Partial Order Reduction for Security Protocols CONCUR'15

Lucca Hirschi LSV, ENS Cachan

September 4th 2015

joint work with LSV Stéphanie Delaune LSV LSV

Introduction 1/2

→ we need formal verification of crypto protocols

Introduction 1/2

concurrent programs + unsecure network + active attacker \rightarrow (tricky) attacks

→ we need formal verification of crypto protocols

Our setting

- ▶ Applied- π models protocols (π -calculus for crypto);
- ► Trace equivalence models security properties.

Introduction 1/2

→ we need formal verification of crypto protocols

Our setting

- ▶ Applied- π models protocols (π -calculus for crypto);
- ► Trace equivalence models security properties.
- → existing algorithms checking trace equivalence without replication

Introduction 2/2

Issue: Limited practical impact

Too slow. – Bottleneck: state space explosion

e.g., verification of P.A.: 1 session \rightarrow 1 sec. vs. 2 sessions \rightarrow 9 days

Introduction 2/2

Issue: Limited practical impact

Too slow. – Bottleneck: state space explosion

e.g., verification of P.A.: 1 session \rightarrow 1 sec. vs. 2 sessions \rightarrow 9 days

Our Contribution

Partial Order Reduction techniques:

- adequate with respect to specificities of this setting
- work for reachability and trace equivalence
- very effective in practice (implem + bench)

Applied- π - Syntax

Terms

 \mathcal{T} : set of terms + equational theory. *e.g.*, $dec(enc(m, k), k) =_{\mathsf{E}} m$.

Applied- π - Syntax

Terms

 \mathcal{T} : set of terms + equational theory. e.g., $dec(enc(m,k),k) =_{\mathsf{E}} m$.

Processes and configurations

$$P, Q := 0 \mid (P|Q) \mid \text{in}(c, x).P \mid \text{out}(c, m).P$$

 $\mid \text{if } \underline{u} = v \text{ then } P \text{ else } Q$
 $\mid ! \nu \overrightarrow{n}.P$
 $A = (\mathcal{P}; \Phi)$

• of is the set of messages revelead to the network; intuition: intruder's knowledge.

$$\Phi = \{\underbrace{w_1}_{\text{handle}} \mapsto \underbrace{\text{enc}(m, k)}_{\text{out. message}}; w_2 \mapsto k\}$$

Applied- π - Syntax

Terms

 \mathcal{T} : set of terms + equational theory. e.g., $dec(enc(m,k),k) =_{\mathsf{E}} m$.

Processes and configurations

$$P, Q := 0 \mid (P|Q) \mid \text{in}(c, x).P \mid \text{out}(c, m).P$$

 $\mid \text{if } \underline{u} = v \text{ then } P \text{ else } Q$
 $\mid ! \nu \overrightarrow{n}.P$
 $A = (\mathcal{P}; \Phi)$

• of is the set of messages revelead to the network; intuition: intruder's knowledge.

$$\Phi = \{\underbrace{w_1}_{\text{handle}} \mapsto \underbrace{\text{enc}(m, k)}_{\text{out. message}}; w_2 \mapsto k\}$$

recipes are terms built using handles

$$e.g., R = dec(w_1, w_2)$$
 $m =_{\mathsf{E}} R\Phi$

intuition: how the environment builds messages from its knowledge

Informal presentation

 $\begin{array}{lll} \mathsf{Alice} \to \mathsf{Server} & : \; \mathsf{enc}(k, k_{\mathsf{AS}}) \\ \mathsf{Server} \to \mathsf{Bob} & : \; \mathsf{enc}(k, k_{\mathsf{BS}}) \\ \mathsf{Alice} \to \mathsf{Bob} & : \; \mathsf{enc}(m, k) \end{array}$

Informal presentation

```
\begin{array}{lll} \mathsf{Alice} \to \mathsf{Server} & : & \mathsf{enc}(k, k_{\mathsf{AS}}) \\ \mathsf{Server} \to \mathsf{Bob} & : & \mathsf{enc}(k, k_{\mathsf{BS}}) \\ \mathsf{Alice} \to \mathsf{Bob} & : & \mathsf{enc}(m, k) \end{array}
```

Configuration

$$t = \epsilon$$

Let us explore one possible trace.

Informal presentation

```
\begin{array}{lll} \mathsf{Alice} \to \mathsf{Server} & : & \mathsf{enc}(k, k_{\mathsf{AS}}) \\ \mathsf{Server} \to \mathsf{Bob} & : & \mathsf{enc}(k, k_{\mathsf{BS}}) \\ \mathsf{Alice} \to \mathsf{Bob} & : & \mathsf{enc}(m, k) \end{array}
```

Configuration

 $t = \operatorname{out}(a, w_0)$

Informal presentation

```
\begin{array}{lll} \textbf{Alice} \rightarrow \textbf{Server} & : & \textbf{enc}(\textit{k}, \textit{k}_{AS}) \\ \textbf{Server} \rightarrow \textbf{Bob} & : & \textbf{enc}(\textit{k}, \textit{k}_{BS}) \\ \textbf{Alice} \rightarrow \textbf{Bob} & : & \textbf{enc}(\textit{m}, \textit{k}) \end{array}
```

Configuration

```
out (a, enc(k, kas)) out (a, enc(m, k))

| in(s,x) . if enc(dec(x, kas), kas) = x

then out (s, enc(dec(x, kas), kbs))

else 0

| in(b,x) [...]

\Phi = \{w_0 \mapsto enc(k, k_{as})\}
```

$$t = \operatorname{out}(a, w_0).\operatorname{in}(s, w_0)$$

 w_0 is one possible recipe using Φ

Informal presentation Alice \rightarrow Server : enc(k, k_{AS}) Server \rightarrow Bob : enc(k, k_{BS}) Alice \rightarrow Bob : enc(m, k)

Configuration

```
out (a, enc(k, kas)).out (a, enc(m, k))

| in(s,x). if enc(dec(x, kas), kas) = x

then out(s, enc(k, kbs))
else 0

| in(b,x) [...]

\Phi = \{w_0 \mapsto enc(k, k_{as}); w_1 \mapsto enc(k, k_{bs})\}
```

 $t = \operatorname{out}(a, w_0).\operatorname{in}(s, w_0).\operatorname{out}(s, w_1)$

Informal presentation

```
\begin{array}{lll} \mathsf{Alice} \to \mathsf{Server} & : & \mathsf{enc}(k, k_{\mathsf{AS}}) \\ \mathsf{Server} \to \mathsf{Bob} & : & \mathsf{enc}(k, k_{\mathsf{BS}}) \\ \mathsf{Alice} \to \mathsf{Bob} & : & \mathsf{enc}(m, k) \end{array}
```

Configuration

```
out (a, enc(k, kas)).out (a, enc(m, k))

| in(s,x). if enc(dec(x, kas), kas) = x
then out(s, enc(k, kbs))
else 0

| in(b,x) [...]

\Phi = \{ w_0 \mapsto enc(k, k_{as}); w_1 \mapsto enc(k, k_{bs}) \}
```

 $t = \text{out}(a, w_0).\text{in}(s, w_0).\text{out}(s, w_1).\text{in}(b, w_1)$

Informal presentation

```
\begin{array}{lll} \mathsf{Alice} \to \mathsf{Server} & : & \mathsf{enc}(k, k_{\mathsf{AS}}) \\ \mathsf{Server} \to \mathsf{Bob} & : & \mathsf{enc}(k, k_{\mathsf{BS}}) \\ \mathsf{Alice} \to \mathsf{Bob} & : & \mathsf{enc}(m, k) \end{array}
```

Configuration

 $t = \text{out}(a, w_0).\text{in}(s, w_0).\text{out}(s, w_1).\text{in}(b, w_1).\text{out}(a, w_2)$

Informal presentation

```
\begin{array}{lll} \mathsf{Alice} \to \mathsf{Server} & : \; \mathsf{enc}(k, k_{\mathsf{AS}}) \\ \mathsf{Server} \to \mathsf{Bob} & : \; \mathsf{enc}(k, k_{\mathsf{BS}}) \\ \mathsf{Alice} \to \mathsf{Bob} & : \; \mathsf{enc}(m, k) \end{array}
```

Configuration

 $t = \text{out}(a, w_0).\text{in}(s, w_0).\text{out}(s, w_1).\text{in}(b, w_1).\text{out}(a, w_2).\text{in}(b, w_2)$

Security Properties

- Reachability (e.g., secret, authentification) and
- Trace equivalence (e.g., anonymity, unlinkability).

Security Properties

- Reachability (e.g., secret, authentification) and
- Trace equivalence (e.g., anonymity, unlinkability).

Trace equivalence

▶ $A \approx B$: $\forall A \xrightarrow{t} A' \exists B \xrightarrow{t} B'$ such that $\Phi_{A'} \sim \Phi_{B'}$ (and conversely)

Security Properties

- Reachability (e.g., secret, authentification) and
- Trace equivalence (e.g., anonymity, unlinkability).

Trace equivalence

- ▶ $A \approx B$: $\forall A \xrightarrow{t} A' \exists B \xrightarrow{t} B'$ such that $\Phi_{A'} \sim \Phi_{B'}$ (and conversely)
- $\blacktriangleright \ \Phi \sim \Phi' : \ (\forall M, N, \ M\Phi = N\Phi \iff M\Phi' = N\Phi')$

(bisimulation: too strong)

- ▶ Motivation: Improve algorithms checking trace equivalence
- ► How: Remove redundant interleavings via a reduced semantics

- ▶ Motivation: Improve algorithms checking trace equivalence
- ▶ How: Remove redundant interleavings via a reduced semantics

```
 \bullet \text{ in}(c_1,x) \mid \text{out}(c_2,m) \leadsto \begin{cases} \text{tr}_1 = \text{out}(c_2,w).\text{in}(c_1,M) \\ \text{tr}_2 = \text{in}(c_1,M).\text{out}(c_2,w) \end{cases}
```

- ▶ Motivation: Improve algorithms checking trace equivalence
- ▶ How: Remove redundant interleavings via a reduced semantics

$$\bullet \text{ in}(c_1,x) \mid \text{out}(c_2,m) \leadsto \begin{array}{l} \text{tr}_1 = \text{out}(c_2,w).\text{in}(c_1,M) \\ \text{tr}_2 = \text{in}(c_1,M).\text{out}(c_2,w) \end{array}$$

- ▶ Motivation: Improve algorithms checking trace equivalence
- ▶ How: Remove redundant interleavings via a reduced semantics

```
 \bullet \quad \text{in}(c_1, x) \mid \text{out}(c_2, m) \leadsto \quad \begin{aligned} & \text{tr}_1 = \text{out}(c_2, w).\text{in}(c_1, M) \\ & \text{tr}_2 = \text{in}(c_1, M).\text{out}(c_2, w) \end{aligned}
```

- - $\operatorname{tr}_1 = \operatorname{in}(c_1, M_1).\operatorname{out}(c_1, w_1).\operatorname{in}(c_2, M_2).\operatorname{out}(c_2, w_2)$
 - $tr_2 = in(c_2, M_2).out(c_2, w_2).in(c_1, M_1).out(c_1, w_1)$

- Motivation: Improve algorithms checking trace equivalence
- ► How: Remove redundant interleavings via a reduced semantics

$$\bullet \text{ in}(c_1,x) \mid \text{out}(c_2,m) \rightsquigarrow \begin{array}{l} \operatorname{tr}_1 = \operatorname{out}(c_2,w).\operatorname{in}(c_1,M) \\ \operatorname{tr}_2 = \operatorname{in}(c_1,M).\operatorname{out}(c_2,w) \end{array}$$

- in (c_1, x) .out $(c_1, m_1) \mid in(c_2, y)$.out $(c_2, m_2) \rightsquigarrow$
 - $\operatorname{tr}_1 = \operatorname{in}(c_1, M_1).\operatorname{out}(c_1, w_1).\operatorname{in}(c_2, M_2).\operatorname{out}(c_2, w_2)$
 - $\operatorname{tr}_2 = \frac{\operatorname{in}(o_2, M_2).\operatorname{out}(o_2, w_2).\operatorname{in}(c_1, M_1).\operatorname{out}(c_1, w_1)}{\operatorname{when } M_1 \operatorname{does not use } w_2}$

- Motivation: Improve algorithms checking trace equivalence
- ► How: Remove redundant interleavings via a reduced semantics

$$\bullet \text{ in}(c_1,x) \mid \text{out}(c_2,m) \rightsquigarrow \begin{array}{l} \operatorname{tr}_1 = \operatorname{out}(c_2,w).\operatorname{in}(c_1,M) \\ \operatorname{tr}_2 = \operatorname{in}(c_1,M).\operatorname{out}(c_2,w) \end{array}$$

- in (c_1, x) .out $(c_1, m_1) \mid in(c_2, y)$.out $(c_2, m_2) \rightsquigarrow$
 - $\operatorname{tr}_1 = \operatorname{in}(c_1, M_1).\operatorname{out}(c_1, w_1).\operatorname{in}(c_2, M_2).\operatorname{out}(c_2, w_2)$
 - $\operatorname{tr}_2 = \frac{\operatorname{in}(o_2, M_2).\operatorname{out}(o_2, w_2).\operatorname{in}(o_1, M_1).\operatorname{out}(o_1, w_1)}{\operatorname{when } M_1 \operatorname{does not use } w_2}$
 - what about trace equivalence (\approx) ? e.g., in(c_1 , x) | out(c_2 , m) $\not\approx$ out(c_2 , m).in(c_1 , x)

- Motivation: Improve algorithms checking trace equivalence
- ► How: Remove redundant interleavings via a reduced semantics

- $\bullet \text{ in}(c_1,x) \mid \text{out}(c_2,m) \rightsquigarrow \begin{array}{l} \operatorname{tr}_1 = \operatorname{out}(c_2,w).\operatorname{in}(c_1,M) \\ \operatorname{tr}_2 = \operatorname{in}(c_1,M).\operatorname{out}(c_2,w) \end{array}$
- - $\operatorname{tr}_1 = \operatorname{in}(c_1, M_1).\operatorname{out}(c_1, w_1).\operatorname{in}(c_2, M_2).\operatorname{out}(c_2, w_2)$
 - $\operatorname{tr}_2 = \frac{\operatorname{in}(o_2, M_2).\operatorname{out}(o_2, w_2).\operatorname{in}(c_1, M_1).\operatorname{out}(c_1, w_1)}{\operatorname{when } M_1 \operatorname{does not use } w_2}$
 - ightharpoonup what about trace equivalence (pprox) ?
 - e.g., $in(c_1, x) \mid out(c_2, m) \approx out(c_2, m).in(c_1, x)$
 - ➤ ~ same swaps are possible (≡ same sequential dependencies)

Big Picture

Required properties

- \rightarrow_r is such that:
 - ▶ reachability properties coincide on \rightarrow_r and \rightarrow ;
 - for action-determinate processes, trace-equivalence coincides on →_r and →.

Big Picture

Required properties

- \rightarrow_r is such that:
 - ▶ reachability properties coincide on \rightarrow_r and \rightarrow ;
 - for action-determinate processes, trace-equivalence coincides on →_r and →.

Action-determinsm

A is action-deterministic if: two actions in parallel must be \neq

Attacker knows to/from whom he is sending/receiving messages.

Annotated Semantics

- embeds labels into produced actions
- one can extract sequential dependencies from labelled actions

```
e.g., \operatorname{in}(c_1, x) \mid \operatorname{out}(c_2, m) \xrightarrow{[\operatorname{out}(c_2, w)]^{1.2}.[\operatorname{in}(c_1, M_1)]^{1.1}} a \cdot \operatorname{labels: in parallel} while \operatorname{out}(c_2, m).\operatorname{in}(c_1, x) \xrightarrow{[\operatorname{out}(c_2, w)]^{1}.[\operatorname{in}(c_1, M_1)]^{1}} a \cdot \operatorname{labels: in sequence}
```

Annotated Semantics

- embeds labels into produced actions
- one can extract sequential dependencies from labelled actions

```
e.g., \operatorname{in}(c_1, x) \mid \operatorname{out}(c_2, m) \xrightarrow{[\operatorname{out}(c_2, w)]^{1.2}.[\operatorname{in}(c_1, M_1)]^{1.1}} a \cdot \text{labels: in parallel}
while \operatorname{out}(c_2, m).\operatorname{in}(c_1, x) \xrightarrow{[\operatorname{out}(c_2, w)]^{1}.[\operatorname{in}(c_1, M_1)]^1} a \cdot \text{labels: in sequence}
```

Strong Symmetry Lemma

- ▶ mismatch on labels → systematically used to show ≉
- for action-deterministic, (pprox + labels) coincides with pprox

The Idea

Follow a particular **strategy** that reduces the number of choices by looking at the **nature** of available actions.

Polarities of processes:

negative: out().P, (P₁ | P₂), 0
Bring new data or choices, execution independent on the context

The Idea

Follow a particular **strategy** that reduces the number of choices by looking at the **nature** of available actions.

- negative: out().P, (P₁ | P₂), 0
 Bring new data or choices, execution independent on the context
- positive: in().P Execution depends on the context

The Idea

Follow a particular **strategy** that reduces the number of choices by looking at the **nature** of available actions.

- negative: out().P, (P₁ | P₂), 0
 Bring new data or choices, execution independent on the context
 - → to be performed as soon as possible in a given order
- positive: in().P Execution depends on the context

The Idea

Follow a particular **strategy** that reduces the number of choices by looking at the **nature** of available actions.

- negative: out().P, (P₁ | P₂), 0
 Bring new data or choices, execution independent on the context
 - → to be performed as soon as possible in a given order
- positive: in().P Execution depends on the context

The Idea

Follow a particular **strategy** that reduces the number of choices by looking at the **nature** of available actions.

- negative: out().P, (P₁ | P₂), 0
 Bring new data or choices, execution independent on the context
 - → to be performed as soon as possible in a given order
- positive: in().P Execution depends on the context

Compression - Intuitions

The Idea

Follow a particular **strategy** that reduces the number of choices by looking at the **nature** of available actions.

Polarities of processes:

- negative: out().P, (P₁ | P₂), 0
 Bring new data or choices, execution independent on the context
 - → to be performed as soon as possible in a given order
- positive: in().P Execution depends on the context

 - → choose one positive, put it under focus
 - → focus released when negative

(Replication: $| \nu \overrightarrow{n} |$. *P* is *positive* but releases the focus)

```
\mathcal{P} = \{ ! \nu n. \ \text{in}(c,x). \text{out}(c, \text{enc}(\langle x, n \rangle\}, k)). 0 \} Compressed interleavings:
```

t =

```
\mathcal{P} = \left\{ \begin{array}{l} !\nu n. \ \text{in}(c, x). \text{out}(c, \{\langle x, n \rangle\}_k).0; \\ \hline [\text{in}(c_1, x). \text{out}(c_1, \text{enc}(\langle x, n_1 \rangle, k)).0] \end{array} \right. \right\}
```

Compressed interleavings:

$$t = sess(a, c_1)$$

$$\mathcal{P} = \{ \frac{!\nu n. in(c, x).out(c, \{< x, n >\}_k).0;}{out(c_1, enc(\langle x, n_1 \rangle, k)).0} \}$$

Compressed interleavings:

```
t=\operatorname{sess}(a,c_1).\operatorname{in}(c_1,M_1)
```

$$\mathcal{P} = \{ ! \nu n. \ \text{in}(c, x). \text{out}(c, \{ < x, n > \}_k). 0 \}$$

Compressed interleavings:

$$t = sess(a, c_1).in(c_1, X_1).out(c_1, w_1)$$

$$\mathcal{P} = \{!\nu n. \ \text{in}(c, x). \text{out}(c, \{\langle x, n \rangle\}_k).0\}$$

Compressed interleavings:

$$t = sess(a, c_1).in(c_1, X_1).out(c_1, w_1)$$

Only traces of the form:

```
sess_1.in_1.out_1. sess_2.in_2.out_2. ...
```

Compression - Results

Reachability:

- ▶ Soundness: $A \xrightarrow{t}_{c} A' \Rightarrow A \xrightarrow{t} A'$
- ► Completeness: for complete execution $A \xrightarrow{t} A' \Rightarrow \exists t_c$, permutation of t, $A \xrightarrow{t_c}_c A'$

Compression - Results

Reachability:

- ▶ Soundness: $A \xrightarrow{t}_{c} A' \Rightarrow A \xrightarrow{t} A'$
- ▶ Completeness: for complete execution $A \xrightarrow{t} A' \Rightarrow \exists t_c$, permutation of t, $A \xrightarrow{t_c}_c A'$

Equivalence:

Theorem: $\approx_c = \approx$

Let A and B be two action-deterministic configurations.

$$A \approx B$$
 if, and, only if, $A \approx_c B$.

Reduction - Intuitions

By building upon \rightarrow_c , \approx_c :

compressed semantics produces blocks of actions of the form:

$$b = (sess).in...in.out...out$$

- but we still need to make choices (which positive process/block?)
- some of them are redundant.

Reduction - Intuitions

By building upon \rightarrow_c , \approx_c :

compressed semantics produces blocks of actions of the form:

$$b = (sess).in...in.out...out$$

- but we still need to make choices (which positive process/block?)
- some of them are redundant.

$$P = in(c_1, x).out(c_1, m_1) | in(c_2, y).out(c_2, m_2)$$

Compressed traces:

- $ightharpoonup tr_1 = in(c_1, M_1).out(c_1, w_1).in(c_2, M_2).out(c_2, w_2)$
- ▶ $tr_2 = in(c_2, M_2).out(c_2, w_2).in(c_1, M_1).out(c_1, w_1)$ when M_1 does not use w_2

Reduction - Monoid of traces

Definition

Given a frame Φ , the relation \equiv_{Φ} is the smallest equivalence over compressed traces such that:

- ▶ $t.b_1.b_2.t' \equiv_{\Phi} t.b_2.b_1.t'$ when $b_1 \parallel b_2$, and
- ► $t.b_1.t' \equiv_{\Phi} t.b_2.t'$ when $(b_1 =_{E} b_2)\Phi$.

Reduction - Monoid of traces

Definition

Given a frame Φ , the relation \equiv_{Φ} is the smallest equivalence over compressed traces such that:

- ▶ $t.b_1.b_2.t' \equiv_{\Phi} t.b_2.b_1.t'$ when $b_1 \parallel b_2$, and
- ▶ $t.b_1.t' \equiv_{\Phi} t.b_2.t'$ when $(b_1 =_{\mathsf{E}} b_2)\Phi$.

Lemma

If $A \xrightarrow{t}_{c} A'$. Then $A \xrightarrow{t'}_{c} A'$ for any $t' \equiv_{\Phi(A')} t$.

Goal: explore one trace per equivalence class.

Reduced semantics

We assume an arbitrary order \prec over blocks priority order.

Semantics (informal)

$$\frac{A \xrightarrow{t}_{r} A' \xrightarrow{A'} \xrightarrow{b}_{c} A''}{A \xrightarrow{t.b}_{r} A'} \quad \text{if } t \ltimes b$$

Informally, $t \ltimes b$ means:

there is no way to swap b towards the beginning of t before a block $b_0 \succ b$ (even by modifying recipes)

Reduced semantics

We assume an arbitrary order \prec over blocks priority order.

Semantics (informal)

$$\frac{A \xrightarrow{t}_{r} A' \quad A' \xrightarrow{b}_{c} A''}{A \xrightarrow{t.b}_{r} A'} \quad \text{if } t \ltimes b$$

Informally, $t \ltimes b$ means:

there is no way to swap b towards the beginning of t before a block $b_0 > b$ (even by modifying recipes)

t is Φ-minimal if there is no $t' \equiv_{\Phi} t$ such that $t' \prec_{lex} t$

If $A \xrightarrow{t}_{c} A'$ then t is $\Phi(A')$ -minimal if, and only if, $A \xrightarrow{t}_{r} A'$.

Theorem

 $\approx = \approx_r$ for action-deterministic configurations.

Benchmarks

We implemented compression/reduction in APTE by adapting well established techniques based on:

- symbolic semantics (abstract inputs);
- constraint solving procedures.

trkb: a new type of constraints

All benchmarks & instructions for reproduction:

www.lsv.ens-cachan.fr/~hirschi/apte_por

Conclusion

- ▶ New optimizations: compression and reduction;
- applied to trace equivalence checking;
- implementation in APTE.

Conclusion

- ► New optimizations: compression and reduction;
- applied to trace equivalence checking;
- implementation in APTE.

Future Work

- drop action-deterministic assumption
- ② impact of the choice of ≺
- study others redundancies \infty recognize symmetries?

Conclusion

- ▶ New optimizations: compression and reduction;
- applied to trace equivalence checking;
- implementation in APTE.

Future Work

- drop action-deterministic assumption
- ② impact of the choice of ≺
- study others redundancies → recognize symmetries ?

Any question?

Compressed semantics - Definition

 \mathcal{P} is **initial** if $\forall P \in \mathcal{P}$, P is *positive*or replicated.

Semantics:

Compressed semantics - Definition

 \mathcal{P} is **initial** if $\forall P \in \mathcal{P}$, P is *positive*or replicated.

Semantics:

START/IN
$$\frac{\mathcal{P} \text{ is initial } (P; \Phi) \xrightarrow{\text{in}(c, M)} (P'; \Phi)}{(\mathcal{P} \uplus \{P\}; \varnothing; \Phi) \xrightarrow{\text{foc}(\text{in}(c, M))} c} (\mathcal{P}; P'; \Phi)$$

$$\frac{(P; \Phi) \xrightarrow{\text{in}(c, M)} (P'; \Phi)}{(\mathcal{P}; P; \Phi) \xrightarrow{\text{in}(c, M)} c} (\mathcal{P}; P'; \Phi)$$

Compressed semantics - Definition

 \mathcal{P} is **initial** if $\forall P \in \mathcal{P}$, P is *positive*or replicated.

Semantics:

$$\begin{array}{c} \mathcal{P} \text{ is initial } & (P; \Phi) \xrightarrow{\operatorname{in}(c,M)} (P'; \Phi) \\ \hline \\ (\mathcal{P} \uplus \{P\}; \varnothing; \Phi) \xrightarrow{\operatorname{foc}(\operatorname{in}(c,M))} {}_{c} & (\mathcal{P}; P'; \Phi) \\ \hline \\ & \underbrace{(P; \Phi) \xrightarrow{\operatorname{in}(c,M)} (P'; \Phi)}_{(\mathcal{P}; P; \Phi) \xrightarrow{\operatorname{in}(c,M)} {}_{c} & (\mathcal{P}; P'; \Phi) \\ \hline \\ & \underbrace{P \operatorname{negative}}_{(\mathcal{P}; P; \Phi) \xrightarrow{\operatorname{rel}} {}_{c} & (\mathcal{P} \uplus \{P\}; \varnothing; \Phi) \\ \hline \\ & \underbrace{(\{P\}; \Phi) \xrightarrow{\alpha} (\mathcal{P}'; \Phi')}_{(\mathcal{P} \uplus \{P\}; \varnothing; \Phi) \xrightarrow{\alpha} {}_{c} & (\mathcal{P} \uplus \mathcal{P}'; \varnothing; \Phi') \\ \hline \\ \text{Neg} / \alpha & \underbrace{(\{P\}; \varnothing; \Phi) \xrightarrow{\alpha} {}_{c} & (\mathcal{P} \uplus \mathcal{P}'; \varnothing; \Phi')}_{(\mathcal{P} \uplus \{P\}; \varnothing; \Phi)} & \alpha \in \{\operatorname{par}, \operatorname{zero}, \operatorname{out}(_, _)\} \\ \end{array}$$

+ Repl/In

Reduced semantics

We assume an arbitrary order \prec over blocks (without recipes/messages): priority order.

Semantics

$$\frac{A \xrightarrow{\epsilon}_{r} A}{A \xrightarrow{\operatorname{tr}.b}_{r} (\mathcal{P}; \varnothing; \Phi) \quad (\mathcal{P}; \varnothing; \Phi) \xrightarrow{b}_{c} A'} \quad \text{if } \operatorname{tr} \ltimes b' \text{ for all } b' \text{ with } (b' =_{\mathbb{E}} b) \Phi$$

Availability

A block b is available after tr, denoted $tr \times b$, if:

- either tr = ϵ
- or tr = tr₀. b_0 with $\neg (b_0 || b)$
- ightharpoonup or $\operatorname{tr} = \operatorname{tr}_0.b_0$ with $b_0 || b, b_0 \prec b$ and $\operatorname{tr}_0 \ltimes b$.

Benchmarks

Benchmarks

Maximum number of parallel processes verifiable in 20 hours:

Protocol	ref	comp	red
Yahalom (3-party)	4	5	5
Needham Schroeder (3-party)	4	6	7
Private Authentication (2-party)	4	7	7
E-Passport PA (2-party)	4	7	9
Denning-Sacco (3-party)	5	9	10
Wide Mouthed Frog (3-party)	6	12	13

Instructions for reproduction:

www.lsv.ens-cachan.fr/~hirschi/apte_por