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Abstract. The Elliptic Curve Method for integer factorization (ECM)
was invented by H. W. Lenstra, Jr., in 1985 [14]. In the past 20 years,
many improvements of ECM were proposed on the mathematical, algo-
rithmic, and implementation sides. This paper summarizes the current
state-of-the-art, as implemented in the GMP-ECM software.

Introduction

Before ECM was invented by H. W. Lenstra, Jr. in 1985 [14], Pollard’s ρ al-
gorithm and some variants were used, for example to factor the eighth Fermat
number F8 [8]. As soon as ECM was discovered, many researchers worked hard
to improve the original algorithm or efficiently implement it. Most current im-
provements to ECM were already invented by Brent and Montgomery in the end
of 1985 [5,18]1.

In [5], Brent describes the “second phase” in two flavours, the “P−1 two-
phase” and the “birthday paradox two-phase”. He already mentions Brent-
Suyama’s extension, and the possible use of fast polynomial evaluation in stage
2, but does not yet see how to use the Fast Fourier Transform (FFT). At that
time (1985), ECM could find factors of about 20-30 digits only; however Brent
predicted: “we can forsee that p around 1050 may be accessible in a few years
time”. This happened in September 1998, when Conrad Curry found a 53-digit
factor of 2677 − 1 with Woltman’s mprime program. According to Fig. 1, which
displays the evolution of the ECM record since 1991, and extrapolates it using
Brent’s formula

√
D = (Y −1932.3)/9.3, a 100-digit factor — which corresponds

to the current GNFS record (RSA-200) — could be found by ECM around 2025,
i.e., in another 20 years.

In [18], Montgomery gives a unified description of P−1, P+1 and ECM. He
already mentions the “FFT continuation” suggested by Pollard for P−1. A ma-
jor improvement was proposed by Montgomery with the “FFT extension” [19],
which enables one to significantly speed up stage 2.

1 The first version of Brent’s paper is from September 24, 1985 — revised December
10, 1985 — and Montgomery’s paper was received on December 16, 1985.
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Fig. 1. Graph of ecm records since 1991 (digits vs year), and extrapolation until 2025

Several efficient implementations have been made, in particular by Brent [6],
Montgomery (ecmfft), and Woltman (Prime95/mprime). Already in 1986,
Montgomery found a 36-digit factor of the Lucas number L464.

Many large factors have been found by ECM. Among others we can cite the
40-digit prime in the factorization of the tenth Fermat number [7] (the two
smaller factors were found by other methods):

F10 = 45592577·6487031809·4659775785220018543264560743076778192897·p252.

The smallest unfactored Fermat number, F12, is out of reach for NFS-based
methods (Number Field Sieve), so the main hope to factor it rests on ECM.

The aim of this paper is to describe the state-of-the-art in the ECM domain,
and in particular the algorithms implemented in the GMP-ECM software. §1
recalls the ECM algorithm and defines the notation used in the rest of the
paper, while §2 describes the algorithms used in Stage 1 of ECM, and §3 those
in Stage 2. Finally, §4 exhibits nice factors found by ECM, and discusses further
possible improvements.

1 The ECM Method

Notations. In the whole paper, n denotes the number to be factored, p a
(possibly unknown) prime factor of n, and π a prime; the function π(x) denotes
the number of primes less than or equal to x. All arithmetic operations are
implicitly performed modulo n. We assume n has l words in the machine word
base β — usually β = 232 or 264 —, i.e., βl−1 ≤ n < βl. Depending on the
context, we write M(d) for the cost of multiplying two d-bit integers, or two
degree-d polynomials — where operations on the coefficients count O(1). The
notation �x� stands for �x + 1/2�.
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This section is largely inspired by [7] and [18]. Consider a field K of charac-
teristic other than 2 or 3. An elliptic curve E is the set of points (X, Y ) ∈ K
such that

Y 2 = X3 + AX + B,

where A, B ∈ K, and 4A3 + 27B2 �= 0, plus a “point at infinity” denoted OE .
The curve E admits a group structure, where the addition of two points can be
effectively computed, and OE is the neutral element.

For a computer implementation, it is more efficient to use Montgomery’s form
Ea,b with a2 �= 4 and b �= 0:

by2 = x3 + ax2 + x,

which can obtained from Weierstrass form above by the change of variables
X → (3x + a)/(3b), Y → y/b, A → (3 − a2)/(3b2), B → (2a3/9 − a)/(3b3).
Moreover, one usually prefers a homogeneous form:

by2z = x3 + ax2z + xz2, (1)

where the triple (x : y : z) represents the point (x/z : y/z) in affine coordinates.
The ECM method starts by choosing a random curve Ea,b and a random point

(x : y : z) on it. All computations are done modulo the number n to factor, as
if Z/nZ were a field. The only operation which may fail is when computing the
inverse of a nonzero residue x modulo n, if gcd(x, n) �= 1. But then a factor of n
is found, the program outputs it and exits.

Here is a high-level description of the ECM algorithm (recall π denotes a
prime):

Algorithm ECM.
Input: an integer n not divisible by 2 nor 3, and integer bounds B1 ≤ B2.
Output: a factor of n, or FAIL.
Choose a random elliptic curve Ea,b mod n and a point P0 = (x0 : y0 : z0)
on it.
[Stage 1] Compute Q :=

∏
π≤B1

π�(log B1)/(log π)�P0 on Ea,b

[Stage 2] For each π, B1 < π ≤ B2,
compute (xπ : yπ : zπ) = πQ on Ea,b

g ← gcd(n, zπ)
if g �= 1, output g and exit

output FAIL.

Suyama’s Parametrization. Suyama’s parametrization works as follows.
Choose a random integer σ > 5 (we might also consider a rational value); usually
a random 32-bit value is enough, but when running many curves on the same
number, one might want to use a larger range. Then compute u = σ2−5, v = 4σ,
x0 = u3 mod n, z0 = v3 mod n, a = (v − u)3(3u + v)/(4u3v) − 2 mod n. One
can check that Eq. (1) holds with for example b = u/z0 and y0 = (σ2 − 1)(σ2 −
25)(σ4 − 25). This parametrization is widely used, and therefore enables one to
reproduce factorizations found by different programs.
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In fact, the values of b and y are not needed; all the arithmetic operations
involve x and z only. Indeed, for a given pair (x, z), at most two values of y
give a valid point (x : y : z) on Ea,b according to Eq. (1). When there are two
solutions, they are y and −y, and ignoring the y-coordinate identifies P and −P .
As will be seen later, this is precisely what we want. We then write P = (x : : z).

1.1 Why Does ECM Work?

Let p be a prime factor of n, and consider the elliptic curve Ea,b mod p. Hasse’s
theorem says that the order g of Ea,b mod p satisfies

|g − (p + 1)| < 2
√

p.

When a and b vary, g essentially behaves as a random integer in [p+1−2
√

p, p+
1 + 2

√
p], with some additional conditions imposed by the type of curve chosen.

For example Suyama’s parametrization ensures 12 divides g: Montgomery’s form
(1) ensures 4 divides g, Suyama gives the additional factor 3.

ECM will find the factor p — which is not necessarily the smallest factor of n
— when g is (B1, B2)-smooth, i.e., when the largest prime factor of g is less or
equal to B2, and its second largest prime factor less or equal to2 B1. The factor
p will be found in stage 1 when g is B1-smooth — i.e., all its prime factors are
less or equal to B1 —, and in stage 2 otherwise.

Remark. If two or more factors of n have a (B1, B2)-smooth group order for
the chosen curve, they will be found simultaneously, which means that ECM
will output their product, which can even be n if all its prime factors have a
(B1, B2)-smooth group order. This should not be considered a failure: instead
check whether the factor is a prime power, and if not restart the same curve
with smaller B1, B2 to split the different prime factors.

1.2 Complexity of ECM

The expected time used by ECM to find a factor p of a number n is

O(L(p)
√

2+o(1)M(log n)),

where L(p) = e
√

log p log log p, and M(log n) representes the complexity of multi-
plication modulo n. The second stage enables one to save a factor of log p —
which is absorbed by the o(1) term above. Mathematical and algorithmic im-
provements act on the L(p)

√
2+o(1) factor, while arithmetic improvements act on

the M(log n) factor.

2 The definition of (B1, B2)-smoothness used in Algorithm ECM above and by most
software is slightly different: all primes π ≤ B1 should appear to a power πk ≤ B1,
and similarly for B2; in practice this makes little difference.
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2 Stage One

Stage 1 computes Q :=
∏

π≤B1
π�(log B1)/(log π)�P0 on Ea,b. That big product is

not computed as such. Instead, we use the following loop:

Q ← P0
for each prime π ≤ B1

compute k such that πk ≤ B1 < πk+1

for i := 1 to k do
Q ← π · Q.

The multiplication π · Q on the elliptic curve is done using additions (P, Q →
P + Q) and duplications (P → 2P ).

To add two distinct points (xP : : zP ) and (xQ : : zQ), one uses the following
formula, where (xP−Q : : zP−Q) corresponds to the difference P − Q:

xP+Q = 4zP−Q · (xP xQ − zP zQ)2, zP+Q = 4xP−Q · (xP zQ − zP xQ)2.

This can be computed using 6 multiplications (among which 2 are squares) as
follows:

u ← (xP + zP )(xQ − zQ) v ← (xP − zP )(xQ + zQ)
w ← (u + v)2 t ← (u − v)2

xP+Q ← zP−Q · w zP+Q ← xP−Q · t.

To duplicate a point (xP : : zP ), one uses the following formula:

x2P = (x2
P − z2

P )2, z2P = (4xP zP )[(xP − zP )2 + d(4xP zP )], (2)

where d = (a + 2)/4, with a from Eq. (1). This formula can be implemented
using 5 multiplications (including 2 squares) as follows:

u ← (xP + zP )2 v ← (xP − zP )2 t ← d(u − v) + v
x2P ← uv z2P ← (u − v)t.

Since the difference P − Q is needed to compute P + Q, this is a special
case of addition chains, called “Lucas chains” by Montgomery, who designed an
heuristic algorithm “PRAC” to compute them [16] (see §2.2).

2.1 Residue Arithmetic

To obtain an efficient implementation of ECM, an efficient underlying arithmetic
is important. The main operations to be performed are additions, subtractions
and multiplications modulo the number n to be factored. Other operations (di-
visions, gcds) are rare, or can be replaced by modular multiplications. Since
additions and subtractions have cost O(log n), the main operation to be opti-
mized is the modular multiplication: given 0 ≤ a, b < n, compute c = ab mod n.

We distinguish two cases: classical O(log2 n) arithmetic, and subquadratic
arithmetic. On a Pentium 4, GMP-4.2 switches to Karatsuba’s algorithm up
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from 23 words, i.e., about 220 decimal digits. Since ECM is often used to factor
numbers smaller than this, it is worth optimizing classical arithmetic.

For special numbers, like factors of βk ± 1, one may use ad-hoc routines. As-
sume for example dn = βk−1. The product c = ab of two residues can be reduced
as follows: write c = c0 + c1β

k, where 0 ≤ c0, c1 < βk; then c = c0 + c1 mod n.
Instead of reducing a 2l-word integer c (recall n has l words), we reduce c0 + c1,
which has k words only (plus possibly one carry bit). Alternatively, if the cofac-
tor d is small, one can reduce c modulo βk − 1 only, and perform multiplications
on k words instead of l words. GMP-ECM implements such a special reduction
for large divisors of 2k ± 1, using the latter method. It also uses special code for
Fermat numbers 22k

+ 1: indeed, GMP fast multiplication code precisely uses
Schönhage-Strassen algorithm, i.e., multiplication modulo 2m + 1 [21].

Efficient Assembly Code. While using clever high-level algorithms may give a
speedup of 10% or 20%, at the expense of several months to invent and implement
those algorithms, a twofold speedup may be obtained in a few days, just rewriting
one of the assembly routines for integer arithmetic3.

GMP-ECM is based on the GNU MP library (GMP for short) [11], thus
benefits from the portability of GMP, and from the efficiency of its assembly
routines (found in the mpn layer). A library dedicated to modular arithmetic —
or even better to computations on elliptic curves — might yet be faster. Since
all operations are done on numbers of the same size, we might use a library with
special assembly code for each word size, up to some reasonable small size.

Quadratic Arithmetic. In the quadratic domain, up to 200-300 digits depend-
ing on the processor, the best current solution is to use Montgomery representa-
tion [17]: The number n to be factored having l words in base β, each residue a
is replaced by a′ = βla mod n. Additions and subtractions are unchanged, mul-
tiplications are replaced by the REDC operation: REDC(a, b) := abβ−l mod n.
This operation can be efficiently implemented on modern computers, and unlike
classical division does not require any correction.

There are two ways to implement REDC: (i) either interleave the multiplica-
tion and the reduction as in algorithm MODMULN from [18], (ii) or perform
them separately. The latter way enables one to use the efficient GMP assembly
code for base-case multiplication. One first computes c = ab, having at most 2l
words in base β. The reduction r := c mod n is performed with the following
GMP code, which is exactly that of version 6.0.1 of GMP-ECM, with variable
names changed to match the above notations (the mpn functions are described
in the GMP documentation [11]):

static void
ecm_redc_basecase (mpz_ptr r, mpz_ptr c, mpmod_t modulus)
{
mp_ptr rp = PTR(r), cp = PTR(c);

3 The first author indeed noticed a speedup of more than 2 with GMP-ECM, when
Torbjörn Granlund rewrote the UltraSparc assembly code for GMP.
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mp_srcptr np = PTR(modulus->orig_modulus);
mp_limb_t cy;
mp_size_t j, L = modulus->bits / __GMP_BITS_PER_MP_LIMB;

for (j = ABSIZ(c); j < 2 * L; j++)
cp[j] = 0;

for (j = 0; j < L; j++, cp++)
cp[0] = mpn_addmul_1 (cp, np, L, cp[0] * modulus->Nprim);

cy = mpn_add_n (rp, cp, cp - L, L);
if (cy != 0)

mpn_sub_n (rp, rp, np, L);
MPN_NORMALIZE (rp, L);
SIZ(r) = SIZ(c) < 0 ? -L : L;

}

The main idea — independently discovered by Kevin Ryde and the first author
— is to store the carry words from mpn addmul 1 in the low l words of c, just
after they are set to zero by REDC. In such a way, one replaces l expensive carry
propagations by one call to mpn add n.

Subquadratic Arithmetic. For large numbers, subquadratic arithmetic is
needed. Again, one can use either the classical representation, or Montgomery
representation. In both cases, the best known algorithms require 2.5M(l) for a
l-word modular multiplication: M(l) for the multiplication c := ab, and 1.5M(n)
for the reduction c mod n using Barrett’s algorithm [1], or its least-significant-
bit (LSB) variant for cβ−l mod n. LSB-Barrett is exactly REDC, where β is
replaced by βl [20]: after the precomputation of m = −n−1 mod βl, compute
d = cm mod βl, and (c+ dn)β−l. Since all reductions are done modulo the same
n, the precomputation of m is amortized and does not impact the average cost.
The 1.5M(n) reduction cost is obtained using the “wrap-around” trick for the
last multiply dn (see §3.2), since the low part is known to be equal to −c mod βl.

2.2 Evaluation of Lucas Chains

A Lucas chain is an addition chain in which the sum i+j of two terms can appear
only if |i − j| also appears. (This condition is needed for the point addition in
homogeneous coordinates, see §2.) For example 1 → 2 → 3 → 5 → 7 → 9 →
16 → 23 is a Lucas chain for 23.

The basic idea of Montgomery’s PRAC algorithm [16] is to find a Lucas chain
using some heuristics. Assume for example we want to generate 1009 · P . To
generate a sequence close to optimal, a natural idea is to use as previous term
1009/φ ≈ 624, where φ = (1 +

√
5)/2 is the golden ratio, but this requires

1009 − 624 = 385 to be a term in the sequence. We get 1009 → 624 → 385 →
239 → 146 → 93 → 53 → 40 → 13. At this point we cannot continue using the
same transform (d, e) → (e, d − e).

To generate π·P , Montgomery starts with (d, e) = (π, �π/α�), with α = φ, and
iteratively uses 9 different transforms to reduce the pair (d, e), each transform
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using from 1 to 4 point additions or duplicates, to finally reach d = 1. (PRAC
actually generates a dual of the chain.)

Montgomery improvedPRAC as follows: instead of using α = φ only, try several
values of α, and keep the one giving the smallest cost in terms of modular multi-
plications. The α’s are chosen so that after a few steps, the remaining values (d, e)
have a ratio near φ, i.e., α = (aφ + b)/(cφ + f) with small a, b, c, f . If r = �π/α�,
the idea is to share the partial quotients different from 1 among the first and last
terms from the continued fraction of π/r, hoping to have small trailing quotients.

Fig. 2 gives 10 such values of α, the first partial quotients of their continued
fraction, and the total cost — in terms of curve additions or duplicates — of
PRAC for all primes up to B1, for B1 = 106 and 108. For a given row, all values of
α above and including this row are assumed to be used. The gain using those 10
values instead of only α = φ is 3.72% for B1 = 106, 3.74% for B1 = 108, and the
excess with respect to the lower bounds given by Theorem 8 of [16] — 2114698
for B1 = 106 and 210717774 for B1 = 108 — is 3.7% and 5.1% respectively.

α first partial quotients B1 = 106 B1 = 108

φ ≈ 1.61803398875 1, 1, 1, . . . 2278430 230143294
(φ + 7)/5 ≈ 1.72360679775 1, 1, 2, 1, . . . 2240333 226235929

(φ + 2311)/1429 ≈ 1.618347119656 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, . . . 2226042 224761495
(6051 − φ)/3739 ≈ 1.617914406529 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, . . . 2217267 223859686

(129 − φ)/79 ≈ 1.612429949509 1, 1, 1, 1, 1, 2, 1, . . . 2210706 223226409
(φ + 49)/31 ≈ 1.632839806089 1, 1, 1, 1, 2, 1, . . . 2205612 222731604

(φ + 337)/209 ≈ 1.620181980807 1, 1, 1, 1, 1, 1, 2, 1, . . . 2201615 222335307
(19 − φ)/11 ≈ 1.580178728295 1, 1, 1, 2, 1, . . . 2198400 222013974

(883 − φ)/545 ≈ 1.617214616534 1, 1, 1, 1, 1, 1, 1, 2, 1, . . . 2195552 221729046
3 − φ ≈ 1.38196601125 1, 2, 1, . . . 2193683 221533297

Fig. 2. Total cost of PRAC with several α’s, for all π < B1 (using the best double-
precision approximation of α)

3 Stage Two

All of P−1, P+1 and ECM work in an Abelian group G. For P−1, G is the
multiplicative group of nonzero elements of GF(p) where p is the factor to be
found; for P+1, G is a multiplicative subgroup of GF(p2); for ECM, G is an
elliptic curve Ea,b mod p. In all cases, the calculations in G reduce to arithmetic
operations — additions, subtractions, multiplications, divisions — in Z/nZ. The
only computation that may fail is the inversion 1/a mod n, but then a non-trivial
factor of n is found, unless a = 0 mod n. A unified description of stage 2 is
possible [18]; for sake of clarity, we here prefer to focus on ECM.

3.1 Overall Description

Stage 1 of ECM computes a point Q on an elliptic curve E. In case it fails, i.e.,
gcd(n, zQ) = 1, we hope there exists a prime π in the stage 2 range [B1, B2]
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such that πQ = OE mod p. In such a case, while computing πQ = (x : y) in
Weierstrass coordinates4, a non-trivial gcd will yield the prime factor p of n. A
continuation of ECM — also called stage two, phase two, or step two — tries to
find those matches. The first main idea is to avoid computing every πQ, using
a “meet-in-the-middle” — or baby-step, giant step — strategy: one computes
σQ and τQ such that π = σ ± τ . If σQ = (xσ : yσ) and τQ = (xτ : yτ ),
then σQ + τQ = OE mod p implies xσ = xτ mod p. It thus suffices to compute
gcd(xσ − xτ , n) to obtain5 the factor p.

Two classes of continuations differ in the way they choose σ and τ . The
birthday paradox continuation takes σ ∈ S and τ ∈ T , with S and T two large
sets, which are either random or geometric progressions, hoping that S+T covers
most primes in [B1, B2], and usually other larger primes. Brent suggests taking
T = S.

We focus here on the standard continuation, which takes S and T in arithmetic
progressions, and guarantees that all primes π in [B1, B2] are hit. Assume for
simplicity that B1 = 1. Choose a composite integer d < B2, then all primes up
to B2 can be written

π = σ + τ,

with σ ∈ S = {i · d, 0 ≤ i · d < B2}, and τ ∈ T = {j, 0 < j < d, gcd(j, d) = 1}.
Computing values of σQ and τQ costs O(B2/d + d) elliptic curve operations,
which is O(

√
B2) for d ≈

√
B2. Choosing d with many small factors also reduces

the cost. The main problem is how to evaluate all xσ − xτ for σ ∈ S, τ ∈ T , and
take their gcd with n.

A crucial observation is that for ECM, if jQ = (x : y), then −jQ = (x : −y).
Thus jQ and −jQ share the same x-coordinate. In other words, if one computes
xi − xj corresponding to the prime π = i · d + j, one will also hit i · d − j
— which may be prime or not — for free. This can be exploited in two ways:
Either restrict to j ≤ d/2, as proposed by Montgomery [18]; or restrict j to the
“positive” residues prime to d, for example if d is divisible by 6, one can restrict
to j = 1 mod 6. This is what is used in GMP-ECM.

3.2 Fast Polynomial Arithmetic

Classical implementations of the standard continuation cover primes in [B1, B2],
and therefore require Θ(π(B2)) operations, assuming B1 � B2. The main idea
of the “FFT continuation” is to use fast polynomial arithmetic to compute all
xσ − xτ — or their product mod n — in less than π(B2) operations. It would
be better to call it “fast polynomial arithmetic continuation”, since any sub-
quadratic algorithm works, not only the FFT.

Here again, two variants exist. They share the idea that what one really wants
is:

h =
∏

σ∈S

∏

τ∈T

(xσ − xτ ) mod n, (3)

4 It is simpler to describe stage 2 in Weierstrass coordinates.
5 Unless xσ = xτ mod n too, but if we assume xσ and xτ to be uniformly distributed,

this has probability p/n only.
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since if any gcd(xσ − xτ , n) is non-trivial, so will be gcd(h, n). Eq. (3) computes
many xσ − xτ that do not correspond to prime values of σ ± τ , but the gain of
using fast polynomial arithmetic largely compensates for this fact.

Let F (X) (respectively G(X)) be the polynomial whose roots are the xτ

(respectively xσ). Both F and G can be computed in O(M(d) log d) operations
over Z/nZ with the “product tree” algorithm and fast polynomial multiplication
[3,22], where d is the cardinal of the sets S and T (see §3.1). The “POLYGCD”
variant interprets h as the resultant Res(F, G), which reduces to a polynomial
gcd. It is known that the gcd of two degree-d polynomials can be computed in
O(M(d) log d), too. The “POLYEVAL” variant interprets h as

h = ±
∏

τ∈T

G(xτ ) mod n,

thus it suffices to evaluate G at all roots xτ of F . This problem is known as
“multipoint polynomial evaluation”, and can be solved in O(M(d) log d) with a
“remainder tree” algorithm [3,22].

Algorithm POLYEVAL is faster, since it admits a smaller multiplicative con-
stant in front of the M(d) log d asymptotic complexity. However, it needs — with
the current state of art — to store Θ(d log d) coefficients in Z/nZ, instead of only
O(d) for POLYGCD.

Fast Polynomial Multiplication. Several algorithms are available to multiply
polynomials over (Z/nZ)[x]. Previous versions of GMP-ECM used Karatsuba,
Toom 3-way and 4-way for polynomial multiplication, and division was per-
formed using the Borodin-Moenck-Jebelean-Burnikel-Ziegler algorithm [9]. To
multiply degree-d polynomials with the FFT, we need to find ω ∈ Z/nZ such
that ωd/2 = −1 mod n, which is not easy, if possible at all.

Montgomery [19] suggests performing several FFTs modulo small primes —
chosen so that finding a primitive d-root of unity is easy — and then recovering
the coefficients by the Chinese Remainder Theorem. This approach was recently
implemented by Dave Newman in GMP-ECM. On some processors, it is faster
than the second approach described below; however, it requires implementing
a polynomial arithmetic over Z/pZ, for p a small prime (typically fitting in a
machine word).

The second approach uses the “Kronecker-Schönhage trick”6. Assume we want
to multiply two polynomials p(x) and q(x) of degree less than d, with coefficients
0 ≤ pi, qi < n. Choose βl > dn2, and create the integers P = p(βl) and Q =
q(βl). Now multiply P and Q using fast integer arithmetic (integer FFT for
example). Let R = PQ. The coefficients of r(x) = p(x)q(x) are simply obtained
by reading R as r(βl). Indeed, the condition βl > dn2 ensures that consecutive
coefficients of r(x) do not “overlap” in R. It just remains to reduce the coefficients
modulo n.

The advantage of the Kronecker-Schönhage trick is that no algorithm has
to be implemented for polynomial multiplication, since one directly relies on
6 The idea of using this trick is due to Dave Newman; a similar algorithm is attributed

to Robbins in [19, §3.4].
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fast integer multiplication. Division is performed in a similar way, with Barrett’s
algorithm: first multiply by the pseudo-inverse of the divisor — which is invariant
here, namely F (X) when using k ≥ 2 blocks, see below —, then multiply the
resulting quotient by the divisor. A factor of two can be saved in the latter
multiplication, by using the “wrap-around” or “xd + 1” trick7, assuming the
integer FFT code works modulo 2m + 1 [2].

3.3 Stage 2 Blocks

For a given stage 2 bound B2, computing the product and remainder trees may
be relatively expensive. A workaround is to split stage 2 into k > 1 blocks [19].
Let B2 = kb2, and choose d ≈

√
b2 as in §3.1. The set S = {i · d, 0 ≤ i · d < b2}

of §3.1 is replaced by S1, . . . , Sk that cover all multiples of d up to B2, and
correspond to polynomials G1, . . . , Gk. The set T remains unchanged, and still
corresponds to the polynomial F . Instead of evaluating G at all roots of F , one
evaluates H = G1G2 · · · Gk at all roots of F . Indeed, if one of the Gl vanishes at
a root of F , the same holds for H . Moreover, it suffices to compute H mod F ,
which can be done by k − 1 polynomial multiplications and divisions modulo F .

Assume a product tree costs qM(d) log d, and a remainder tree rM(d) log d.
With a single block (k = 1), we compute two product trees — for F and G —,
and one remainder tree, all of size d, with a total cost of (2q+r)M(d) log d. With
k blocks, we compute k + 1 product trees for F, G1, . . . , Gk, and one remainder
tree, all of degree about d/

√
k. Assuming M(d) is quasi-linear, and neglecting all

other costs in O(M(d)), the total cost is (k+1)q+r√
k

M(d) log d. The optimal value
of k then depends on the ratio r/q. Without caching Fourier transforms, the
best known ratio is r/q = 2 using Bernstein’s “scaled remainder trees” [3]. Each
node of the product tree corresponds to one product of degree l polynomials,
while the corresponding node of the remainder tree corresponds to two “middle
products” [4,12]. For r/q = 2, the theoretical optimal value is k = 3, with a cost
of 3.46qM(d) log d, instead of 4qM(d) log d for k = 1. In some cases, one may
want to use a larger number k of blocks for a given stage 2 range, in order to
decrease the memory usage.

3.4 Brent-Suyama’s Extension

Brent-Suyama’s extension increases the probability of success of stage 2, with a
small additional cost. Recall stage 2 succeeds when the largest factor π of the
group order can be written as π = σ ± τ , where points σQ and τQ have been
computed for σ, τ in sets S and T respectively. The idea of Brent and Suyama
[5] is to compute σeQ and τeQ instead, or more generally f(σ)Q and f(τ)Q
for some odd or even integer polynomial f(x), as suggested by Montgomery
[18]. If π = σ ± τ , then π divides one of f(σ) ± f(τ). Thus all primes π up
to B2 will still be hit, but other larger primes may be hit too, especially if
7 If the upper or lower half of a 2m-bit product is known, computing it modulo 2m +1

easily yields the other half.
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f(x) ± f(y) has many algebraic factors. This is the case for f(x) = xe, but also
for Dickson polynomials as suggested by Montgomery in [19]. GMP-ECM uses
Dickson polynomials of parameter α = −1 with the notation from [19]: D1 = x,
D2 = x2 + 2, and De+2 = xDe+1 + De for e ≥ 1, which gives D3(x) = x3 + 3x,
D4(x) = x4 + 4x2 + 2.

To efficiently compute the values of f(σ)Q, we use the “table of differences”
algorithm [18, §5.9]. For example, to evaluate x3 we form the following table:

1 8 27 64 125 216
7 19 37 61 91

12 18 24 30
6 6 6

Once the entries in boldface have been computed8, one deduces the correspond-
ing points over the elliptic curve, for example here 1Q, 7Q, 12Q and 6Q. Then
each new value of xeQ is obtained with e point additions: 1Q + 7Q = 8Q,
7Q + 12Q = 19Q, . . . One has to switch to Weierstrass coordinates, since if
iQ and jQ are in the difference table, |i − j|Q is not necessarily, for example
5Q = 12Q − 7Q is not here. As mentioned in [19], the e point additions in
the downward diagonals are performed in parallel, using Montgomery’s trick to
perform one modular inverse only, at the cost of O(e) extra multiplications. Ef-
ficient ways to implement Brent-Suyama’s trick for P−1 and P+1 are described
in [18].

Note that since Brent-Suyama’s extension depends on the choice of the stage
2 parameters (k, d, . . . ), extra-factors found may not be reproducible with other
software, or even different versions of the same software.

3.5 Montgomery’s d1d2 Improvement

A further improvement is proposed by Montgomery in [18]. Instead of sieving
primes of the form π = id+j as in §3.1, use a double sieve with d1 coprime to d2:

π = id1 + jd2.

(The description in §3.1 corresponds to d1 = d and d2 = 1.) Each 0 < π ≤ B2 can
be written uniquely as π = id1 + jd2 with 0 ≤ j < d1: take j = −π/d2 mod d1,
then i = (π − jd2)/d1.

To sieve all primes up to B2, take S = {id1, −d1d2 < id1 ≤ B2, gcd(i, d2) = 1}
and T = {jd2, 0 ≤ j < d1, gcd(j, d1) = 1}. In comparison to §3.1: (i) the lower
bound for id1 is now −d1d2 instead of 0, but this has little effect if d1d2 � B2;
(ii) the additional condition gcd(i, d2) = 1 reduces the size of S by a factor 1/d2.

When using several blocks, the extra values of i mentioned in (i) occur for the
first block only, whereas the speedup in (ii) holds for all blocks. In fact, since
the size of T yields the degree of the polynomial arithmetic — i.e., φ(d1)/2 with

8 Over the integers, and not over the elliptic curve as the first author did in a first
implementation!
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the remark at end of §3.1 — and we want S to have the same size, this means
we can enlarge the block size b2 by a factor 1/d2 for free.

This improvement was implemented in GMP-ECM by Alexander Kruppa, up
from version 6.0, with d2 being a small prime. The following table gives for several
factor sizes, the recommended stage 1 bound B1, the corresponding effective
stage 2 bound B′

2, the ratio B′
2/B1, the number k of blocks, the parameters d1

and d2, the degree φ(d1)/2 of polynomial arithmetic, the polynomial used for
Brent-Suyama’s extension, and finally the expected number of curves. All values
are the default ones used by GMP-ECM 6.0.1 for the given B1.

digits B1 B′
2 B′

2/B1 k d1 d2 φ(d1)/2 poly. curves
40 3 · 106 4592487916 1531 2 150150 17 14400 D6(x) 2440
45 11 · 106 30114149530 2738 2 371280 11 36864 D12(x) 4590
50 43 · 106 198654756318 4620 2 1021020 19 92160 D12(x) 7771
55 110 · 106 729484405666 6632 2 1891890 17 181440 D30(x) 17899
60 260 · 106 2433583302168 9360 2 3573570 19 322560 D30(x) 43670
65 850 · 106 15716618487586 18490 2 8978970 17 823680 D30(x) 69351

As an example, with B1 = 3 · 106, the default B2 value used for ECM is9

B2 = 4592487916 (i.e., about 1531 ·B1) with k = 2 blocks, d1 = 150150, d2 = 17.
This corresponds to polynomial arithmetic of degree φ(150150)/2 = 14400. With
those parameters and the degree-6 Dickson polynomial, 2440 curves are expected
to find a 40-digit prime factor.

4 Results and Open Questions

Largest ECM Factor. Records given in this section are as of January 2006.
The largest prime factor found by ECM is a 66-digit factor of 3466 + 1 found by
the second author on April 6, 2005:

p66 = 709601635082267320966424084955776789770864725643996885415676682297.

This factor was found using GMP-ECM, with B1 = 110·106 and σ = 1875377824;
the corresponding group order, computed with the Magma system [15], is:

g = 22 ·3·11243·336181·844957·1866679·6062029·7600843·8046121·8154571·13153633·249436823.

The largest group order factor is only about 2.3B1, and much smaller than the
default B′

2 = 729484405666 (see above table).
We can reproduce this lucky curve with GMP-ECM 6.0.1, here on an Opteron

250 at 2.4Ghz, with improved GMP assembly code from Torbjörn Granlund10:

9 The printed value is 4016636513, but the effective value is slightly larger, since
“good” values of B2 are sparse.

10 Almost the same speed is obtained with Gaudry’s assembly code at http://www.
loria.fr/~gaudry/mpn AMD64/.

http://www.loria.fr/~gaudry/mpn_AMD64/
http://www.loria.fr/~gaudry/mpn_AMD64/
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GMP-ECM 6.0.1 [powered by GMP 4.1] [ECM]

Input number is 1802413971039407720781597792978015040177086533038137501450821699069902044203667289289127\

48144027605313041315900678619513985483829311951906153713242484788070992898795855091601038513 (180 digits)

Using MODMULN

Using B1=110000000, B2=680270182898, polynomial Dickson(30), sigma=1875377824

Step 1 took 748990ms

B2’=729484405666 k=2 b2=364718554200 d=1891890 d2=17 dF=181440, i0=42

Expected number of curves to find a factor of n digits:

20 25 30 35 40 45 50 55 60 65

2 4 10 34 135 617 3155 17899 111395 753110

Initializing tables of differences for F took 501ms

Computing roots of F took 29646ms

Building F from its roots took 27847ms

Computing 1/F took 13902ms

Initializing table of differences for G took 656ms

Computing roots of G took 25054ms

Building G from its roots took 27276ms

Computing roots of G took 24723ms

Building G from its roots took 27184ms

Computing G * H took 8041ms

Reducing G * H mod F took 12035ms

Computing polyeval(F,G) took 64452ms

Step 2 took 262345ms

Expected time to find a factor of n digits:

20 25 30 35 40 45 50 55 60 65

29.45m 1.06h 2.88h 9.63h 1.58d 7.23d 36.93d 209.51d 3.57y 24.15y

********** Factor found in step 2: 709601635082267320966424084955776789770864725643996885415676682297

Found probable prime factor of 66 digits: 709601635082267320966424084955776789770864725643996885415676682297

Probable prime cofactor 25400363836963900630494626058015503341642741484107646018942363356485896097052304\

4852717009521400767374773786652729 has 114 digits

Report your potential champion to Richard Brent <rpb@comlab.ox.ac.uk>

(see ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Richard.Brent/champs.txt)

Several comments can be made about this verbose output. First we see that
the effective stage 2 bound B′

2 = 729484405666 is indeed larger than the “re-
quested” one B2 = 680270182898. The stage 2 parameters k, d(= d1), d2 and
the Dickson polynomial D30(x) are those of the 55-digit row in the above table
(dF is the polynomial degree, and i0 the starting index in id1 + jd2). Initializ-
ing the table of differences — i.e., computing the first downward diagonal for
Brent-Suyama’s extension — is clearly cheap with respect to “Computing roots
of F/G”, which corresponds to the computation of the values xσ and xτ , together
with the whole table of differences. “Building F/G from its roots” corresponds
to the product tree algorithm; “Computing 1/F” is the precomputation of the
inverse of F for Barrett’s algorithm. “Computing G * H” corresponds to the
multiplication G1G2, and “Reducing G * H mod F” to the reduction of G1G2
modulo F : we clearly see the 1.5 factor announced in §3.2. “Computing polye-
val(F,G)” stands for the remainder tree algorithm: the ratio with respect to the
product tree is slightly larger than the theoretical value of 2. Finally the total
stage 2 time is only 35% of the stage 1 time, for a stage 2 bound 6632 times
larger!

Largest P−1 and P+1 Factors. The largest prime factor found by P−1 is
a 58-digit factor of 22098 + 1, found by the first author on September 28, 2005
with B1 = 1010 and B2 = 13789712387045:

p58 = 1372098406910139347411473978297737029649599583843164650153,
p58 − 1 = 23 · 32 · 1049 · 1627 · 139999 · 1284223 · 7475317 · 341342347 · 2456044907 · 9909876848747.
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The largest prime factor found by P+1 is a 48-digit factor of the Lucas number
L(1849), found by Alexander Kruppa on March 29, 2003 with B1 = 108 and
B2 = 52337612087:

p48 = 884764954216571039925598516362554326397028807829,
p48 + 1 = 2 · 5 · 19 · 2141 · 30983 · 32443 · 35963 · 117833 · 3063121 · 80105797 · 2080952771.

Other P−1 or P+1 Factors. The authors performed complete runs on the
about 1000 composite numbers from the regular Cunningham table with P−1
and P+1 [23]. The largest run used B1 = 1010, B2 ≈ 1.3 · 1013, polynomial x120

for P−1, and B1 = 4 · 109, B2 ≈ 1.0 · 1013, polynomial D30(x) for P+1.
A total of 9 factors were found by P−1 during these runs, but strangely no

factor was found by P+1. Nevertheless, the authors believe that the P−1 and
(especially) P+1 methods are not used enough. Indeed, if one compares the
current records for ECM, P−1 and P+1, of respectively 66, 58 and 48 digits
(http://www.loria.fr/∼zimmerma/records/Pminus1.html), there is no theo-
retical reason why the P±1 records would be smaller, especially if one takes into
account that the P±1 arithmetic is faster.

Largest ECM Group Order Factor. The largest group order factor of a
lucky elliptic curve is 81325590104999, for a 47-digit factor of 5430 + 1 found by
the second author on December 27, 2005:

p47 = 29523508733582324644807542345334789774261776361,

with B1 = 260 · 106 and σ = 610553462; the corresponding group order is:

g = 22 · 3 · 13 · 347 · 659 · 163481 · 260753 · 9520793 · 25074457 · 81325590104999.

This factor is a success for Brent-Suyama’s extension, since the largest factor
of g is much larger than B2 (about 33.4B2). The degree-30 Dickson polynomial
was used here, with σ = 92002 · 1891890 and τ = 1518259 · 17, i.e., d1 = 1891890
and d2 = 17.

From January 1st, 2000 to January 19th, 2006, a total of 619 prime factors
of regular Cunningham numbers were found by ECM, P+1 or P−1 [10]. Among
those 619 factors, 594 were found by ECM with known B1 and σ values. If we
denote by g1 the largest group order factor of each lucky curve, Fig. 3 shows an
histogram of the ratio log(g1/B1). Most ECM programs use B2 = 100B1. Since
log 100 ≈ 4.6, we see that they miss about half the factors that could be found
using the FFT continuation.

Save and Resume Interface. George Woltman’s Prime95 implementation of
ECM uses the same parametrization as GMP-ECM (see §1). Prime95 runs on
x86 architectures, and factors only base-2 Cunningham numbers so far, but Stage
1 of Prime95 is much faster than GMP-ECM, thanks to some highly-tuned
assembly code. Since Prime95 does not implement the “FFT continuation” yet,
a public interface was designed to perform stage 1 with Prime95, and stage 2
with GMP-ECM. The first factor found by this collaboration between Prime95

http://www.loria.fr/~zimmerma/records/Pminus1.html
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Fig. 3. Histogram of log(g1/B1) for 594 Cunningham factors found by ECM

and GMP-ECM was obtained by Patrik Johansson, who found a 48-digit factor
of 2731−1 on March 30th, 2003, with B1 = 11000000 and σ = 7706350556508580:

p48 = 223192283824457474300157944531480362369858813007.

This save/resume interface may have other applications:

– after a stage 1 run, we may split a huge stage 2 on several computers. Indeed,
GMP-ECM can be given a range [l, h] as stage 2 range, meaning that all
primes l ≤ π ≤ h are covered. The total cpu time will be slightly larger than
with a single run, due to the fact that several product/remainder trees will
be computed, but the real time may be drastically decreased;

– when using P±1, previous stage 1 runs with smaller B1 values can be reused.
If one increases B1 by a factor of 2 after each run, a factor of 2 will be saved
on each stage 1 run.

Library Interface. Since version 6, GMP-ECM also includes a library, dis-
tributed under the GNU Lesser General Public License (LGPL). This library
enables other applications to call ECM, P+1 or P−1 directly at the C-language
level. For example, the Magma system uses the library since version V2.12, re-
leased in July 2005 [15].

Open Questions. The implementation of the “FFT continuation” described
here is fine for moderate-size numbers (say up to 1000 digits) but may be too
expensive for large inputs, for example Fermat numbers. In that case, one might
want to go back to the classical standard continuation. Montgomery proposes in
[18] the PAIR algorithm to hit all primes in the stage 2 range with small sets S
and T . This algorithm was recently improved by Alexander Kruppa in [13], by
choosing nodes in a partial cover of a bipartite graph.
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Although many improvements have been made to stage 2 in the last years,
the real bottleneck remains stage 1. The main question is whether it is possible
to break the sequentiality of stage 1, i.e., to get a o(B1) cost. Any speedup
to stage 1 is welcome: Alexander Kruppa suggested (personal communication)
designing a sliding window variant in affine coordinates. Another idea is to save
one multiply per duplicate by forcing d to be small in Eq. (2), as pointed out by
Montgomery; Bernstein suggests to use (16d + 18)y2 = x3 + (4d + 2)x2 + x with
starting point (2 : 1). Computer experiments indicate that these curves have, on
average, 3.49 powers of 2 and 0.78 powers of 3, while Suyama’s family has 3.46
powers of 2 and 1.45 powers of 3.

Finally, is it possible to design a “stage 3”, i.e., hit two large primes in stage
2? How much would it increase the probability of finding a factor?
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