Partial Order Reduction for Security Protocols
CONCUR’15

Lucca Hirschi
LSV, ENS Cachan

September 4th 2015

David Baelde Stéphanie Delaune
Jjoint work with and
LSV LSV

(sv

Introduction 1/2

concurrent programs + unsecure network + active attacker
— (tricky) attacks

~+ we need formal verification of crypto protocols

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 2/17

Introduction 1/2

concurrent programs + unsecure network + active attacker
— (tricky) attacks

~+ we need formal verification of crypto protocols

Our setting
» Applied-r models protocols (r-calculus for crypto);
» Trace equivalence models security properties.

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 2/17

Introduction 1/2

concurrent programs + unsecure network + active attacker
— (tricky) attacks

~+ we need formal verification of crypto protocols

Our setting
» Applied-r models protocols (r-calculus for crypto);
» Trace equivalence models security properties.

~ existing algorithms checking trace equivalence without replication

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 2/17

Introduction 2/2

Issue: Limited practical impact
Too slow. — Bottleneck: state space explosion

e.g., verification of P.A.: 1 session — 1 sec. vs. 2 sessions — 9 days

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 3/17

Introduction 2/2

Issue: Limited practical impact
Too slow. — Bottleneck: state space explosion

e.g., verification of P.A.: 1 session — 1 sec. vs. 2 sessions — 9 days

Our Contribution

Partial Order Reduction techniques:
» adequate with respect to specificities of this setting
» work for reachability and trace equivalence
» very effective in practice (implem + bench)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 3/17

Applied-r - Syntax
Terms
T: set of terms + equational theory. e.g., dec(enc(m, k), k) =g m.

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 4/17

Applied-r - Syntax
Terms
T set of terms + equational theory. e.g., dec(enc(m, k), k) =g m.

Processes and configurations

P,Q:=0](P|Q) |in(c,x).P|out(c,m).P
|ifu=vthen Pelse Q
|'! v .P

A= (P;d)

» o is the set of messages revelead to the network;
intuition: intruder’s knowledge.
b={ wy —enc(mk);ws— k}
~~~ ~—

handle out. message

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 4/17



Applied-r - Syntax
Terms
T set of terms + equational theory. e.g., dec(enc(m, k), k) =g m.

Processes and configurations

P,Q:=0](P|Q) |in(c,x).P|out(c,m).P
|ifu=vthen Pelse Q
|'! v .P

A= (P;d)

» o is the set of messages revelead to the network;
intuition: intruder’s knowledge.
b={ wy —enc(mk);ws— k}
~~~ ~—
handle out. message
» recipes are terms built using handles
e.g., R =dec(wy, ws) m =g Ro®

intuition: how the environment builds messages from its
knowledge

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 4/17

Applied-7 - Semantics - Example

Informal presentation

Alice — Server : enc(k, kas)
Server — Bob : enc(k, kgs)
Alice — Bob : enc(m, k)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 5/17

Applied-7 - Semantics - Example

Informal presentation

Alice — Server : enc(Kk, kas)
Server — Bob : enc(k, kgs)
Alice — Bob : enc(m, k)

Configuration
out (a,enc(k, kas)) .out (a,enc (m, k))
| in(s,x) . if enc(dec(x,kas),kas) = x
then out (s, enc (dec (x, kas), kbs))
else 0
| in(b,x) [...]

Let us explore one possible trace.

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 5/17

Applied-7 - Semantics - Example

Informal presentation

Alice — Server : enc(k, Kas)
Server — Bob : enc(k, kgs)
Alice — Bob : enc(m, k)

Configuration

out (a,enc (k, kas)) .out (a,enc(m, k))
| in(s,x) . if enc(dec(x,kas),kas) = x
then out (s, enc (dec (x, kas), kbs))
else 0
| in(b,x) [...]

& = {wy — enc(k, Kus)}

t =out(a, wp)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 5/17

Applied-7 - Semantics - Example

Informal presentation

Alice — Server : enc(K, kas)
Server — Bob : enc(k, kgs)
Alice — Bob : enc(m, k)

Configuration

out (a,enc (m, k))

| in(s,x) . if enc(dec(x,kas), kas) = x
then out (s, enc(dec (x,kas), kbs))
else 0

| in(b,x) [...]

& ={wy — enc(k, ki)}
t = out(a, wp).in(s, wy)
W is one possible recipe using ¢

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols

5/17

Applied-7 - Semantics - Example

Informal presentation

Alice — Server : enc(Kk, Kas)
Server — Bob : enc(k, kgs)
Alice — Bob : enc(m, k)

Configuration

out (a,enc (m, k))
then out (s, enc (k, kbs))
| in(b,x) [...]

& = {wy — enc(k, ky); wy — enc(k, Kis)}

t = out(a, wp).in(s, wp).out(s, wy)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 5/17

Applied-7 - Semantics - Example

Informal presentation

Alice — Server : enc(Kk, Kas)
Server — Bob : enc(k, kgs)
Alice — Bob : enc(m, k)

Configuration

out (a,enc (m, k))

| in(b,x) [...]

& = {wy — enc(k, ky); wy — enc(k, Kis)}

t = out(a, wp).in(s, wp).out(s, wy).in(b, wy)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 5/17

Applied-7 - Semantics - Example

Informal presentation

Alice — Server : enc(Kk, Kas)
Server — Bob : enc(k, kgs)
Alice — Bob : enc(m, k)

Configuration
out (a,enc(m, k))

[oool

& = {wy — enc(k, ky); wi — enc(k, Ks); wo — enc(m, k)}

t = out(a, wp).in(s, wp).out(s, wy).in(b, wy).out(a, we)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 5/17

Applied-7 - Semantics - Example
Informal presentation

Alice — Server : enc(k, Kas)
Server — Bob : enc(k, kgs)
Alice — Bob : enc(m, k)

Configuration

| [...]

& = {wy — enc(k, Kus); wy — enc(k, Kis); wo — enc(m, k)}

t = out(a, wp).in(s, wp).out(s, wy).in(b, wy).out(a, wa).in(b, we)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 5/17

Security Properties

@ Reachability (e.g., secret, authentification) and
@ Trace equivalence (e.g., anonymity, unlinkability).

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 6/17

Security Properties

@ Reachability (e.g., secret, authentification) and
@ Trace equivalence (e.g., anonymity, unlinkability).

Trace equivalence
» A~ B: VAL A 3B L B such that d4 ~ &5 (and conversely)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 6/17

Security Properties

@ Reachability (e.g., secret, authentification) and
@ Trace equivalence (e.g., anonymity, unlinkability).

Trace equivalence
» A~ B: VAL A 3B L B such that d4 ~ &5 (and conversely)
> O~ (VM N, MO = NO < M’ = NO')

(bisimulation: too strong)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 6/17

Redundancies

» Motivation: Improve algorithms checking trace equivalence
» How: Remove redundant interleavings via a reduced semantics

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 7/17

Redundancies

» Motivation: Improve algorithms checking trace equivalence
» How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:
try = out(cy, w).in(cy, M)

@ in(c,x) | out(co, m) ~» tro = in(cy, M).out(cz, w)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 7/17

Redundancies

» Motivation: Improve algorithms checking trace equivalence
» How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:

@ in(ci, x) | out(ca, m) ~ try iQUt(CZ, w).in(c, M)

) *)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 7/17

Redundancies

» Motivation: Improve algorithms checking trace equivalence
» How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:
@ in(c1, x) | out(ca, m) ~ try = out(cz, w).in(c1, M)

) *)

@ in(cy, x).out(cy,my) | in(co, y).out(co, my) ~~
e try =in(cy, My).out(cy, wy).in(ce, Mo).out(co, ws)
o trh = in(Cg, Mg).OUt(Cg, Wg).il’](C17/M1).OUt(C17 W1)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols

7/17

Redundancies

» Motivation: Improve algorithms checking trace equivalence
» How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:

Q@ in(cy, x) | out(ca, m) ~~ try iPUt(Cz w).in(cy, M)

) N 9

Q in(ci, x).out(cr,my) | in(c, y).out(co, M) ~
e try =in(ci, My).out(cy, wy).in(ce, Mo).out(co, wo)
° = - - - A
when M; does not use w»

I B)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 7/17

Redundancies

» Motivation: Improve algorithms checking trace equivalence
» How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:
Q@ in(cy, x) | out(ca, m) ~~ try = out(c,, w).in(cy, M)

) N 9

Q in(ci, x).out(cr,my) | in(c, y).out(co, M) ~
e try =in(ci, My).out(cy, wy).in(ce, Mo).out(co, wo)
° = - - - A
when M; does not use w»

I B)

» what about trace equivalence (=) ?
e.g., in(cy, x) | out(cz, m) % out(co, m).in(cy, X)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 7/17

Redundancies

» Motivation: Improve algorithms checking trace equivalence
» How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:
Q@ in(cy, x) | out(ca, m) ~~ try = out(c,, w).in(cy, M)

) N 9

Q in(ci, x).out(cr,my) | in(c, y).out(co, M) ~
e try =in(ci, My).out(cy, wy).in(ce, Mo).out(co, wo)
° = - - - A
when M; does not use w»

I B)

» what about trace equivalence (=) ?
e.g., in(cy, x) | out(cz, m) % out(co, m).in(cy, X)
» ~~ same swaps are possible (= same sequential dependencies)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 7/17

Big Picture

Q

Annot. Sem.

Strong Sym:

SESH

Compression

Theorem 1: ~;=~

Required properties

— is such that:

Reduction

Theorem 2: ~.==~,

» reachability properties coincide on —, and —;

» for action-determinate processes, trace-equivalence coincides
on —, and —.

Lucca Hirschi

CONCUR'15: Partial Order Reduction for Security Protocols

8/17

Big Picture

Annot. Sem. Compression Reduction

Strong Sym: ~ Theorem 1: ~g=r~¢ ~ Theorem 2: ~o=~,

Q

SESH

Required properties
— is such that:
» reachability properties coincide on —, and —;

» for action-determinate processes, trace-equivalence coincides
on —, and —.

Action-determinsm

A is action-deterministic if: two actions in parallel must be #

Attacker knows to/from whom he is sending/receiving
messages.

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 8/17

Annotated Semantics

» embeds labels into produced actions
» one can extract sequential dependencies from labelled actions

[out(co,w)]"-2.[in(cy ,My)]"!

e.g., in(cy, x) | out(co, m) a - labels: in parallel

[out(cz,w)]'-[in(c1,My)]'

while out(cz, m).in(cy, x) a - labels: in sequence

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols

9/17

Annotated Semantics

» embeds labels into produced actions
» one can extract sequential dependencies from labelled actions

[out(co,w)]"-2.[in(cy ,My)]"!

e.g., in(cq, x) | out(co, m) a - labels: in parallel

[out(cz,w)]'-[in(c1,My)]'

while out(cz, m).in(cy, x) a - labels: in sequence

Strong Symmetry Lemma

» mismatch on labels ~~ systematically used to show #
» for action-deterministic, (~ + labels) coincides with ~

Lucca Hirschi CONCUR'’15: Partial Order Reduction for Security Protocols

9/17

Compression - Intuitions

The Idea

Follow a particular strategy that reduces the number of choices by
looking at the nature of available actions.

Polarities of processes:
» negative: out().P, (P; | P2),0

Bring new data or choices, execution independent on the
context

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols

10/17

Compression - Intuitions

The Idea

Follow a particular strategy that reduces the number of choices by
looking at the nature of available actions.

Polarities of processes:
» negative: out().P, (P; | P2),0
Bring new data or choices, execution independent on the
context
» positive: in().P
Execution depends on the context

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 10/17

Compression - Intuitions

The Idea

Follow a particular strategy that reduces the number of choices by
looking at the nature of available actions.

Polarities of processes:
» negative: out().P, (P; | P2),0
Bring new data or choices, execution independent on the
context

~~ to be performed as soon as possible in a given order
» positive: in().P
Execution depends on the context

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 10/17

Compression - Intuitions

The Idea

Follow a particular strategy that reduces the number of choices by
looking at the nature of available actions.

Polarities of processes:
» negative: out().P, (P; | P2),0
Bring new data or choices, execution independent on the
context

~ to be performed as soon as possible in a given order
» positive: in().P

Execution depends on the context

~+ can be performed only if no negative

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 10/17

Compression - Intuitions

The Idea

Follow a particular strategy that reduces the number of choices by
looking at the nature of available actions.

Polarities of processes:

» negative: out().P, (P1 | P2),0
Bring new data or choices, execution independent on the
context
~ to be performed as soon as possible in a given order

» positive: in().P
Execution depends on the context
~ can be performed only if no negative
~ choose one positive, put it under focus
~ focus released when negative

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 10/17

Compression - Intuitions

The Idea

Follow a particular strategy that reduces the number of choices by
looking at the nature of available actions.

Polarities of processes:

» negative: out().P, (P1 | P2),0
Bring new data or choices, execution independent on the
context

~ 1o be performed as soon as possible in a given order
» positive: in().P
Execution depends on the context

~» can be performed only if no negative
~+ choose one positive, put it under focus
~ focus released when negative

(Replication: ! V. Pis positive but releases the focus)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 10/17

Compression - Example

P ={ l'vn.in(c,x).out(c,enc({x,n)}, k)).0 }

Compressed interleavings:
t =

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 1/17

Compression - Example

P = { lvn.in(c,x).out(c,{< x,n>}).0;
[in(c1, x).out(cr,enc((x,m), k)).0| }

Compressed interleavings:
t =sess(a, ¢y)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 1/17

Compression - Example

P = { lvn.in(c, x).out(c,{< x,n>}).0;
out(cy, enc({x, ny), k)).0 }

Compressed interleavings:
t = sess(a, ¢y).in(cy, My)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 1/17

Compression - Example

P = {lvn. in(c, x).out(c, {< x,n >}).0}

Compressed interleavings:
t = sess(a, ¢y).in(cy, X1).out(cy, wy)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 1/17

Compression - Example

P = {lvn. in(c, x).out(c, {< X, n >}x).0}

Compressed interleavings:
t = sess(a, c1).in(cy, X1).out(cr, wy)

Only traces of the form:
sessq.inj.outy. sesss.ino.outs.

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 1/17

Compression - Results

Reachability:
» Soundness: A 5. A = AL A

» Completeness: for complete execution A LA =
dt., permutation of t, A t—c>c A

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 12/17

Compression - Results

Reachability:
» Soundness: A 5. A = AL A

» Completeness: for complete execution A LA =
dt., permutation of t, A '—C>c A

Equivalence:

Theorem: ~,=~
Let A and B be two action-deterministic configurations.

A~ B if, and, only if, A =~ B.

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 12/17

Reduction - Intuitions

By building upon — ¢, ~:
» compressed semantics produces blocks of actions of the form:

b= (sess).in...in.out...out

» but we still need to make choices (which positive process/block?)
» some of them are redundant.

Lucca Hirschi CONCUR'’15: Partial Order Reduction for Security Protocols 13/17

Reduction - Intuitions

By building upon — ¢, ~:
» compressed semantics produces blocks of actions of the form:

b= (sess).in...in.out...out

» but we still need to make choices (which positive process/block?)
» some of them are redundant.

P =in(cy, x).out(cy, m) | in(co, y).out(co, mo)
Compressed traces:
» try =in(cy, My).out(cy, wq).in(co, Mo).out(co, ws)
> = - - - A
when M; does not use w»

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 13/17

Reduction - Monoid of traces

Definition
Given a frame o, the relation =, is the smallest equivalence over
compressed traces such that:

> t.by.bo.t =¢ t.bo.by.t' when by || be, and

> t.b1.t’ =o t.bz.t/ when (b1 =E bg)q)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols

14/17

Reduction - Monoid of traces

Definition
Given a frame &, the relation =, is the smallest equivalence over
compressed traces such that:

> t.by.bo.t =¢ t.bo.by.t' when by || be, and
> t.b1.t’ = t.bz.t/ when (b1 =E bg)q)

Lemma

It ALc A Then A 5o A for any ¢/ =g(a t.

Goal: explore one trace per equivalence class.

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 14/17

Reduced semantics
We assume an arbitrary order < over blocks priority order.

Semantics (informal)
AL A A2 A

ALl w

if txb

Informally, {x b means:

there is no way to swap b towards the beginning of t before
a block by = b (even by modifying recipes)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 15/17

Reduced semantics
We assume an arbitrary order < over blocks priority order.

Semantics (informal)
AL A A2 A

AL A

if txb

Informally, {x b means:

there is no way to swap b towards the beginning of t before
a block by = b (even by modifying recipes)

tis ®-minimal if there is no t’ =¢ t such that t/ < t
If A-Ls; A’ then tis ®(A’)-minimal if, and only if, A 15, A’.

Theorem
~=ry, for action-deterministic configurations.

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 15/17

Benchmarks
We implemented compression/reduction in APTE
by adapting well established techniques based on:
» symbolic semantics (abstract inputs);
» constraint solving procedures.
trx b: a new type of constraints

F - 3 . -
0ty g/ / ot 10t g ya
Ak / / 10 { . /
102 . e 10 " ///.///

- / L.
10! . o 10! _ .
/ / ./'/ / . / reference — ¢ —

, - reference — ¢ — 0 e
10 hd _/ e compression — = — 10 K -%' compression — = —
107! / /o* reduction —e — 107! /' reduction — e —
o] e -2
10 * nb. of parallel processes 10 * nb. of parallel processes
107 1073
5 10 15 20 3 6 9 12
Toy example Wide Mouthed Frog

All benchmarks & instructions for reproduction:
www.lsv.ens—cachan.fr/~hirschi/apte_por
16 /17

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols

Conclusion

» New optimizations: compression and reduction;
» applied to trace equivalence checking;
» implementation in APTE.

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 17717

Conclusion

» New optimizations: compression and reduction;
» applied to trace equivalence checking;
» implementation in APTE.

Future Work

@ drop action-deterministic assumption
@ impact of the choice of <
© study others redundancies ~ recognize symmetries ?

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols

17717

Conclusion

» New optimizations: compression and reduction;
» applied to trace equivalence checking;
» implementation in APTE.

Future Work

@ drop action-deterministic assumption
@ impact of the choice of <
© study others redundancies ~ recognize symmetries ?

Any question?

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 17717

Compressed semantics - Definition

P is initial if VP € P, P is positiveor replicated.

Semantics:

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 18/17

Compressed semantics - Definition

P is initial if VP € P, P is positiveor replicated.

Semantics:
Pisinitial (P;) 2, (pr: o)
STARTIIN (P (P} 2;0) = (P, P';)
(P, ®) " (P 0)
Pos/IN (P P;0) “Ese (PP)

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 18/17

Compressed semantics - Definition

P is initial if VP € P, P is positiveor replicated.

Semantics:
Pisinitial (P; o) 1M (pr 9y
START/IN (Pw{P}; o, 9) M) (P, P, ®)
(P; ®) (oM, (P; @)
Pos/IN (P; P; ®) C—M)> (P; P’ @)
P negative
RELEASE (P, P;®) =0 (P {P}; 2,)

({P}: ®) = (P ¢)
Nea/o (PW{P};@;®) ¢ (PUP;2;9')

a € {par,zero,out(_,)}

+ Repl/In

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols 18/17

Reduced semantics

We assume an arbitrary order < over blocks (without
recipes/messages): priority order.

Semantics

AS A

AL, (P;2;,®) (P2, d) Lo A i trb for all b

A MN A with

Availability

A block b is available after tr, denoted trx b, if:
» eithertr = ¢
> or tr = tro.by with —(by||b)
> or tr = tro.by with bo||b, by < b and trox b.

Lucca Hirschi CONCUR'15: Partial Order Reduction for Security Protocols

19/17

Benchmarks

10*
103
102
10!
]00
10°!
102
103

E / ! -’ 0t E * e
¢ 5
§ . _/ ot N / /
2 / / .t 10° 7 = <.
* /. . . 102 * /. /
/. o . 10! o /
- o reference — ¢ — 5 /_ e reference — ¢ —
hd _/ e’ compression — ® — 10 K :/ compression — = —
/e® reduction — e — 107! / reduction — e —
. 5 0
o nb. of parallel processes 10 * nb. of parallel processes
-3
5 10 15 20 10 12

Toy example (M;(in.out))

3 6 9
Wide Mouthed Frog

Benchmarks

10*
103
102
10

1 OU
10°!
102
103

5 10 15 20
Toy example (M;(in.out))

@ / = . .
g/ 0] 2
S - / S
2 / / 1037 &
] 2
. / o 10
S 10!
- . reference — ¢ — N / reference — ¢ —
bV AN compression — = — 10 / compression — = —
/ /: o reduction — e — 107! / reduction — e —
. 5 0
./’. nb. of parallel processes 10 nb. of parallel processes
103

12

3 6
Wide Mouthed Frog

Maximum number of parallel processes verifiable in 20 hours:

Protocol

ref | comp| red

Yahalom (3-party)

E-Passport PA (2-party)
Denning-Sacco (3-party)

Needham Schroeder (3-party)
Private Authentication (2-party)

Wide Mouthed Frog (3-party)

5
7
7
9
10
13

1o 3, I N N NGN
O NN O

—
N

Instructions for reproduction:
www.lsv.ens—cachan.fr/~hirschi/apte_por

	Introduction
	Model
	Preliminary
	Compression
	Reduction
	Conclusion
	Appendix

