
Optimized Binary64 and Binary128 Arithmetic with GNU MPFR

Vincent Lefèvre
INRIA / LIP / Université de Lyon, France

Paul Zimmermann
INRIA Nancy - Grand Est / LORIA, France

Abstract—We describe algorithms used to optimize the GNU
MPFR library when the operands fit into one or two words. On
modern processors, this gives a speedup for a correctly rounded
addition, subtraction, multiplication, division or square root in
the standard binary64 format (resp. binary128) between 1.8 and
3.5 (resp. between 1.6 and 3.2). We also introduce a new faithful
rounding mode, which enables even faster computations. Those
optimizations will be available in version 4 of MPFR.

Index Terms—floating-point arithmetic; correct rounding;
faithful rounding; binary64; binary128; GNU MPFR

I. INTRODUCTION

The IEEE 754-2008 standard [6] defines the binary floating-

point formats binary64 and binary128, providing respectively

a precision of 53 and 113 bits. Those standard formats are used

in many applications, therefore it is very important to provide

fast arithmetic for them, either in hardware or in software.

GNU MPFR [3] (MPFR for short) is a reference software

implementation of the IEEE 754-2008 standard in arbitrary

precision. MPFR guarantees correct rounding for all its op-

erations, including elementary and special functions [6, Table

9.1]. It provides mixed-precision operations, i.e., the precision

of the input operand(s) and the result may differ.

Since 2000, several authors have cited MPFR, either to use it

for a particular application, or to compare their own library to

MPFR [2], [4], [7]. Most of those comparisons are in the case

when all operands have the same precision, which is usually

one of the standard binary64 or binary128 formats.

Since 2008, GCC has used MPFR in its middle-end to

generate correctly rounded compile-time results regardless of

the math library implementation or floating-point precision

of the host platform. The Sage computer algebra system and

several interval arithmetic libraries depend on MPFR, among

which Moore [9], MPFI [11], and libieeep17881.

The contributions of this article are: (i) new algorithms for

basic floating-point arithmetic in one- or two-word precision,

(ii) an implementation in MPFR of those algorithms with

corresponding timings for basic arithmetic and mathematical

functions, (iii) a description of a new faithful rounding mode,

with corresponding implementation and timings in MPFR.

Notations: We use p to denote the precision in bits. A limb,

following GMP terminology [5], is an unsigned integer that

fits in a machine word, and is assumed to have 64 bits here.

Some algorithms are also valid when the radix is not 264, we

then denote β the radix, assumed to be a power of two. We call

left shift (resp. right shift) a shift towards the most (resp. least)

significant bits. We use a few shorthands: HIGHBIT denotes

the limb 263; ONE denotes the limb 1; GMP_NUMB_BITS,

which is the number of bits in a limb, is replaced by 64. In

the source code, a0 and emin are written a0 and emin.

1https://github.com/nehmeier/libieeep1788

II. BASIC ARITHMETIC

A. The MPFR Internal Format

Internally, a MPFR number is represented by a precision p,

a sign s, an exponent e, denoted by EXP(·), and a significand

m. The significand is a multiple-precision natural integer

represented by an array of n = �p/64� limbs: we denote

by m[0] the least significant limb, and by m[n − 1] the

most significant one. For a regular number — neither NaN,

nor ±∞, nor ±0 — the most significant bit of m[n − 1]
must be set, i.e., the number is always normalized2; and an

underflow occurs when a non-zero result rounded with an

unbounded exponent range would have an exponent less than

the minimum one. The corresponding number is:

(−1)s · (m · 2−64n) · 2e,
i.e., the rational significand satisfies 1/2 ≤ m/264n < 1.

When the precision p is not an exact multiple of 64, the

least sh = 64n − p bits of m[0] are not used. By convention

they must always be zero, like the 3 bits below (drawing the

most significant limbs and bits on the left):

1xxxxxxxxxxx
︸ ︷︷ ︸

m[n−1]

xxxxxxxxxxxx
︸ ︷︷ ︸

m[n−2]

· · · xxxxxxxxx000
︸ ︷︷ ︸

m[0]

In the description of the algorithms below, those sh trailing

bits will be represented by 3 zeros.

In this section, we describe basic algorithms used to perform

arithmetic on 1 or 2 limbs (addition, subtraction, multipli-

cation, division and square root) for regular inputs, after

non-regular inputs have been dealt with. Those algorithms

assume the number sh of unused bits is non-zero. As a

consequence, on a 64-bit processor, if efficiency is required,

it is recommended to use precision p = 63 or p = 127 instead

of p = 64 or p = 128, whenever possible. In the following,

we assume that all input and output arguments have the same

precision p.

In addition to correct rounding, all MPFR functions return a

ternary value, giving the sign of the rounding error: 0 indicates

that the computed correctly rounded result y exactly equals

the infinite precision value f(x) (no rounding error occurred);

a positive value indicates that y > f(x), and a negative

value indicates that y < f(x). Determining that ternary value

is sometimes more expensive than determining the correct

rounding: for example, if two high-precision numbers x and

1−x are added with a low target precision, the rounding error

will usually be less than 1
2ulp, thus we can easily decide that

the correctly rounded result to nearest is 1, but more work is

needed to determine the ternary value.

2MPFR does not have subnormals, but provides a function to emulate them
for IEEE 754 support.

2017 IEEE 24th Symposium on Computer Arithmetic

1063-6889/17 $31.00 © 2017 IEEE

DOI 10.1109/ARITH.2017.28

18

In this section, we describe the correctly rounded basic

arithmetic routines in version 4 of MPFR for n = 1 and

n = 2 limbs. Previous versions of MPFR were calling generic

GMP routines, like mpn_add_n, for any n. Using directly

limb operations, we avoid function calls, and we can perform

further optimizations, too complex to be found by a compiler.

For the division and square root, we are not aware of previous

work using integer operations only, except [10] for division.

B. Addition

We describe here the internal mpfr_add1sp1 function for

0 < p < 64. Let b and c be the input operands, and a the

result. By “addition”, we mean that b and c have same sign.

Their significands consist of one limb only: bp[0] and cp[0],
and their exponents are bx and cx. Since b and c are regular

numbers, 263 ≤ bp[0], cp[0] < 264. If bx = cx, the addition

always produces a carry: 264 ≤ bp[0] + cp[0] < 265:

bp[0]︷ ︸︸ ︷
1xxxxxxxx000

1yyyyyyyy000
︸ ︷︷ ︸

cp[0]

We thus simply add the two shifted significands — since p <
64, we lose no bits in doing this — and increase bx by 1 (this

will be the result exponent):

a0 = (bp[0] >> 1) + (cp[0] >> 1);

bx ++;

Since sh = 64 − p is the number of unused bits, the round

bit is bit sh− 1 from a0, which we set to 0 before storing in

memory, and the sticky bit is always 0 in this case:

rb = a0 & (ONE << (sh - 1));

ap[0] = a0 ^ rb;

sb = 0;

The case bx > cx is treated similarly: we have to shift cp[0] by

d = bx− cx bits to the right. We distinguish three cases: d <
sh where cp[0] shifted fully overlaps with ap[0], sh ≤ d < 64,

where cp[0] shifted partly overlaps, and d ≥ 64, where cp[0]
shifted does not overlap. In the last case bx < cx, we simply

swap the inputs and reduce to the bx > cx case.

Now consider the rounding. All rounding modes are first

converted to nearest, toward zero or away from zero. At this

point, ap[0] contains the current significand, bx the exponent,

rb the round bit and sb the sticky bit. No underflow is possible

in the addition, since the inputs have same sign: |b + c| ≥
min(|b|, |c|). An overflow occurs when bx > emax. Otherwise

we set the exponent of a to bx. If rb = sb = 0, we return 0
as ternary value, which means the result is exact, whatever the

rounding mode. If rounding to nearest, we let ap[0] unchanged

when either rb = 0, or rb �= 0 and sb = 0 and bit sh of ap[0]
is 0 (even rule); otherwise we add one ulp, i.e., 2sh to ap[0]. If

rounding toward zero, ap[0] is unchanged, and we return the

opposite of the sign of a as ternary value, which means that

the computed value is less than b+c when b, c > 0 (remember

the exact case rb = sb = 0 was treated before). If rounding

away from zero, we add one ulp to ap[0]; while doing this,

we might have an exponent increase, which might in turn give

an overflow (this might also occur in the multiplication).

C. Subtraction

We detail here the mpfr_sub1sp2 function, in the case

where the exponent difference d = bx− cx satisfies 0 < d <
64. In that case, the significand of c overlaps with the upper

word of the significand of b. We align c on b, giving 3 limbs

cp[1] >> d (cp[1] shifted right by d bits), t and sb:

bp[1]︷ ︸︸ ︷
1xxxxxxxxxxx

bp[0]︷ ︸︸ ︷
xxxxxxxxx000

← d bits → 1yyyyyyyyyyy
︸ ︷︷ ︸

cp[1]

yyyyyyyyy000
︸ ︷︷ ︸

cp[0]

yyyyyyyyyyyy
︸ ︷︷ ︸

cp[1] >> d

yyyyyyyyyyyy
︸ ︷︷ ︸

t

yyyyyy000000
︸ ︷︷ ︸

sb

The goal is to subtract these 3 limbs from b, word by

word. While this 3-word subtraction could be done with only

3 instructions on a typical processor, we need to write a

portable C code, which is more complex to express the borrow

propagation in C (and unfortunately, compilers are not yet able

to detect patterns to generate only these 3 instructions):

t = (cp[1] << (64 - d)) | (cp[0] >> d);

a0 = bp[0] - t;

a1 = bp[1] - (cp[1] >> d) - (bp[0] < t);

sb = cp[0] << (64 - d);

if (sb) {

a1 -= (a0 == 0);

a0 --;

sb = -sb; /* 2^64 - sb */ }

At this point the exact subtraction corresponds to a1 +
2−64a0 + 2−128sb, where a1 and a0 cannot be both zero: if

d ≥ 2 then a1 ≥ 262; if d = 1, since bit 0 of cp[0] is 0

because p < 128, necessarily sb = 0. However, for d = 1 we

can have a1 = 0, in which case we shift a by one word to the

left, and decrease the exponent by 64:

if (a1 == 0) {

a1 = a0;

a0 = 0;

bx -= 64; }

Now a1 �= 0, and we shift a to the left by the number of

leading zeros of a1:

count_leading_zeros (cnt, a1);

if (cnt) {

ap[1] = (a1 << cnt) | (a0 >> (64-cnt));

a0 = (a0 << cnt) | (sb >> (64-cnt));

sb <<= cnt;

bx -= cnt; }

else

ap[1] = a1;

We now compute the round and sticky bits, and set to zero

the last sh bits of a0 before storing it, with mask = 2sh − 1:

rb = a0 & (ONE << (sh - 1));

sb |= (a0 & mask) ^ rb;

ap[0] = a0 & ~mask;

The rounding is done exactly like for the addition, except

in the subtraction we cannot have any overflow (remember all

arguments have same precision), but we can have an underflow.

19

D. Multiplication

The multiplication is easy to implement with the internal

format chosen for MPFR. We detail here the mpfr_mul_1

function, for 0 < p < 64. We first add the two exponents and

multiply the two significands bp[0] and cp[0] using GMP’s

umul_ppmm macro, which multiplies two 64-bit words, and

stores the upper and lower words in a0 and sb here:

ax = EXP(b) + EXP(c);

umul_ppmm (a0, sb, bp[0], cp[0]);

Since 263 ≤ bp[0], cp[0] < 264, we have 2126 ≤ bp[0]cp[0] =
a0 · 264 + sb < 2128. The upper word a0 therefore satisfies

262 ≤ a0 < 264, and in case 262 ≤ a0 < 263, we shift a0 and

sb by one bit to the left and decrease the output exponent:

if (a0 < HIGHBIT) {

ax --;

a0 = (a0 << 1) | (sb >> 63);

sb = sb << 1; }

The round and sticky bits are computed exactly like in the

2-limb subtraction, and the sign of the result is set:

rb = a0 & (ONE << (sh - 1));

sb |= (a0 & mask) ^ rb;

ap[0] = a0 & ~mask;

SIGN(a) = MULT_SIGN (SIGN (b), SIGN (c));

For the multiplication, both overflow and underflow can

happen. Overflow is easy to handle. For underflow, let us recall

that MPFR signals underflow after rounding. For example,

when ax = emin − 1, rb or sb is non-zero, ap[0] =
111 . . . 111000 and we round away from zero, there is no un-

derflow. Apart from this special case, the rounding is the same

as for the subtraction. (This special case where ax = emin−1
and nevertheless no underflow occurs cannot happen in the

subtraction, since b and c are multiples of 2emin−p, likewise

for b− c; thus if the exponent ax of the difference is smaller

than emin, the difference b− c is exact, and rb = sb = 0.)

In the mpfr_mul_2 function, which multiplies b1 ·264+b0
by c1 · 264 + c0, the product b0c0 of the low limbs contributes

to less than 1 to the second most significant limb of the

full 4-limb product (before a potential left shift by 1 bit to

get a normalized result). Thus we only perform 3 calls to

umul_ppmm, to compute b1c1, b1c0 and b0c1. Moreover, we

ignore the lower limbs of b1c0 and b0c1, which yields a 127-

or 128-bit approximate product with error less than 3.

E. Division

The division code for 1 or 2 limbs first computes an

approximation of the quotient, and if this approximation is not

sufficient to determine the correct rounding, an exact quotient

and remainder are computed, starting from that approximation.

The algorithms use GMP’s invert_limb function (cur-

rently re-implemented in MPFR since it is not yet in GMP’s

public interface). Given a limb v such that β/2 ≤ v < β,

invert_limb returns the limb
(β2 − 1)/v� − β, which is

called the reciprocal of v.

All division functions first check whether the dividend

significand u is larger or equal to the divisor significand v,

where βn/2 ≤ u, v < βn. If that occurs, v is subtracted from

Algorithm 1 DivApprox1

Input: integers u, v with 0 ≤ u < v and β/2 ≤ v < β
Output: integer q approximating uβ/v

1: compute an approximate reciprocal i of v, satisfying

i ≤
(β2 − 1)/v� − β ≤ i+ 1 (1)

2: q =
iu/β�+ u

u, which generates an extra leading quotient bit. After that

subtraction, we get u− v < v since u < βn ≤ 2v. Therefore

in the following we assume u < v.

We detail in Algorithm DivApprox1 how we compute an

approximate quotient q for the mpfr_div_1 function, which

divides two one-limb significands. For β = 264, the approx-

imate reciprocal i in step 1 is obtained using the variable

v3 from Algorithm 2 (RECIPROCAL_WORD) in [10]; indeed

Theorem 1 from [10] proves that — with our notation —

0 < β2 − (β + v3)v < 2v, which yields the inequalities (1).

Theorem 1: The approximate quotient returned by Algo-

rithm DivApprox1 satisfies

q ≤
uβ
v
� ≤ q + 2.

Proof. Step 2 of DivApprox1 is simply step 1 of Algorithm 1

(DIV2BY1) from [10]. If i is the exact reciprocal i0 :=
(β2−
1)/v�−β, and q0 :=
i0u/β�+u is the corresponding quotient,

it is proven in [10] that the corresponding remainder r0 =
βu − q0v satisfies 0 ≤ r0 < 4v. However, the upper bound

4v includes 2v coming from a lower dividend term, which is

zero here, thus we have r0 < 2v. In the case i = i0 − 1, then

q ≤ q0 ≤ q + 1, thus r = βu− qv satisfies r < 3v.

As a consequence of Theorem 1, we can decide the cor-

rect rounding except when the last sh − 1 bits from q are

000 . . . 000, 111 . . . 111, or 111 . . . 110, which occurs with

probability less than 0.15% for the binary64 format. In the

rare cases where we cannot decide the correct rounding, we

compute r = βu−qv, subtract v and increment q at most two

times until r < v, and deduce the round and sticky bits from

the updated quotient q and remainder r.

The upper bound q + 2 is tight: it is attained for (u, v) =
(21, 24) in radix β = 32, taking i = i0 − 1 in step 1.

For the 2-limb division, we use a similar algorithm (Div-

Approx2). Since this algorithm is not specific to radix 264, we

describe it for a general radix β.

Algorithm DivApprox2 first computes a lower approxima-

tion q1 of the upper quotient word, from the upper word u1

of the dividend and the approximate reciprocal of the upper

word v1 of the divisor. Steps 4-6 can be seen as an integer

version of Karp-Markstein’s division algorithm [8], or more

simply, once the remainder has been approximated by r, we

use the reciprocal again to approach the lower quotient word.

In step 2, x can be computed as follows: if v1 + 1 = β,

take x = β, otherwise (assuming β is a power of two) v1 +1
cannot divide β2 exactly, thus
β2/(v1+1)� =
(β2−1)/(v1+
1)�, and we can take the same approximate reciprocal as in

20

Algorithm 2 DivApprox2

Input: integers u, v with 0 ≤ u < v and β2/2 ≤ v < β2

Output: approximate quotient q of uβ2/v
1: write u = u1β+u0 and v = v1β+v0 with 0 ≤ ui, vi < β
2: compute x satisfying

x ≤
β2/(v1 + 1)� ≤ x+ 1

3: q1 =
u1x/β�
4: r = u− �q1v/β� (equals
(uβ − q1v)/β�)
5: q0 =
rx/β�
6: return q = q1β + q0

Algorithm DivApprox1 (with v1+1 instead of v).3 Write r =
r1β+r0 with 0 ≤ r0 < β. As we will see later, the upper word

satisfies r1 ≤ 4. Step 6 becomes q = q1β + r1x +
r0x/β�,
where the computation of r1x is done using a few additions

instead of a multiplication.

Theorem 2: For β ≥ 5, the approximate quotient returned

by Algorithm DivApprox2 satisfies

q ≤
uβ
2

v
� ≤ q + 21.

Proof. The input condition u < v implies u1 ≤ v1, thus since

x ≤ β2/(v1+1), it follows q1 ≤ u1β/(v1+1) < β, thus q1 fits

in one limb. We have β2 = (v1+1)x+κ with 0 ≤ κ ≤ 2v1+1.

Step 3 gives u1x = q1β + t, with 0 ≤ t < β. Then

uβ − q1v = uβ − q1(v1 + 1)β + q1(β − v0)

= uβ − (v1 + 1)(u1x− t) + q1(β − v0)

= uβ − (β2 − κ)u1 + (v1 + 1)t+ q1(β − v0)

= u0β + κu1 + (v1 + 1)t+ q1(β − v0).

Write v1 = αβ with 1/2 ≤ α < 1. Thus

uβ − q1v ≤ (β − 1)β + (2αβ + 1)(αβ)

+ (αβ + 1)(β − 1) + (β − 1)β < β2(2 + α+ 2α2).

This proves that r < 5β at step 4.

From r < β(2+α+2α2) it follows q0 ≤ rx/β < (2+α+
2α2)x, thus since x ≤ β2/(v1 + 1) < β/α, q0 < (2/α+ 1 +
2α)β (note that q0 might exceed β). Let rx = q0β + δq , and

uβ − q1v = βr + δr, with 0 ≤ δq, δr < β. Then

uβ2 − qv = β(βr + δr)− q0v

= β2r + βδr − q0(v1 + 1)β + q0(β − v0)

= β2r + βδr − (rx− δq)(v1 + 1) + q0(β − v0)

= β2r + βδr − r(β2−κ) + δq(v1+1) + q0(β−v0)

= βδr + rκ+ δq(v1 + 1) + q0(β − v0).

Bounding βδr by β2 − β, rκ by β(2 + α + 2α2)(2αβ + 1),
δq(v1+1) by (β− 1)(αβ+1), and q0(β− v0) by (2/α+1+
2α)β2, it follows:

0 ≤ uβ2 − qv < β2(
2

α
+2+ 7α+2α2 +4α3) + β(2 + 2α2).

3In practice, like in Algorithm DivApprox1, x = β + x′ is split between
one implicit upper bit β and a lower part x′, that for simplicity we do not
distinguish here. In the real code, step 3 therefore becomes q1 = u1 +
�u1x′/β�, and step 5 becomes q0 = r + �rx′/β�.

Algorithm 3 RecSqrtApprox1

Input: integer d with 262 ≤ d < 264

Output: integer v3 approximating s =
296/√d�
1: d10 =
2−54d�+ 1
2: v0 =
√230/d10� (table lookup)

3: d37 =
2−27d�+ 1
4: e0 = 257 − v20d37
5: v1 = 211v0 +
2−47v0e0�
6: e1 = 279 − v21d37
7: v2 = 210v1 +
2−70v1e1�
8: e2 = 2126 − v22d
9: v3 = 233v2 +
2−94v2e2�

Dividing by v ≥ αβ2 we get:

0 ≤ uβ2

v
− q <

2

α2
+

2

α
+7+ 2α+ 4α2 +

1

β
(
2

α
+ 2α). (2)

The right-hand side is bounded by 21+5/β for 1/2 ≤ α < 1,

thus for β ≥ 5 we have q ≤ uβ2/v < q + 22.

The largest error we could find is 20, for example for

β = 4096, u = 8298491, v = 8474666.4 With β = 264,

on 107 random inputs, the proportion of inputs for which

r1 = 0, 1, 2, 3, 4 is respectively 29%, 59%, 12%, 0.2%, 0%,

and the average difference between q and
uβ2/v� is 2.8.

F. Square Root

Like for the division, we first compute an approximate

result for the square root, and if we are not able to get the

correctly rounded result, we compute an exact square root with

remainder from that approximation. We first outline the exact

algorithm for 1 limb. In case the input exponent is odd, we

shift the input significand u0 by one bit to the right (this is

possible without any bit lost because p < 64). Then given the

(possibly shifted) limb u0, we compute an integer square root:

u0 · 264 = r20 + s, 0 ≤ s ≤ 2r0.

Since 262 ≤ u0 < 264, we have 2126 ≤ u0 · 264 < 2128, thus

263 ≤ r0 < 264: r0 has exactly 64 significant bits. The round

and sticky bits are then computed from the 64− p bits of r0
and from the remainder s.

The expensive part is the computation of the (approximate

or exact) integer square root. Since MPFR has to be inde-

pendent of the machine floating-point hardware, we should

use integer operations only. GMP’s mpn_sqrtrem function

implements the algorithm described in [12], which relies on

integer division. We can do better by first computing an

approximate reciprocal square root.

1) Approximate Reciprocal Square Root: Algorithm 3 uses

an integer variant of Newton’s iteration for the reciprocal

square root: v0 is a 11-bit value such that x0 := v0/2
10 ap-

proximates the root of a0 := d10/2
10, v1 is a 22-bit value such

that x1 := v1/2
21 approximates the root of a1 := d37/2

37, v2
is a 32-bit value such that x2 := v2/2

31 approximates the root

4If β2 + 1 has no divisors in [β/2 + 1, β], as for β = 232 and β = 264,
then we cannot have κ = 2v1 + 1, the 1/β term disappears in Eq. (2), and
the bound becomes uβ2/v < q + 21.

21

of a2 := d37/2
37, and v3 is a 65-bit value with x3 := v3/2

64

approximating the root of a3 := d/264.

Theorem 3: The value v3 returned by Algorithm 3 differs

by at most 8 from the reciprocal square root:

v3 ≤ s :=
296/
√
d� ≤ v3 + 8.

Lemma 1: Assume positive real numbers x0, x1, . . . , xn are

computed using the following recurrence, with x0 ≤ a
−1/2
0 :

xk+1 = xk +
xk

2
(1− ak+1x

2
k), (3)

where a0 ≥ a1 ≥ · · · ≥ an ≥ a > 0, then:

x1 ≤ x2 ≤ · · · ≤ xn ≤ a−1/2.

Proof. It follows from [1, Lemma 3.14] that xk+1 ≤ a
−1/2
k+1 .

Together with x0 ≤ a
−1/2
0 , this gives 1− akx

2
k ≥ 0 for all k.

Since ak+1 ≤ ak, it follows that 1−ak+1x
2
k ≥ 1−akx

2
k ≥ 0.

Put into (3) this proves xk+1 ≥ xk, and thus the lemma since

xk+1 ≤ a
−1/2
k+1 and ak+1 ≥ a imply xk+1 ≤ a−1/2.

This lemma remains true when the correction term xk

2 (1 −
ak+1x

2
k) in Eq. (3) — which is thus non-negative — is

rounded down towards zero. By applying this result to x0 =
v0/2

10, x1 = v1/2
21, x2 = v2/2

31, x3 = v3/2
64, with

a0 = d10/2
10 ≥ a1 = d37/2

37 = a2 ≥ a3 = d/264, it follows

1 ≤ v0/2
10 ≤ v1/2

21 ≤ v2/2
31 ≤ v3/2

64 ≤ 232/
√
d ≤ 2,

thus 210 ≤ v0 < 211, 221 ≤ v1 < 222, 231 ≤ v2 < 232,

264 ≤ v3 < 265 (the right bounds are strict because in the only

case where 232/
√
d = 2, i.e., d = 262, we have v3 = 265−3).

Proof of Theorem 3. The construction of the lookup table

ensures that v0 < 211 and e0 ≥ 0 at step 4 of the algorithm.

By exhaustive search on all possible d10 values, we get:

0 ≤ e0 < 249.263.

Thus at step 4, we can compute 257 − v20d37 in 64-bit

arithmetic, which will result in a number of at most 50 bits,

and step 5 can be done in 64-bit arithmetic, since the product

v0e0 will have at most 61 bits.

Let δ1 be the truncation error in step 5, with 0 ≤ δ1 < 1:

2−47v0e0 =
2−47v0e0�+ δ1.

Then:

e1 = 279 − v21d37 = 279 − d37((v1 + δ1)− δ1)
2

= 279 − d37(v1 + δ1)
2 + d37δ1(2v1 + δ1).

Since v21d37 ≤ 279 — because e1 ≥ 0 —, we have

v1d37 ≤ 279/v1 ≤ 258 because 221 ≤ v1. It follows that

γ1 := d37δ1(2v1 + δ1) satisfies 0 ≤ γ1 < 259 + 237, and:

e1 − γ1 = 279 − d37(v1 + δ1)
2

= 279 − d37(2
11v0 + 2−47v0e0)

2

= 279 − d37v
2
0(2

11 + 2−47e0)
2.

Now, using v20d37 = 257 − e0:

e1 − γ1 = 279 − (257 − e0)(2
11 + 2−47e0)

2

= 279 − (257 − e0)(2
22 + 2−35e0 + 2−94e20)

= 279 − (279 − 2−35e20 + 2−37e20 − 2−94e30)

= 2−35e20(3/4 + 2−59e0).

Since e0 < 249.263, we deduce 3/4 + 2−59e0 < 2−0.412 and

0 ≤ e1 < 2−35298.5262−0.412 + 259 + 237 < 263.196.

Therefore e1 < 264 and e1 can be computed using integer

arithmetic modulo 264. Since d10 =
2−27(d37 − 1)� + 1, e1
only depends on d37, so that we can perform an exhaustive

search on the 237− 235 possible values of d37. By doing this,

we find that the largest value of e1 is obtained for d37 =
33 · 230 +1, which corresponds to d10 = 265; this gives e1 =
10263103231123743388 < 263.155.

Let δ2 be the truncation error in step 7, 0 ≤ δ2 < 1:

2−70v1e1 =
2−70v1e1�+ δ2.

Then:

e2 = 2126 − v22d = 2126 − d((v2 + δ2)− δ2)
2

= 2126 − d(v2 + δ2)
2 + dδ2(2v2 + δ2).

Since v2 ≥ 231 and v22d ≤ 2126, v2d ≤ 295, thus dδ2(2v2 +
δ2) < 296 + 264.

e2 − (296 + 264) ≤ 2126 − d(v2 + δ2)
2

= 2126 − d(210v1 + 2−70v1e1)
2

= 2126 − dv21(2
10 + 2−70e1)

2.

Now writing d = 227d37−ρ with 0 < ρ ≤ 227, using d37v
2
1 =

279 − e1, and writing ε = 296 + 264 + ρv21(2
10 + 2−70e1)

2:

e2 − ε ≤ 2126 − 227(279 − e1)(2
10 + 2−70e1)

2

= 2126 − (279 − e1)(2
47 + 2−32e1 + 2−113e21)

= 2126 − (2126 − 2−32e21 + 2−34e21 − 2−113e31)

= 2−32e21(3/4 + 2−81e1).

Since e1 < 263.155, we deduce 3/4 + 2−81e1 < 2−0.415, and:

ρv21(2
10 + 2−70e1)

2 ≤ 271(220 + 25 + 2−12).

Thus ε ≤ 296 + 264 + 291 + 276 + 259 and:

0 ≤ e2 < 2−322126.312−0.415 + ε < 296.338. (4)

Here again, an exhaustive search is possible, since for a

given value of d37, e2 is maximal when d = 227(d37 −
1): the largest value of e2 is obtained for d37 =
132607222902, corresponding to d10 = 989, with e2 =
81611919949651931475229016064 < 296.043. The final error

is estimated using the truncation error δ3 in step 9:

2−94v2e2 =
2−94v2e2�+ δ3

e3 = 2192 − v23d = 2192 − d((v3 + δ3)− δ3)
2

= 2192 − d(v3 + δ3)
2 + dδ3(2v3 + δ3).

Since v23d ≤ 2192 and v3 ≥ 264, it follows v3d ≤ 2128, thus

γ3 := dδ3(2v3 + δ3) < 2129 + 264.

e3 − γ3 = 2192 − d(v3 + δ3)
2

= 2192 − d(233v2 + 2−94v2e2)
2

= 2192 − dv22(2
33 + 2−94e2)

2.

22

Now since dv22 = 2126 − e2:

e3 − γ3 ≤ 2192 − (2126 − e2)(2
33 + 2−94e2)

2

= 2192 − (2126 − e2)(2
66 + 2−60e2 + 2−188e22)

= 2192 − (2192 − 2−60e22 + 2−62e22 − 2−188e32)

= 2−60e22(3/4 + 2−128e2).

Since e2 < 296.043, we deduce 3/4 + 2−128e2 < 2−0.415:

0 ≤ e3 < 2−602192.0862−0.415 + 2129 + 264 < 2131.882.

Again by exhaustive search, restricted on the values of d37
that give a sufficient large value of e2, we found the maximal

value of e3 satisfies e3 < 2131.878.

Now, given v3 returned by Algorithm 3, let c ≥ 0 be such

that (v3+c)2d = 2192. Since 2192−v23d < 2131.878, it follows

2v3cd < 2131.878, thus c < 2131.878/(2v3d). Since v23d =
2192−e3 and v3 < 265, we have v3d ≥ (2192−2131.878)/265 >
2126.999, and c < 23.879 < 15.

By doing again this error analysis for a given value of d37,

we get a tighter bound involving the δi truncation errors. For

example, we can bound d37δ1(2v1 + δ1) by d37(2v1,max +1),
where v1,max =

√
279/d37. This yields a finer bound. By

exhaustive search on all possible d37 values, we found the

maximal error is at most 8.

The bound of 8 is optimal, since it is attained for d =
4755801239923458105.

Remark 1: one can replace
2−94v2e2� in step 9 by

2−29v2e
′

2�, where e′2 =
2−65e2� has at most 32 bits, like

v2, and thus the product v2e
′

2 can be computed with a low

64-bit product, which is faster than a full product giving both

the low and high words. If we write e2 = 265e′2 + r with

0 ≤ r < 265, then:

2−94v2e2 − 2−29v2e
′

2 = 2−94v2r < 23.

This increases the maximal error from 8 to 15, since for the

only value d37 = 35433480442 that can yield c ≥ 8 with the

original step 9, we have c < 8.006 and v2 = 4229391409,

thus c+ 2−94v2r < 15.9.

2) The mpfr_sqrt1 function: The mpfr_sqrt1 func-

tion computes the square root of a 1-limb number n using

Algorithm 4 (SqrtApprox1). In step 1, it computes a 32-bit

approximation of 263/
√
n using the value v2 of Algorithm 3

(called with d = n), then uses this approximation to deduce the

exact integer square root y of n (step 2) and the corresponding

remainder z (step 3), and finally uses again x to approximate

the correction term t (step 4) to form the approximation s in

step 5. Steps 2-3 can be implemented as follows. First compute

an initial y =
2−32x
2−31n�� and the corresponding remain-

der z = n− y2. Then as long as z ≥ 2y + 1, subtract 2y + 1
to z and increment y by one. Note that since x2n < 2126,

xn/231 < 295/n ≤ 232, thus x
2−31n� fits on 64 bits.

Theorem 4: If the approximation x in step 1 is the value v2
of Algorithm 3, Algorithm SqrtApprox1 returns s satisfying

s ≤

√
264n� ≤ s+ 7.

Proof Write n = α264 with 1/4 ≤ α < 1, x = 263/
√
n− δx,

y =
√
n− δy and t = 2−32xz− δt with 0 ≤ δy, δt < 1. Since

Algorithm 4 SqrtApprox1

Input: integer n with 262 ≤ n < 264

Output: integer s approximating
√
264n

1: compute an integer x approximating 263/
√
n with

x ≤ 263/
√
n

2: y =
√n� (using the approximation x)

3: z = n− y2

4: t =
2−32xz�
5: s = y · 232 + t

x2n > 2126−296.338 from Eq. (4), x
√
n > 263−232.339, thus

263 − x
√
n = δx

√
n < 233.339:

264n− s2 = 264n− (y · 232 + t)2

= 264(n− y2)− 233yt− t2

= 264z − 233yt− t2. (5)

We first bound 264n−s2 by above, assuming it is non-negative:

233yt = 2xyz − 233δty

= (264/
√
n− 2δx)(

√
n− δy)z − 233δty (6)

thus since δx
√
n < 233.339 and δy, δt < 1:

264z − 233yt ≤ (2δx
√
n+ 264/

√
n)z + 233y

= 232z(22.339
√
α+ 1/

√
α) + 265

√
α,

where we used y ≤ √n = 232
√
α. Also:

z = n− (
√
n− δy)

2 ≤ 2
√
nδy ≤ 233α1/2.

Substituting this in the bound for 264n− s2 gives:

264n− s2 ≤ 264z − 233yt ≤ 265f(α),

with
f(α) = 22.339α+ 1 + α1/2.

Let c ≥ 0 such that 264n = (s+c)2. Then 264n−s2 = 2sc+c2,

which implies 2sc < 265f(α), thus

c < 264f(α)/s. (7)

Since s ≥ 263 and the maximum of f(α) for 1/4 ≤ α ≤ 1
is less than 7.06 (attained at α = 1), we get c < 14.12.

Now this gives s >
√
264n − 15 >

√
α264/1.01, therefore

c < 1.01 · f(α)/√α. Now the function f(α)/
√
α is bounded

by 7.06 for 1/4 ≤ α ≤ 1, the maximum still attained at

α = 1. Therefore c < 1.01 · 7.06 < 7.14, which proves the

upper bound 7.

Now assume 264n − s2 < 0. Since 264z − 233yt ≥ 0 by

Eq. (6), we have 264n − s2 ≥ −t2 by Eq. (5). Since x ≤
263/

√
n and z ≤ 233

√
α:

t ≤ 2−32xz < 232.

(The last inequality is strict because we can have t = 232 only

when x = 263/
√
n, which can only happen when n = 262, but

in that case z = 0.) This proves that the product xz at step 4

23

Algorithm 5 SqrtApprox2

Input: integer n = n1 · 264 + n0 with 262 ≤ n1 < 264 and

0 ≤ n0 < 264

Output: integer s approximating
√
2128n

1: compute an integer x approximating 296/
√
n1 with

0 ≤ 296/
√
n1 − x < δ := 16

2: y =
232√n1� (using the approximation x)

3: z = n− y2

4: t =
xz/265�
5: s = y · 264 + t

can be computed modulo 264. Now write 264n = (s−c)2 with

c > 0:
264n− s2 ≥ −t2 > −264

(s− c)2 − s2 > −264
2sc < 264 + c2.

This inequality has no solutions for 263 ≤ s − c < 264.

Indeed, since we assumed 264n − s2 < 0, this implies s >
263, because for s = 263 we have s2 ≤ 264n. But then, if

s = 263+u with u ≥ 1, we would need 264c+2uc < 264+c2,

which we can rewrite as 2u < 264/c+c−264. For 1 ≤ c ≤ 264,

the expression 264/c+ c is bounded by 264 +1, which yields

2u < 1, having no integer solutions u ≥ 1.

3) The mpfr_sqrt2 function: The mpfr_sqrt2 func-

tion first computes a 128-bit approximation of the square root

using Algorithm 5, where in step 1, we can use Algorithm 3,

with the variant of Remark 1, achieving the bound δ = 16. Al-

gorithm SqrtApprox2 is an integer version of Karp-Markstein’s

algorithm for the square root [8], which incorporates n/2128

in Newton’s iteration for the reciprocal square root.

Theorem 5: Algorithm SqrtApprox2 returns s satisfying

s− 4 ≤

√
2128n� ≤ s+ 26.

By construction, we have x ≤ 296/
√
n1 + 1 < 2128/

√
n,

therefore y ≤ n1x/2
64 ≤ nx/2128 <

√
n. As a consequence,

we have z > 0 at step 3.

The proof of Theorem 5 is very similar to that of Theorem 4,

and can be found in the appendix.

The largest difference we found is 24, for example with n =
264 · 18355027010654859995 − 1, taking x =
296/√n1� −
15, whereas the actual code might use a larger value. The

smallest difference we found is −1, for example with n =
264 · 5462010773357419421− 1, taking x =
296/√n1�.

III. FAITHFUL ROUNDING

In addition to the usual rounding modes, faithful rounding

(MPFR_RNDF) will be supported in MPFR 4 by the most basic

operations. We say that an operation is faithfully rounded if

its result is correctly rounded toward −∞ or toward +∞. The

actual rounding direction is indeterminate: it may depend on

the argument, on the platform, etc. (except when the true result

is exactly representable, because in this case, this representable

value is always returned, whatever the rounding mode). From

this definition, the error on the operation is bounded by 1 ulp,

like in the directed rounding modes. Moreover, the ternary

value is unspecified for MPFR_RNDF.

The advantage of faithful rounding is that it can be com-

puted more quickly than the usual roundings: computing a

good approximation (say, with an error less than 1/2 ulp) and

rounding it to the nearest is sufficient. So, the main goal of

MPFR_RNDF is to speed up the rounding process in internal

computations. Indeed, we often do not need correct rounding

at this level, just a good approximation and an error bound.

In particular, MPFR_RNDF allows us to completely avoid

the Table Maker’s Dilemma (TMD), either for the rounding

or for the ternary value.

MPFR provides a function mpfr_can_round taking in

entry: an approximation to some real, unknown value; a

corresponding error bound (possibly with some given direc-

tion); a target rounding mode; a target precision. The goal

of this function is to tell the caller whether rounding this

approximation to the given target precision with the target

rounding mode necessarily provides the correct rounding of

the unknown value. For correctness, it is important that if

the function returns true, then correct rounding is guaranteed

(no false positives). Rare false negatives could be accept-

able, but for reproducibility, it was chosen to never return a

false negative with the usual rounding modes. When faithful

rounding was introduced, a new semantic had to be chosen

for the MPFR_RNDF rounding mode argument: true means

that rounding the approximation in an adequate rounding

mode can guarantee a faithful rounding of the unknown

value. Reproducibility was no longer important as in general

with faithful rounding. One reason to possibly accept false

negatives here was to avoid the equivalent of the TMD for

this function. However, a false negative would often mean a

useless recomputation in a higher precision. Since it is better to

spend a bit more time (at most linear) to avoid a false negative

than getting a very costly reiteration in a higher precision, it

was chosen to exclude false negatives entirely, like with the

other rounding modes.

IV. CHECKING CORRECTNESS

To check the correctness of the routines during this develop-

ment work, we relied both on the correctness of the theorems,

which have been independently checked by four anonymous

reviewers, and on all examples included in the MPFR test

suite. While checking corner cases during this work, we have

also added numerous new examples to the MPFR test suite.

Nevertheless, the only way to ensure no bug remains would

be to perform a formal proof of the algorithms of this paper

and of their implementation in MPFR, as proposed in [13].

V. EXPERIMENTAL RESULTS

We used a 3.2GHz Intel Core i5-6500 for our experi-

ments (Skylake microarchitecture), with turbo-boost disabled,

and revision 11452 of MPFR (aka MPFR 4.0-dev), and

GCC 6.3.0 under Debian GNU/Linux testing (stretch). MPFR

was compiled with GMP 6.1.2 [5], both configured with

--disable-shared. The number of cycles were measured

with the tools/mbench utility distributed with MPFR,

which measures the average number of cycles — which might

24

TABLE I
AVERAGE NUMBER OF CYCLES FOR BASIC OPERATIONS.

MPFR 3.1.5 MPFR 4.0-dev
(this work)

precision 53 113 53 113
mpfr_add 52 53 25 29
mpfr_sub 49 52 28 33
mpfr_mul 49 63 23 33
mpfr_sqr 74 79 21 29
mpfr_div 134 146 56 (64) 77 (102)
mpfr_sqrt 171 268 55 (56) 84 (133)

TABLE II
AVERAGE NUMBER OF CYCLES FOR BASIC OPERATIONS IN 53 BITS /
113 BITS, WITH ROUNDING TO NEAREST IN THE TRUNK (T-RNDN),
ROUNDING TO NEAREST IN THE FAITHFUL BRANCH (F-RNDN), AND

FAITHFUL ROUNDING IN THE FAITHFUL BRANCH (F-RNDF).

T-RNDN F-RNDN F-RNDF
mpfr_add 24.9 / 28.7 24.9 / 29.0 24.1 / 28.3
mpfr_sub 28.3 / 32.6 28.3 / 32.5 28.3 / 32.7
mpfr_mul 23.0 / 32.5 23.0 / 33.6 20.8 / 30.8
mpfr_sqr 20.6 / 28.7 22.0 / 29.8 18.8 / 26.9
mpfr_div 56.2 / 77.1 56.0 / 77.5 54.1 / 75.7
mpfr_sqrt 55.0 / 84.1 56.6 / 81.6 54.7 / 79.4

not be an integer — of 100 successive calls with different

random inputs. The mbench utility uses the rdtsc/rdtscp

instructions to compute the number of cycles, taking into ac-

count the overhead of calling these instructions, and for each of

the 100 calls keeps only the minimum time to avoid counting

hardware interrupt cycles. To get stable results, we called the

mbench binary with numactl --physcpubind=0, that

binds it to cpu 0, and we ensured no other processes were

running on the machine.

Table I compares the average number of cycles for basic

arithmetic operations — with rounding to nearest — between

MPFR 3 and the upcoming version 4, with 53 and 113 bits

of precision, corresponding to the binary64 and binary128

formats respectively. (The numbers between parentheses for

mpfr_div and mpfr_sqrt are when we always take the

“slow” branch corresponding to the case where the first

approximation is not enough to get correct rounding, thus

correspond to the worst case.) The speedup goes from a factor

1.6 (for the 113-bit subtraction) to a factor 3.5 (for the 53-

bit squaring). This improvement of basic arithmetic automat-

ically speeds up the computation of mathematical functions,

as demonstrated in Table IV (still for rounding to nearest).

Indeed, the computation of a mathematical function reduces to

basic arithmetic for the argument reduction or reconstruction,

for the computation of Taylor series or asymptotic series, etc.

Here the speedup goes from 17% (for the 113-bit logarithm)

to a factor 2.5 (for the 53-bit arc-tangent). Note that we have

chosen 53 and 113 bits, which correspond to the standard

binary64 and binary128 formats, but the optimizations are

not specific to these precisions; this is particularly important

as the internal working precision may vary, e.g. for the

implementation of the functions listed in Table IV.

TABLE III
NUMBER OF CYCLES FOR MPFR_SUM WITH THE USUAL ROUNDING

MODES AND MPFR_RNDF.

Parameters RND* RNDF

101 0 107 101 1 411 399

103 0 101 105 108 27216 20366

103 1 101 105 108 39639 32898

103 2 101 105 108 44025 35276

105 0 101 101 108 1656988 1034802

105 0 101 103 108 1393447 833711

TABLE IV
NUMBER OF CYCLES FOR MATHEMATICAL FUNCTIONS.

MPFR 3.1.5 MPFR 4.0-dev
(this work)

precision 53 113 53 113
mpfr_exp 4432 7502 2651 4769
mpfr_sin 4111 5414 3024 4303
mpfr_cos 3119 3895 2109 3143
mpfr_log 4977 7882 2610 6746
mpfr_atan 15373 22268 6151 10328
mpfr_pow 14252 20324 6393 12589

Timings for the mpfr_sum function in the faithful branch5

are done with a special test (misc/sum-timings) because

the input type, an array of MPFR numbers, is specific to this

function, and we need to test various kinds of inputs. The

inputs are chosen randomly with fixed parameters, correspond-

ing to the first 5 columns6 of Table III: the size of the array

(number of input MPFR numbers), the number of cancellation

terms in the test (0 means no probable cancellation, 1 means

some cancellation, 2 even more cancellation), the precision of

the input numbers (here, all of them have the same precision),

the precision of the result, and an exponent range e (1 means

that the input numbers have the same order of magnitude, and

a large value means that the magnitudes are very different:

from 1 to 2e−1). A test consists in several timings on the

same data, and we consider the average, the minimum and the

maximum, and if the difference between the maximum and the

minimum is too large, the result is ignored. Due to differences

in timings between invocations, 4 tests have been run. On some

parameters, MPFR_RNDF is faster than the other rounding

modes (its maximum timing is less than the minimum timing

for the usual rounding modes): for a small array size, small

output precision and no cancellation (first line of Table III),

there is a small gain; when the input precision is small and

the range is large (so that the input values do not overlap in

general, meaning that the TMD occurs in the usual rounding

modes), we can typically notice a 25% to 40% gain when

there is no cancellation (lines 2, 5 and 6), and a bit less when

a cancellation occurs (lines 3 and 4). MPFR_RNDF is never

slower. Note that the kind of inputs have a great influence

on a possible gain, which could be much larger than the one

observed here (these tests have not been specifically designed

to trigger the TMD).

5branches/faithful revision 11121.
6These are the arguments of position 2 to 6 of sum-timings.

25

VI. CONCLUSION

This article presents algorithms for fast floating-point arith-

metic with correct rounding on small precision numbers. All

the algorithms presented in Section II are new, and to our best

knowledge the faithful rounding presented in Section III is

the first implementation in arbitrary-precision software. The

implementation of those algorithms in version 4 of MPFR

gives a speedup of up to 3.5 with respect to MPFR 3. As

a consequence, the computation of mathematical functions is

greatly improved (Table IV).

ACKNOWLEDGEMENTS. The authors thank Patrick Pélissier

who designed the mbench utility, which was very useful in

comparing different algorithms and measuring their relative

efficiency; Niels Möller and Keith Briggs for their feedback

on this work; and the four anonymous reviewers. This work

has been supported in part by FastRelax ANR-14-CE25-0018-

01.

REFERENCES

[1] BRENT, R. P., AND ZIMMERMANN, P. Modern Computer Arithmetic.
No. 18 in Cambridge Monographs on Applied and Computational Math-
ematics. Cambridge University Press, 2010. Electronic version freely
available at https://members.loria.fr/PZimmermann/mca/pub226.html.

[2] DE DINECHIN, F., ERSHOV, A. V., AND GAST, N. Towards the post-
ultimate libm. In Proceedings of the 17th IEEE Symposium on Computer

Arithmetic (Washington, DC, USA, 2005), ARITH’17, IEEE Computer
Society, pp. 288–295.

[3] FOUSSE, L., HANROT, G., LEFÈVRE, V., PÉLISSIER, P., AND ZIMMER-
MANN, P. MPFR: A multiple-precision binary floating-point library with
correct rounding. ACM Trans. Math. Softw. 33, 2 (2007), article 13.

[4] GRAILLAT, S., AND MÉNISSIER-MORAIN, V. Accurate summation, dot
product and polynomial evaluation in complex floating point arithmetic.
Information and Computation 216 (2012), 57 – 71. Special Issue: 8th
Conference on Real Numbers and Computers.

[5] GRANLUND, T., AND THE GMP DEVELOPMENT TEAM. GNU MP:

The GNU Multiple Precision Arithmetic Library, 6.1.2 ed., 2016. https:
//gmplib.org/.

[6] IEEE standard for floating-point arithmetic, 2008. Revision of ANSI-
IEEE Standard 754-1985, approved June 12, 2008: IEEE Standards
Board.

[7] JOHANSSON, F. Efficient implementation of elementary functions in the
medium-precision range. In Proceedings of the 22nd IEEE Symposium

on Computer Arithmetic (Washington, DC, USA, 2015), ARITH’22,
IEEE Computer Society, pp. 83–89.

[8] KARP, A. H., AND MARKSTEIN, P. High-precision division and square
root. ACM Trans. Math. Softw. 23, 4 (Dec. 1997), 561–589.

[9] MASCARENHAS, W. Moore: Interval arithmetic in modern C++. https:
//arxiv.org/pdf/1611.09567.pdf, 2016. 8 pages.

[10] MÖLLER, N., AND GRANLUND, T. Improved division by invariant
integers. IEEE Trans. Comput. 60, 2 (2011), 165–175.

[11] REVOL, N., AND ROUILLIER, F. Motivations for an arbitrary precision
interval arithmetic and the MPFI library. In Reliable Computing (2002),
pp. 23–25.

[12] ZIMMERMANN, P. Karatsuba square root. Research Report 3805,
INRIA, 1999. https://hal.inria.fr/inria-00072854.

[13] ZIMMERMANN, P. Beyond double precision. https://members.loria.fr/
PZimmermann/papers/bedop.pdf, 2014. ERC Advanced Grant proposal.

APPENDIX

Proof of Theorem 5. Write n1 = α264 with 1/4 ≤ α < 1.

Write x = 296/
√
n1−δx, y = 232

√
n1−δy and t = xz/265−

δt with 0 ≤ δx < δ, and 0 ≤ δy, δt < 1.

2128n− s2 = 2128n− (y · 264 + t)2

= 2128(n− y2)− 265yt− t2

= 2128z − 265yt− t2. (8)

We first bound 2128n−s2 by above, assuming 2128n−s2 ≥ 0:

265yt = xyz − δt2
65y

= (
296√
n1
− δx)(2

32√n1 − δy)z − δt2
65y, (9)

thus

2128z − 265yt ≤ (232
√
n1δx + 296/

√
n1δy)z + 265y

= 264z(
√
αδx + δy/

√
α) + 265y

≤ 264z(δ
√
α+ 1/

√
α) + 2129

√
α, (10)

where we used y ≤ 232
√
n1 =

√
α264. Now

z = 264n1 + n0 − (232
√
n1 − δy)

2

≤ n0 + 233
√
n1δy

< 264(1 + 2
√
αδy)

≤ 264(1 + 2
√
α). (11)

Substituting Eq. (11) in Eq. (10) yields:

2128z − 265yt ≤ 2129f(α),

with

f(α) =
1

2
(1 + 2α1/2)(δα1/2 + 1/α1/2) + α1/2.

Substituting in Eq. (8) gives

2128n− s2 < 2129f(α).

Let c be the real number such that 2128n = (s + c)2. Then

since 2128n − s2 = (s + c)2 − s2 = 2sc + c2, which implies

2sc < 2129f(α), thus

c < 2128f(α)/s. (12)

Since s ≥ 2127 and the maximum of f(α) for 1/4 ≤ α ≤ 1
is 26.5 (attained at α = 1), we get c < 53. Now this gives

s >
√
2128n− 53 >

√
2128n/1.01 ≥ √α2128/1.01, therefore

Eq. (12) becomes c < 1.01 · f(α)/√α. Now the function

f(α)/
√
α is bounded by 26.5 for 1/4 ≤ α ≤ 1, the maximum

still attained at α = 1. Therefore c < 1.01·26.5 < 26.8, which

proves the upper bound 26.
Now assume 2128n − s2 < 0. It follows from Eq. (9) that

2128z−265yt ≥ 0. Eq. (8) therefore yields 2128n− s2 ≥ −t2,

and we have to bound t2. Using x ≤ 296/
√
n1, Eq. (11) and

n1 = α264:

t2 ≤ x2z2

2130
≤ 262z2

n1
≤ 2128

(1 + 2
√
α)2

4α
.

Writing 2128n = (s− c)2 with c > 0 yields:

(s− c)2 − s2 > −2128 (1 + 2
√
α)2

4α
,

2sc− c2 < 2128
(1 + 2

√
α)2

4α
.

Now s2 > 2128n implies s > 264
√
n ≥ 2128

√
α, thus:

c <
c2

2129
√
α
+

1

8

(1 + 2
√
α)2

α3/2
. (13)

This implies for all 1/4 ≤ α < 1:

c <
c2

2128
+ 4,

which proves c < 4.01, thus the lower bound is s− 4.

26

