will be useful for all applications where quadruple precision is not
enough; this is Target 3.

Below, we describe in more detail the three Research Targets we need in order to address our
Grand Challenge. Both Targets 2 and 3 will depend on Target 1, since they will use the algorithms
and implementations designed in Target 1. However, Targets 2 and 3 will be independent. We
give at the end a timing roadmap over the 5 years of the project.
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2.1 Research Target 1: Formalising Low-Level Arbitrary-Precision Floating-Point
Arithmetic

When adding or multiplying two integers, the result depends on all input bits. This is no longer
the case when adding or multiplying floating-point numbers. For example, when adding a large
number with a tiny number, the latter might contribute only in the last bit of the result. When
multiplying two floating-point numbers of one million bits, if their product is wanted to only 100
bits, there is no need to read all the input bits. Therefore, low-level routines for integer arithmetic
— like in the mpn layer of GMP [21] — are not directly suitable for floating-point arithmetic. This
is why we propose to design a new language (called MPS for Multiple-Precision Significand) of
low-level routines for arbitrary-precision floating-point arithmetic. This is Research Target 1.
This will be completely pioneering, since such a language does not exist so far. We expect this
language will also form a foundation for the design of other multiple-precision floating-point
libraries, with or without correct rounding.

We propose to split the work on Research Target 1 into the following tasks that we describe
in more detail below:

• Task RT1-1: Design the MPS Language Interface
• Task RT1-2: Efficient Implementation of the MPS Language
• Task RT1-3: Formally Prove the Correctness of the MPS Implementation

Task RT1-1: Design the MPS Language Interface

Design, with a well-defined interface in the C language, a new language (called MPS) of low-level
routines operating on floating-point significands and exponents, the former being represented by
arrays of machine integers, the latter by machine integers.

The MPS language might contain for example the mps_add routine, which adds (in place) to
the significand array starting at pointer a (with precision of p bits) the significand starting at
pointer b (with precision of q bits) shifted by k bits toward the least significant bits. In addition,
mps_add puts into rnd and stck the values of the round and sticky bits, respectively.1

void mps_add (void *a, long p, const void *b, long q, long k, int *rnd, int *stck)

Similar routines will be needed to deal with floating-point exponents (dealing with underflows
and overflows), and with correct rounding (taking as input a rounding bit and a sticky bit).

Task RT1-2: Efficient Implementation of the MPS Language

Design an efficient implementation of MPS routines in the C language, and also assembly language
for x86 64 targets when needed. This implementation should reach the efficiency of the GMP
reference library [21].

With the running example of the mps_add function above, its implementation might use the
mpn_add function of GMP to add the significand of b to that of a, possibly after a shift using the
GMP mpn_lshift or mpn_rshift functions. For computing the round and sticky bits, some bit
manipulation functions at the machine integer level will be required. To ease the implementation
and the proof, those bit manipulations routines will also be formalised in Task RT1-1.

1The round bit is the next bit after the most significant p bits of a + b/2k, and the sticky bit is zero if all further bits
are zero, and one otherwise. Knowing them is sufficient to compute a correct rounding for all IEEE 754 rounding modes.
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Task RT1-3: Formally Prove the Correctness of the MPS Implementation

Prove formally the correctness of the code designed in Task RT1-2. The theorem corresponding
to the above routine mps_add could be as follows in the Coq proof assistant:

Theorem mps_add_correct :

forall a p b q k rnd stck mem mem’,

mem’ = eval mem (mps_add a p b q k rnd stck) ->

let c_exact = value mem a p + value mem b q / 2^k in

no_overlap a p b q -> value mem’ a p = round (c_exact p) /\

is_round_bit (value mem’ rnd) c_exact /\

is_sticky_bit (value mem’ stck) c_exact.

In the above theorem, the variables mem and mem’ represent the memory state before and after
the call to mps_add, respectively. One of the main difficulties will be to prove that no change
was made to memory, except of course in this example to the memory pointed by a, and to the
variables rnd and stck. This will ensure that no out-of-bound read or write occurs.

Here, as in Tasks RT2-2 and RT3-2 below, different ways to obtain a formal proof are possible.
A first strategy is to formalise the implementation in a proof assistant, and to prove the correctness
of this formalisation; the issue here is to ensure that the formalisation really corresponds to the
actual code [6, 31]. A second strategy is to extract the code directly from a proof assistant;
in this way, no discrepancy can happen between the formalisation and the actual code, but
specific knowledge is required to obtain efficient extracted code. Also, code extraction in the
Coq system currently only works for Objective Caml, Haskell and Scheme, whereas our target
is the C language. Some interaction with the Coq developers will be needed at this point. A
third strategy is to annotate the source code, and to use a proof assistant (for example the Why3
platform [11]) which can read those annotations and prove lemmas and theorems from them. We
expect all three strategies will need to be tested and compared.

Task RT1-3 will overlap in time with Task RT1-2, since interaction between both tasks will
be required to ensure the implementation designed in Task RT1-2 can be formally proven.

2.2 Research Target 2: Formalising Quadruple-Precision Arithmetic

The quadruple-precision format is fully specified by IEEE 754: the significand has 113 bits, and
valid numbers are of the form (in binary)

(−1)s · b0.b1...b112 · 2e,

with s, bi ∈ {0, 1}, and −16382 ≤ e ≤ 16383. This format can represent numbers as large as
about 104932, and as small (in absolute value) as about 10−4966. Quadruple-precision numbers can
be represented in 128 bits: one bit for the sign s, 15 bits for the exponent, and the remaining 112
bits for the significant (most numbers can be normalised so that b0 = 1, which is then implicit).
Additional special numbers are NaN (Not-a-Number), +∞ and −∞.

To formalise quadruple-precision arithmetic, we will split the work for Research Target 2 into
the following tasks which are detailed below:

• Task RT2-1: Efficient Quadruple-Precision Routines
• Task RT2-2: Formal Proof of the Quadruple-Precision Routines
• Task RT2-3: Validate Quadruple-Precision Routines on Large-Scale Applications
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Task RT2-1: Efficient Quadruple-Precision Routines

Design efficient quadruple-precision routines on top of MPS routines (which might contain special-
purpose code for 113-bit significands). This will be split in two subtasks: basic arithmetic routines
(addition, subtraction, multiplication, division, square root, radix conversion), and mathematical
functions from the C11 standard. For basic arithmetic routines, the correct rounding can usually
be obtained directly [13, Chapter 10], and the corresponding formal proof will be similar to
the one obtained for the integer square root by the PI and collaborators [10]. However, for
most mathematical functions, a single-pass computation is possible only when it is possible to
determine the hardest-to-round inputs for the given format and function. This is known as the
Table Maker’s Dilemma (TMD). In general, the hardest-to-round inputs for a format of p bits
require 2p + o(1) bits of working precision; the main difficulty is to determine exactly the o(1)
term. Either the TMD is solved, and one then knows an exact upper bound, say 2p + 17, on
the internal precision needed; otherwise one has to resort to Ziv’s onion peeling strategy [13]:
compute a first approximation with say p + 10 bits of precision if p is the target precision, and
if this approximation does not enable one to compute the correct rounding, compute again with
say p + 20 bits of precision, and so on. Since current methods can solve the TMD only up to
double-extended precision [38], we will have to use Ziv’s strategy here.

Two ways of reaching this milestone will be considered: either building on the existing
libquadmath library from GCC, or building a quadruple precision library on top of MPFR.
In the former case, the BeDoP project will contribute to the libquadmath library, by making the
mathematical functions always return a correctly rounded value, for example:

__float128 sinq (__float128 x)

In the MPFR case, some specific code will need to be developed in the case where all operands are
quadruple precision numbers. Note that in both cases, Ziv’s strategy will require to implement
an internal library with about 256-bit accuracy. The general framework of the code for a given
mathematical function (say the sine function here) might be as follows: given a quadruple precision
number x (with a significand of 113 bits),

1. set the working precision p to 128,
2. compute an approximation y of sin x with working precision p, and maximal error ε,
3. if y ± ε are both rounded to the same quadruple precision precision value z, return z,
4. otherwise p← p + 64, and goto Step 1.

Task RT2-2: Formal Proof of the Quadruple-Precision Routines

Prove formally the correctness of the code designed in Task RT2-1. In particular, we will prove
that the obtained results are correctly rounded, and that the code does not loop forever. We
expect several interactions will be needed between Tasks RT2-1 and RT2-2, until we obtain an
implementation that is both efficient and easy to prove correct. The expected output will be
theorems as follows:

Theorem sinq_correct :

forall (x : binary128) rnd_mode,

sinq x rnd_mode = round (sin x) binary128 rnd_mode.
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Consider the general framework outlined above to compute sinx in quadruple precision. The
first subtask is to prove that the approximation y and the error bound ε in Step 2 really satisfy
|y − sinx| ≤ ε. A second subtask is to prove that the rounding routine in Step 3 is correct
(this routine will be shared by all mathematical functions). Finally, we have to prove that if
the algorithm terminates, the returned value z is the correct rounding of sinx with the given
rounding mode. As for termination, this is a non-trivial mathematical problem, which is (to the
best of our knowledge) still unsolved for some mathematical functions. Therefore, we might have
to assume termination in some cases.

As in Task RT1-3, different proof strategies will be tested and compared: manual proof, code
extraction, and code annotation.

Task RT2-3: Validate Quadruple-Precision Routines on Large-Scale Applications

All the developments within the BeDoP project will be systematically validated on large-scale
applications. Such applications will be identified at the beginning of the project, and new de-
velopments will be continuously exercised on large computers. For quadruple precision, we will
focus on dense linear algebra using parallel hierarchical linear solvers [7].

2.3 Research Target 3: Formalising Arbitrary-Precision Arithmetic

We propose to split that Research Target into the following tasks:

• Task RT3-1: Efficient Arbitrary-Precision Routines
• Task RT3-2: Formal Proof of Arbitrary-Precision Routines
• Task RT3-3: Validate Arbitrary-Precision Routines on Large-Scale Applications

Task RT3-1: Efficient Arbitrary-Precision Routines

Design efficient arbitrary-precision routines on top of MPS routines. As for Task RT2-1, there
will be two subtasks: first to implement basic arithmetic routines, then mathematical functions.
For the set of functions considered, we will focus on those in the C11 standard, but will also
consider other functions, for example the hyperbolic sine integral, also called the “Shi function”.
If implemented in MPFR, this would yield the following function mpfr_shi, that computes the
hyperbolic sine integral of the input x, and stores into the output y the correctly rounded result
according to the rounding mode rnd_mode:

int mpfr_shi (mpfr_t y, const mpfr_t x, mpfr_rnd_t rnd_mode)

Task RT3-2: Formal Proof of Arbitrary-Precision Routines

Prove formally the correctness of the code designed in Task RT3-1. As in Tasks RT1-3 and RT2-2,
several proof strategies will be tested and compared: manual proof, code extraction, and code
annotation.

The expected outcome of this task will be theorems like the following, which guarantees that
for any arbitrary-precision input x, the hyberbolic sine integral implementation mpfr_shi returns
the correctly rounded output y:
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Theorem shi_correct :

forall (x : arbitrary_fp) (y : arbitrary_fp) rnd_mode mem mem’,

mem’ = eval mem (mpfr_shi y x rnd_mode) ->

y = round (shi x) (precision y) rnd_mode.

Task RT3-3: Validate Arbitrary-Precision Routines on Large-Scale Applications

As for quadruple precision, the multiple-precision routines will be systematically validated on
large-scale applications. Arbitrary-precision is required, for example, to compute periodic orbits
of dynamical systems [5], to study multi-body systems [9], or dynamical systems [20], for climate
modelling and ocean circulation models [23].

In Table 4, we summarize the distribution of the work over the 5 years of the BeDoP project,
according to the dependencies and relationships between the different tasks.

2016 2017 2018 2019 2020

Task RT1-1
Task RT1-2

Task RT1-3
Task RT2-1

Task RT2-2
Task RT3-1

Task RT3-2

Task RT2-3, Task RT3-3

Table 4: The BeDoP Roadmap.

2.4 Expected Outcome: Beyond Double Precision

According to the U.S. Department of Energy [3], high-precision arithmetic is one of the nine areas
in mathematics and algorithms where advances are needed for exascale computing:

Some, and possibly many, exascale applications will require high-precision arithmetic
facility, yet there is little prospect for vendor support. While some software packages
are available, they have shortcomings. What is needed is a simple-to-use facility that
infallibly converts large application programs for high precision, yet results in only a
modest inflation in run time. Such a facility is possible but not yet available.

Let us recall that it is our responsibility as computer scientists to (i) warn the scientific
community about the limits of double precision for large computations, (ii) design and improve
software tools that will enable scientists to go beyond double precision in the parts of their
programs that require it, and (iii) make those software tools efficient and robust.

The expected outcome of the BeDoP Project will address these crucial issues: we will
perform original research in the field of formal proof for arbitrary-precision floating-point
arithmetic, and we will develop new libraries for quadruple- and arbitrary-precision floating-
point arithmetic, which will be efficient and robust, and will allow reproducible research.
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Addressing these issues will be a real challenge, but we strongly believe it is the right time
to address them, and that we have a unique opportunity to bring together researchers from the
formal proof and the computer arithmetic communities.

3 Resources for the BeDoP project

3.1 The Research Environment

The PI and his research team (Caramel) are part of Inria, the French National Institute for
Research in Mathematics and Informatics. The Caramel group is located in the “Nancy-Grand
Est” Inria research centre (21 research teams). The Caramel group maintains long-term tight col-
laborations with several research groups in computer arithmetic and algorithmic number theory,
in particular the group of Richard Brent (now retired) in Australia, the group of Arjen Lenstra
at EPFL, and the GMP developers around Torbjörn Granlund (KTH, Stockholm). Locally in
Nancy, the team VeriDis of Stephan Merz brings together specialists of verification, model check-
ing, SMT solvers, and will hire Jasmin Blanchette in early 2015. Connections with other Inria
teams in France already exist: with the team of André Seznec in Rennes focusing on hardware,
with the AriC team of Jean-Michel Muller in Lyon specialising in computer arithmetic, with the
team of Xavier Leroy in Paris working on certified computation, with the Toccata team in Saclay
concerning formal proof, and that of Yves Bertot in Sophia Antipolis. We also expect connec-
tions with the FastRelax project supported by the French National Research Agency (ANR)
and coordinated by Bruno Salvy from the AriC team.

3.2 The BeDoP Research Team

ERC Funded People

• the Principal Investigator, with a 75% commitment to the BeDoP project. He will manage
the BeDoP Research Team, and work on the design and implementation of the MPS routines
(RT1-1, RT1-2), on the implementation and formal proof of quadruple-precision (RT2-1,
RT2-2), on the formal proof of arbitrary-precision routines (RT3-2), and on the validation
of arbitrary-precision routines on large-scale applications (RT3-3);

• one full-time Junior Researcher over 5 years, with an initial training in computer arithmetic
or in formal proof, ideally in both domains. She/he will work on the design and formal
proof of the MPS low-level arithmetic (RT1-1, RT1-3), and on the implementation and
formal proof of arbitrary-precision arithmetic within the MPFR library, with a focus on
mathematical functions (RT3-1, RT3-2);

• one postdoctoral researcher (Postdoc 1) for 2 years. Postdoc 1 will work on the implemen-
tation and formal proof of quadruple precision arithmetic within the libquadmath library
(RT2-1, RT2-2), as well on the validation on large-scale applications (RT2-3);

• one postdoctoral researcher (Postdoc 2) for 2 years. Postdoc 2 will work on the implemen-
tation and formal proof of arbitrary-precision arithmetic (RT3-1, RT3-2);

• one PhD student (PhD 1) for 3 years. PhD 1 will work on the design and formal proof of
the MPS language (RT1-1, RT1-3);
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• one PhD student (PhD 2) for 3 years. PhD 2 will work on the implementation and formal
proof of quadruple precision arithmetic within the MPFR library (RT2-1, RT2-2);

• one PhD student (PhD 3) for 3 years. PhD 3 will work on the implementation and formal
proof of arbitrary-precision arithmetic within the MPFR library, with a focus on basic
arithmetic (RT3-1, RT3-2);

• one software engineer for 4 years, who will contribute to all design and implementation tasks
(RT1-1, RT1-2, RT2-1, RT3-1), and to the validation of quadruple and arbitrary-precision
on large-scale applications (RT2-3, RT3-3);

• several visiting professors (4 months per year in total), in particular we expect Norbert
Müller (Trier, Germany), Torbjörn Granlund (Stockholm, Sweden) and Marco Bodrato
(Italy) to be regular visitors of the BeDoP team.

A detailed schedule is given in Table 5. Apart from those people funded by ERC, several other
people will also contribute partly to the BeDoP team in Nancy: Stéphane Glondu, a research
engineer hired by the host institution, who is a specialist of the Coq formal proof system; Jasmin
Blanchette, a junior researcher hired by VeriDis team, specialist of first-order and higher-order
theorem provers.

2016 2017 2018 2019 2020

Principal Investigator: RT1-1, RT1-2, RT2-1, RT2-2, RT3-2, RT3-3

Junior Researcher: RT1-1, RT1-3, RT3-1, RT3-2

PhD 1: RT1-1, RT1-3
PhD 2: RT2-1, RT2-2
Postdoc 1: RT2-1, RT2-2, RT2-3

PhD 3: RT3-1, RT3-2
Postdoc 2: RT3-1, RT3-2

Development Engineer: RT1-1, RT1-2, RT2-1, RT2-3, RT3-1, RT3-3

Workshop 1 Workshop 2 Workshop 3

Table 5: Detailed schedule of the BeDoP project.

External Collaborators. Other Inria tenure-track researchers outside the Nancy site will be
very helpful: Lefèvre in Lyon, Melquiond and Boldo in Saclay, Théry in Sophia-Antipolis are
all specialists of formal proof and/or computer arithmetic. A past collaboration of the PI with
Norbert Müller in Trier will be renewed [30]. BeDoP will also build on the work of Reynald
Affeldt and Magnus Myreen on the formal proof of multiple-precision assembly code [6, 31], and
on the work of Krebbers and Spitters on efficient real arithmetic in Coq [28].

3.3 Other Direct Costs

BeDoP Workshops. We will organise three BeDoP workshops, one in 2016, one in 2018, and
one in 2020, with partial support from the host institution. We aim to organise those workshops
in Dagstuhl, which is an exceptional place for scientific exchanges. The 2016 workshop will bring
together researchers from the formal proof and computer arithmetic communities, to which we
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will present the main goals of the project, and the preliminary results obtained so far, especially
in Research Target 1; it will be an excellent opportunity to get feedback from the scientific
community, and to adjust the project schedule if needed. The 2018 workshop will focus on
quadruple-precision arithmetic, and on the results obtained in Research Target 2. The 2020
workshop will focus on arbitrary-precision arithmetic, on the results obtained in Research Target
3, and will include researchers working on large-scale applications.

Travel and conferences. 147.5 ke for 5 years to visit our partners, and attend international
conferences in computer arithmetic and formal proof (ARITH, ISSAC, LICS, SSV, POPL, ...).

3.4 Available Resources

The Caramel team has access to a large cluster of 48 Intel Xeon nodes, each node having 16 cores,
thus with a total of 768 cores. In addition, the members of the BeDoP team will have access
to Grid5000, a French scientific instrument supporting experiment-driven research in all areas of
computer science, including high performance computing, distributed computing, networking and
big data, with more than 5000 high-performance cores available.

Cost Category Total in Euro
PI (75%) 525,000
Junior Researcher 281,725

Personnel Postdoctoral Researchers 192,000
PhD Students 351,000
Software Engineer 230,000

Direct Total Direct Costs for Personnel 1,579,725
Costs Travel 262,500

Equipment
Other goods Consumables
and services Publications

Other
Total Other Direct Costs 262,500

A - Total Direct Costs 1,842,225
B - Indirect Costs (overheads) 460,556
C1 - Subcontracting Costs (no overheads)
C2 - Other Direct Costs with no overheads
Total Estimated Eligible Costs (A+B+C) 2,302,781
Total Requested Grant 2,302,781
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pages. [8]

[14] Cornea, M. Precision, accuracy, and rounding error propagation in exascale computing. In Proceedings of
21st IEEE Symposium on Computer Arithmetic (ARITH) (2013), pp. 231–234. [1]

[15] de Dinechin, F., and Villard, G. High precision numerical accuracy in physics research. Nuclear
Instruments and Methods in Physics Research A 559 (2005), 207–210. [3]

[16] Dekker, T. J. A floating-point technique for extending the available precision. Numer. Math. 18 (1971),
224–242. [3]

[17] Dongarra, J., and Beckman, P. The International Exascale Software Roadmap. International Journal
of High Performance Computer Applications 25, 1 (2011). [1]

[18] Dou, Y., Lei, Y., Wu, G., Guo, S., Zhou, J., and Shen, L. FGPA accelerating double/quad high
precision floating-point applications for exascale computing. In Proceedings of ICS’10 (Tsukuba, Ibaraki,
Japan, June 2-4 2010), pp. 325–335. [1]
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