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abstract

We give a pedagogical introduction to the dynamics of N=2 supersymmetric systems in four
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0 Introduction
The study of N=2 supersymmetric quantum field theories in four-dimensions has been a fertile
field for theoretical physicists for quite some time. These theories always have non-chiral matter
representations, and therefore can never be directly relevant for describing the real world. That
said, the existence of two sets of supersymmetries allows us to study their properties in much
greater detail than both non-supersymmetric theories and N=1 supersymmetric theories. Being
able to do so is quite fun in itself, and hopefully the general lessons thus learned concerningN=2

supersymmetric theories might be useful when we study the dynamics of theories with lower su-
persymmetry. At least, the physical properties of N=2 theories have been successfully used to
point mathematicians to a number of new mathematical phenomena unknown to them.

These words would not probably be persuasive enough for non-motivated people to start study-
ing N=2 dynamics. It is not, however, the author’s plan to present here a convincing argument
why you should want to study it anyway; the fact that you are reading this sentence should mean
that you are already somewhat interested in this subject and are looking for a place to start.

There have been many important contributions to the study of N=2 theories since its intro-
duction [1]. The four most significant ones in the author’s very personal opinion are the following:

• In 1994, Seiberg and Witten found in [2, 3] exact low-energy solutions to N=2 supersym-
metric SU(2) gauge theories by using holomorphy and by introducing the concept of the
Seiberg-Witten curves.

• In 1996-7, the Seiberg-Witten curves, which were so far mathematical auxiliary objects,
were identified as physical objects appearing in various string theory constructions ofN=2

supersymmetric theories [4, 5, 6].

• In 2002, Nekrasov found in [7] a concise method to obtain the solutions of Seiberg and
Witten via the instanton counting.

• In 2009, Gaiotto found in [8] a huge web of S-dualities acting upon N=2 supersymmetric
systems.

The developments before 2002 have been described in many nice introductory reviews and lec-
ture notes, e.g. [9, 10, 11, 12, 13, 14]. Newer textbooks also have sections on them, see e.g. Chap. 29.5
of [15] and Chap. 13 of [16]. A short review on the instanton counting will be forthcoming [17]. A
comprehensive review on the newer developments since 2009 would then surely be useful to have,
but this lecture note is not exactly that. Rather, the main aim of this lecture note is to present the
same old results covered in the lectures and reviews listed above under a new light introduced in
2009 and developed in the last few years, so that readers would be naturally prepared to the study
of recent works once they go through this note. A good review with an emphasis on more recent
developments can be found in [18, 19].

The rest of the lecture note is organized as follows. First three sections are there to prepare
ourselves to the study of N=2 dynamics.
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• We start in Sec. 1 by introducing the electromagnetic dualities of U(1) gauge theories and
recall the basic semiclassical features of monopoles.

• In Sec. 2, we construct the N=2 supersymmetric Lagrangians and studying their classical
features. We introduce the concepts of the Coulomb branch and the Higgs branch.

• In Sec. 3, we will first see that the renormalization ofN=2 gauge theories are one-loop exact
perturbatively. We also study the anomalous R-symmetry of supersymmetric theories. As
an application, we will quickly study the behavior of pure N=1 gauge theories.

The next two sections are devoted to the solutions of the two most basic cases.

• In Sec. 4, we discuss the solution to the pure N=2 supersymmetric SU(2) gauge theory in
great detail. Two important concepts, the Seiberg-Witten curve and the ultraviolet curve1,
will be introduced.

• In Sec. 5, we solve the N=2 supersymmetric SU(2) gauge theory with one hypermultiplet
in the doublet representation. We will see again that the solution can be given in terms of
the curves.

The sections 6 and 7 are again preparatory.

• In Sec. 6, we give a physical meaning to the Seiberg-Witten curves and the ultraviolet curves,
in terms of six-dimensional theory. With this we will be able to guess the solutions to SU(2)

gauge theory with arbitrary number of hypermultiplets in the doublet representations. This
section will not be self-contained at all, but it should give the reader the minimumwith which
to work from this point on.

• Up to the previous section, we will be mainly concerned with the Coulomb branch. As the
analysis of the Higgs branch will become also useful and instructive later, we will study the
features of the Higgs branch in slightly more detail in Sec. 7.

We resume the study of SU(2) gauge theories in the next two sections.

• In Sec. 8, we will see that the solutions of SU(2) gauge theories with two or three hypermul-
tiplets in the doublet representation, which we will have guessed in Sec. 6, indeed pass all
the checks to be the correct ones.

1The concept of the Seiberg-Witten curve was introduced in [2]. The concept of the ultraviolet curve, applicable
in a general setting, can be traced back to [4], see Fig. 1 there. As also stated there, it was already implicitly used in
[20, 21, 22]. In [8], the ultraviolet curve was used very effectively to uncover the duality of N=2 theories. Privately,
the author often calls the ultraviolet curve as the Gaiotto curve, but this usage would not be quite fair to every party
involved. In view of Stiegler’s law, the author could have used this terminology in this lecture note, but in the end
he opted for a more neutral term ‘the ultraviolet curve’, which contains more scientific information at the same time.
The author could have similarly used ‘the infrared curve’ for the Seiberg-Witten curve. As there is no bibliographical
issue in this case, however, the author decided to stick to the standard usage to call it the Seiberg-Witten curve.
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• In Sec. 9, we first study the SU(2) gauge theory with four hypermultiplets in the doublet
representation. We will see that it has an S-duality acting on the SO(8) flavor symmetry
via its outer-automorphism. Then the analysis will be generalized, following Gaiotto, to
arbitrary theories with gauge group of the form SU(2)n.

We will consider more diverse examples in the final three sections of the main part.

• In Sec. 10, we will study various superconformal field theories of the type first found by
Argyres and Douglas, which arises when electrically and magnetically charged particles
become simultaneously very light.

• In Sec. 11, the solutions to SU(N) and SO(2N) gauge theories with and without hypermul-
tiplets in the fundamental or vector representation will be quickly described.

• In Sec. 12, we will analyze the S-duality of the SU(N) gauge theory with 2N flavors and its
generalization. Important roles will be played by punctures on the ultraviolet curve labeled
by Young diagrams withN boxes, whose relation to the Higgs branch will also be explained.
As an application, we will construct superconformal field theories with exceptional flavor
symmetries E6,7,8.

We conclude the lecture note by a discussion of further directions of study in Sec.∞∞∞. The inter-
relation of the sections within this lecture note is summarized in Fig. 0.1.

Prerequisites, disclaimer, and acknowledgments
A working knowledge ofN=1 superfields is required; we set up our notation in Sec. 2. Similarly,
a reader should know one-loop renormalization and perturbative anomalies, and should have at
least heard about instantons and monopoles, although we give a quick summary and references.
No prior knowledge of string theory or M-theory is assumed, but a reader should be open to the
concept of theories defined in spacetime whose dimension is larger than four.

Signs and powers of i in the terms in the Lagrangian are not completely consistent or correct,
but the overall ideas presented in the lecture note should be alright. The author is sorry that he used
the same letter i for the imaginary unit and for the indices, and the same letter θ for the theta angle
and for the supercoordinates. In general, readers are encouraged to read not just what is written,
but what should be written instead. Presumably there are many other typos, errors, and points to
be improved. The author would welcome whatever comments from you, so please do not hesitate
to write an email to the author at yuji.tachikawa@ipmu.jp.

The deficiencies concerning citations are most obvious, as the number of relevant papers is
immense. The author is quite sure that he cited too much of his own papers. Other than that, the
author at least tried to give a few pointers to recent papers from whose references the interested
readers should be able to start exploring the literature. The author is open to add more references
in this lecture note itself, and any reader is again encouraged to send emails.
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This lecture note is based on the author’s lectures at Nagoya University and Tohoku University
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new techniques. He also thanks the participants of these lectures for giving him many useful
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and heavily influenced by the discussions with various colleagues, and most of the new arguments
in this note, except for those which are wrong, should not be credited to the author. Ofer Aharony,
Lakshya Bhardwaj, Jacques Distler, Brian Henning, Satoshi Nawata, Vasily Pestun and Futoshi
Yagi gave helpful comments on the draft version of this lecture note. Simone Giacomelli, Greg
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and suggested many points to be improved to the author. It is a pleasure and indeed a privilege that
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overly bureaucratic system prevalent in University of Tokyo, which made this lecture note materi-
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1 Electromagnetic duality and monopoles
The electromagnetic duality of the Maxwell theory, exchanging electric and magnetic fields, plays
a central role in this lecture note. It is therefore convenient to review it here, without the extra
complication of supersymmetry. The basic features of magnetic monopoles will also be recalled.

1.1 Electric and magnetic charges
Consider a U(1) gauge field, described by the gauge potential A = Aµdx

µ and the field strength
F = 1

2
Fµνdx

µ ∧ dxν , where Fµν = ∂[µAν]. This is invariant under the gauge transformation

A→ A+ ig−1dg (1.1.1)

where g is a map from the spacetime to complex numbers with absolute value one, |g| = 1. We
can write g = eiχ with a real function χ, and we then have a more familiar

A→ A− dχ, (1.1.2)

but it will be important for us that χ can be multi-valued, so that we identify

χ ∼ χ+ 2π. (1.1.3)

Consider a field φ, with the gauge transformation given by

φ→ gnφ (1.1.4)
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We require here that g specifies the transformations of all fields in the system uniquely. Then n
needs to be an integer; fractional powers are not uniquely defined.

The covariant derivative given by

Dµφ = ∂µφ+ inAµφ, (1.1.5)

and the kinetic term |Dµφ|2 is gauge-invariant. We write the action of the gauge field as

SMaxwell =

∫
d4x

1

2e2
FµνFµν . (1.1.6)

The coefficient 2 in the denominator is slightly unconventional, but this choice removes various
annoying factors later. Then the force between two particles obtained by quantizing the field φ is
proportional to e2n2. In phenomenological literature the combination en is often called the electric
charge, but in this lecture note we call the integer n the electric charge. It might also be tempting to
rescale F to eliminate the factor of e2 from the denominator above. But we stick to the convention
that the periodicity of χ is 2π, see (1.1.3).

An electric particle with charge n in the first quantized setup, Wick-rotated to the Euclidean
signature, couples to the gauge field via

S = in

∫
L

dxµAµ (1.1.7)

where L is the worldline. The integrality of n in this approach can be seen as follows. Due to
the periodicity of χ (1.1.3), the line integral

∫
dxµAµ is determined only up to an addition of an

integral multiple of 2π. Inside the path integral, eiS needs to be well defined. Then n needs to be
an integer.

Adding (1.1.6) and (1.1.7) and writing down the equation of motion for Aµ, we see that∫
S2

4π

e2
~E · d~n =

∫
S2

4π

e2
?F = 2πn, (1.1.8)

where Ei = F0i are the electric field components, S2 is the sphere at infinity,

?F =
1

2
(?F )µνdx

µ ∧ dxν (1.1.9)

where
(?F )µν =

1

2
εµνρσF

ρσ (1.1.10)

is the dual field strength. We also use the notation F̃ = ?F interchangeably.
Next, consider a space with the origin removed. Surround the origin by a sphere. The gauge

fields AN,S on the northern and the southern hemispheres are related by gauge transformation:

AN = AS + ig−1dg (1.1.11)
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on the equator. Then we have∫
S2

F =

∫
N

F +

∫
S

F =

∫
equator

(AN − AS) =

∫ θ=2π

θ=0

dχ

dθ
dθ = 2πm, (1.1.12)

wherem is an integer. We callm the magnetic charge of the configuration. The energy contained
in the Coulombic magnetic field diverges at the origin; but you should not worry too much about
it, as the quantized electric particle also has a Coulombic electric field whose energy diverges.
They are both rendered finite by renormalization. When m is nonzero, the configuration is called
a magnetic monopole. Usually we simply call it a monopole.

n m

magneticelectric

Figure 1.1: Angular momentum generated in the presence of both electric and magnetic particles.
The straight, dashed and double arrows are for electric fields, magnetic fields and Poynting vectors,
respectively.

Put a particle with electric charge n, and another particle with magnetic charge m on two
separate points. The combined electric and magnetic field generate an angular momentum around
the axis connecting two points via their Poynting vector, see Fig. 1.1. A careful computation
shows that the total angular momentum contained in the electromagnetic field is ~nm/2, which is
consistent with the quantum-mechanical quantization of the angular momentum.

More generally, we can consider dyons, which are particles with both electric and magnetic
charges. If we have a particle with electric charge n and magnetic charge m, and another particle
with electric charge n′ and magnetic chargem′, the total angular momentum is ~/2 times

nm′ −mn′. (1.1.13)

We call this combination the Dirac pairing of two sets of charges (n,m) and (n′,m′).

1.2 The S and the T transformations
The Maxwell equation is given by

∂[µFνρ] = 0, ∂µFµν = 0 (1.2.1)
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or equivalently in the differential form notation by

dF = d?F = 0. (1.2.2)

This set of equations is invariant under the exchange

F ↔ ?F. (1.2.3)

In terms of the electric field ~E and the magnetic field ~B, which we schematically denote by F =

( ~E, ~B), the transformation does

F = ( ~E, ~B) −→ ?F = ( ~B,− ~E) −→ ?2F = (− ~E,− ~B). (1.2.4)

This operation is often called the S transformation.
To preserve the quantization of the electric and magnetic charges (1.1.8), (1.1.12), the dual

field strength FD and the dual coupling eD need to be defined so that

FD =
4π

e2
?F,

4π

e2

4π

e2
D

= 1. (1.2.5)

Under this transformation, the charge (n,m) is transformed as

particle 1 (n,m)
S−→ (−m,n),

particle 2 (n′,m′)
S−→ (−m′, n′),

Dirac pairing nm′ − n′m = −mn′ − (−m′)n.
(1.2.6)

Note that the Dirac pairing is preserved under the operation.
Let us suppose that we have a neutral real scalar field φ and the action of the U(1) gauge field

is given by
1

2e(φ)2
FµνFµν +

θ(φ)

16π2
FµνF̃µν . (1.2.7)

The Maxwell equation is now

∂[µFνρ] = 0, (1.2.8)

∂µ

[
4π

e(φ)2
Fµν +

θ(φ)

2π
F̃µν

]
= 0. (1.2.9)

Decompose F = ( ~E, ~B) as before. The equations above show that the magnetic field satisfying
the Gauss law is still ~B, but the electric field satisfying the Gauss law is now the combination

~Econserved =
4π

e(φ)2
~E +

θ(φ)

2π
~B. (1.2.10)

Therefore , we have ∫
S2

~B · d~n = 2πm,

∫
S2

~Econserved · d~n = 2πn (1.2.11)
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where m and n are the integers introduced in Sec. 1.1. This shows an interesting fact: let us
change φ adiabatically to change θ(φ). As n is an integer, it cannot change. Therefore, ~E gets a
contribution proportional to θ(φ) ~B to keep ~Econserved fixed. This is called the Witten effect [23].

The S transformation, then, exchanges ( ~E)conserved and ~B. The dual gauge field strength FD is

FD =
4π

e(φ)2
?F +

θ

2π
F, (1.2.12)

and we have
1

2e(φ)2
FµνFµν +

θ(φ)

16π2
FµνF̃µν =

1

2eD(φ)2
FD,µνFD,µν +

θD(φ)

16π2
FD,µνF̃D,µν (1.2.13)

where eD(φ), θD(φ) are given by
τD(φ) = − 1

τ(φ)
(1.2.14)

where
τ(φ) =

4πi

e(φ)2
+
θ(φ)

2π
, τD(φ) =

4πi

eD(φ)2
+
θD(φ)

2π
. (1.2.15)

This combination τ(φ) is called the complexified coupling.
We also know that, quantum mechanically, θ(φ) and θ(φ) + 2π cannot be distinguished, since

the change in the integrand of the Euclidean path integral is

exp

[
i

∫
d4x

1

8π
FµνF̃µν

]
(1.2.16)

which is always one2. We call it the T transformation. This does change ~Econserved by adding ~B,
however. Equivalently, it changes the set of charges (n,m) as follows:

particle 1 (n,m)
T−→ (n+m,m),

particle 2 (n′,m′)
T−→ (n′ +m′,m′),

Dirac pairing nm′ − n′m = (n+m)m′ − (n′ +m′)m.

(1.2.17)

We see that the Dirac pairing of two particles remain unchanged. On the complexified coupling
τ(φ), it operates as

τ(φ)old
T−→ τ(φ)new = τ(φ)old + 1. (1.2.18)

The transformations S and T generates the action of SL(2,Z) on the set of charge (n,m):

S =

(
0 −1

1 0

)
, S

(
n

m

)
=

(
−m
n

)
, Sτ = −1

τ
(1.2.19)

T =

(
1 1

0 1

)
, T

(
n

m

)
=

(
n+m

m

)
, T τ = τ + 1. (1.2.20)

2Strictly speaking this is only true on a spin manifold. Note that
∫
d4x(8π)−1Fµν F̃µν = π

∫
(F/2π)2 =

π
∫
c1(F )2. On a spin manifold, the intersection form is even, and the last expression is an integral multiple of

2π. For the subtlety on non-spin manifolds, see [24].
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In general the action on τ is the fractional linear transformation(
a b

c d

)
∈ SL(2,Z) : τ → dτ + b

cτ + a
. (1.2.21)

1.3 ’t Hooft-Polyakov monopoles
Here we summarize the features of magnetic monopoles which we will repeatedly quote in the rest
of the lecture note. For a detailed exposition of topics discussed in this subsection, the readers
should consult the reviews such as [25, 26], or the textbook [27]. The review by Coleman [28] is
also very instructive.3

1.3.1 Classical features

Consider an SU(2) gauge theory with a scalar in the adjoint representation, with the action

S =

∫
d4x

1

g2

[
1

2
trFµνFµν + trDµΦDµΦ

]
. (1.3.1)

The field Φ is a traceless Hermitean 2× 2 matrix.
Consider the vacuum where

Φ =

(
a 0

0 −a

)
. (1.3.2)

When a 6= 0, the SU(2) gauge symmetry is broken to U(1). Indeed, the vev (1.3.2) commutes
with a gauge field strength of the form

Fµν =

(
F

U(1)
µν 0

0 −FU(1)
µν

)
(1.3.3)

where FU(1)
µν is a U(1) gauge field strength normalized as in Sec. 1.1. Note that the quanta of

the scalar fields Φ has electric charge 2 under this U(1) field, as can be found by expanding the
covariant derivative.

We are considering a gauge theory; therefore the field Φ does not have to be given exactly as
in the right hand side of (1.3.2). Rather, we just need that Φ has eigenvalues ±a. Then we can
consider a configuration of the form

Φ(x) =
xiσ

i

|x|
f(|x|)a (1.3.4)

where i = 1, 2, 3 and f(r) is a dimensionless function such that

lim
r→0

f(r) = 0, lim
r→∞

f(r) = 1. (1.3.5)

3Unfortunately this review is not in the compilation “Aspects of Symmetry”. A french translation by R. Stora is
also available as [29], which was typeset much more beautifully than the version in [28].
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At the spatial infinity, the vev of Φ is conjugate to (1.3.2), and therefore this configuration can be
thought of as an excitation of the vacuum given by (1.3.2).

The unbroken U(1) within SU(2) is along Φ. A more general definition of the U(1) field
strength FU(1)

µν , at least when r � 0, is then the combination

FU(1)
µν :=

1

2a
trFµνΦ. (1.3.6)

In the region r � 0, let us try to bring the configuration (1.3.4) to (1.3.2) by a gauge transformation.
This can be done smoothly except at the south pole, by using the gauge transformation

exp[i
ϕ

2
(−σ1 sin θ + σ2 cos θ)], where

~x

|x|
= (cosϕ, sinϕ cos θ, sinϕ sin θ). (1.3.7)

This gives a gauge transformation around the south pole given by

i(−σ1 sin θ + σ2 cos θ) = exp[−iθσ3] · (iσ2). (1.3.8)

As θ goes from 0 to 2π, we see that the U(1) field FU(1)
µν has the magnetic charge m = 1, and

therefore is a monopole. This was originally found by ’t Hooft and Polyakov. Note that its Dirac
pairing with the particle of the field Φ is 2, which is twice the minimum allowed value.

Let us evaluate the energy contained in the field configuration. The kinetic energy is 1/g2 times∫
d3x [trBiBi + trDiΦDiΦ] =

∫
d3x

[
tr(Bi ∓DiΦ)2 ± 2 trBiDiΦ

]
(1.3.9)

≥ ±2

∫
d3x trBiDiΦ = ±2

∫
d3x∂i trBiΦ (1.3.10)

= ±2

∫
S2

d~n · tr ~BΦ (1.3.11)

where the final integral is over the sphere at the spatial infinity, which according to (1.3.6) evaluates
to ±2(2a)(2πm), wherem is the magnetic charge. Therefore we have the bound

(energy of the monopole) ≥ 4π

g2
(2a)|m| (1.3.12)

This is called the Bogomolnyi-Prasad-Sommerfield (BPS) bound. The inequality is saturated if
and only if

Bi = ±DiΦ, (1.3.13)

which is called the BPS equation. This fixes the form of the function f(r) in (1.3.4).

1.3.2 Semiclassical features

Given such an explicit monopole solution, there is a way to construct other solutions related by
the symmetry. First, the configuration (1.3.4) has a center at the origin of the coordinate system.
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We can shift the center of the monopole at an arbitrary point ~y of the spatial R3. These give three
zero-modes.

Another zero mode is obtained by the gauge transformation:

eiαΦ/a (1.3.14)

Note that a gauge transformation which vanishes at infinity is a redundancy of the physical system,
but a gauge transformation which does not vanish at infinity is considered to change the classi-
cal configuration. For general α, this transformation (1.3.14) changes the asymptotic behavior of
Fij(x), but for α = π, the transformation (1.3.14) trivially acts on the fields in the adjoint repre-
sentation. Therefore α is an angular variable 0 ≤ α < π.

The semiclassical quantization of the monopole involves the Fock space of non-zero modes,
together with a wavefunction ψ(~y, α) depending on the zero modes ~y and α. The wavefunction
along ~y represents the spatial motion of the center of mass of the monopole. The wavefunction
along α represents the electric charge of the monopole, which can be seen as follows.

By comparing (1.3.14) with (1.3.3) and (1.3.6), we see that the unbroken U(1) global gauge
transformation by eiϕ shifts α by

α→ α + ϕ. (1.3.15)

Recall that a state |ψ〉 with electric charge n behaves under the U(1) global transformation by eiϕ
by

|ψ〉 → einϕ|ψ〉. (1.3.16)

Now, as α is a variable with period π, ψ(α) can be expanded as a linear combination of ei2dα where
d is an integer. Under (1.3.15) the wavefunction changes as in (1.3.16) with n = 2d, therefore we
see that the monopole state with this zero-mode wave function has the electric charge 2d.

Summarizing, the combination of the electric charge and the magnetic charge (n,m) we obtain
from the semi-classical quantization has the form (n,m) = (2d, 1) where d is an integer. This was
found originally by Julia and Zee: once we quantize the ’t Hooft-Polyakov monopole, we not only
have a purely-magnetic monopole but a whole tower of dyon states, with d = −∞ to +∞.

Finally let us consider the effect of the fermionic zeromodes in the ’t Hooft-Polyakovmonopole
(1.3.4). First let us consider two Weyl fermions λ, λ̃ in the adjoint representation, with the La-
grangian

tr λ̄D
/
λ+ tr ¯̃λD

/
λ̃+ c(trλ[Φ, λ̃] + tr λ̄[Φ, ¯̃λ]). (1.3.17)

We regard both the gauge potential in the covariant derivativeD and the scalar field as backgrounds,
and decompose λ, λ̃ into eigenstates of the angular momentum. The lower bound of the orbital
angular momentum is given by the Dirac pairing, which is ~ here. The spinor fields have spin
~/2. Therefore the state with lowest angular momenta has spin ~/2. When the coefficient c takes a
value in a certain range, it is known that there is a pair of zero modes bα where α = 1, 2 the spinor
index of the SO(3) spatial rotation. The semiclassical quantization promotes them into a pair of
fermionic oscillators

{bα, b†β} = δαβ. (1.3.18)
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This creates four states starting from one state |ψ〉 from the semiclassical quantization of the
bosonic part:

↔ b†1|ψ〉 ↔ b†1b
†
2|ψ〉

|ψ〉 ↔ b†2|ψ〉 ↔
. (1.3.19)

This counts as one complex boson and one fermion.
Suppose we introduce another pair λ′, λ̃′ of the adjoint Weyl fermions. Then we will have

another pair of fermionic oscillators b′α. Together, they generate 24 = 16 states, consisting of one
massive vector (with 3 states), four massive spinors (with 8 states) and five massive scalars.

Next, consider having 2N Weyl fermions ψai in the doublet representation where a = 1, 2 and
i = 1, . . . , 2N , with the Lagrangian

ψ̄iD
/
ψi + c′(ψai Φ(ab)ψ

b
i + ψ̄ai Φ(ab)ψ̄

b
i ). (1.3.20)

Note that the Lagrangian has an SO(2N) flavor symmetry acting on the index i.
The electric charge of the quanta of ψ, ψ̃ with respect to the unbroken U(1) is now 1. Then

the Dirac pairing is ~/2. Tensoring with the intrinsic spin ~/2, we find that the minimal orbital
angular momentum is 0. It is known that for a suitable choice of c′, this fermion system has zero
modes γi, i = 1, . . . , 2N . After semiclassical quantization, it becomes a set of fermionic operators
with the commutation relation

{γi, γj} = δij. (1.3.21)

This is the commutation relation of the gamma matrices of SO(2N). Monopole states are repre-
sentations of γi’s, meaning that they transform as a spinor representation of the flavor symmetry
SO(2N).

Fields in a doublet representation of the SU(2) gauge symmetry has an another effect. Namely,
in the gauge zero mode (1.3.14), α = π gives the matrix(

−1 0

0 −1

)
(1.3.22)

which acts nontrivially on the fields in the doublet representation. Then the periodicity of the gauge
zero mode α is now 2π, and the wavefunction along the α direction can now be einα for arbitrary
integer n. Therefore, the electric charge n can either be even or odd. The operators γi come from
the modes of the fields in the doublet representation, and therefore it changes the electric charge
by ±1.

We can define the flavor spinor chirality Γ by

Γ = γ1γ2 · · · γ2N , (1.3.23)

by which the spinor of SO(2N) can be split into positive-chirality and negative-chirality spinors.
The action of the operators γi changes the chirality of the flavor spinors. Combined with the
behavior of the U(1) electric charge we saw in the previous paragraph, we conclude that the parity
of the U(1) electric charges of the monopole states is correlated with the chirality of the flavor
spinor representation.
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2 N=2 multiplets and Lagrangians

2.1 Microscopic Lagrangian
2.1.1 N=1 superfields

Let us now move on to the construction of the Lagrangian with N=2 supersymmetry. An N=2

supersymmetric theory is in particular anN=1 supersymmetric theory. Therefore it is convenient
to useN=1 superfields to describeN=2 systems. For this purpose let us quickly recall theN=1

formalism. In this section only, we distinguish the imaginary unit by writing it as i.
An N=1 vector multiplet consists of a Weyl fermion λα and a vector field Aµ, both in the

adjoint representation of the gauge group G. We combine them into the superfield Wα with the
expansion

Wα = λα + F(αβ)θ
β +Dθα + · · · (2.1.1)

where D is an auxiliary field, again in the adjoint of the gauge group. Fαβ = i
2
σµβγ̇ σ̄

ν γ̇
αFµν is the

anti-self-dual part of the field strength Fµν .
The kinetic term for a vector multiplet is given by∫

d2θ
−i

8π
τ trWαW

α + cc. (2.1.2)

where
τ =

4πi

g2
+

θ

2π
(2.1.3)

is a complex number combining the inverse of the coupling constant and the theta angle. We call
it the complexified coupling of the gauge multiplet. Expanding in components, we have

1

2g2
trFµνF

µν +
θ

16π2
trFµνF̃

µν +
1

g2
trD2 − 2i

g2
tr λ̄∂
/
λ. (2.1.4)

We use the convention that trT aT b = 1
2
δab for the standard generators of gauge algebras, which

explain why we have the factors 1/(2g2) in front of the gauge kinetic term. The θ term is a total
derivative of a gauge-dependent term. Therefore, it does not affect to perturbative computations.
It does affect non-perturbative computations, to which we will come back later.

AnN=1 chiral multipletQ consists of a complex scalarQ and a Weyl fermion ψα, both in the
same representation of the gauge group. In terms of a superfield we have

Q = Q
∣∣
θ=0

+ 2ψαθ
α + Fθαθ

α (2.1.5)

where F is auxiliary. The coefficient 2 in front of the middle component is unconventional, but
this choice allows us to remove various annoying factors of

√
2 appearing in the formulas later.

The chiral multiplet Q1,... can be in an arbitrary complex representation R of the gauge group G.
The kinetic term is then ∫

d4θQ†jeV
aρaijQi +

∫
d2θW (Q) + · · · (2.1.6)
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where V is the vector superfield, ρaij is the matrix representation of the gauge algebra, andW (Q)

is a gauge invariant holomorphic function of Q1,....
The supersymmetric vacua is obtained by demanding that the supersymmetry transformation

of various fields are zero. The nontrivial conditions come from

δλα = 0, δψα = 0 (2.1.7)

which give
Da = 0, Fi = 0. (2.1.8)

By solving the algebraic equations of motion of the auxiliary fields, we find

Q†
j̄
ρj̄iaQi = 0,

∂W

∂Qi

= 0. (2.1.9)

2.1.2 Vector multiplets and hypermultiplets

An N=2 vector multiplet consists of the following N=1 multiplets, both in the adjoint of the
gauge group G:

↔ λα ↔ Aµ N=1 vector multiplet,
Φ ↔ λ̃α ↔ N=1 chiral multiplet. (2.1.10)

Here, the horizontal arrows signify the N=1 sub-supersymmetry generator manifest in the N=1

superfield formalism, and the slanted arrows are for the second N=1 sub-supersymmetry.
One easy way to construct the second supersymmetry action is to demand that the theory is

symmetric under the SU(2) rotation acting on λα and λ̃α. A symmetry which does not commute
with the supersymmetry generators is called an R-symmetry in general. Therefore this SU(2)

symmetry is often called the SU(2)R symmetry. It is by now a standard technique to combine the
supersymmetry manifest in a superfield formalism and an R-symmetry to construct a theory with
more supersymmetries, see e.g. [30] for an application. It is also to be kept in mind that there can
be and indeed areN=2 supersymmetric theories without SU(2)R symmetry: there can just be two
sets of supersymmetry generators without SU(2) symmetry relating them, see e.g. [31, 32]. That
said, for simplicity, we only deal with N=2 supersymmetric systems with SU(2)R symmetry in
this lecture note.

The Lagrangian is then

Im τ

4π

∫
d4θ tr Φ†e[V,·]Φ +

∫
d2θ
−i

8π
τ trWαW

α + cc. (2.1.11)

The ratio between the prefactors of the Kähler potential and of the gauge kinetic term is fixed by
demanding SU(2)R symmetry.

An N=2 hypermultiplet4 consists of the following fields:

↔ Q ↔ ψ N=1 chiral multiplet
ψ̃† ↔ Q̃† ↔ N=1 antichiral multiplet (2.1.12)

4There is a stupid convention that we use a space between ‘vector’ and ‘multiplets’ to spell “vector multiplets”, but
not for “hypermultiplets”.
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They are both in the same representation R of the gauge group. Therefore, the N=1 chiral multi-
plets Q and Q̃ are in the conjugate representations of the gauge group. We demand again that the
theory is symmetric under the SU(2) rotation acting on Q and Q̃†, to have N=2 supersymmetry.

For definiteness, let us considerG = SU(N) andNf hypermultipletsQa
i , Q̃i

a in the fundamen-
tal N -dimensional representation, where a = 1, . . . , N and i = 1, . . . , Nf . This set of fields is
often called Nf flavors of fundamentals of SU(N). The gauge transformation acts on them as

Qi → eΛQi, Q̃i → Q̃ie−Λ (2.1.13)

where Λ is a traceless N ×N matrix of chiral superfields; the gauge indices are suppressed.
The Lagrangian for the hypermultiplets is

c

∫
d4θ(Q†ieVQi + Q̃ie−V Q̃†i) + c′(

∫
d2θQ̃iΦQi + cc.) + (

∫
d2θµijQ̃

jQi + cc.) (2.1.14)

where the gauge index a is suppressed again. The existence of SU(2)R symmetry fixes the ratio of
c and c′: it can be done e.g. by comparing the coefficients ofQiλψ from the first term and of Q̃iλ̃ψ

from the second term. We find the choice c = c′ does the job. In the following we take c = c′ = 1

unless otherwise mentioned. The SU(2)R symmetry also demands that the mass term µij satisfies
[µ, µ†] = 0. Then µ can be diagonalized, and consequently the mass term is often written as∑

i

∫
d2θµiQ̃

iQi + cc. (2.1.15)

As another example, let us consider the case when we have a hypermultiplet (Z, Z̃) in the
adjoint representation, i.e. they are both N ×N traceless matrices. The following discussion can
easily be generalized to arbitrary gauge group too. When the hypermultiplet is massless, the total
Lagrangian has the form∫

d2θ
−i

8π
τ trWαW

α + cc.+
Im τ

4π

∫
d4θ tr Φ†e[V,·]Φ

+
Im τ

4π

∫
d4θ(Z†e[V,·]Z + Z̃e−[V,·]Z̃†) +

Im τ

4π

∫
d2θZ̃[Φ, Z] + cc. (2.1.16)

where we made a different choice of c = c′ in (2.1.14). This Lagrangian clearly has SU(3)F flavor
symmetry rotating Φ, Z and Z̃. This commutes with the N=1 supersymmetry manifest in the
superfield formalism. We also know that this theory has an SU(2)R symmetry rotating Z and Z̃†.
These two symmetries SU(3)F and SU(2)R does not commute: we find that there is an SO(6)R
symmetry, acting on

Re Φ, Im Φ,ReZ, ImZ,Re Z̃, Im Z̃. (2.1.17)

Note that SO(6)R can also be regarded as SU(4)R, as SO(6) and SU(4) have the same Lie algebra.
Then the SU(4)R symmetry acts on the four Weyl fermions

λ, λ̃, ψ, ψ̃ (2.1.18)
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in the system, where λ and λ̃ are in theN=2 vector multiplet, and ψ, ψ̃ are in theN=2 hypermul-
tiplet. We conclude that this system has in fact N=4 supersymmetry, whose four supersymmetry
generators are acted on by SU(4)R ' SO(6)R. The argument here is another application of the
combination of the manifest and non-manifest symmetries in the superfield formalism.

We can add the mass term
∫
d2θµZZ̃+cc. to (2.1.16). This preserves theN=2 supersymmetry

but it breaks N=4 supersymmetry. The resulting theory is sometimes called the N=2∗ theory.
Before closing this section, we should mention the concept of half-hypermultiplet. Let us start

from a full hypermultiplet (Qi, Q̃
i) so thatQi and Q̃i are in the representations R, R̄, respectively.

WhenR is pseudo-real, or equivalently when there is an antisymmetric invariant tensor εij , we can
impose the constraint

Qi = εijQ̃
j (2.1.19)

compatible with N=2 supersymmetry, which halves the number of degrees of freedom in the
multiplet. The resulting multiplet is called a half-hypermultiplet in the representation R. We will
come back to this in Sec. 7.2.

2.2 Vacua
The combined system of the vector multiplet and the hypermultiplets has the Lagrangian which is
the sum of (2.1.11) and (2.1.14). The supersymmetric vacua are given by the following conditions.

First, the variation of the D auxiliary fields gives

1

g2
[Φ†,Φ] + (QiQ

†i − Q̃†iQ̃i)
∣∣
traceless = 0, (2.2.1)

where X|traceless for an N ×N matrix is defined by

X|traceless = X − 1

N
trX. (2.2.2)

We use the convention that a scalar is multiplied by a unit matrix when necessary.
Second, the variation of the F auxiliary field of Φ gives

QiQ̃
i
∣∣
traceless = 0 (2.2.3)

and the F auxiliary fields of Qi, Q̃i give

ΦQi + µjiQj = 0, Q̃iΦ + µijQ̃
j = 0 (2.2.4)

for all i. The total scalar potential is a weighted sum of absolute values squared of (2.2.1), (2.2.3)
and (2.2.4).

So far we only used the supersymmetry condition with respect to the N=1 supersymmetry
manifest in the superfield notation. By massaging the cross terms between the first term and the
second term of (2.2.1) and combining them with the squares of (2.2.4), we can re-write the total
scalar potential as a weighted sum of the following objects. First, we have one term purely of Φ:

[Φ†,Φ] = 0. (2.2.5)
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Second, we have terms purely of Q and Q̃: one is

(QiQ
†i − Q̃†iQ̃i)

∣∣
traceless = 0 (2.2.6)

and another is (2.2.3). Finally, we have terms mixing Φ and Q, which are (2.2.4) together with

Φ†Qi + µ†jiQj = 0, Q̃iΦ† + µ†ijQ̃
j = 0. (2.2.7)

Note that (2.2.5) and (2.2.6) are the SU(2)R singlet and triplet parts of the equation (2.2.1),
respectively. Furthermore, the equation (2.2.6) together with the real and the imaginary parts of
the equation (2.2.3) form the triplet of SU(2)R. Finally, the equations (2.2.4) and (2.2.7) transform
as a doublet of SU(2)R.

Let us summarize. We first demanded that oneN=1 sub-supersymmetry is unbroken in (2.2.1),
(2.2.3) and (2.2.4). We found the equations satisfied are automatically SU(2)R invariant, and there-
fore we see that all the N=2 supersymmetry is automatically unbroken.

One easy way to have supersymmetry is to demand (2.2.5) and set Q = Q̃ = 0. This subspace
of the supersymmetric vacuum moduli is called the Coulomb branch, since there usually remain a
number of Abelian gauge fields in the infrared.

Another extreme is just to demand (2.2.6) and (2.2.3), and set Φ = 0. This is called the
Higgs branch. Some people in the field reserve the word the Higgs branch for the branch where
the gauge group is completely broken, but theoretically the Higgs branch as defined here behaves
more uniformly under various operations.

The branches with when both the hypermultiplet scalars Q, Q̃ and the vector multiplet scalars
Φ are nonzero are called the mixed branches.

From (2.2.5) we see that Φ can be diagonalized in the supersymmetric vacua. For definiteness
let G = SU(2). Then Φ = diag(a,−a). When a 6= 0 this breaks the gauge group to U(1). As
there is a Coulomb field remaining in the infrared, these vacua are called the Coulomb branch. Let
us compute the mass of the resulting W-bosons. From

1

g2
tr |DµΦ|2 =

1

g2
tr(∂µΦ + [Aµ,Φ])2 (2.2.8)

we have a term
1

g2
tr[Aµ, 〈Φ〉]2 (2.2.9)

in the Lagrangian, which gives a mass to the vector field. Writing

Aµ =

(
A0 W+

W− −A0

)
µ

, (2.2.10)

we find [(
0 W+

µ

0 0

)
,

(
a 0

0 −a

)]
= −2a

(
0 W+

µ

0 0

)
. (2.2.11)

The kinetic term in our convention is trFµνFµν/(2g
2), and therefore this gives the mass

MW = |2a|. (2.2.12)
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The mass terms of the fields Qi, Q̃i for fixed i are

Q̃iΦQi + µiQ̃
iQi = (Q̃i

1, Q̃
i
2)

(
a+ µi 0

0 −a+ µi

)(
Qi

1

Qi
2

)
. (2.2.13)

Therefore we have
MQi,1 = |a+ µ|, MQi,2 = |−a+ µ|. (2.2.14)

We studied the classical mass of the monopole in this model in (1.3.12) when θ = 0. In general,
this is given by

Mmonopole = |2τa|. (2.2.15)

Classically, there is a general inequality for the mass of a particle

M ≥ |na+m(2τa) +
∑
i

fiµi| (2.2.16)

where n, m, fi are the electric, magnetic and flavor charges of the particle. Here the i-th flavor
charges are associated to the symmetry

Qi → eiϕiQi, Q̃i → e−iϕiQ̃i. (2.2.17)

This inequality, called the Bogomolnyi-Prasad-Sommerfield (BPS) bound, persists in the quantum
system, once quantum corrections are taken into account to a and 2τa. Let us study this point next.

2.3 BPS bound
The general N=2 supersymmetry algebra has the following form

{QI
α, Q

†J̄
β̇
} = δIJ̄Pµσ

µ

αβ̇
, (2.3.1)

{QI
α, Q

J
β} = εIJεαβZ. (2.3.2)

Here I = 1, 2 are the index distinguishing two supersymmetry generators, and Z is a complex
quantity which commutes with everything. Let us take the coordinate system where

Pµ = (M, 0, 0, 0). (2.3.3)

This choice breaks the Lorentz symmetry SO(3, 1) to the spatial rotation SO(3), which allows us
to identify the undotted and the dotted spinor indices. Let us then define

(ϕ)Qα =
1√
2

(Q1
α + e−iϕσ0

α
β̇Q†2

β̇
) (2.3.4)

for which we have
{(ϕ)Qα,

(ϕ)Q†β} = δαβ(M − Re(e−iϕZ)). (2.3.5)
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In general, if there is an operator a satisfying {a, a†} = c with a constant c, c is necessarily
non-negative. Indeed, take a ket vector |ψ〉 then∣∣a†|ψ〉∣∣2 + |a|ψ〉|2 = 〈ψ|aa†|ψ〉+ 〈ψ|a†a|ψ〉 = c〈ψ|ψ〉, (2.3.6)

meaning that c ≥ 0. From (2.3.5), then, we see

M ≥ Re(e−iϕZ) (2.3.7)

for all ϕ. Choosing ϕ = ArgZ, we find the inequality

M ≥ |Z|. (2.3.8)

In general, the multiplet of the supertranslations QI
α and QJ †

α generates 24 = 16 states in
the supermultiplet. When the inequality (2.3.8) is saturated, c in the equation (2.3.6) for aα =
(ArgZ)Qα is zero, forcing the operators (ArgZ)Qα themselves to vanish. Then the supertranslations
only generate 22 = 4 states. Such multiplets are called BPS, and those multiplets with 16 states
under the action of supertranslations are called non-BPS. A BPS state is rather robust: under a
generic perturbation, the number of states in a multiplet can not jump. Therefore the BPS state
will generically stay BPS.

What is this quantity Z, which commutes with everything? A quantity commuting with every-
thing is by definition a conserved charge. When the low-energy theory is a weakly-coupled U(1)

gauge theory, Z is a linear combination of the electric charge n, the magnetic charge m, and the
flavor charges fi. We define the coefficients appearing in the linear combination to be a, aD and
µi in the quantum theory:

Z = na+maD +
∑
i

µifi. (2.3.9)

When the theory is weakly-coupled, we can identify a to be the diagonal entry of the field Φ, aD
to be 2τa, and µi to be the coefficients of the mass terms in the Lagrangian, by comparing the
quantum BPS mass formula (2.3.8) and its classical counterpart (2.2.16). In the strongly-coupled
regime, there is no meaning in saying that a is the diagonal entry of a gauge-dependent field Φ.
Rather, we should think of (2.3.9) as the definition of the quantity a.

2.4 Low energy Lagrangian
Let us consider a general effective Lagrangian which describes U(1)n gauge fields in the infrared.
Let us denote n U(1) vector multiplets by

↔ λα ↔ Aµ N=1 vector multiplet
a ↔ λ̃α ↔ N=1 chiral multiplet (2.4.1)

with additional scripts i = 1, . . . , n. A general N=1 supersymmetric Lagrangian is given by

1

8π

∫
d4θK(āi, aj) +

∫
d2θ
−i

8π
τ ij(a)Wα,iW

α
j + cc. (2.4.2)

22



Note that we allowed the Kähler potential and the gauge coupling matrix to have nontrivial depen-
dence on ai.

We demand the existence of the SU(2)R symmetry rotatingλα and λ̃α to guarantee the existence
of N=2 supersymmetry. The kinetic matrix of λ̃α is

1

4π

∂2K

∂ai∂āj
(2.4.3)

and that of λ is
Im τ ij

2π
=
τ ij − τ̄ ij

4πi
. (2.4.4)

Equating them, we have
τ ij − τ̄ ij

i
=

∂2K

∂ai∂āj
. (2.4.5)

Taking the derivative of both sides by ak, we have

∂

∂ak

τ ij

i
=

∂3K

∂ak∂ai∂āj
. (2.4.6)

The left hand side is symmetric under i ↔ j, and the right hand side is symmetric under k ↔ i.
Therefore, at least locally, τ ij can be integrated twice:

τ ij =
∂2F

∂ai∂aj
(2.4.7)

for a locally holomorphic function F (a). We define

aiD =
∂F

∂ai
, (2.4.8)

then we have
K = i(āiDai − āiaiD). (2.4.9)

AKähler manifold with this additional structure is often called a special Kähler manifold. With
supergravity, a slightly different structure appears. To distinguish from it, it is also called a rigid
special Kähler manifold. The same geometry is also called a Seiberg-Witten integrable system, or
a Donagi-Witten integrable system. See e.g. [33, 34, 35] for a review. In this context, the fields ai
and aiD are called the special coordinates.

The notations ai and aiD can be justified as follows. Suppose we have a hypermultiplet Q, Q̃
charged under the i-th vector multiplet only. It has the superpotential

W = QaiQ̃, (2.4.10)

which gives the mass
MQ = |ai|. (2.4.11)
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Therefore, ai is indeed the coefficient appearing in (2.3.9). To justify the notation aiD, write down
the Lagrangian for the bosons in components:

Im τ ij

4π
∂µāi∂

µaj +
Im τ ij

8π
Fµν iF

µν
j +

Re τ ij

8π
Fµν iF̃

µν
j . (2.4.12)

Generalizing the argument in Sec. 1.2, the dual electromagnetic field FD is given by

FD
i
µν = Im τ ijFµν j + Re τ ijF̃µν j, (2.4.13)

in terms of which the kinetic term of the gauge fields is
1

8π

(
Im τDijFD

i
µνFD

µν j + Re τDijFDµν iF̃D
µν j
)

(2.4.14)

where
τDij = (−τ−1)ij. (2.4.15)

Then we find
1

4π
Im τ ij∂µāi∂

µaj =
1

4π
Im τDij∂µā

i
D∂

µajD (2.4.16)

where aD is as defined in (2.4.8). This means that we have the dual N=2 multiplets

↔ λDα ↔ ADµ N=1 vector multiplet
aD ↔ λ̃Dα ↔ N=1 chiral multiplet (2.4.17)

where ADµ is the gauge potential of FDµν introduced above, with additional superscripts i.
We introduced the prepotential F in a rather indirect manner in this section, by saying that the

kinetic term of theU(1) vector multiplets (2.4.2) should be given by (2.4.7) and (2.4.9). This can be
better understood usingN=2 superspace, since it is known that the prepotential is the Lagrangian
density in the N=2 superspace. This is similar to the situation where the Kähler potential gives
the Lagrangian density in the N=1 superspace.

Recall that the multiplets (2.4.1) can be summarized in N=1 superfields

Φi = ai + 2λ̃i
αθα + · · · , Wi = λα i + Fαβθ

β + · · · . (2.4.18)

We can introduce another set of supercoordinates θ̃α to combine them:

Φi = Φi + 2Wα iθ̃
α = ai + 2λ̃α iθ

α + 2λα iθ̃
α + 2Fαβ iθ

(αθ̃β) + · · · . (2.4.19)

Then the SU(2) R-symmetry rotating λ and λ̃ acts on the two sets of supercoordinates θα and θ̃α.
Now, take an arbitrary holomorphic function of n variables F (a1, . . . , an), and consider its

integral over the chiral N=2 superspace:∫
d2θd2θ̃F (Φ1, . . . ,Φn) + cc. (2.4.20)

It is clear that this gives rise to the structure (2.4.7) for the gauge kinetic matrix. To obtain the
Kähler potential (2.4.9) one needs to study the structure of the constraints and the auxiliary fields
of the N=2 superfields, see e.g. Sec. 2.10 of [14]. The non-Abelian microscopic action (2.1.11)
has the prepotential F (Φ) = 1

2
τ tr Φ2.
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3 Renormalization and anomaly
In the last section we constructed the Lagrangian of N=2 supersymmetric field theories. Before
going into the analysis of their dynamics, we would like to recall a few basic methods here, namely
one-loop renormalization and anomalies.

3.1 Renormalization
Recall the one-loop renormalization of the gauge coupling in a general Lagrangian field theory:

E
d

dE
g = − g3

(4π)2

[
11

3
C(adj)− 2

3
C(Rf )−

1

3
C(Rs)

]
. (3.1.1)

Here, E is the energy scale at which g is measured, and we use the convention that all fermions
are written in terms of left-handed Weyl fermions. Then Rf and Rs are the representations of
the gauge group to which the Weyl fermions and the complex scalars belong, respectively. The
quantity C(ρ) is defined so that

tr ρ(T a)ρ(T b) = C(ρ)δab (3.1.2)

where T a are the generators of the gauge algebra and ρ(T a) is the matrix in the representation ρ,
normalized so that C(adj) is equal to the dual Coxeter number. For SU(N), we have

C(adj) = N, C(fund) =
1

2
. (3.1.3)

In an N=1 gauge theory, the equation simplifies to

E
d

dE
g = − g3

(4π)2
[3C(adj)− C(R)] (3.1.4)

or equivalently

E
d

dE

8π2

g2
= 3C(adj)− C(R), (3.1.5)

where R is the representation of the chiral multiplet. In an N=2 gauge theory, one adjoint chiral
multiplet Φ is considered to be a part of the vector multiplet. Then we have

E
d

dE

8π2

g2
= 2C(adj)− C(R), (3.1.6)

where R is now the representation of theN=1 chiral multiplets describing the hypermultiplets of
the system. If one has one adjoint hypermultiplet, consisting of two N=1 chiral multiplets A and
B, we have zero one-loop beta function. When the mass terms forA,B are zero, the system in fact
has a further enlarged supersymmetry, and is the N=4 super Yang-Mills. When the mass term is
nonzero, it is called the N=2∗ theory.
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In a supersymmetric theory, the coupling g is combined with the theta angle θ and enters in the
Lagrangian as ∫

d2θ
−i
8π
τ trWαW

α + cc. (3.1.7)

where τ is given by

τ =
4πi

g2
+

θ

2π
. (3.1.8)

We call this τ the complexified gauge coupling.
We can consider τ to be an expectation value of a background chiral superfield. There is a

renormalization scheme where the superpotential remains a holomorphic function of the chiral
superfields, including background fields whose vevs are the gauge and superpotential couplings
[36]. We call it Seiberg’s holomorphy principle.

In this scheme, the one-loop running coupling at the energy scale E can be expressed as

τ(E) = τUV −
b

2πi
log

E

ΛUV

+ · · · (3.1.9)

where b is the rational number appearing on the right hand side of (3.1.5) or (3.1.6). Note that the
coupling τ starts from 1/g2, and therefore the n loop diagram would have the dependence g2(n−1).
The constant shift as in the imaginary part in (3.1.9) is then a one-loop effect.

Perturbation theory is independent of the θ angle, since FµνF̃µν is a total derivative, although
of a gauge-dependent quantity. Therefore the n loop effect is a function of (Im τ)1−n, which is
not holomorphic unless n = 1. We conclude that the running (3.1.9) is one-loop exact in the
holomorphic scheme. We find that the combination

Λb = Ebe2πiτ(E) (3.1.10)

is invariant to all orders in perturbation theory. We call this Λ the complexified dynamical scale
of the theory.5 Note that Λ is a complex quantity, and can be considered as a vev of a background
chiral superfield.

This one-loop exactness does not necessarilymean that the physical gauge coupling, which con-
trols the scattering process for example, is one-loop exact. In the holomorphic scheme in generic
N=1 supersymmetric theories, we have nontrivial wave-function renormalization factors Zij∫

d4θZ īj(E)Q†
ī
eVQj (3.1.11)

which need to be taken into account by a further field redefinition to compute physical scattering
amplitudes. This is known to produce further perturbative contributions to the physical running of
the gauge coupling. For more on this point, see e.g. [37].

5A redefinition of the form Λ→ cΛ by a real constant c corresponds to a redefinition of the coupling of the form
1/g2 → 1/g2− c′ where c′ is another constant, or equivalently g2 → g2 + c′g4 + · · · . Therefore this is a redefinition
starting at the one-loop order, keeping the leading order definition of g2 fixed. In this lecture note, we do not track
such finite renormalization of the coupling very carefully.
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For N=2 supersymmetric theories, however, one can make a stronger statement. We assume
that there is a holomorphic renormalization scheme which is compatible with the existence of
SU(2)R symmetry. Then, the structure of the Lagrangian is restricted to be of the form (2.1.11)
for the vector multiplets and of the form (2.1.14) for the hypermultiplets. We consider τ as the
vev of a background field. Then, on the vector multiplet side, one finds that we cannot have non-
trivial wavefunction renormalization factors Zīj as in (3.1.11) in the vector multiplet Lagrangian
(2.1.11). On the hypermultiplet side, the coefficient c′ in (2.1.14) is not renormalized in the holo-
morphic scheme. Since c = c′, the Kähler potential is not renormalized. Therefore, there is no
renormalization in the hypermultiplet Lagrangian (2.1.14).

Then, in particular when b = 0, the beta function is zero to all orders in perturbation theory.
This makes the system conformal, and the value of τ becomes an exactly marginal coupling pa-
rameter. The non-perturbative corrections will induce finite renormalization, but are not thought
to introduce any additional infinite renormalization.

For example, the N=4 super Yang-Mills is automatically superconformal, with one exactly
marginal coupling. Another example with b = 0 is N=2 supersymmetric SU(N) gauge theory
with 2N hypermultiplets in the fundamental representation. Indeed, in (3.1.6), we have C(adj) =

N and C(R) = 2 · 2N · 1/2.

3.2 Anomalies
3.2.1 Anomalies of global symmetry

Non-abelian gauge theories have an important source of non-perturbative effects, called instantons.
This is a nontrivial classical field configuration in the Euclidean R4 with nonzero integral of

16π2k :=

∫
R4

trFµνF̃
µν . (3.2.1)

In the standard normalization of the trace for SU(N), k is automatically an integer, and is called
the instanton number. The theta term in the Euclidean path integral appears as

exp

[
i
θ

16π2
trFµνF̃

µν

]
. (3.2.2)

Therefore, a configuration with the instanton number k has a nontrivial phase eiθk. Note that a
shift of θ by 2π does not change this phase at all. Therefore, even in a quantum theory, the shift
θ → θ + 2π is a symmetry.

Using
trFµνFµν =

1

2
tr(Fµν ± F̃µν)2 ∓ trFµνF̃µν ≥ ∓ trFµνF̃µν , (3.2.3)

we find that ∫
d4x trFµνFµν ≥ 16π2|k| (3.2.4)

which is saturated only when

Fµν + F̃µν ∝ Fαβ = 0 or Fµν − F̃µν ∝ Fα̇β̇ = 0 (3.2.5)

27



depending on the sign of k. Therefore, within configurations of fixed k, those satisfying relations
(3.2.5) give the dominant contributions to the path integral. The solutions to (3.2.5) are called
instantons or anti-instantons, depending on the sign of k.

In an instanton background, the weight in the path integral coming from the gauge kinetic term
is

exp

[
− 1

2g2

∫
trFµνF

µν + i
θ

16π2

∫
trFµνF̃

µν

]
= e2πiτk. (3.2.6)

We similarly have the contribution e2πiτ̄ |k| in an anti-instanton background. The fact that we have
just τ or τ̄ , instead of more complicated combinations, is related to the fact that in the instanton
background in a supersymmetric theory, δλα̇ = Fα̇β̇ε

β̇ = 0 assuming the D-term is also zero, and
thus the dotted supertranslation is preserved. Similarly, the undotted supersymmetry is unbroken
in the anti-instanton background.

Now, consider charged Weyl fermions ψα coupled to the gauge field, with the kinetic term

ψ̄α̇Dµσ
µα̇αψα. (3.2.7)

Let us say ψα is in the representation R of the gauge group. It is known that the number of zero
modes in ψα minus the number of zero modes in ψ̄α̇ is 2C(R)k. In particular, the path integral
restricted to the k-instanton configuration with positive k is vanishing unless we insert k additional
ψ’s in the integrand. More explicitly,

〈O1O2 · · · 〉 =

∫
[Dψ][Dψ̄]O1O2 · · · e−S = 0 (3.2.8)

unless the product of the operators O1O2 · · · contains 2C(R)k more ψ’s than ψ̄’s. This is in-
terpreted as follows: the path integral measures [Dψ] and [Dψ̄] contain both infinite number of
integrations. However, there is a finite number, 2C(R)k, of difference in the number of integration
variables. Equivalently, under the constant rotation

ψ → eiϕψ, ψ̄ → e−iϕψ̄, (3.2.9)

the fermionic path integration measure rotates as

[Dψ]→ [Dψ]e+∞iϕ+2C(R)kiϕ,

[Dψ̄]→ [Dψ̄]e−∞iϕ.
(3.2.10)

When combined, we have

[Dψ][Dψ̄]→ [Dψ][Dψ̄]e2C(R)kiϕ = [Dψ][Dψ̄] exp

[
2C(R)ϕ

i

16π2

∫
trFµνF̃

µν

]
. (3.2.11)

This can be compensated by a shift of the θ angle, θ → θ + 2C(R)ϕ. As we recalled before, the
shift θ → θ + 2π is a symmetry. Therefore, the rotation of the field ψ by exp( 2πi

2C(R)
) is a genuine,

unbroken symmetry.
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3.2.2 Anomalies of gauge symmetry

InN=2 gauge theories, fermions always come in non-chiral representations. Indeed, the fermions
in the vector multiplets are always in the adjoint, theN=1 chiral superfields in a full hypermultiplet
is a sum of a representation R and its conjugate R̄, and a half-hypermultiplet counts as an N=1

chiral superfield in a pseudo-real representation R. Therefore there are no perturbative gauge
anomalies.

One needs to be careful about Witten’s global anomaly [38], though, as this can arise even for
real representations. It is known that a Weyl fermion in the doublet of gauge SU(2) is anomalous,
due to the following fact. When we perform the path integral of this system, we first need to
consider

Z[Aµ] =

∫
[Dψαi][Dψ̄α̇i]e

−
∫
ψ̄Dµσµψ (3.2.12)

where i = 1, 2 is the SU(2) doublet index. To perform a further integration over Aµ consistently,
we need

Z[Aµ] = Z[Agµ], Agµ = g−1Aµg + g−1∂µg. (3.2.13)

for any gauge transformation g : R4 → SU(2). These maps are characterized by π4(SU(2)). It is
known that

π4(SU(2)) = π4(S3) = Z2. (3.2.14)

Let g0 : R4 → SU(2) be the one corresponding to the nontrivial element in this Z2. Then it is
known that

[Dψαi][Dψ̄α̇i]
g0−→ −[Dψαi][Dψ̄α̇i] (3.2.15)

resulting in
Z[Ag0

µ ] = −Z[Aµ], (3.2.16)

thus making the path integral over Aµ inconsistent.
In general π4(G) = Z2 if G = Sp(n), and π4(G) = 1 otherwise. Therefore Witten’s global

anomaly can be there only for Weyl fermions in a representation R under gauge Sp(n). A short
computation reveals that there is an anomaly only when C(R) is half-integral.

Witten’s anomaly is always Z2 valued in four dimensions. Therefore full hypermultiplets are
always free of Witten’s global anomaly. The danger only exists for half-hypermultiplets of gauge
Sp(n). For example, one cannot have odd number of half-hypermultiplets in the doublet represen-
tation of gauge SU(2), or more generally, one cannot have half-hypermultiplets in a pseudo-real
representation R of gauge Sp(n) such that C(R) is half-integral.

3.3 N=1 pure Yang-Mills
3.3.1 Confinement and gaugino condensate

As an example of the application of what we learned in this section, let us consider theN=1 pure
supersymmetric Yang-Mills theory with gauge group SU(N). The content of this section will not
be used much in the rest of the lecture note.
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This theory has just the vector multiplet, with the Lagrangian

L =

∫
d2θ
−i
8π
τ trWαW

α + cc., Wα = λα + Fαβθ
β + · · · (3.3.1)

The one-loop running of the coupling is given by

E
∂

∂E
τ(E) = 3N, (3.3.2)

and therefore we define the dynamical scale Λ by the relation

Λ3N = e2πiτUV Λ3N
UV . (3.3.3)

We assign R-charge zero to the gauge field, and R-charge 1 to the gaugino λα. The phase
rotation λα → eiϕλα is anomalous, and needs to be compensated by θ → θ + 2Nϕ. The shift of
θ by 2π is still a symmetry, therefore the discrete rotation

λα → eπi/Nλα, θ → θ + 2π (3.3.4)

is a symmetry generating Z2N . Note that under this symmetry, Λ defined above has the transfor-
mation

Λ→ e2πi/(3N)Λ. (3.3.5)

This theory is believed to confine, with nonzero gaugino condensate 〈λαλα〉. What would be
the value of this condensate? This should be of mass dimension 3 and of R-charge 2. The only
candidate is

〈λαλα〉 = cΛ3 (3.3.6)

for some constant c. The symmetry (3.3.5) acts in the same way on both sides by the multiplication
by e2πi/N . Assuming that the numerical constant c is non-zero, this Z2N is further spontaneously
broken to Z2, generating N distinct solutions

〈λαλα〉 = ce2πi`/NΛ3 (3.3.7)

where ` = 0, 1, . . . , N − 1. Unbroken Z2 acts on the fermions by λα → −λα, which is a 360◦

rotation. This Z2 symmetry is hard to break.
It is now generally believed that this theory has these N supersymmetric vacua and not more.

For other gauge groups, the analysis proceeds in the same manner, by replacing N by the dual
Coxeter number C(adj) of the gauge group under consideration. For example, we have N − 2

vacua for the pure N=1 SO(N) gauge theory.

3.3.2 The theory in a box

It is instructive to recall another way to compute the number of vacua in theN=1 pure Yang-Mills
theory with gauge groupG, originally discussed in [39]. We put the system in a spatial box of size
L×L×Lwith the periodic boundary condition in each direction. We keep the time direction asR.
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By performing the Kaluza-Klein reduction along the three spatial directions, the system becomes
supersymmetric quantum mechanics with infinite number of degrees of freedom.

The box still preserves the translation generators P µ and the supertranslations Qα unbroken.
We just use a linear combination Q of Qα and Q†α, satisfying

H = P 0 = {Q,Q†}. (3.3.8)

We also have the fermion number operator (−1)F such that

{(−1)F ,Q} = 0. (3.3.9)

Consider eigenstates of the Hamiltonian H , given by

H|E〉 = E|E〉. (3.3.10)

In general, the multiplet structure under the algebra of Q, Q†, H and (−1)F is of the form

↔ Q†|E〉 ↔ (Q†Q−QQ†)|E〉
|E〉 ↔ Q|E〉 ↔ (3.3.11)

involving four states. When Q|E〉 = 0 or Q†|E〉 = 0, the multiplet only has two states. If
Q|E〉 = Q†|E〉 = 0, the multiplet has only one state, and E is automatically zero due to the
equality

E〈EE〉 = 〈E|H|E〉 = 〈E|(QQ† +Q†Q)|E〉 = |Q|E〉|2 + |Q†|E〉|2. (3.3.12)

We see that a bosonic state is always paired with a fermionic state unless E = 0.
This guarantees that the Witten index

tr e−βH(−1)F = tr
∣∣
E=0

(−1)F (3.3.13)

is a robust quantity independent of the change in the size L of the box: when a perturbation makes
a number of zero-energy states to non-zero energy E 6= 0, the states involved are necessarily
composed of pairs of a fermionic state and a bosonic state. Thus it cannot change tr(−1)F .

Therefore, we can compute theWitten index in the limit where the box sizeL is far smaller than
the scale Λ−1 set by the dynamics. Then the system is weakly coupled, and we can use perturbative
analysis. To have almost zero energy, we need to have Fµν = 0 in the spatial directions, since
magnetic fields contribute to the energy. Then the only low-energy degrees of freedom in the
system are the holonomies

Ux, Uy, Uz ∈ SU(N), (3.3.14)

which commute with each other. Assuming that they can be simultaneously diagonalized, we have

Ux = diag(eiθ
x
1 , . . . , eiθ

x
N ), (3.3.15)

Uy = diag(eiθ
y
1 , . . . , eiθ

y
N ), (3.3.16)

Uz = diag(eiθ
z
1 , . . . , eiθ

z
N ). (3.3.17)
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together with gaugino zero modes

λα=1
1 , . . . , λα=1

N , λα=2
1 , . . . , λα=2

N (3.3.18)

with the condition that∑
i

θxi =
∑
i

θyi =
∑
i

θzi = 0,
∑
i

λα=1
i =

∑
i

λα=2
i = 0. (3.3.19)

The wavefunction of this truncated quantum system is given by a linear combination of states of
the form

λα1
i1
λα2
i2
· · ·λα`i` ψ(θxi ; θyi ; θ

z
i ) (3.3.20)

which is invariant under the permutation acting on the index i = 1, . . . N . To have zero energy, the
wavefunction cannot have dependence on θx,y,zi anyway, since the derivatives with respect to them
are the components of the electric field, and they contribute to the energy. Thus the only possible
zero energy states are just invariant polynomials of λs. We find N states with the wavefunctions
given by

1, S, S2, . . . , SN−1 (3.3.21)

where S =
∑

i λ
α=1
i λα=2

i . They all have the same Grassmann parity, and contribute to the Witten
index with the same sign. Thus we found N states in the limit of small box, too.

The construction so far, when applied to other groups, only gives 1 + rankG states. For ex-
ample, let us consider for G = SO(N) for N > 4. Then the method explained so far only gives
bN/2c+ 1 states

1, S, S2, . . . , SbN/2c, (3.3.22)

and does not agree with C(adj) = N − 2 when N ≥ 7. This conundrum was already pointed
out in [39] and resolved later in the Appendix I of [40] by the same author.6 What was wrong
was the assumption that three commuting matrices Ux,y,z can be simultaneously diagonalized as
in (3.3.17). It is known that there is another component where they cannot be simultaneously
diagonalized into the Cartan torus. For SO(7), an example is given by the triple

U (7)
x = diag(+ +−−−+−), (3.3.23)

U (7)
y = diag(+−+−+−−), (3.3.24)

U (7)
z = diag(−+ + +−−−). (3.3.25)

These three matrices might look diagonal, but not in the same Cartan subgroup. This component
adds one supersymmetric state. Then, in total, we have (b7/2c+ 1) + 1 = 5 = 7− 2, reproducing
C(adj).

For larger N , one can consider Ux,y,z given by the form

Ux = U (7)
x ⊕ U ′x, Uy = U (7)

y ⊕ U ′y, Uz = U (7)
z ⊕ U ′z, (3.3.26)

6It is a sad state of affairs that a problem reported in such an important paper as [39] was not resolved for 15 years
by any other physicist. It seems that people in our field rely too much on the author of [39, 40].
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where U ′x,y,z are in the Cartan subgroup of SO(N − 7). Applying the analysis leading to (3.3.21)
in both components, i.e. in the component where Ux,y,z are in the Cartan subgroup of SO(N), and
in the component where Ux,y,z has the form (3.3.26), we find in total

(bN/2c+ 1) + (b(N − 7)/2c+ 1) = N − 2 (3.3.27)

zero-energy states, thus reproducing C(adj) states. This analysis has been extended to arbitrary
gauge groups [41, 42].

4 Seiberg-Witten solution to pure SU(2) theory
We are finally prepared enough to start the analysis of the simplest of non-Abelian N=2 super-
symmetric theory, namely the pure SU(2) gauge theory. We mainly follow the presentation of the
original paper [2], except that we use the Seiberg-Witten curve in the form first found in [21], which
is more suited to the generalization later.

4.1 One-loop running and the monodromy at infinity
The pure SU(2) theory contains only anN=2 vector multiplet for the SU(2) gauge group, with its
Lagrangian given by (2.1.11). For reference we reproduce it here:

L =
Im τ

4π

∫
d4θ tr Φ†e[V,·]Φ +

∫
d2θ
−i

8π
τ trWαW

α + cc. (4.1.1)

A supersymmetric vacuum is classically characterized by the solution to the D-term constraint

[Φ†,Φ] = 0. (4.1.2)

This means that Φ can be diagonalized by a gauge rotation. Let

Φ = diag(a,−a). (4.1.3)

Roughly speaking, the gauge coupling τ runs from a very high energy scale down to the energy
scale a according to the one-loop renormalization of the SU(2) theory. Then the vev a breaks the
gauge group SU(2) to U(1). There are massive excitations charged under the unbroken U(1), but
they will soon decouple, and the coupling remains almost constant below the energy scale a. This
evolution is shown in Fig. 4.1.

1/g2

energy scaleΛ

U(1)

SU(2)

a

Figure 4.1: Schematic drawing of the running of the coupling.
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Let us describe it slightly more quantitatively. Our normalization of the U(1) Lagrangian and
the gauge coupling was given in (1.2.7) and (1.2.15), which reproduce here:

1

2e2
FU(1)
µν FU(1)

µν +
θ

16π2
FU(1)
µν F̃U(1)

µν , and τU(1) =
4πi

e2
+

θ

2π
. (4.1.4)

In the broken vacuum, the low-energy U(1) and the high-energy SU(2) are related as in (1.3.3),
which we also reproduce here

F SU(2)
µν = diag(FU(1)

µν ,−FU(1)
µν ). (4.1.5)

Plugging this in to the high-energy Lagrangian (4.1.1) and comparing the definitions of τs, we find

τU(1) = 2τSU(2). (4.1.6)

This relation gets modified by the quantum corrections.
Let us denote by τ(a) the low-energy coupling of the U(1) gauge field when the vev is given

by (4.1.3), and by τUV the high-energy coupling of the SU(2) gauge field at the high-energy renor-
malization point ΛUV . The one-loop running (3.1.6) then gives

τ(a) = 2τUV −
8

2πi
log

a

ΛUV

+ · · · (4.1.7)

= − 8

2πi
log

a

Λ
+ · · · (4.1.8)

where we defined
Λ4 = Λ4

UV e
2πiτUV . (4.1.9)

The dual variable aD can be obtained by integrating (4.1.8) once, and we find

aD = − 8a

2πi
log

a

Λ
+ · · · . (4.1.10)

As long as we keep |a| � |Λ|, the coupling τ(a) remains weak, and the computation above gives
a reliable approximation.

A gauge-invariant way to label the supersymmetric vacua is to use

u =
1

2
〈trφ2〉 = a2 + · · · (4.1.11)

where · · · are quantum corrections. Let us consider adiabatically rotating the phase of u by 2π:

u = eiθ|u|, θ = 0 ∼ 2π (4.1.12)

We have a 7→ −a. From the explicit form of aD we find aD → −aD + 4a. We denote it as

(a, aD)→ (a, aD)

(
−1 4

0 −1

)
. (4.1.13)
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The mass formula of BPS particles is

M = |na+maD| =
∣∣∣∣(a, aD)

(
n

m

)∣∣∣∣ . (4.1.14)

Therefore, the transformation (4.1.16) can also be ascribed to the transformation of the charges:(
n

m

)
→
(
−1 4

0 −1

)(
n

m

)
. (4.1.15)

We call this matrix
M∞ =

(
−1 4

0 −1

)
(4.1.16)

the monodromy at infinity. The situation is schematically shown in Fig 4.2. The space of the
supersymmetric vacua, parametrized by u, is often called the u-plane.

strongly
coupled

u

M∞

Figure 4.2: Monodromy at infinity.

In our argument, the matrix (4.1.13) could have had non-integral entries, as we read the ma-
trix elements off from an approximate formula of a and aD. However, the transformation (4.1.15)
should necessarilymap integral vectors to integral vectors, which guarantees that thematrix (4.1.15)
is integral. Not only that, this transformation is just a relabeling of the charges and should not
change the Dirac pairing

nm′ −mn′ = det

(
n n′

m m′

)
(4.1.17)

which measure the angular momentum carried in the space when we have two particles with
charges (n,m) and (n′,m′), respectively. A transformation given by(

n

m

)
→M

(
n

m

)
(4.1.18)

affects the Dirac pairing as

det

(
n n′

m m′

)
→ detM det

(
n n′

m m′

)
. (4.1.19)

Therefore, M should necessarily has unit determinant. A 2 × 2 integral matrix with unit deter-
minant is called an element of SL(2,Z). It is reassuring that the matrix (4.1.16) satisfies this
condition.
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u

M∞

Figure 4.3: Naive guess which does not work

4.2 Behavior in the strongly-coupled region
Let us study what is going on in the strongly coupled region which is the interior of the u-plane.
There needs to be at least one singularity in this interior region to realize the monodromyM∞ of
holomorphic functions a and aD. So, most naively, we would expect the structure as in Fig. 4.3.
Where will the singularity be? Here the discrete unbroken U(1) R-symmetry of the system is
useful. Recall our N=2 theory has an SU(2)R symmetry. Classically, we can also consider a
U(1)R symmetry with the standard R-charge assignment given as follows:

R = 0 A

1 λ λ

2 Φ

. (4.2.1)

Different components in the same supersymmetry multiplet have different charges, and therefore
this is an R-symmetry.

Quantum mechanically, the rotation

λ→ eiϕλ, (4.2.2)

is anomalous, but can be compensated by

θUV → θUV + 8ϕ, (4.2.3)

as we learned in Sec. 3.2.1.
Therefore ϕ = π/4 is a genuine symmetry, which does

θ → θ + 2π, Φ→ eπi/2Φ. (4.2.4)

This generates a Z4 discrete R-symmetry of the system. In the low-energy variables, it acts as

θIR → θIR + 4π, u→ −u. (4.2.5)

Then, if there is a singularity at u = u0, there should be another at u = −u0. Therefore, if there is
only one singularity, it is at u = 0.
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If this were really the case, we would find that τ(a) is given by

τ(a) = − 8

2πi
log

a

Λ
+ f(a). (4.2.6)

where f(a) is a meromorphic function whose only singularity is at a = 0. This does not sound
right, however. The coupling is given by Im τ(a), which is the imaginary part of a holomorphic
function. Then, it has no lower bound, and therefore it becomes negative for some value of a.
This means that the coupling g2 is negative there, and the system becomes unstable. For example,
supposing f(a) = 0, the imaginary part is negative when |a| is small enough. We conclude that
our assumption of having just one singularity at u = 0 was too naive.

The next simplest possibility is then to suppose that there are two singularities at u = ±u0, see
Fig. 4.4.

u

M∞

M− M+

Figure 4.4: Next guess which turns out to be correct

The only scale in the system is the dynamical scale Λ, therefore u0 should be given by cΛ where
c is a number. Denoting the monodromies around two singularitiesM±, we should have

M∞ = M+M−, (4.2.7)

since the path going around the infinity of the u-plane is topologically the same as the path which
first goes around u = −u0 and then around u = u0. As two singularities are exchanged by a
symmetry, the monodromies around them should be essentially the same, except for the relabeling
of the charges. Or equivalently, they should be conjugate

M− = XM+X
−1 (4.2.8)

by an SL(2,Z) matrixX . Note that this matrixX can be thought of a half-monodromy associated
to the symmetry operation (4.2.5), see Fig. 4.5
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M+

u

M+

X 1
X −1

Figure 4.5: The relation betweenM+ andM−

A solution to these equations is given by

M+ = STS−1 =

(
1 0

−1 1

)
, M− = T 2STS−1T−2 =

(
−1 4

−1 3

)
(4.2.9)

where S and T were given in (1.2.19), (1.2.20). Note that we have

X = T 2, (4.2.10)

which is roughly compatible with the fact that the discrete R-symmetry (4.2.5) shifts θIR by 4π.

4.3 The Seiberg-Witten solution
Let us construct holomorphic functions a and aD satisfying these monodromies explicitly. Note
that a holomorphic function is uniquely determined by its singularities. Therefore, if we find a can-
didate with the correct properties around the singularities and at infinity of its domain of definition,
it is necessarily the correct answer itself, assuming that we identified the singularities correctly.
Therefore, it suffices to construct a candidate and then check that it satisfies the conditions.

4.3.1 The curve

We first introduce two auxiliary complex variables x and z, and then we consider an equation

Σ : Λ2z +
Λ2

z
= x2 − u. (4.3.1)

We consider this equation as defining a complex one-dimensional subspace of a complex two-
dimensional space of x and z.7 As the equation changes as we change u, the shape of this subspace
also changes. This complex one-dimensional object is called the Seiberg-Witten curve.8 A differ-
ential

λ = x
dz

z
, (4.3.2)

7Our usage of (z, x) for the coordinates follows the convention of [21]. Using (t, v) for what we call (z, x) is also
common, which comes from [6].

8It is real two-dimensional, and therefore it is a surface from a usual point of view. Mathematicians are strange
and they consider one-dimensional objects curves, whether it is complex one-dimensional or real one-dimensional.
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z=0 z=∞
z=z+z=z−

A
B

z=∞
z=z+z=z−

z=0

Figure 4.7: The sheets of the Seiberg-Witten curve Σ of pure SU(2) theory.

called the Seiberg-Witten differential, plays an important role later.9
The space parametrized by z is important in itself. We add the point at z =∞ to the complex

plane of z, or equivalently, we regard z to be the complex coordinate of a sphere. We denote this
sphere by C, and call it the ultraviolet curve of this system. The variable x as a function of z have
four square-root branch points, see Fig. 4.6.

z=0 z=∞

z=z+z=z−

A
B

log |z|

Arg z

Figure 4.6: The ultraviolet curve C of pure SU(2) theory.

Then the curve Σ is a two-sheeted cover of C,

Σ
2:1−→ C, (4.3.3)

see Fig. 4.7.
We then draw two one-dimensional cycles A, B on the curves as shown in the figures, and we

declare that
a =

1

2πi

∮
A

λ, aD =
1

2πi

∮
B

λ. (4.3.4)

Let us check that the functions a(u) and aD(u) thus defined satisfy physically expected prop-
erties. First, let us compute τ(a):

τ(a) =
∂aD
∂a

=
∂aD/∂u

∂a/∂u
. (4.3.5)

9The symbol λ were for adjoint fermions up to this point, but we use λ mainly for the differential from now on,
unless otherwise noted.
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The u derivatives can be computed in the following way:

∂a

∂u
=

∫
A

∂

∂u
λ =

∫
A

dz

xz
(4.3.6)

∂aD
∂u

=

∫
B

∂

∂u
λ =

∫
B

dz

xz
(4.3.7)

where the u derivative within the integral is taken at fixed z. The differential ω = dz/(xz) is finite
on Σ, even at apparently dangerous points z = 0, z = ∞ or at x = 0. For example, when x = 0,
z ∼ c+ c′x2 for some constants c and c′. Then dz/(xz) ∼ (2c′/c)dx.

A

B

P

P

0

=⇒

t

A
B

=0
1

τ

P0

P

Figure 4.8: The Seiberg-Witten curve Σ of the pure SU(2) theory, when smoothed out, is a torus.

Given an open path on the curve Σ from a fixed point P0, we find a map from the endpoint of
the path to another complex plane

t =

∫ P

P0

ω. (4.3.8)

As shown in Fig. 4.8, the curve Σ is mapped to a parallelogram in the complex plane, bounded
by the lines which are the images of the cycles A and B. Now, any holomorphic mapping such as
(4.3.8) preserves the angles. Therefore, the image of the cycle B is always to the left of the image
of the cycle A. Then

τ(a) =
∂aD/∂u

∂a/∂u
=

∫
B
dz/(xz)∫

A
dz/(xz)

(4.3.9)

takes the values to the left of the real axis, and therefore

Im τ(a) > 0, (4.3.10)

which guarantees that the coupling squared g2(a) is always positive. This complex number τ(a)

is called the period or the complex structure of the torus.

4.3.2 The monodromyM∞

Let us check the curve (4.3.1) reproduces the monodromy we determined from physical consider-
ations. Write the curve Σ as

z +
1

z
=
x2

Λ2
− u

Λ2
. (4.3.11)
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From this we see that when |u| � Λ2, we find two branch points z± of the function x(z) around

z+ ∼ −u/Λ2, z− ∼ −Λ2/u. (4.3.12)

We also have branch points at z = 0 and z =∞, and we take the branch cuts to run from z = 0 to
z = z−, and from z = z+ to z =∞.

We put the A-cycle at |z| = 1. Then the integral over it is very easy: x '
√
u around |z| = 1,

and therefore
a =

1

2πi

∮
x
dz

z
'
√
u. (4.3.13)

As for theB-cycle integral, the dominant contribution comes when the variable z is not very close
to the branch points. The variable x can be again approximated by

√
u ' a, and therefore

aD =
2

2πi

∫ z−

z+

x
dz

z
' 2 · 2

2πi

∫ 1

u/Λ2

a
dz

z
' − 8a

2πi
log

a

Λ
. (4.3.14)

From these two equationswe find that a and aD defined via the curveΣ have the correctmonodromy
around u ∼ ∞,

M∞ =

(
−1 4

0 −1

)
. (4.3.15)

By amore careful computation, we can explicitly find corrections to (4.3.14), or to its derivative
τ(a). From the form of the curve (4.3.1), it is clear that the corrections can be expanded in powers
of Λ2, but in fact they are given by powers of Λ4. We find

τ(a) = − 8

2πi
log

a

Λ
+
∞∑
k=0

ck

(
Λ

a

)4k

(4.3.16)

where ck are dimensionless rational numbers. We now know the terms hidden as · · · in (4.1.8).
This expansion can be understood for example by introducing z̃ = Λ2z. Then the curve is z̃ +

Λ4/z̃ = x2 − u, and we can compute a, ãD by considering Λ4/z̃ as a perturbation to the leading-
order form of the curve z̃ = x2 − u. An efficient method to compute ck from the contour integral
can be found e.g. in [43].

Let us interpret these corrections in the powers of Λ4. From (4.1.9), we know that the term
Λ4k carries the phase eikθUV where θUV is the theta angle. It corresponds to a configuration with
instanton number k, as we learned in (3.2.6). This expansion explicitly demonstrates that the
only perturbative correction to the low-energy coupling τ(a) is from the one-loop level, and there
are non-perturbative corrections from the instantons. An honest path-integral computation in the
instanton background should reproduce the coefficients ck. For the one-instanton contribution c1

this was done in [44]. It was later extended to all k in [7, 45].

4.3.3 The monodromiesM±

Let us next study the monodromy around the strongly-coupled singularities. Taking a look at
(4.3.11) again, it is clear that when z+1/z = ±2we have a rather special situation. When u = 2Λ2,
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z=z+z=z−
= +

Figure 4.9: Monodromy action on cycles around the monopole point.

the two branch points collide at z± = −1, and when u = −2Λ2, they collide at z± = +1. These
are the singularities u = ±u0 introduced in Fig. 4.4. Summarizing, we see that various quantities
are given by a combination of a one-loop logarithmic contribution plus instanton corrections. It
is now known that they agree to all orders in the instanton expansion, thanks to the developments
starting from [7].

Let us study the behavior close to u = u0 = 2Λ2 as an example. We let u = 2Λ2 + δu. Then
the branch points are at

z± − 1 ∝ ±
√
δu. (4.3.17)

The close up of the branch points z± and the cycles A, B are shown in Fig. 4.9. When we slowly
change the value of u around u = 2Λ2, two branch points z = z± are exchanged. This modifies
the cycle A as shown in the figure, which is equivalent to the original cycle A minus the cycle B.
The cycle B is clearly unchanged. Therefore we have

a→ a− aD, aD → aD (4.3.18)

or equivalently, the monodromy is

M+ =

(
1 0

−1 1

)
, (4.3.19)

reproducing (4.2.9).
Let us study the physics at u = u0 = 2Λ2. We perform the S transformation (1.2.19)

a′ = −aD, a′D = a (4.3.20)

exchanging the electric and magnetic charges. These are given as functions of u by

a′ = c(u− u0), a′D =
a′

2πi
log c′(u− u0) (4.3.21)
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where c and c′ are two constants, from which we find

τD(a′) =
∂a′D
∂a′
∼ +

log a′

2πi
. (4.3.22)

Note that a′ sets the energy scale of the system. The result shows the same behavior as the running
of the coupling of an N=2 supersymmetric U(1) gauge theory with one charged hypermultiplet,
consisting of N=1 chiral multiplets (Q, Q̃). The superpotential coupling is then∫

d2θQa′Q̃. (4.3.23)

Writing

τD =
4πi

g2
D

+
θD
2π
, (4.3.24)

we find
gD → 0 (4.3.25)

as we approach u→ u0. The mass of the quantum of Q is given by the BPS mass formula to be

mass of quantum of Q = |a′| = |aD|. (4.3.26)

Therefore, we identify the charged chiralmultipletQ as the second quantized version of themonopole
in the original theory. The monopoles, which were very heavy in the weakly coupled region, are
now very light.

The behavior at u = −u0 is easily given by applying the discrete R-symmetry (4.2.5). As we
map by T 2, we find that the very light particles now have electric charge n = 2 and magnetic
charge m = 1, i.e. they are dyons. From these reasons, the point u = u0 = 2Λ is often called the
monopole point, and the point u = −u0 = 2Λ the dyon point.

4.4 Less supersymmetric cases
Before continuing the study ofN=2 systems, let us pause here and see what we can learn about less
supersymmetric theories from the solution of the pure N=2 SU(2) theory. A general Lagrangian
we consider in this section is given by

(

∫
d2θ
−i
8π
τ trWαW

α+cc.)+
Im τ

4π

∫
d4θΦ†Φ+(

∫
d2θ

m

2
tr Φ2 +cc.)+(µλαλ

α+cc.) (4.4.1)

The setup is N=2 supersymmetric when m = µ = 0. When we let |m| → ∞, we decouple the
chiral superfield Φ, and we end up with N=1 pure SU(2) theory which we discussed in Sec. 3.3.
Next, by letting |µ| → ∞, we decouple the gaugino λ and recover pure bosonic Yang-Mills.
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4.4.1 N=1 system

First let us consider the N=1 system. Whenm is very small, the termm tr Φ2 can be considered
as a perturbation to the N=2 solution we just obtained. In terms of the variable u, the term∫
d2θm tr Φ2 is∼

∫
d2θmu, and therefore the F-term equation with respect to u cannot be satisfied

unless u is at the singularity. There is no supersymmetric vacuum at generic value of u.
When u is close to u0 = 2Λ2, there are additional terms in the superpotential given by∫

d2θQa′Q̃ =

∫
d2θc(u− u0)QQ̃ (4.4.2)

where the constant c was introduced in (4.3.21). Together with the term
∫
d2θmu, the F-term

equations with respect to u, Q and Q̃ are given respectively by

m = cQQ̃, (u− u0)Q̃ = 0, (u− u0)Q = 0. (4.4.3)

Then we find a solution at
u = u0, QQ̃ = m/c. (4.4.4)

The vacuum is pinned at u = u0, and there is a nonzero condensate of the monopole QQ̃ = m/c.
A similar argument at u = −u0 says that there is another supersymmetric vacuum given by

u = −u0, Q′Q̃′ = m/c (4.4.5)

where Q′, Q̃′ are the dyon fields.
Summarizing, we found two supersymmetric vacua at u = ±u0, where monopoles or dyons

condense, concretely realizing the idea that the confinement is given by condensation ofmagnetically-
charged objects, see Fig. 4.10.

Recall that the anomalously broken continuous R-symmetry

Φ→ eiϕΦ, (4.4.6)

can be compensated by the
θUV → θUV + 4ϕ. (4.4.7)

Applying it to the Lagrangian (4.4.1), we see that

m〈tr Φ2〉 =
−i
2π
〈trWαWα〉 (4.4.8)

with which we find
〈λαλα〉 ∝ ±2πimΛ2 =: ±Λ3

N=1. (4.4.9)

It is important to keep in mind that the right hand side contains eiθUV /2 as the phase.
We now take the limit m → ∞ keeping ΛN=1 fixed. This should give the pure N=1 SU(2)

Yang-Mills theory. It is reassuring to find that we also see two vacua here, as in Sec. 3.3.
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Figure 4.10: Vacua for the softly broken N=1, N=0 theories

4.4.2 Pure bosonic system

Let us now make µ 6= 0, keeping |µ| � |ΛN=1|. In this limit, the effect of the gaugino mass term
µλαλ

α is given by the first order perturbation theory, and the vacuum energy is given by

V ∝ Re(±µΛ3
N=1) ∝ Λ4

N=0 Re(±eiθUV /2). (4.4.10)

This was first pointed out in [46].
We see that two degenerate vacua of the N=1 supersymmetric theory are split into two levels

with different energy density, corresponding to monopole condensation and dyon condensation,
respectively. A slow change of θUV from 0 to 2π exchanges the two levels, which cross at θUV = π.
So there is a first-order phase transition at θUV = π, at least when |µ| is sufficiently small.

It is an interesting question to ask if this first order phase transition persists in the limit |µ| → ∞,
i.e. in the pure bosonic Yang-Mills theory. Let us give an argument for the persistence. The idea
is to use the behavior of the potential between two external particles which are magnetically or
dyonically charged as the order parameter [47].

First let us consider the dynamics more carefully. Two branches differ in the types of particles
which condense: we can call the branches the monopole branch and the dyon branch, accordingly.
In our convention, the charges of the particles are (n,m) = (0, 1) and (2, 1), respectively. The
charge of the SU(2) adjoint fields, under the unbroken U(1) symmetry, is (2, 0) in our normal-
ization. As there are no dynamical particles of charge (1, 0), the charge (0, 1) of the monopole is
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twice that of a minimally allowed one. The charge of this external monopole can then be written
as (n,m) = (0, 1/2).

Consider first introducing two external electric particles with charge (n,m) = (1, 0). In both
branches, the electric field is made into a flux tube by the condensed monopoles or dyons. The
flux tube has constant tension, and cannot pair-create dynamical particles, since all the dynamical
particles have charge (±2, 0). Therefore the flux tube does not break, and the potential is linear.
The electric particles with charge (1, 0) are confined.

Instead, let us consider introducing external monopoles into the system, and measure the po-
tential between the two. At θ = 0, we can assume, without loss of generality, that the monopole
branch has lower energy. There are dynamical monopole particles with charge (n,m) = (0, 1) con-
densing in the background. Let us introduce two external monopoles of charge (n,m) = (0, 1/2).
The magnetic field produced by the external particles with charges (n,m) = (0, 1) is screened and
damped exponentially. The potential between them is then basically constant.

Instead, consider introducing two external particles with charge (1, 1/2) into the monopole
branch. The dynamical monopole cannot screen the electric charge, which is then confined into a
flux tube. The potential between them is linear and they are confined.

We can repeat the analysis in the dyon branch. The behavior of the potential between external
particles can be summarized as follows:

(0, 1/2) (1, 1/2)

monopole branch screened confined
dyon branch confined screened

These two behaviors are exchanged under a slow continuous change of θ from 0 to 2π. Therefore,
there should be at least one phase transition. It would be interesting to confirm this analysis by a
lattice strong-coupling expansion, or by a computer simulation.

5 SU(2) theory with one flavor
Our next task is to study N=2 supersymmetric SU(2) gauge theory with one hypermultiplet in
the doublet representation. This is often called the SU(2) theory with one flavor, or more simply
Nf = 1. We will see that all the methods employed in the last section are readily adapted to this
theory, too. We again follow the presentation of the original paper [3], but we use the Seiberg-
Witten curve in a form more suitable for the generalization later. Appendix C of [48] is a good
source wheremany different forms of the Seiberg-Witten curves of SU(2) theories are summarized.

5.1 Structure of the u-plane
5.1.1 Schematic running of the coupling

In terms of N=1 chiral multiplets, the hypermultiplet consists of two SU(2) doublets Qa and Q̃a

where a = 1, 2 is the SU(2) index. There is an N=1 superpotential

W = QΦQ̃+ µQQ̃ (5.1.1)
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where µ is the bare mass of the hypermultiplet. Classically, Φ = diag(a,−a) together with Q =

Q̃ = 0 still gives supersymmetric vacua. With nonzero a, the gauge group is broken to U(1), and
the physical mass of the fields Q and Q̃ can be found by explicitly expanding the superpotential
above:

W = (Q1, Q2)

(
a 0

0 −a

)(
Q̃1

Q̃2

)
+ µ(Q1, Q2)

(
Q̃1

Q̃2

)
. (5.1.2)

We see that the masses are
| ± a± µ|. (5.1.3)

In general, the BPS mass formula is

mass ≥ |na+maD + fµ| (5.1.4)

where f is the charge under the U(1) flavor symmetry, under which Q has charge 1 and Q̃ has
charge −1.

From the one-loop running of the coupling constant, we find

τ(a) = 2τUV −
6

2πi
log

a

ΛUV

+ · · · (5.1.5)

= − 6

2πi
log

a

Λ1

+ · · · (5.1.6)

in the ultraviolet region. Here we defined

Λ6
1 = Λ6

UV e
4πiτUV (5.1.7)

where the subscript 1 is a reminder that we are dealing with the Nf = 1 theory. From this, we can
determine the monodromyM∞ at infinity acting on (a, aD):

M∞ =

(
−1 3

0 −1

)
(5.1.8)

exactly as in the pure SU(2) case.
To study the strong coupling region of the system, let us first consider two extreme cases. When

|µ| is very big, we expect the running of the coupling to be given roughly as in Fig. 5.1. Namely,
at around the scale |µ|, the fields Q and Q̃ decouple, and the system effectively becomes the pure
SU(2) gauge theory, which we studied in the last section. Correspondingly, the structure of the
u-plane in the region |u| � |µ2| should be effectively the same with that of the pure SU(2) theory,
with two singularities at u = ±2Λ2

0.

1/g2

energy scale

Λ0

U(1) SU(2) pure

a

Λ1

SU(2) Nf =1

µ

Figure 5.1: Schematic running of the coupling of Nf = 1 theory, when |Λ| � |a| � |µ|
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u

~ +Λ0
2~ −Λ0

2

~ µ2

Figure 5.2: Singularities on the u-plane whenm� Λ

A rough relation between Λ0 and Λ1 can be read off from the schematic graph of the running
coupling shown in Fig. 5.1. The rightmost segment in the graph is given by

τ(E) = − 6

2πi
log

E

Λ1

(5.1.9)

and the middle segment in the graph, representing the effectively pure SU(2) theory, is

τ(E) = − 8

2πi
log

E

Λ0

. (5.1.10)

Equating these two values at E = µ, we obtain

Λ4
0 = µΛ3

1. (5.1.11)

In addition, we know from (5.1.3) that the quanta of one component of Q and Q̃ become very
light when ±a ∼ µ. This should produce a singularity in the u-plane at around u ' µ2. We
therefore expect that the u-plane to have three singularities, as shown in Fig. 5.2. Note that local
physics at the three singularities, at u ' µ2 and at u ' ±2Λ2

0, is always just U(1) gauge theory
with one charged hypermultiplet.

In the other extreme when µ = 0, we can make use of the discrete R symmetry. The standard
R-charge assignment is as follows:

R = 0 A

1 λ λ

2 Φ

,

R = −1 ψQ
0 Q Q̃†

1 ψ†
Q̃

. (5.1.12)

The rotation
λ→ eiϕλ, ψQ,Q̃ → e−iϕψQ,Q̃ (5.1.13)

is anomalous, but can be compensated by

θUV → θUV + 6ϕ. (5.1.14)

Therefore ϕ = 2π/6 is a genuine symmetry, which does

θ → θ + 2π, Φ→ e2πi/3Φ, u→ e4πi/3u. (5.1.15)
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This guarantees that singularities in the u-plane should appear in triples, related by 120◦ rotation.
Aminimal assumption is then to have exactly three singularities, as shown in Fig. 5.3. Having three
singularities is consistent with our previous analysis when |µ| was very big. We expect that the
situation in Fig. 5.2 will smoothly change into the one in Fig. 5.3 when µ is adiabatically changed.

u

~ Λ1
2

~ ω Λ1
2

~ ω2 Λ1
2

Figure 5.3: Singularities on the u-plane whenm = 0

5.1.2 Monodromies

M∞

u

M3M2

M1

Figure 5.4: Monodromy of Nf = 1

Let us denote the monodromies around each of the three singularities by M1,2,3, see Fig. 5.4.
Clearly, we should have

M∞ = M3M2M1 (5.1.16)

whereM∞ was given in (5.1.8). As the three singularities are related by discrete R-symmetry, they
should be conjugate. For example, as shown in Fig. 5.5, we expectM2 = YM1Y

−1. A solution is
given by

M2 = T−1M1T
1, M3 = T−2M1T

2, (5.1.17)

together with

M1 = STS−1 =

(
1 0

−1 1

)
. (5.1.18)
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M∞
u

M1

M1

Y 1

Y −1

Figure 5.5: Relation ofM1,M2

As M1 found here is the same as M+ found in the pure case (4.2.9), the local physics close to
the singularity is also the same, i.e. it is described by an N=2 U(1) gauge theory coupled to one
charged hypermultiplet. The same can be said forM2 andM3.

For the pure case, we saw that the light charged hypermultiplet in this low energy U(1) descrip-
tion was a monopole in the original description. Is the same true in this case? It is easier to give
a definitive answer when |µ| is very big. Then, the two singularities in the strong coupled region
have the same physics as that of the pure SU(2) theory, and thus we should have light monopoles
and dyons there. At the third singularity u ' µ2, one component of the doublet hypermultiplet
(Q, Q̃) becomes very light. For all three singularities, the low-energy description is that of a U(1)

gauge theory coupled to one charged hypermultiplet.
By gradually decreasing µ to be zero, these three singularities become the three singularities

related by the discrete R symmetry. At this stage, it is not possible to say which of the three
was originally the one whose light particle came from the doublet hypermultiplet and which two
of the three were the ones with monopoles and dyons. This loss of the distinction between the
hypermultiplets which were elementary fields and the hypermultiplets which came from solitons
such as monopoles or dyons is somewhat surprising to an eye trained in the classical field theory.
We will see this more explicitly below, in Fig. 5.10.

5.2 The curve
Let us now construct the holomorphic functions a(u), aD(u) satisfying the monodromies deter-
mined above. It is again done by using the Seiberg-Witten curve, which is given in this case by

Σ :
2Λ(x− µ)

z
+ Λ2z = x2 − u (5.2.1)

with auxiliary complex variables z and x, together with the Seiberg-Witten differential

λ = x
dz

z
. (5.2.2)

We dropped the subscript 1 from Λ to lighten the notation.
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z=0 z=∞

z=z1z=z2

A
B

z=z3

Figure 5.6: The ultraviolet curve of SU(2) Nf = 1 theory.

Again, we add a point z = ∞ and regard z as a complex coordinate on the sphere C. This is
the ultraviolet curve. The variable x is now a function on it, see Fig. 5.6. Note that z = 0 is no
longer a branch point; indeed, the local behavior of x there is now

x+ ∼
2Λ

z
− µ+O(z), (5.2.3)

x− ∼ + µ+O(z). (5.2.4)

Note also that λ has a residue ±µ at z = 0. The curve Σ is a two-sheeted cover of C shown in
Fig. 5.7.

z=z3 z=∞
z=z+

A
B

z=∞
z=z+

z=z2

z=z2z=z3

z=0

z=0

Figure 5.7: The sheets of the Seiberg-Witten curve of SU(2) Nf = 1 theory.

We define cycles A and B as shown, and then the functions a(u) and aD(u) are given by

a =
1

2πi

∮
A

λ, aD =
1

2πi

∮
B

λ. (5.2.5)

A

B

P0

=⇒

t

A
B

1

τ

Figure 5.8: The smoothed-out torus of the curve of the SU(2) Nf = 1 theory.
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The proof Im τ(a) > 0 goes exactly as in the pure case. The curve Σ can be mapped to a
parallelogram within a complex t plane by

∫ P
P0
∂λ/∂u =

∫ P
P0
dz/(xz), see Fig. 5.8. The poles with

residues ±µ of λ are denoted explicitly in the figure. When a closed cycle L on the torus winds
the A cycles n times, B cyclesm times, and the poles f times, the integral of λ is then

1

2πi

∮
L

λ = na+maD + fµ, (5.2.6)

just as in the BPS mass formula (5.1.4).
Let us check that the curve correctly reproduces the running of the coupling in the weakly-

coupled region. For simplicity, set µ = 0, and assume |u| � |Λ|. We put the A cycle at |z| = 1.
We easily find

1

2πi

∮
A

x
dz

z
∼
√
u (5.2.7)

as before. As for the B integral, two branch points are around z ∼ Λ/
√
u and one branch point is

around z ∼ u/Λ2. The dominant contribution to the integral is then

1

2πi

∮
B

x
dz

z
∼ 2

2πi

∫ Λ/
√
u

u/Λ2

a
dz

z
= − 6

2πi
a log

a

Λ
. (5.2.8)

Then we find
τ(a) =

∂aD
∂a

= − 6

2πi
log

a

Λ
, (5.2.9)

reproducing the running (5.1.6).
Let us next check that the curve correctly reproduces the singularity structure on the u-plane.

The branch points of the function x(z) can be determined by studying when the equation of Σ,
given in (5.2.1), has double roots. The equation for the branch points is given by

z3 +
uz2

Λ2
− 2µz

Λ
+ 1 = 0. (5.2.10)

The singularity in the u-plane is caused by two of the branch points of x(z) colliding in the ultra-
violet curve C with the coordinate z. This condition can be found by taking the discriminant of
the equation of z above, giving

u3 − µ2u2 + 9Λ3µu+
27

4
Λ6 − 8Λ3µ3 = 0. (5.2.11)

When µ = 0, this equation simplifies to u3 + 27
4

Λ6 = 0, giving the solutions

u = cΛ2, e2πi/3cΛ2, e4πi/3cΛ2 (5.2.12)

for a constant c, reproducing Fig. 5.3.
When |µ| � |Λ|, the equation (5.2.11) can be solved by making two separate approximations.

Assuming u is rather big, we can truncate the equation to just u3−µ2u2 ∼ 0, finding a singularity
at

u ∼ µ2. (5.2.13)
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Next, assuming u is rather small, we find −µ2u2 − 8Λ3µ3 ∼ 0 giving

u ∼ ±
√
−8Λ3µ. (5.2.14)

Together, they reproduce Fig. 5.2. From this, we find that the effective pure SU(2) theory in the
region |u| � |µ| has the dynamical scale

Λ2
0 ∼

√
Λ3µ. (5.2.15)

This agrees with what we saw in (5.1.11).
It is instructive to study another way to derive the singularity at u ∼ µ2 from the curve. We

would like to take the approximation |Λ| < |µ|. To facilitate to take the limit, we introduce z̃ = z/Λ

in (5.2.1) and find
2(x− µ)

z̃
+ Λ3z̃ = x2 − u. (5.2.16)

Now the limit is easy to take: we just find

2(x− µ)

z̃
= x2 − u. (5.2.17)

Then it is clear that when u = µ2, the equation can be factorized to

(x− µ)(x+ µ− 2

z̃
) = 0, (5.2.18)

therefore it represents two sheets intersecting at a point. When u 6= µ2, two sheets are connected
smoothly. The change is schematically shown in Fig. 5.9. We learned that the singularity at u ∼ µ2

arises essentially from the structure 2Λ(x− µ)/z in the curve.

u 6= µ2 u = µ2

Figure 5.9: The schematic change in the Seiberg-Witten curve when u→ µ2.

5.3 Some notable features
Let us see how three singularities on the u-plane move as we change µ, by solving (5.2.11). An
example is shown in Fig. 5.10. On the right, the path in the µ space is given. On the left, the
three singularities for a given µ is shown with three dots colored by red, green and blue connected
to a triangle. As µ moves along a circle with constant, large |µ|, the quark point u ∼ µ2 rotates
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µ

Figure 5.10: Motion of the singularities on the u-plane.

u

~ +Λ2~ −Λ2 z=0 z=∞
z=1

Figure 5.11: Two out of three singularities can collide on the u-plane. Then three branch points
collide on the ultraviolet curve.

the u-plane once. At the same time, the monopole point and the dyon point of the effective pure
SU(2) theory rotates by 90 degrees, as we see from (5.2.14). Now we make |µ| decrease first; all
three singularities come close to the origin of the u-plane. Finally, we make |µ| come back to the
same semicircle again. As can be seen in the figure, this process exchanges the quark point and the
monopole point. We learned that, using the strongly-coupled region, we can continuously change
a quark into a monopole.

Finally, let us study the discriminant of the equation (5.2.11) itself, which is given by

µ3 +
27

8
Λ3 = 0. (5.3.1)

Take µ = −3Λ/2 as an explicit choice. Then there is one singularity in the u-plane at u =

−15Λ2/4, and two singularities collide at u = 3Λ2. In the curve, we find that the branch points of
x(z) consist of one at z =∞ and three colliding at z = −1. See Fig. 5.11. From the curve, we im-
mediately see that a = aD = 0, since the integration cycles shrink. Using the BPS mass formula,
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we see that both electrically charged particles and magnetically charged particles are simultane-
ously becoming very light. This is a rather unusual situation for an eye trained in the classical field
theory. Semiclassically, the magnetically charged particles come from solitons, which are always
parametrically heavier than the electrically charged particles which are quanta of elementary fields
in the theory. We will study this system in more details Sec. 10.

6 Curves and 6d N=(2, 0) theory
We have seen that the low energy dynamics of the SU(2) pure gauge theory and the SU(2) gauge
theory with one flavor can both be expressed in terms of the complex curves (4.3.1), (5.2.1). The
aim of this section is to explain that these two-dimensional spaces can be given a physical inter-
pretation.

The ideas which will be presented in this section were originally obtained by exploiting var-
ious deep properties of string theory and M-theory, namely Calabi-Yau compactifications, brane
constructions, and string dualities. The approach using Calabi-Yau compactifications goes back
to [49, 50, 4] and the brane construction approach was introduced in [6]. Learning these con-
structions definitely helps in understandingN=2 supersymmetric dynamics, and vice versa. This
lecture note is not, however, the place where you can learn them.

The presentation here is analogical rather than being logical, and the author intentionally tried
to phrase it in such a way that the knowledge of string theory and M-theory required to read it is
kept to the minimum. Anyone interested in more details should refer to the original articles, or the
reviews such as [9, 13] and Sec. 3 of [51].

6.1 Strings with variable tension
Recall the BPS mass formula of the pure theory of a particle with electric charge n and magnetic
chargem,

M ≥ |na+maD| = |
∫
L

λ| (6.1.1)

where L is a cycle on the curve which goes around n times along the A direction and m times
along the B direction. The basic idea we employ is to take this equation seriously: we regard the
four-dimensional particle as arising from a string wrapped on the cycle L. Then λ is something
like the tension of the string. In this section we introduce a factor of 2πi in the definition of λ, to
lighten the equations.

To make this idea more concrete, suppose a six-dimensional theory which has strings as its ex-
citation10, and assume this theory is on a two-dimensional space C times the four-dimensional
Minkowski space R1,3. Further assume that the tension of the string depends on these extra-
dimensional directions. Namely, let us assume that there is a locally-holomorphic one-form λ

10Some of the young readers who just started learning string theory might wonder at this point: aren’t relativistic
Lorentz-invariant string theories only possible in 26 dimensions if bosonic, and in 10 dimensions if supersymmetric?
The catch is that the standard arguments in the textbooks assume that the interaction among strings is perturbative.
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L1

L0
f

f(L  )1

f(L  )0

Figure 6.1: Variable-tension strings. Its tension is controlled by f(s) =
∫ s
P0
λ.

such that the tension of an infinitesimal segment of a string, parameterized by s, is given by

|λ| := | λ
ds
|ds, (6.1.2)

see the left hand side of Fig. 6.1. There, the two-dimensional space is taken to be a torus for
definiteness.

A string looks like a particle from the point of view of the uncompactified four dimensions,
and its mass is given by the integral of its variable tension:

M =

∫
L

|λ| (6.1.3)

The right hand side can be bounded below using an integral version of the triangle inequality:∫
L

|λ| ≥ |
∫
L

λ|. (6.1.4)

The inequality can be visualized by considering the curve in the complex plane defined by

f(s) =

∫ s

P0

λ (6.1.5)

parameterized by s, where P0 is a fixed point on the cycle L. Then the left hand side of (6.1.4) is
the length of the parameterized curve f(s), while the right hand side is the distance between the
end-points of f(s), see the right hand side of Fig. 6.1. Then clearly the former is longer than the
latter, and the equality is attained only when the line f(s) itself is a straight line. Or equivalently

Arg
λ

ds
= constant. (6.1.6)

When the cycle L is topologically trivial, the image of the function f(s) is itself a loop, and the
right hand side of (6.1.4) is zero. When the cycle L is nontrivial, the image of the function f(s)

can be an open segment. As λ is holomorphic, the difference between the two ends of the segment
only depends on the topology of the cycle L. Say L wraps the A-cycle n times and the B-cyclem
times. Combining (6.1.3) and (6.1.4), we find

M ≥ |na+maD| (6.1.7)
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x

x=λ1

x=λ2Σ :

C :

Figure 6.2: How the variable-tension string arises from higher dimensions.

where a, aD are defined by the relations

a =

∫
A

λ, aD =

∫
B

λ. (6.1.8)

This reproduces the BPS mass formula (6.1.1). We learned furthermore that the inequality is
saturated only when (6.1.6) is satisfied. Therefore we regard (6.1.6) as the BPS equation for the
string excitation.

6.2 Strings with variable tension from membranes
6.2.1 General idea

One might say strings with variable tension is slightly weird. One way to realize this variation of
the tension in a natural manner is to consider that the extra-dimensional space C which have two
dimensions is further embedded in a four-dimensional ambient space X , and there are two sheets
of Σ covering C separated in the additional directions of X . We then furthermore suppose that
there is a membrane extending along two spatial directions plus one temporal direction, which can
have ends on the sheets of Σ. The situation is depicted in Fig. 6.2. Let z be the coordinate of C,
andX has complex coordinates (z, x). Then two sheets of Σ define two functions x1(z) and x2(z).
Then, a membrane with constant tension |dx| ∧ |d log z| , suspended between two sheets, can be
regarded as a string with variable string whose tension at a given value of z is given by

(tension at z) ≥

∣∣∣∣∣
∫ x1(z)

x2(z)

dx ∧ d log z

∣∣∣∣∣ =

∣∣∣∣x1
dz

z
− x2

dz

z

∣∣∣∣ . (6.2.1)

Denoting λi(z) = xidz/z, we find that

(tension at z) ≥ |λ(z)| where λ(z) = λ1(z)− λ2(z). (6.2.2)

In M-theory, there are indeed higher-dimensional objects with these properties. We consider
an eleven dimensional spacetime of the form

R3,1 ×X × R3. (6.2.3)
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M-theory has six-dimensional objects called M5-branes. We put one M5-brane on

R3,1 × Σ× {0} (6.2.4)

where Σ ⊂ X is the curve, and 0 is the origin of the additional R3. This gives a four-dimensional
theory. M-theory also has three-dimensional objects called M2-branes, which can have ends on
M5-branes. We can take one M2-brane on

R0,1 × disc× {0} (6.2.5)

where R0,1 ⊂ R3,1 is the worldline of a particle in the four-dimensional spacetime, and the disc ⊂
X has its boundary on Σ as depicted in Fig. 6.2. For more details on this point, the reader should
start from the original paper [52].

It is also useful to regard the intermediate situation when we regard the system as a six-
dimensional one on R3,1×C. This six-dimensional theory is known as the 6dN=(2, 0) theory of
type SU(2).

6.2.2 Example: pure SU(2) theory

Let us apply this higher-dimensional idea to the curve (4.3.1) of the pure SU(2) theory concretely.
For easy reference we reproduce the curve here:

Σ : Λ2z +
Λ2

z
= x2 − u. (6.2.6)

We consider Σ to be embedded in a four-dimensional spaceX . Given a point z on C, we find two
x coordinates by solving the quadratic equation above, as depicted on the left hand side of Fig. 6.3.
Let the solutions be ±x(z). As the point z moves on C, they form two sheets of the curve Σ, see
the right hand side of Fig. 6.3. The coordinate x always appears as a way to describe the one-form
on C giving the tension, so it is convenient to multiply them always by dz/z, and say that two
sheets have coordinates ±λ = x(z)dz/z. We use this convention from now on.

x
+λ

−λ

x

Σ :

C :

z

z

x
+λ

−λ

Figure 6.3: W-boson as a string and as a suspended membrane
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We can now consider a ring-shaped membrane suspended between the two sheets over the A
cycle, see Fig. 6.3. Note that the tension as a string on C is 2λ, and the mass is given by

M ≥ |2
∫
A

λ| = |2a|. (6.2.7)

We can minimize the tension by solving (6.1.6), which give rise to a configuration with the mass

M = |2a|. (6.2.8)

Note that this has the correct mass to be a W-boson, which has electric charge n = 2 in our
normalization, which is for the triplets of SU(2). It is also to be noted that there is no way to have
a membrane whose mass is given by

M ′ = |a|, (6.2.9)

because there is simply no way to suspend the membrane to have just one ends over the A-cycle.
Therefore, this higher-dimensional reasoning has more explanatory power than just regarding the
curve Σ as an auxiliary object producing the holomorphic functions a(u) and aD(u) with the
correct monodromy properties. This procedure knows that there is no dynamical particle with
electric charge n = 1 in this system.

x
+λ

−λ
Σ :

C :

Figure 6.4: Monopole as a string and as a suspended membrane

Next, we can consider a disc-shaped membrane suspended between the sheets of Σ so that they
have endpoints over the branch points z+, z− of C, see Fig. 6.4. By a similar reasoning as above,
the mass of this membrane is

M = 2|
∫ z+

z−

λ| = |
∫
B

λ| = |aD|. (6.2.10)

This is a correct mass formula for the monopole, whose magnetic charge is m = 1. In terms of a
variable-tension string on C, it is to be noted that this corresponds to an open string, ending at the
points where the tension 2λ becomes zero.
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= +

Figure 6.5: Dyon as a string and as a suspended membrane. Note that it automatically has the
charge aD + 2a, not aD + a.

We can also connect the two branch points z± by going around the phase direction of z, as
shown in Fig. 6.5. As shown there, themembrane is topologically the sum of the two configurations
considered so far, and we find that the mass of this configuration is

M = |2a+ aD|. (6.2.11)

This is the correct mass formula for the dyon, with the electric charge n and the magneticm given
by (n,m) = (2, 1). By going around n times when we connect the branch points, we see that there
are dyons with mass |2na+ aD| for integral n. We also see there is no way to connect the branch
points to have dyons with mass |(2n+1)a+aD|, which is compatible with the field theory analysis
in Sec. 1.3.

6.3 Self-duality of the 6d theory
Nowwe found that a single type of objects, the membrane of M-theory or equivalently the string of
6dN=(2, 0) theory, gives rise to both electrically charged objects such as W-bosons and magneti-
cally charged objects such as monopoles, see Fig. 6.3 and Fig. 6.4. To get a handle of this property,
let us first recall basic features of charged particles in four dimensions, see Fig. 6.6.

t

r
θ,φ

t
s

r
θ,φ,ψ

Figure 6.6: Charged things in 4d and 6d.

In a first-quantized framework, an electric particle sitting at the origin of the space, extending
along the time direction t, couples to the electromagnetic potential via∫

worldline
A (6.3.1)
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which creates a nonzero electric field Ftr 6= 0 where

F = dA (6.3.2)

and r is the radial direction. The equations of motion are

dF = d?F = 0 (6.3.3)

outside of the worldline. Note that in four dimensional Lorentzian space, we have ?2 = −1 acting
on two-forms. Therefore we cannot impose the condition ?F = F .

Let us consider a theory described by a two-formB in six dimensions, to which a string couples
via the term ∫

worldsheet
B. (6.3.4)

Let us say that the string extends along the spatial direction s and the time direction t. This con-
figuration creates a nonzero electric fieldGtsr, where r is again the radial direction. The equations
of motion are

dG = d?G = 0 (6.3.5)

outside of the worldsheet. Here ? is the six-dimensional Hodge star operation, given by

(?G)µνρ = εµνραβγG
αβγ. (6.3.6)

In six dimensions with Lorentizan signature, ?2 = 1 acting on three-forms, so we can demand
the equations of motion of the form

dG = 0, G = ?G. (6.3.7)

Then a worldsheet extending along the directions t and s has both nonzero electric field Gtsr and
nonzero magnetic field Gθφψ at the same time.

t

r
θ,φ

×

x6

t

r
θ,φ

×

x5

x6

x5

Figure 6.7: Electric and magnetic particles from a single type of objects in 6d
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Now, let us put this theory on a two-torus with coordinates x5,6, and consider strings wrapped
along each of the directions, as shown in Fig. 6.7. Denote the 6d three-form field-strength by
GABC , where A, . . . are indices for six-dimensional spacetime. We can extract four-dimensional
two-forms by considering

Fµν := G6µν , FD µν := G5µν . (6.3.8)

The 6d self-duality G = ?6G translates to the equality

FD = ?4F. (6.3.9)

Therefore, the single self-dual two-form field in 6d gives rise to a single U(1) field strength.
Now, the string wrapped around x6 has nonzero G6tr and G5θφ, and therefore it has nonzero

Ftr. Therefore this becomes an electric particle in four dimensions. Similarly, the string wrapped
around x5 has nonzero G5tr and G6θφ. Therefore it has nonzero Fθφ, meaning that it is a magnetic
particle in four dimensions.

x
+λ

−λ
Σ :

C :

Figure 6.8: The boundaries of the membranes for a W-boson and a monopole intersect at two
points.

In the concrete situation of the pure SU(2) theory, W-bosons and monopoles arise from the
membranes as shown in Fig. 6.8. We see that the boundaries of the membrane for a W-boson and
the boundary of the membrane for a monopole intersect at two points. In general, the Dirac pairing
as particles in the four-dimensional spacetime can be found in this way by counting the number of
intersections, once signs given by the orientation are included.
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6.4 Intermediate 5d Yang-Mills theory and its boundary conditions
6.4.1 Five-dimensional maximally-supersymmetric Yang-Mills

C :

5x 5x

6x 6x

Figure 6.9: 5d maximally supersymmetric Yang-Mills from 6d. AW-boson and a monopole-string
are depicted there.

We have so far considered the situations where we put the six-dimensional theory on a two-
dimensional space, with coordinates x5 and x6, say. We can take a limit where the x5 direction is
much larger than the x6 direction. Then we can first compactify along the x6 direction and con-
sider an intermediate five-dimensional theory, see Fig. 6.9. This is believed to give the maximally
supersymmetric 5d Yang-Mills theory with gauge group SU(2).

A string wrapped around the x6 direction gives rise to a massive electric particle, and a string
not wrapped around the x6 direction becomes a massive magnetic string. This agrees with a basic
feature of the 5d Yang-Mills theory where SU(2) is broken to U(1): First, we have massive W-
bosons which are electric. Second, the standard monopole solutions of 4d gauge theory can be
regarded as a solution in 5d gauge theory, by declaring that there is no dependence of the fields
on the additional fifth direction. Then the solutions should be now regarded as representing a
magnetic-monopole-string.

6.4.2 N=4 super Yang-Mills

By imposing periodic boundary condition in the x5 direction, we have the situation of Fig. 6.10.
We are compactifying the maximally supersymmetric Yang-Mills in five dimensions on S1. We
therefore should obtain 4d N=4 super Yang-Mills theory.
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+λ

−λ

=

x
+λ

−λ

xΣ :

C :

C :

Σ :

Figure 6.10: N=4 SYM from 6d. A W-boson and a monopole are depicted there.

The ultraviolet curve C itself is now a torus T 2. Let the complex structure of this T 2 be τ . The
Seiberg-Witten curve Σ consists of two parallel copies of this torus embedded in X , separated by
2λ in the x direction, where λ is now a constant.

We can consider a cycle Ln,m in C, wrapping n times in the x6 direction and m times in the
x5 directions. Then we can consider a ring-shaped membrane over this cycle, which gives rise to
particles of masses

Mn,m = 2|na+maD| (6.4.1)

where
a =

∫
A

λ, aD =

∫
B

λ = τa. (6.4.2)

The particles with (n,m) = (1, 0) are W-bosons, and the particles with (n,m) = (0, 1) are
monopoles. The peculiar feature of this theory is that the monopoles and the W-bosons both come
from ring-shaped membranes. In fact, from the 6d point of view, the distinction of the two direc-
tions of the torus is completely arbitrary. Then this theory with a given value of τ = τ0, and the
theory with another value of τ = −1/τ0 are the same after the exchange of the W-bosons and the
monopoles.

Indeed they match the property of the N=4 supersymmetric SU(2) Yang-Mills. This theory
is conformal and has an exactly marginal coupling τ . In the semi-classical region, the ratio of
the mass of the monopole to that of the W-boson is |τ |. The N=4 supersymmetric SU(2) Yang-
Mills has four Weyl fermions in the adjoint representation. The semiclassical quantization of the
monopole solution in this situation, as was recalled briefly in Sec. 1.3, makes the monopole states
into a massive N=4 vector multiplet. This makes it possible to exchange it with the W-boson,
which is also in a massive N=4 vector multiplet. In general we expect that there is a massive
N=4 vector multiplet with mass |na+maD|, for any coprime pair of integers (n,m). This should
arise from a semi-classical quantization of charge-mmonopole background. This is the celebrated
conjecture of Sen [53].

64



6.4.3 N=2 pure SU(2) theory and the Nf = 1 theory

z=0 z=∞

z=z+z=z−

a BC a BC5d MSYM

z=0 z=∞

z=z1z=z2z=z3

Nf =1 BC a BC5d MSYM

Figure 6.11: Pure and Nf = 1 SU(2) theories via 5d construction.

The curve of the pure N=2 SU(2) theory

Λ2

z
+ Λ2z = x2 − u (6.4.3)

and the curve of the N=2 SU(2) theory with one flavor

2Λ(x− µ)

z
+ Λ2z = x2 − u (6.4.4)

can be given a similar interpretation. The point is to take x5 = log |z| and x6 = Arg z, and
compactify along the x6 direction first, see Fig. 6.11.

Let us first consider the pure theory. The term on the left hand side, Λ2/z, should be regarded as
a boundary condition ‘terminating’ the fifth direction x5, although x5 = log |z| formally extends
to −∞. The bulk of the five dimensional theory is maximally supersymmetric. The resulting
four-dimensional theory is N=2, and therefore the boundary breaks half of the supersymmetry,
without doing much other than that. A boundary condition which preserves half of the original
supersymmetry is called a half-BPS boundary condition. Then we see that the term Λ2z represents
a half-BPS boundary condition of the 5d theory.

The term Λ2z is obtained by the flip x5 ↔ −x5, and therefore should represent the same
boundary condition. In the end, we see that the system is a compactification of the maximally
supersymmetric SU(2) Yang-Mills on a segment, terminated by two boundary conditions breaking
half of the supersymmetry, realizing 4d pure SU(2) Yang-Mills.

Next, let us consider the one-flavor theory. The term Λ2z is the same as the pure case, so it
should give the same half-BPS boundary condition. The boundary condition at z ∼ 0 is different:
now we have a term of the form Λ(x − µ)/z. This should mean that one hypermultiplet with the
mass µ in the doublet of SU(2) lives on this boundary, coupling to the bulk five-dimensional gauge
multiplets.

65



Nf =1 BC 5d MSYM Nf =1 BC 5d MSYMNf =2 BC a BC

C : C' :

the same Σ 

along constant z along constant z' 

along constant |z| along constant |z' | 

the same 4d Nf =2 theory  

Figure 6.12: Nf = 2 theory.

6.4.4 The SU(2) theories with Nf = 2, 3, 4

From this interpretation, it is easy to get the 6d realization of SU(2) theory with Nf = 2, 3, 4

flavors, namely the theory with Nf = 2, 3, 4 hypermultiplets in the doublet representation. In
terms of N=1 chiral multiplets, we have (Qa

i , Q̃
i
a) for a = 1, 2 and i = 1, . . . , Nf , with the

superpotential ∑
i

(
QiΦQ̃

i + µiQiQ̃
i
)

(6.4.5)

where µi are mass terms.
Let us start with the Nf = 2 theory. We know how to introduce one hypermultiplet in the

doublet at the boundary on the side z = 0. To do the same on the side z = ∞, we just a change
of variables z ↔ 1/z. We end up with the setup shown on the left-hand side of Fig. 6.12, with the
curve given by

2Λ(x− µ1)

z
+ 2Λ(x− µ2)z = x2 − u (6.4.6)

with the Seiberg-Witten differential λ = xdz/z.
The same curve can be rewritten using another variable z′ = (x− µ2)z/(2Λ):

(x− µ1)(x− µ2)

z′
+ 4Λ2z′ = x2 − u. (6.4.7)

But now we can consider x′5 = log |z′|, x′6 = Arg z′ to reduce first to a theory on C ′ parameterized
by z′, and then to a five-dimensional theory on a segment parameterized by |z′|. In this interpreta-
tion, the boundary condition on the z′ =∞ side is the same one in the pure SU(2) case. Therefore,
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Nf =1 BC5d MSYMNf =2 BC 5d MSYM Nf =2 BCNf =2 BC

Figure 6.13: Nf = 3 theory and Nf = 4 theory.

the boundary condition on the z′ = 0 side given by the term (x− µ1)(x− µ2)/z should be the
half-BPS condition such that two hypermultiplets in the doublet of SU(2) live on the boundary.

The description of the system is not complete until we give the one-form λ describing the
variable tension. In (6.4.6) it is 2πiλ = xdz/z and in (6.4.7) it is 2πiλ′ = xdz′/z′. Both are
obtained by integrating dx∧d log z = dx∧d log z′, see (6.2.1). The two differentials are not quite
equal, however:

λ′ − λ =
1

2πi
xd log

z′

z
=

1

2πi
xd log(x− µ2). (6.4.8)

The difference is independent of u, and its non-zero residue is at µ2 at x = µ2. This means that,
given a cycle L on the Seiberg-Witten curve Σ, we have∮

L

λ′ −
∮
L

λ = kµ2 (6.4.9)

where k is an integer. Recall that the BPS mass formula is governed by the expansion∮
L

λ = na+maD + f1µ1 + f2µ2 (6.4.10)

where f1,2 are flavor charges, see (2.3.9). Therefore, the choice between the two Seiberg-Witten
differentials λ and λ′ affects the mapping of the flavor charge f2 and the cycle L, but not much
else. In general, a change in the Seiberg-Witten differential by a form which is independent of u
and whose residues are integral linear combinations of the hypermultiplet masses are safe. We will
encounter them repeatedly later.

Now that we have a boundary condition representing the existence of two doublet hypermul-
tiplets, it is easy to guess the curve of the Nf = 3 theory and Nf = 4 theory. We just have to
combine various boundary conditions which we already found, as in Fig. 6.13. For the Nf = 3

theory we find
(x− µ1)(x− µ2)

z
+ Λ(x− µ3)z = x2 − u, (6.4.11)

and for the Nf = 4 theory we find

f · (x− µ1)(x− µ2)

z
+ f ′ · (x− µ3)(x− µ4)z = x2 − u (6.4.12)
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where we put complex numbers f and f ′. One of them can be eliminated by a rescaling of z.
Our next task is to check that the curves thus obtained via the 6d construction have the correct

properties to describe the respective four-dimensional theories. Before proceeding, we need to
learn more about the Higgs branch of N=2 theories in general.

7 Higgs branches and hyperkähler manifolds
So far we only considered the branch of the moduli space of the supersymmetric vacua where the
scalar Φ in the vector multiplet is nonzero, and all the hypermultiplets are zero. Instead let us
consider a branch where Φ = 0, but the hypermultiplet scalars are nonzero. This branch is called
the Higgs branch.

7.1 General structures of the Higgs branch Lagrangian
First, recall a general N=1 theory containing only scalars and fermions. Such a theory can be
described by the Lagrangian ∫

d4θK(Φ̄j̄,Φi) = gij̄∂µφ
i∂νφ̄

j̄ + · · · (7.1.1)

where
gij̄ =

∂2K

∂φi∂φ̄j̄
. (7.1.2)

This defines a Kähler manifold. In particular, the manifold is naturally a complex manifold. This
fact is almost implicit in our formalism, since the chiral multiplets are by definition complex valued.
It is instructive to recall why this was so: we have the basic supersymmetry transformation

δαφ = ψα, δ†α̇ψα = iσµαα̇∂µφ (7.1.3)

A convention independent fact is that δαδα̇ acting on a complex scalar involves a multiplication by
i. In terms of the real and imaginary parts of φ, we can schematically write this fact as

δ†α̇δα

(
Reφ

Imφ

)
= σµα̇α∂µI

(
Reφ

Imφ

)
(7.1.4)

where the matrix
I =

(
0 1

−1 0

)
(7.1.5)

has the property I2 = −1. This is the crucial matrix defining the complex structure of the scalar
manifold of an N=1 theory.

Now, let us consider an N=2 theory consisting of scalars and fermions only. Note that this
means that there are noN=2 vector multiplets. This theory has two sets ofN=1 supersymmetries
δi=1,2
α . In addition,

δ(c)
α := c1δ

1
α + c2δ

2
α (7.1.6)
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also generates anN=1 sub-supersymmetry when |c1|2 + |c2|2 = 1. Applying the argument in the
last paragraph for this N=1 subalgebra, we find that there are matrices

I(c) = Ian
a, na = (c̄1, c̄2)σa

(
c1

c2

)
(7.1.7)

which always satisfy
(I(c))2 = −1. (7.1.8)

Note that na are real and |n1|2 + |n2|2 + |n3|2 = 1, i.e. they are on S2. Denoting (I, J,K) :=

(I1, I2, I3) for simplicity and expanding (7.1.8), one finds the relations

I2 = J2 = K2 = −1, IJ = K = −JI, JK = I = −KJ, KI = J = −IK. (7.1.9)

This commutation relation of I , J and K is that of a quaternion. A manifold with an action of
quaternion algebra on its tangent space is called a hyperkähler manifold. Therefore we found that
the scalar manifold of an N=2 theory without massless vector multiplets is hyperkähler.

Note that the SU(2)R symmetry acts on the doublet (c1, c2), which is restricted to live on the
three-sphere |c1|2+|c2|2 = 1. The map (7.1.7) from this (c1, c2) to na is the standard Hopf fibration
S3 → S2, and the index a transforms as the triplet of SU(2)R.

Combining with the analysis in Sec. 2.4, we see that general low-energy N=2 theory has an
action of the form∫

d2θ
−i

8π
τ ijWαiW

α
j + cc.+

∫
d4θKv(āj̄, ai) +

∫
d4θKh(q̄t̄, qs) (7.1.10)

such that Kh(q̄t̄, qs) gives a hyperkähler manifold and that there is a prepotential F (ai) giving τ ij
and Kv via the standard formulas (2.4.7), (2.4.8) and (2.4.9).

Note that the hypermultiplet side and the vector multiplet side are completely decoupled. The
dependence on the UV gauge coupling is implicitly there in the vector multiplet side. This means
that the hypermultiplet side cannot receive quantum corrections depending on the gauge coupling.

7.2 Hypermultiplets revisited
Let us revisit the structure of the full and half hypermultiplets introduced in Sec. 2.1.2 from the
viewpoints here. First, let us recall the types of irreducible representations of compact groups:

complex if R 6' R̄ ;

real if R ' R̄ :

{
strictly real if the invariant tensor δij is symmetric,
pseudo-real if the invariant tensor εij is antisymmetric.

(7.2.1)

In a non-supersymmetric theory with a number of real scalars φi, i = 1, . . . , n, they can have
an action of the flavor symmetry F or the gauge symmetry groupG if there are real n×nmatrices
T a, a = 1, . . . , dimG representing the Lie algebra of G:

F,Gy Rn. (7.2.2)
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This representation clearly has an invariant symmetric tensor δij as it acts on n real scalars with a
kinetic term δij∂µφ

i∂µφ
j . The representation is therefore strictly real.

In anN=1 supersymmetric theory with a number of real scalars φi, i = 1, . . . , nwith the same
number of Weyl fermions, the supersymmetry requires existence of a matrix I with I2 = −1. The
actions of the flavor symmetry F and the gauge symmetry G need to commute with this matrix I:

F,Gy Rn x I. (7.2.3)

We can declare that a complex number a + bi acts on the real scalars by the matrix a + bI . Then
the space of scalars becomes a complex vector space, and the symmetries act on them preserving
the complex structure. So there are m = n/2 chiral multiplets Φs, s = 1, . . . ,m, and both F and
G are represented on them in terms of m ×m complex matrices representing their Lie algebras.
We can summarize the situation in the following way:

F,Gy Cm. (7.2.4)

In an N=2 supersymmetric theory with a number of real scalars φi, i = 1, . . . , n with the
same number of Weyl fermions, the supersymmetry requires existence of matrices I , J , K with
the commutation relations (7.1.9). The actions of the flavor symmetry F and the gauge symmetry
G need to commute with I , J , K:

F,Gy Rn x I, J,K. (7.2.5)

We can declare that a quaternion a+ bi+ cj + dk acts on the real scalars by the matrix a+ bI +

cJ + dK. Then the space of scalars becomes a quaternionic vector space, and the symmetries act
on them preserving the quaternion structure. This requires n to be automatically a multiple of four,
n = 4` Both F and G are represented on them in terms of `× ` quaternion matrices representing
their Lie algebras. Summarizing, we have

F,Gy H` (7.2.6)

where H is the skew-field of quaternions.
As quaternions are not quite common among physicists, we usually just use a + bI to think

of the real scalars as complex scalars. Then we have a complex vector space of dimension 2`,
and we have 2` complex scalars Φs, s = 1, . . . , 2`, acted on by the flavor symmetry F and the
gauge symmetryG in a complex representation R̃. The matrix J + iK then determines an 2`× 2`

antisymmetric matrix εst, which is invariant under the action of F and G. This means that R̃ is a
pseudoreal representation:

F,Gy C2` x εst (7.2.7)

This is the half-hypermultiplet in representation R̃, introduced briefly at the end of Sec. 2.1.2.
From this point of view, a half-hypermultiplet is more elementary than a full hypermultiplet,

which is given as follows. Take an arbitrary complex representation R of F ×G of dimensionm.
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Let i = 1, . . . ,m be its index. We have an invariant tensor δij̄ . Let R̃ = R ⊕ R̄. It has an index
s = 1, . . . , n, 1̄ . . . , n̄, and automatically has an antisymmetric invariant tensor

εst, εij = εīj̄ = 0, εij̄ = δij̄ = −εj̄i. (7.2.8)

Then the half-hypermultiplet based on this representation R̃ is the full hypermultiplet in the rep-
resentation R.

Concretely, consider four real scalars. This system has a natural symmetry SO(4) ' SU(2)l×
SU(2)r. Add two Weyl fermions, with a natural symmetry SU(2)l. Then the total system has an
N=2 supersymmetry where the SU(2)R symmetry of the N=2 algebra is the SU(2)r acting on
the scalars. The symmetry SU(2)l can be used as either a flavor or a gauge symmetry. This whole
system consists of just one full hypermultiplet, or one half-hypermultiplet in the SU(2)l doublet.

Next, let i = 1, . . . , n and a = 1, . . . ,m the indices for U(n) and U(m) symmetries, respec-
tively. Then, N=1 chiral multiplets Qiā, Q̃īa form an N=2 hypermultiplet, in the bifundamental
representation of U(n)×U(m). When U(n) is regarded as a gauge symmetry, U(m) becomes the
flavor symmetry.

Another typical construction is to take i = 1, . . . , 2n to be an index for Sp(n) symmetry and
a = 1, . . . ,m to be that for SO(m) symmetry. Consider N=1 chiral multiplets Qia. Regard
the pair of indices ia as a single index s = (ia), running from 1 to 2nm. This system has an
antisymmetric invariant tensor εst = ε(ia)(jb) = Jijδab, thus they make up a hypermultiplet with the
symmetry Sp(n)× SO(m), commuting with the superalgebra. When Sp(n) is made into a gauge
symmetry, SO(m) becomes the flavor symmetry, and vice versa. This explains the fact that when
there are n hypermultiplets in the vector representation of gauge SO(m), we have Sp(n) flavor
symmetry, and when there arem half-hypermultiplets in the fundamental representation of gauge
Sp(n), we have SO(m) flavor symmetry.

7.3 The hyperkähler quotient
Let us come back to the study of the Higgs branch. The equations defining it were given in Sec. 2.2
for the case of SU(N) gauge theory withNf flavors, see (2.2.3) and (2.2.6). Let us write them down
for the general case.

Consider an N=2 gauge theory with gauge group G and a hypermultiplet (Qi, Q̃i) in the rep-
resentation R. Here the index i = 1, . . . , dimR is for the hypermultiplet and we use the index
a = 1, . . . , dimG for the adjoint representation. The Higgs branch is given by

(QiQ†j − Q̃†iQ̃j)T
aj
i= 0

ReQiQ̃jT
aj
i= 0

ImQiQ̃jT
aj
i= 0

 / (identification by the gauge group) (7.3.1)

where T aji is the matrix of the algebra of G in the representation R.
There is no massless vector multiplet remaining in the generic point of the Higgs branch. From

the general analysis in the preceding sections, we know that they form a hyperkäher manifold. The
construction (7.3.1) is known as the hyperkähler quotient construction in the literature both in
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mathematics and in physics, and found originally in [54]. The real dimension of any hyperkähler
manifold is always a multiple of four. Let us check this in this situation. Suppose the original
hypermultiplets consist of 4m real scalars. The D-term condition imposes dimG real constraints,
for each I , J and K. Then we make the identification by the action of G. Therefore we have

4m− 3 dimG− dimG = 4(m− dimG) (7.3.2)

real dimensions after the quotient.
If we are only interested in the holomorphic structure, we can drop the D-term equation and

instead perform the identification by the complexified gauge group{
QiQ̃jT

aj
i = 0

} /
(identification by the complexified gauge group). (7.3.3)

Note that this is a more natural form in the N=1 superfield formulation, if we do not put the
vector superfield into the Wess-Zumino gauge. The basic idea to show the equality of (7.3.3)
with (7.3.1) is to minimize |D|2 within each of the orbit of the complexfied gauge group. The
minimization condition then givesD = 0, recovering (7.3.1). This rough analysis also shows that,
more precisely speaking, we need to remove the so-called unstable orbits in (7.3.3), in which there
is no point where |D|2 is minimized.

In this approach, we start from 2m complex scalars. We then imposes dimG complex con-
straints and then perform the identification by the action of GC, the complexified gauge group,
removing dimG complex dimensions. We end up with

2m− dimG− dimG = 2(m− dimG) (7.3.4)

complex scalars in the quotient. This is compatible with what we just found in (7.3.2). If we count
the quaternionic dimension, we just have the formula

m− dimG. (7.3.5)

7.3.1 U(1) gauge theory with one charged hypermultiplet

Let us consider two examples. First, take an N=2 U(1) gauge theory with two hypermultiplets
(Qi, Q̃

i) with charge ±1. Here i = 1, 2. We havem = 2 and dimG = 1 in the expressions above,
so we expect a complex two-dimensional Higgs branch. First, let us determine the Higgs branch
explicitly. The F-term equation is

Q1Q̃
1 +Q2Q̃

2 = 0. (7.3.6)

Then we have
(Q1, Q̃

1) = (z, z̃t), (Q2, Q̃
2) = (z̃,−zt) (7.3.7)

for some complex numbers z, z̃ and t. Then the D-term equation |Q1|2 + |Q2|2−|Q̃1|2−|Q̃2| = 0

says
|z|2 + |z̃|2 = |t|2(|z|2 + |z̃|2). (7.3.8)
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Therefore we see |t| = 1. We can use the U(1) gauge rotation to eliminate t almost completely, by
demanding

Arg z = Arg(z̃t). (7.3.9)

This still does not fix the U(1) gauge transformation given by the multiplication by −1 on Qi, Q̃i,
sending the pair (z, z̃) to (−z,−z̃). We conclude that the Higgs branch is given by

C2/Z2 = {(z, z̃) ∈ C2}/(z, z̃)↔ (−z,−z̃). (7.3.10)

A not-quite-accurate schematic description is given in Fig. 7.1.

Figure 7.1: Not a very accurate depiction of C2/Z2

Let us use the complex description (7.3.3) to obtain the same Higgs branch in a different way.
Instead of identifying points connected by the complexified gauge group, we can just consider
combinations of coordinates which are invariant under it. In this case, Qi has charge +1 and Q̃i

has charge −1. Then, the gauge invariants are QiQ̃
j , for arbitrary choices of i and j. We need to

impose
Q1Q̃

1 +Q2Q̃
2 = 0, (7.3.11)

too. In total, we find three combinations

A = Q1Q̃
2, B = Q2Q̃

1, C = iQ1Q̃
1 = −iQ2Q̃

2. (7.3.12)

They satisfy one obvious relation
AB = C2. (7.3.13)

With three variables A, B, C and one relation above, we have complex two-dimensional space.
This is the Higgs branch.

This description can also be found starting from the definition of C2/Z2 in (7.3.10). Combi-
nations of z, z̃ invariant under (z, z̃)↔ (−z,−z̃) are

A = z2, B = z̃2, C = zz̃ (7.3.14)

which satisfy the same relation (7.3.13). Therefore they are the same spaces as complex manifolds.

7.3.2 SU(2) gauge theory with two hypermultiplets in the doublet

As the second example, consider N=2 SU(2) gauge theory with Nf full hypermultiplets in the
doublet representations. In terms of N=1 chiral multiplets, we have

Qa
i , Q̃i

a (a = 1, 2; i = 1, . . . , Nf ) (7.3.15)
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As the doublet and the anti-doublet representations are the same for SU(2) gauge theory, we can
denote them also as

Qa
I , (a = 1, 2; I = 1, . . . , 2Nf ) (7.3.16)

which makes SO(2Nf ) flavor symmetry more manifest.
We have 4Nf complex scalars and dim SU(2) = 3. Then the complex dimension of the Higgs

branch is
4Nf − 2 · 3. (7.3.17)

So we do not have the Higgs branch for Nf = 1, and expect a Higgs branch with complex dimen-
sions 2, 6, 10 for Nf = 2, 3, 4, respectively. Let us study the case Nf = 2 in more detail.

Gauge-invariant combinations of Qa
I are

MIJ = Qa
IQ

b
Jεab. (7.3.18)

The left hand side is automatically anti-symmetric under the exchange of I and J . The F-term
equation is

Q
(a
I Q

b)
J δ

IJ = 0. (7.3.19)

For SO(2Nf ) = SO(4), we can split an antisymmetric matrixMIJ of SO(4) into the self-dual
and the anti-self-dual parts. Equivalently, using SO(4) ' SU(2)u × SU(2)v, MIJ splits into the
triplet M(αβ) of SU(2)u and the triplet M(α̇β̇) of SU(2)v, where α, β = 1, 2 and α̇, β̇ = 1, 2 are
doublet indices of SU(2)u,v respectively. The index I itself can be thought of a pair of indices:
I = (αα̇). Then the hypermultiplets we are dealing with can be written as

Qaαα̇, a, α, α̇ = 1, 2 (7.3.20)

which makes the existence of SU(2)3 symmetry manifest. Then

Mαβ = Qaαα̇Qbββ̇ε
abεα̇β̇, (7.3.21)

Mα̇β̇ = Qaαα̇Qbββ̇ε
abεαβ (7.3.22)

are the self-dual and the anti-self-dual parts of MIJ , respectively. The F-term equation can be
written as

Qaαα̇Qbββ̇ε
αβεα̇β̇ = 0. (7.3.23)

Using this description, it is not very hard to check that

MαβMγδε
αγεβδ = 0, (7.3.24)

Mα̇β̇Mγ̇δ̇ε
α̇γ̇εβ̇δ̇ = 0, (7.3.25)

MαβMα̇β̇ = 0. (7.3.26)

The structure becomes clearer by defining

A = M11, B = M22, C = M12 = M21; (7.3.27)
X = M1̇1̇, Y = M2̇2̇, Z = M1̇2̇ = M2̇1̇. (7.3.28)
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The relations (7.3.24) and (7.3.25) give

AB = C2, XY = Z2, (7.3.29)

whereas the relation (7.3.26)mean that two vectors (A,B,C) and (X, Y, Z) cannot be both nonzero
at the same time.

Figure 7.2: Not a very accurate depiction of C2/Z2 ∧ C2/Z2

Therefore we see that the Higgs branch has the structure schematically described in Fig. 7.2:
there are two copies ofC2/Z2, described respectively by the variablesA,B,C andX, Y, Z. When
the vacuum is on one of the C2/Z2 described by one set of variables (A,B,C), the other variables
are forced to be zero, and vice versa. Therefore two copies of C2/Z2 can be said to share the
origin, where all of A,B,C andX, Y, Z are zero. The Higgs branch has complex dimension two,
as expected.

Recall we decomposed the flavor symmetry SO(4) into SU(2)u×SU(2)v. The vectors (A,B,C)

and (X, Y, Z) are triplets under SU(2)u and SU(2)v, respectively. Therefore, the flavor parity of
O(4) ⊃ SO(4) exchanges the two copies of C2/Z2 composing the Higgs branch.

8 SU(2) theory with 2 and 3 flavors

8.1 Generalities
In this section and next, we consider SU(2) gauge theory with Nf flavors, with Nf = 2, 3, 4. In
terms of N=1 chiral multiplets, we have (Qi, Q̃

i) for i = 1, . . . , Nf with the superpotential∑
i

(
QiΦQ̃

i + µiQiQ̃
i
)

(8.1.1)

where µi are bare mass terms. With all µi are the same, there is a U(Nf ) symmetry acting on the
indices i of Qi and Q̃i. On the Coulomb branch with Φ = diag(a,−a), the physical masses of the
hypermultiplets are given by

| ± a± µi|. (8.1.2)
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With µi = 0, we can combine Qi and Q̃i into

(qaI )I=1,2,...,2Nf = (Qa
1, . . . , Q

a
Nf
, εabQ̃1

b , . . . , ε
abQ̃

Nf
b ) (8.1.3)

with SO(2Nf ) symmetry. In this notation the superpotential is

∝ ηIJqaIΦabq
b
J , where η =

(
0 1Nf

1Nf 0

)
. (8.1.4)

Since ηIJ is a symmetric matrix, the flavor symmetry acting on the indices I,J is SO(2Nf ). Equiv-
alently, we have 2Nf half-hypermultiplets in the doublet representation of SU(2).

Classically, introducing an odd number of half-hypermultiplets in the doublet of SU(2) is all
right, with SO(odd) flavor symmetry. However, such a theory would have odd number of Weyl
fermions in the doublet, and is plagued quantum mechanically by Witten’s global anomaly, as
reviewed in Sec. 3.2.1. Therefore, for SU(2) gauge group, we can only consider an even number
of half-hypermultiplets in the doublet, or equivalently, an integral number of full-hypermultiplets
in the doublet.

The one-loop running of this theory in the ultraviolet region |a| � |µi| is

τ(a) = 2τUV −
2(4−Nf )

2πi
log

a

ΛUV

+ · · · (8.1.5)

which can further be rewritten as, when Nf 6= 4,

= −2(4−Nf )

2πi
log

a

Λ
where Λ4−Nf = Λ

4−Nf
UV e2πiτUV . (8.1.6)

We guessed the form of the curves of these theories in Sec. 6.4.4. The results were given
in (6.4.6), (6.4.11), (6.4.12) for Nf = 2, 3, 4 respectively. The aim of this section and the next
section is to perform various checks that they do reproduce expected properties, and to study strong
coupling dynamics using them. In this section we deal withNf = 2 andNf = 3. The caseNf = 4

opens up a whole new field, to which Sec. 9 is dedicated.

8.2 Nf = 2: the curve and the monodromies
Let us start with the SU(2) withNf = 2 flavors. The Seiberg-Witten curve was guessed in (6.4.6),
which we repeat here:

Σ :
2Λ(x− µ1)

z
+ 2Λ(x− µ2)z = x2 − u (8.2.1)

with the Seiberg-Witten differential λ = xdz/z. The ultraviolet curve C is still just an S2, shown
in Fig. 8.1.
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u

~ +Λ0
2~ −Λ0

2

~ µ2
2

~ µ1
2

Figure 8.2: The u-plane for Nf = 2.

B
z=0 z=∞A

Figure 8.1: The curve of Nf = 2 theory.

When |u| � |Λ2|, |µi|2, we can estimate the line integrals easily. First, we put the A-cycle at
|z| = 1. Using x '

√
u around there, we have

a =
1

2πi

∮
A

x
dz

z
'
√
u. (8.2.2)

The positions of the branch points of x(z) on the curve C can also be easily estimated: there are
two around z '

√
u/Λ and two more around z ' Λ/

√
u. Then we see

aD =
1

2πi

∮
B

x
dz

z
' 2 · 2

2πi

∫ 1

√
u/Λ

a
dz

z
' − 4

2πi
a log

a

Λ
. (8.2.3)

From this we can compute τ(a) = ∂aD/∂a, which reproduces the one-loop running (8.1.6).
Let us next study the structure of the singularities on the u-plane. When µ1,2 � Λ, the gauge

coupling is rather small around the energy scale µ1,2. Then we expect that when

u ' µ2
i for i = 1, 2 (8.2.4)

one component of (Qi, Q̃
i) become very light, producing a singularity. Below the scale of µ1,2, the

theory is effectively equivalent to pure SU(2) theory, which should have two singularities where
either monopoles or dyons are very light. In total we expect that there are four singularities on the
u-plane, see Fig. 8.2.

This structure can be checked starting from the curve (8.2.1) by studying its discriminant, which
is left as an exercise to the reader. Here we study the massless case µ1 = µ2 = 0 in detail. The
Seiberg-Witten curve for the massless case is simply

x2 − Λ(z +
1

z
)x− u = 0. (8.2.5)
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Then we see that four branch points of x(z) meet in pairs when u = 0 or u = −Λ2 as depicted in
Fig. 8.3.

z=0 z=∞

z=i

z=−i z=0 z=∞

z=1

z=−1

Figure 8.3: The curve of Nf = 2 theory degenerates when u = 0 or u = −Λ2.

Explicitly, when u = 0 they meet at z = ±i and when u = −Λ2 they meet at z = ±1. There
are no other singularities on the u-plane, so we see that when µ1 = µ2 = 0 the u-plane has the
structure shown in Fig. 8.4.

u

M∞

M− M+
u=0u= −Λ2

Figure 8.4: The u-plane for massless Nf = 2.

At each of u = 0, u = −Λ2, two pairs of branch points of x(z) collide. This means that each
of u = 0, u = −Λ2 should be considered as two singularities on the u-plane. This situation was
shown in Fig. 8.4 by putting almost overlapping two blobs at u = 0, −Λ2. In total there are four
singularities, matching what we found above for µ1,2 � Λ. Let us denote the monodromies around
various closed paths as shown in Fig. 8.4.

The monodromyM∞ at infinity can be found from the explicit form of a, aD found in (8.2.2),
(8.2.3) to be

M∞ =

(
−1 2

0 −1

)
. (8.2.6)

The monodromy M+ around u = 0 can be found by following the motion of the branch points
when we make a slow change along the path u = εeiθ for a very small ε from θ = 0 to θ = 2π. The
pair of branch points exchanges positions as shown in Fig. 8.5. We see that the B cycle remains
the same, while A is sent to A− 2B, thus generating

M+ =

(
1 0

−2 1

)
= ST 2S−1. (8.2.7)

We see that
M∞ = M+M− (8.2.8)
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= +

Figure 8.5: Monodromy action on cycles for Nf = 2.

z=1z=0 z=1z=0

Figure 8.6: The curve of Nf = 2 theory degenerates when u = 0 or u = −Λ2, the second
description.

with
M− = TM+T

−1. (8.2.9)

Before proceeding, it is instructive to use another description of the curve to find the same
u-plane structure. The curve was given in (6.4.7). When massless, this just becomes

x2

z
+ Λ2z = x2 − u. (8.2.10)

The branch points collide when u = 0 or u = −Λ2 as before, but it looks rather different on the
ultraviolet curve, as shown in Fig. 8.6. Note that x diverges at z = 0 and z = 1 independent
of u. One branch point of x(z) on the ultraviolet curve moves as u changes, and this point hits
either z = 0 or z = 1 at u = 0 or u = −Λ2 respectively. It is left to the reader to recover the
monodromiesM± from this latter view point.

8.3 Nf = 2: the discrete R-symmetry
Let us now study the discrete R-symmetry. We assign the charges under continuous R-symmetry
to be given by

R = 0 A

1 λ λ

2 Φ

,
R = −1 ψI

0 qI
. (8.3.1)

The rotation
λ→ eiϕλ, ψI → e−iϕψI (8.3.2)
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is anomalous, but can be compensated by

θUV → θUV + 4ϕ. (8.3.3)

Equivalently, the dynamical scale Λ transforms as

Λ2 → e4iϕΛ2. (8.3.4)

Therefore ϕ = π/2 is a genuine symmetry, which does

θUV → θUV + 2π, Φ→ −Φ, u′ → u′ (8.3.5)

where u′ = 〈tr Φ2/2〉. The reason why we put a prime to the symbol u here will be explained
shortly. Unfortunately this does not tell us much about the structure on the u′-plane, as it acts
trivially on it.

We can perform a slightly subtler operation. Consider the action on the hypermultiplets given
by

(qI=1, q2, q3, q4) 7→ (−qI=1, q2, q3, q4), (8.3.6)
(ψI=1, ψ2, ψ3, ψ4) 7→ (−ψI=1, ψ2, ψ3, ψ4). (8.3.7)

So far we always said that the flavor symmetry is SO(2Nf ) = SO(4). This operation is a flavor
parity action

diag(−1,+1,+1,+1) ∈ O(4) ⊃ SO(4). (8.3.8)

Recall that in an SU(2) k-instanton background, the number of zero-modes of ψI=1 is just k. Then
the operation (8.3.7) multiplies the path integral measure by (−1)k. This means that the parity
part of the classical flavor symmetry O(4) is anomalous. That said, as we have a term eiθk in the
integrand of the path integral, we can compensate it by the shift θ → θ + π.

Then, we can combine phase rotations (8.3.2), (8.3.3) with ϕ = π/4 and the flavor parity
(8.3.7) to have a genuine unbroken symmetry. Summarizing, this is a combination of two actions:
the first one is

θ → θ + π, Φ→ iΦ, u′ → −u′ (8.3.9)

and the second one is

θ + π → θ + 2π, qI=1 → −qI=1, ψI=1 → −ψI=1. (8.3.10)

In total this is a Z4 symmetry acting on the u-plane by Z2.
At the first sight this looks contradictory with the structure of the u-plane found in Fig. 8.4: the

two singularities are at u = 0 and u = −Λ2. The way out is to set

u = u′ − Λ2

2
. (8.3.11)

This illustrates a subtlety which is often there in the non-perturbative analysis of field theories.
Naively, u is defined to be 〈tr Φ2/2〉. But a composite operator needs to be defined with care, by
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carefully performing the regularization and the renormalization. As there are almost no divergence
between two chiral operators in a supersymmetric theory, it is relatively safe to do this for chiral
composite operators, although one still needs to take care of the point splitting between two gauge-
dependent chiral operators, which is known as a source of Konishi’s anomaly [55], for example. At
least perturbatively, we can take the holomorphic scheme and that uniquely fixes the regularization
and the renormalization of chiral composite operators to all orders in perturbation theory. There
still is, however, non-perturbative ambiguity in the definition of the scheme. In our present case, u
and Λ2 both have mass dimension two and has charge 2 under the continuous broken R-symmetry,
therefore they tend to mix. When we guessed the curve in Sec. 6.4.4, we did not take the discrete
unbroken R-symmetry into account, thus there was a discrepancy between the u appearing in the
curve and the u′ which was constructed by definition to transform nicely under the discrete R-
symmetry.

We learned that the low energy behavior at u = 0 and u = −Λ2, or equivalently at u′ = ±Λ2/2

is related by the discrete R-symmetry combined with the flavor parity. Let us study them in more
detail. We know that the monodromy at u = 0 is given by (8.2.7). Let us say aD ∼ cu close to
u = 0, where c is a constant. Applying the S transformation once, we see that the running of the
dual coupling is

τD(E) ' +
2

2πi
logE (8.3.12)

whereE ∼ cu sets the energy scale. Compare this with the running of the dual coupling (4.3.22) at
the monopole point of the pure SU(2) theory. The factor 2 in the numerator comes from the lower-
left entry of M+ in (8.2.7), or more physically from the fact that two pairs of the branch points
simultaneously collide as shown in Fig. 8.3. In general, when a U(1) gauge theory is coupled to
several hypermultiplets with charges given by qi, the running is given by

τ ' +

∑
i q

2
i

2πi
logE (8.3.13)

Then we can conclude uniquely that there are two hypermultiplets with charge 1. This can be seen
from the higher-dimensional perspective: there are disk-shaped membranes as in Fig. 6.4 for each
pair of colliding branch points. They become massless when the branch points do collide, thus
providing two charged hypermultiplets.

8.4 Nf = 2: the moduli space
We studied in Sec. 7.3 thatU(1) gauge theorywith two charge-1 hypermultiplets has aHiggs branch
of the formC2/Z2. Together with the u-plane describing the Coulomb branch, we can visualize the
totality of the supersymmetric vacuum moduli space as shown in Fig. 8.7. Note that two singular
points on the u-plane where Higgs branches meet are exchanged by the discrete R-symmetry and
the flavor parity.
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u'

u=0

SU(2)BSU(2)A

Figure 8.8: Classical moduli space of the Nf = 2 theory.

u'

u'= −Λ2/2 u'=+Λ2/2

SU(2)BSU(2)A

Figure 8.7: Quantum moduli space of the Nf = 2 theory.

Compare this with the classical moduli space of SU(2) theory with Nf = 2 flavors. The
Coulomb branch is still described by u = tr Φ2/2. When Φ = 0, we can go to the Higgs branch;
we studied this system in Sec. 7.3 too, where we saw that it is given by C2/Z2 ∧ C2/Z2. We can
visualize them as in Fig. 8.8.

In Sec. 7.1, we argued that the local metric of the Higgs branch cannot be corrected by the
gauge dynamics. We see here that the quantum dynamics can still split the point where two copies
of C2/Z2 meet the u-plane; the argument in that section is not applicable at the points where the
metric is singular.
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u'
u'~µ2

SU(2)A

Figure 8.9: The moduli space of Nf = 2 theory when µ1 = µ2.

Recall that there is a flavor symmetry SO(4) ' SU(2)A × SU(2)B, so that SU(2)A,B acts
separately on the two copies of C2/Z2. Then, after non-perturbative correction, SU(2)A acts on
the hypermultiplets at u′ = Λ2/2 and SU(2)B at u′ = −Λ2/2. This is consistent with the action of
the flavor parity exchanging u′ = ±Λ2/2, recall (8.3.7).

We learned in Sec. 1.3 that the monopole in this type of theories transforms as the spinor rep-
resentation of the SO(2Nf ) flavor symmetry. Here the spinor of SO(4) is the fundamental doublet
of SU(2)A or SU(2)B, and they are indeed interchanged by the flavor parity. This is consistent with
what we have found so far.

Before closing this section, let us discuss what happens when we turn on a small but nonzero
µ = µ1 = µ2. This breaks the SO(4) = SU(2)A × SU(2)B flavor symmetry to SU(2)A, say.
Correspondingly, we can check that the two singularities sitting at the same point u = −Λ2 splits
into two, by directly performing the analysis of the discriminant of the curve. We are still left with
one point on the u-plane where two singularities still collide, and the local monodromy around it is
unchanged fromM+. There, we have a Higgs branch of the formC2/Z2. The resulting structure is
shown in Fig. 8.9. When µ is continuously made large, eventually the situation is better described
as a special case of Fig. 8.2 with µ = µ1 = µ2. Namely, the gauge coupling at the scale µ is still
very weak, and the classical Lagrangian analysis is valid. The superpotential is

(Q1
i , Q

2
i )

(
µ+ a 0

0 −a+ µ

)(
Q̃i

1, Q̃
i
2

)
(8.4.1)

and therefore when a = µ, the components (Q2
i , Q̃

i
2) for i = 1, 2 remain massless. The gauge

group is broken from SU(2) to U(1), and we have two charge-1 hypermultiplets, producing a
Higgs branch of the form C2/Z2.
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8.5 Nf = 3

The curve for SU(2) theory with Nf = 3 flavors was guessed in (6.4.11):

Σ :
(x− µ̃1)(x− µ̃2)

z
+ 2Λ(x− µ̃3)z = x2 − u. (8.5.1)

We see that x(z) diverges at z = 0, 1,∞ independent of u, and there are four branch points which
move as u changes, see Fig. 8.10. The reason we put tildes above the mass parameters will become
clear soon.

B
A

Figure 8.10: The curve of Nf = 3 theory.

Let us check the behavior when |u| � |µi|2, |Λ|2. Two branch points are at z ∼ O(1) and
another branch point is at

√
u/Λ. We now put theA-cycle around |z| = c, where 1� c�

√
u/Λ.

Then we see that the integral is given as before by

a =
1

2πi

∮
A

x
dz

z
'
√
u. (8.5.2)

The B-cycle integral can be approximated by

aD ∼
2

2πi

∫ 1

√
u/Λ

a
dz

z
' − 2

2πi
a log

a

Λ
. (8.5.3)

From this we find
τ(a) =

∂aD
∂a

= − 2

2πi
a log

a

Λ
, (8.5.4)

thus reproducing the field-theoretical one-loop computation (8.1.6).

u

~ +Λ0
2~ −Λ0

2

~ µ2

Figure 8.11: The u-plane of Nf = 3 theory, for equal masses
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When µ1 = µ2 = µ3 = µ and |µ| � |Λ|, the coupling at the scale µ is still small, and the
classical analysis using the superpotential (8.4.1) is almost valid. We expect that around a ' µ,
i.e. when u ' µ2, the gauge group SU(2) is broken to U(1) with three charge-1 hypermultiplets.
This point on the u-plane counts as three singularities, since when µ1,2,3 are slightly different, they
should be at three slightly different points u ' µ2

i . When |u| � |µ|2, the theory can be effectively
described by pure SU(2) gauge theory, which have the monopole point and the dyon point. In total
we expect five singularities on the u-plane, see Fig. 8.11.

We would like to study the massless case, µ = 0. Here, we cannot just set µ̃i = 0 in the
curve (8.5.1).11 We already saw that, when Nf = 2, the vev u can mix with the one-instanton
factor Λ2. Here, with Nf = 3, the one-instanton factor is Λ and it can mix with any neutral chiral
dimension-1 operator. The curve makes only U(3) flavor symmetry manifest. The mass parameter
corresponding to the U(1) flavor symmetry is neutral, chiral, and of dimension 1. Therefore there
can be a mixing of the form

µ̃i = µi + cΛ (8.5.5)
where c is a constant. Here, we fix the untilded mass parameter µi to transform linearly under the
Weyl symmetry µi → ±µi of the SO(2Nf ) = SO(6) flavor symmetry.

To determine c, we set

(µ̃1, µ̃2, µ̃3) = (−µ+ cΛ, µ+ cΛ, µ+ cΛ) (8.5.6)

and study the singularities in the u-plane. This is just the SO(6) flavorWeyl transform of the SU(3)

flavor symmetric choice of masses, therefore three out of five singularities on the u-plane should
still collide as in (8.11). By an explicit computation, one finds that this happens only when c = 1.

u

M∞

M− M+
u=0u= Λ2

Figure 8.12: The u-plane of massless Nf = 3 theory

Finally we can set µ = 0. The curve is now

(x− Λ)2

z
+ 2Λ(x− Λ)z = x2 − u. (8.5.7)

There is an u-independent branch point of x(z) at z = 1. Two other branch points move with z,
and are at the solutions of

Λ2z2 − Λ2z + u− Λ2 = 0. (8.5.8)
11The author thanks Kazuya Yonekura for pointing this out.
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The branch points collide when u = Λ2 or u = (5/4)Λ2:

• When u = (5/4)Λ2, two u-dependent branch points meet at z = 1/2. The local physics
there is just U(1) gauge theory with one charged hypermultiplet.

• When u = Λ2, one branch point moves to z = 0 and the other branch point collides with the
u-independent branch point at z = 1. From the general analysis we know that there are five
singularities on the u-plane, therefore this point should count as four colliding singularities,
see Fig. 8.12.

The monodromy at infinity is

M∞ =

(
−1 1

0 −1

)
. (8.5.9)

Denoting the monodromies around u = Λ2, u = (5/4)Λ2 byM+ andM−, we have

M∞ = M+M−, M+ =

(
1 0

−4 1

)
, M− =

(
−1 1

−4 3

)
∼
(

1 −1

0 1

)
. (8.5.10)

By going to the S-dual frame at u = Λ2, we find that the running of the dual coupling is

τ(E) = +
4

2πi
logE (8.5.11)

where the scale is set by E ∼ (u− Λ2). Comparing with (8.3.13), the low energy physics can be
guessed to be a U(1) gauge theory, coupled either (i) to just one charge-2 hypermultiplets or (ii) to
four charge-1 hypermultiplets.

Recall that the classical theory has a Higgs branch. The choice (i) does not have a Higgs branch
at u = Λ2. It does not have one at u = (5/4)Λ2 either. The Higgs branch should be preserved by
the quantum correction, and thus this choice is ruled out.

The choice (ii) does have a Higgs branch at u = Λ2. We have four charge-1 hypermultiplets
coupled to the U(1) gauge multiplet. Then the complex dimension of the Higgs branch is 2 · 4 −
2 · 1 = 6. This is acted on by the SU(4) flavor symmetry rotating four hypermultiplets.

Classically, we have three hypermultiplets in the doublet of SU(2). Then the complex dimen-
sion of the Higgs branch is 4 · 3 − 2 · 3 = 6. This agrees with the computation above. Recall
that three hypermultiplets in the doublet of SU(2) count as six half-hypermultiplets of SU(2) dou-
blet, with SO(6) flavor symmetry. As SO(6) ' SU(4), we see that the symmetry of the Higgs
branch also agrees. We should recall that the monopole in this theory transforms as the spinor rep-
resentation of the SO(2Nf ) flavor symmetry. In our case the spinor of SO(6) is the fundamental
four-dimensional representation of SU(4). This is also consistent with our choice that at u = Λ2

there are four charged hypermultiplets electrically coupled to the dual U(1). By a more detailed
analysis we can check that the Higgs branches agree as hyperkähler manifolds.
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~ +Λ0
2~ −Λ0
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~ µ2
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~ µ1
2

~ µ3
2

~ µ4
2

Figure 9.1: The u-plane of Nf = 4 theory

9 SU(2) theory with 4 flavors and Gaiotto’s duality
In this section we start with the analysis of SU(2) gauge theory with Nf = 4 flavors. We will see
that it can naturally generalized to the analysis of a whole zoo of theories with the gauge group of
the form SU(2)n. The discussions basically follow the first half of the seminal paper [8].

9.1 The curve as λ2 = φ2(z)

Let us consider SU(2) gauge theory with four doublet hypermultiplets with masses µ1,2,3,4. In the
very high energy region, the one-loop running is given by (8.1.6), which is just

τ(a) = τUV . (9.1.1)

From this we learn a distinguishing feature of the Nf = 4 theory compared to the theories with
less flavors: it has a dimensionless parameter τUV . When Nf < 4, the bare coupling τUV was
combined with the scale ΛUV to form the dynamical scale Λ, which just set the overall scale of the
theory.

Now suppose the gauge coupling is small at the ultraviolet. Equivalently, suppose τUV has a
large positive imaginary part. Further suppose µ1,2,3,4 are all of the same order, ∼ µ. Then the
coupling at the energy scale ∼ µ is small, and the semiclassical analysis is OK. We see that when
a ∼ ±µi, or equivalently when u ∼ µi

2, the low-energy limit is described by U(1) gauge theory
with one charged hyper. Far below this scale, the theory is effectively the pure SU(2) theory, which
has the monopole point and the dyon point. Then the u-plane schematically has the structure shown
in Fig. 9.1.

When µ1,2,3,4 = 0, we can consider the R-symmetry with the charge assignment

R = 0 A

1 λ λ

2 Φ

,
R = −1 ψI

0 qI
. (9.1.2)

This is not anomalous. Then the only sensible point to have a singularity in the u-plane is at the
origin, where six singularities in the generic case collide, see Fig. 9.2.
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u

M∞

u=0

Figure 9.2: The u-plane of massless Nf = 4 theory

The coupling is given by τUV everywhere,

a =
√
u, aD = τUV aD. (9.1.3)

Therefore the monodromyM∞ at infinity is just

M∞ =

(
−1 0

0 −1

)
. (9.1.4)

It looks relatively uninteresting. We will see however that there is a lot of interesting physics going
on when we study the dependence on τUV .

Figure 9.3: The curve of Nf = 4 theory

The curve of the Nf = 4 theory is given by

Σ : f
(x̃− µ̃1)(x̃− µ̃2)

z̃
+ f ′ · (x̃− µ̃3)(x̃− µ̃4)z̃ = x̃2 − u (9.1.5)

where f and f ′ are complex numbers, whose ratio will eventually be related to τUV . The differential
is λ̃ = x̃dz̃/z̃. The reason for additional tildes will become clear later.

The structure of the function x̃(z̃) over the ultraviolet curveC which is a sphere with coordinate
z is shown in Fig. 9.3. The function x̃(z̃) always diverges at z̃ = 0,∞, and at the two solutions
z̃ = c1,2(f) of f/z̃ + f ′z̃ = 1. These points do not move when u is changed, and shown in red
blobs in the figure. There are four additional branch points where x̃(z) is finite, shown in black
blobs.

Let us rewrite the curve in a more illuminating way. We first rescale the coordinate z to set
f ′ = 1. We then collect terms with the same power of x̃:

(1− z̃ − f

z̃
)x̃2 −♥x̃−♥′ = 0 (9.1.6)
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where ♥,♥′ are some complicated expressions, which readers should fill in. We divide the whole
expression by (1− z̃ − f/z̃), and find

x̃2 −♣x̃−♣′ = 0. (9.1.7)

We note that ♣ and ♣′ have poles at the two solutions c1,2(f) of 1 − z − f/z = 0. Here it is
instructive to spell out ♣, which is given by

♣ = −f · (µ̃1 + µ̃2)/z̃ + (µ̃3 + µ̃4)z̃

1− z̃ − f/z̃
. (9.1.8)

Defining x = x̃−♣/2, we have
x2 −♦ = 0 (9.1.9)

where♦ now has double poles at c1,2(f) due to the completion of the square. Instead of λ̃ = x̃dz̃/z̃

we will use λ = xdz̃/z̃ henceforth. Note that

λ̃− λ =
♣
2

dz̃

z̃
= −1

2

f · (µ̃1 + µ̃2)/z̃ + (µ̃3 + µ̃4)z̃

1− z̃ − f/z̃
dz̃

z̃
. (9.1.10)

This is independent of the Coulomb branch modulus u, and its residues are all linear combinations
of µ̃i. We encountered in (6.4.8) a similar shift of λ by a one-form which is independent of u and
whose residues are given by the mass terms only. Such shift only amounts to a re-definition of the
flavor charge and the mass terms, and does not affect the physics, as discussed there.

z=0 z=∞

z=c1(f) z=c2(f)

z=0 z=∞

z=q z=1

Figure 9.4: A step in the derivation of the curve in the Gaiotto form

Now we define the coordinate z = z̃/c1(f) so that the double poles are at z = q and 1 for
|q| < 1, see Fig. 9.4. The final form of the curve is then:

λ2 − φ2(z) = 0, φ2(z) =
P (z)

(z − 1)2(z − q)2

dz2

z2
(9.1.11)

where P (z) is a quartic polynomial, as can be seen by re-following the change of variables starting
from (9.1.5). The explicit expression ofP (z) in terms of u, f and µ̃i is not very important, however.

The quadratic differential φ2(z) has double poles at z = 0, q, 1,∞. To see this for z =∞, set
w = 1/z. Then dz2/z2 = dw2/w2. This has poles of order two when w = 0, i.e. when z = ∞.
We identify this dimensionless parameter q as a function of the UV coupling τUV .
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9.2 Identification of parameters
9.2.1 Coupling constant

0 ∞

q 1B

A

Figure 9.5: In SU(2) Nf = 4, q is related to the UV coupling

Let us first see concretely how q and τUV are related. This can be done by computing a and aD
assuming |q| � 1. As always, we put the A-cycle at |z| = c, where |q| � c� 1. Then we easily
have

a =
1

2πi

∮
A

x
dz

z
∼
√
u. (9.2.1)

The branch points of λ are near 1 and q anyway, and therefore

aD =
1

2πi

∮
B

x
dz

z
∼ 1

2πi
2

∫ q

1

a
dz

z
=

2a

2πi
log q. (9.2.2)

Then
τU(1) =

∂aD
∂a
' 2

2πi
log q, (9.2.3)

or equivalently
q ∼ e2πiτUV (9.2.4)

in the limit of weak coupling; note our convention that τU(1) ∼ 2τUV . This relation is often written
as

qC = e2πiτUV,C (9.2.5)

with an equality. This should be regarded as a nonperturbative definition of the renormalization
and regularization scheme of τUV . Here we added a subscript C to both q and τUV , in order to
emphasize that the coupling qC is given by the data on the ultraviolet curve C.

Another common nonperturbative definition of the UV coupling constant is to use the low-
energy U(1) coupling τU(1) in the limit when the Coulomb vev is very large |u| � |µ̃i|:

τUV,Σ :=
1

2
lim
|u|→∞

τU(1) (9.2.6)

This should isolate the SU(2) coupling whose running is stopped at a very large scale given by the
Coulomb vev, and can be read off from the complex structure of the Seiberg-Witten curve Σ. That
is why we used the subscript Σ here. Let us also define

qΣ = e2πiτUV,Σ . (9.2.7)
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This is also a perfectly good scheme, related to the one in (9.2.5) via a finite renormalization.
To explicitly determine the finite renormalization, we note that the Seiberg-Witten curve Σ in

the |u| → ∞ limit is just the torus which is a double-cover of C branched at z = 0, 1, qC ,∞. Then
τU(1) in (9.2.6) is given by the complex structure of this Σ. From a basic result in the theory of
elliptic functions, we find

qC = λ(τU(1)) =
θ2(q2

Σ)4

θ3(q2
Σ)4

= 16qΣ − 128q2
Σ + 704q3

Σ − 3072q4
Σ + · · · . (9.2.8)

This means that τUV,C and τUV,Σ are related by a constant shift of its imaginary part plus instanton
corrections.

For more extensive discussions on the non-perturbative finite renormalization, see e.g. Sec.
3.4 and Sec. 3.5 of [18].

9.2.2 Mass parameters

Next, let us studymass parameters. Recall that λ hasmass dimension 1, as its integral give themass
of BPS particles. This means that the five coefficients of the quartic polynomial P (z) are of mass
dimension two. We can identify these five coefficients with some combinations of five parameters
µi=1,2,3,4 and u. The physical mass parameters are the residues at the poles of λ. Fixing µi fixes
four linear combinations of the coefficients of P (z). The sole linear combination which does not
change the coefficients of the double poles at z = 0, q, 1,∞ can be identified with the parameter
u. Explicitly, we can write

φ2(z) =
P0(z)

(z − q)2(z − 1)2

dz2

z2
+

u

(z − 1)(z − q)
dz2

z
(9.2.9)

where P0(z) is independent of u.
Let us now go back to the original curve and study the poles of λ. We can compute them from

(9.1.5) rather easily when the system is weakly coupled, |q| � 1. The residues are∼ µ̃1,2 at z = 0

and ∼ µ̃3,4 at z = ∞. When we went from x̃ to x, we subtracted ♣/2 from x. We see that the
residues are given by

±µ1 − µ2

2
at z = 0, ±µ3 − µ4

2
at z =∞,

±µ1 + µ2

2
at z = q, ±µ3 + µ4

2
at z = 1

(9.2.10)

where
µi = µ̃i +O(q). (9.2.11)

The variables µ̃i enter rather naturally the Seiberg-Witten curve we guessed in Sec. 6.4.4, whereas
the variables µi enter the BPS mass formula. We see that they are related by a finite renormaliza-
tion.
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q=

Figure 9.6: Weakly-coupled limit of SU(2) Nf = 4

To understand the combinations in (9.2.10) better, it is helpful to consider the N=1 superpo-
tential. With four doublet hypermultiplets, we have

W =
∑
i

(QiΦQ̃
i + µiQiQ̃

i). (9.2.12)

We combine (Qi, Q̃
i) for i = 1, 2, 3, 4 to qI with I = 1, . . . , 8. Then the same term becomes

W ∝ qaI q
b
JΦabδ

IJ + qaI q
b
Jεabµ

IJ (9.2.13)

where µIJ is a constant matrix with SO(8) antisymmetric index:

µIJ =

(
−µ1

µ1

)
⊕
(

−µ2

µ2

)
⊕
(

−µ3

µ3

)
⊕
(

−µ4

µ4

)
(9.2.14)

Under the decomposition

SO(8) ⊃ SO(4)× SO(4) ' SU(2)A × SU(2)B × SU(2)C × SU(2)D, (9.2.15)

the entries of SO(8) antisymmetric matrix (9.2.14) decomposes to

SU(2)A SU(2)B SU(2)C SU(3)D
diag(±µ1−µ2

2
) diag(±µ1+µ2

2
) diag(±µ3+µ4

2
) diag(±µ3−µ4

2
)

(9.2.16)

which are exactly the residues we found in (9.2.10) at z = 0, q, 1 and = ∞, respectively. We can
regard then that the singularity at z = 0 carries the SU(2)A symmetry, and that the residue of λ
there is the mass parameter associated to this SU(2)A symmetry; similarly for SU(2)B at z = q,
SU(2)C at z = 1, and SU(2)D at z =∞.

We call these structures the punctures. From the 6d point of view, we consider a puncture at
z = 0 as a four-dimensional object extending along the Minkowski space R3,1, which somehow
carries an SU(2) flavor symmetry on it. We will see various other types of punctures below. To
distinguish this one from them, we will call this a regular SU(2) puncture.

9.3 Weak-coupling limit and trifundamentals
Let us now take the limit q → 0 to decouple the gauge SU(2), see Fig. 9.6. On the left hand side,
we have a sphere parameterized by z, with four points at z = 0, q, 1 and∞. On the right hand side,
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we have two spheres, parameterized by z′ and z′′. We put the points A, B, G on the first sphere,
at z′ = 0, 1 and∞, and then the points G′, C, D on the second sphere, at z′′ = 0, 1 and∞. Then
we glue the neighborhoods of G and G′ by declaring

z′z′′ = q. (9.3.1)

Defining z = z′′, we see that four points A,B,C,D are exactly as in the first description. In this
limit, around the tube connectingG andG′, λ ' ±adz/z. Then in the sphere containingA,B and
G, we have three singularities, with residues of λ given by

± µ1 + µ2

2
, ±µ1 − µ2

2
, ±a, (9.3.2)

each corresponding to the symmetry SU(2)A, SU(2)B and SU(2)G, respectively. Here SU(2)G
was originally the gauge symmetry.

A

B

C

Figure 9.7: The ultraviolet curve of the trifundamental, together with the BPS paths representing
hypermultiplets

We were talking about theNf = 4 theory. Then each of the sphere with three punctures should
be associated to the Nf = 2 hypermultiplet system, see Fig. 9.7; note that this is not coupled
to any gauge group. Let us recall the structure of the hypermultiplets again. We start from two
hypermultiplets (Qa

i , Q̃
i
a) in the doublet of SU(2), i = 1, 2 and a = 1, 2. We combine them to qaI ,

a = 1, 2 and I = 1, . . . , 4, making SU(2) × SO(4) symmetry manifest. We then decompose the
SO(4) index I into the pair (α, u) where α = 1, 2 and u = 1, 2: we have the trifundamental qaαu.
The mass term for this hypermultiplet is

µabqaαuqbβvε
αβεuv + µ̃αβqaαuqbβvε

abεuv + µ̂uvqaαuqbβvε
abεαβ, (9.3.3)

where

µab = a diag(1,−1), µ̃αβ =
µ1 − µ2

2
diag(1,−1), µ̂αβ =

µ1 + µ2

2
diag(1,−1). (9.3.4)

Then (a, b) are the indices for SU(2)G, (α, β) for SU(2)A, and (u, v) for SU(2)B. The physical
masses of these fields are given by

± a± µ1 − µ2

2
± µ1 + µ2

2
= {±a± µ1,±a± µ2}. (9.3.5)
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Figure 9.8: A strongly-coupled limit of SU(2), Nf = 4

which are the masses for the two doublets of SU(2) with bare masses µ1,2.
The curve of the system, shown in Fig. 9.7 is given by

λ2 − φ(z) = 0, (9.3.6)

where φ(z) has the asymptotic behavior

φ(z) ∼ µ̃2

z2
dz2, ∼ µ̂2

(z − 1)2
dz2, ∼ µ2

w2
dw2 (9.3.7)

at z = 0, z = 1, z =∞ respectively. Here w = 1/z as always, and we set µ = a, µ̃ = (µ1−µ2)/2

and µ̂ = (µ1 +µ2)/2. Note that these asymptotic conditions uniquely fix the quadratic differential
φ(z) to be

φ(z) =
µ2z2 + (µ̂2 − µ̃2 − µ2)z + µ̃2

z2(z − 1)2
dz2 (9.3.8)

As was discussed before, the BPS particles of this system can be found by solving the BPS equation
(6.1.6)

Arg
λ

ds
= eiθ (9.3.9)

for a given θ. As φ(z) given above has two branch points only, the solution to the BPS equation
should start from one and end on the other. A computer simulation shows that there are always four
and only four such solutions, corresponding to the hypermultiplets with masses given in (9.3.5).

9.4 Strong-coupling limit
So far we mainly considered the weak coupling limit q → 0. Instead, consider sending q →∞, as
shown in Fig. 9.8. We immediately find that the strong coupling limit q →∞ is the weak coupling
limit q′ = 1/q → 0 of a similarly-looking SU(2) gauge theory with four flavors. Note however
that the role of the singularities B and C are exchanged.
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Originally, we had four flavors with masses

± µ1, ±µ2, ±µ3, ±µ4. (9.4.1)

The residues of λ at the punctures were then

± µA, ±µB, ±µC , ±µD (9.4.2)

with
µA =

µ1 − µ2

2
, µB =

µ1 + µ2

2
, µC =

µ3 + µ4

2
, µD =

µ3 − µ4

2
. (9.4.3)

The original masses µi are

µ1 = µA + µB, µ2 = −µA + µB, µ3 = µC + µD, µ4 = µC − µD. (9.4.4)

Now the singularities B and C are exchanged. Then, the masses µ′i of the four hypermultiplets of
the theory with the coupling q′ = 1/q are instead given by

µ′1 = µA + µC =
µ1 − µ2

2
+
µ3 + µ4

2
, (9.4.5)

µ′2 = −µA + µC = −µ1 − µ2

2
+
µ3 + µ4

2
, (9.4.6)

µ′3 = µB + µD =
µ1 + µ2

2
+
µ3 − µ4

2
, (9.4.7)

µ′4 = µB − µD =
µ1 + µ2

2
− µ3 − µ4

2
. (9.4.8)

The original masses (9.4.1) can be thought of as the weights of the vector representation of SO(8).
The dual masses ±µ′i are then the weights of the spinor representation of SO(8).

A

B C

D

A

C B

D

Figure 9.9: Monopoles and quarks are exchanged

The dual quarks, therefore, transform in the spinor representation of the flavor SO(8) symmetry.
We can identify these dual quarks as the monopoles in the original description. This can be seen
by slowly changing the value of q, following how various paths on the sphere change, see Fig. 9.9.
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Originally, the path connecting branch points close to the singularity B and D was a monopole.
Recall also that the semiclassical quantization of the monopole gave us a multiplet in the spinor
representation of the flavor symmetry SO(2Nf ) as we saw in Sec. 1.3. In the limit q →∞, these
monopoles become excitations whose paths are totally contained in the sphere on the right. They
are now the quark hypermultiplets in the trifundamental, as shown in Fig. 9.7.

A

B C

D

A

C B

D

Figure 9.10: W bosons also come from monopoles.

The same manipulation also shows that the SU(2) W-bosons in the dual description came from
monopoles in the original description, see Fig. 9.10. Therefore it is important to keep in mind that
the dual SU(2) gauge multiplet is not the same physical excitation as the original SU(2) gauge
multiplet. Note also that this monopole has twice the magnetic charge of the monopole which
became the dual quarks.

0 ∞

q 1
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B C

D

0 ∞

1
A

C B

D

q'=1/q

0 ∞

1
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D C

B

q'=1−q

V

S C

Figure 9.11: Triality

There is also a limit where the singularity B approaches the singularity C, q → 1. This is
again equivalent to a weakly-coupled SU(2) gauge theory with four flavors, but with the role of
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the singularities are permuted, see Fig. 9.11. The four mass parameters of the hypermultiplets are
now given by

µ′′1 = µA + µD =
µ1 − µ2

2
+
µ3 − µ4

2
, (9.4.9)

µ′′2 = −µA + µD = −µ1 − µ2

2
+
µ3 − µ4

2
, (9.4.10)

µ′′3 = µC + µB =
µ3 + µ4

2
+
µ1 + µ2

2
, (9.4.11)

µ′′4 = µC − µB =
µ3 + µ4

2
− µ1 − µ2

2
. (9.4.12)

These are the weights of the conjugate spinor representation of SO(8).
Therefore, we learned that the strong-weak duality of the SU(2) gauge theory with four flavors,

q ↔ q′ = 1/q ↔ q′′ = 1− q (9.4.13)

are accompanied by the exchange of the representations of the SO(8) flavor symmetry,

V

S C

(9.4.14)

where V , S, C are eight dimensional irreducible representations (vector, spinor, conjugate spinor)
of SO(8). These exchanges of three irreducible eight dimensional representations are induced by
the outer automorphism, and are known as the triality of the group SO(8), whose Dynkin diagram
is also shown in Fig. 9.11. This triality was originally found in [3]. The exposition in this subsection
followed the one given in [8].

The Higgs branch of this system can be studied in any of these descriptions. Originally we
have hypermultiplets qaI , where a = 1, 2 and I = 1, . . . , 8. The gauge invariant combination is

M[IJ ] = qaI q
b
Jεab. (9.4.15)

In the dual, we have hypermultiplets q̃ã
Ĩ
, where ã = 1, 2 are for dual SU(2) and Ĩ = 1, . . . , 8 are

for the spinor representation of the SO(8) flavor symmetry. The basic gauge invariant is then

M̃[ĨJ̃ ] = q̃ã
Ĩ
q̃b̃
J̃
εãb̃. (9.4.16)

Both M[IJ ] and M̃[ĨJ̃ ] are in the adjoint representation of SO(8), and can be naturally identified
using the outer automorphism of SO(8). We can check that the constraints satisfied byM[IJ ] and
M̃[ĨJ̃ ] are invariant under the outer automorphism. This shows that the Higgs branch are the same
as complex spaces.
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Figure 9.12: Trivalent diagrams and corresponding ultraviolet curves

9.5 Generalization
9.5.1 Trivalent diagrams

The trifundamental hypermultiplet consisting of N=1 chiral multiplets qaαu for a, α, u = 1, 2

played the central role in the analysis so far. Let us introduce a shorthand notation for it, by rep-
resenting it by a trivalent vertex with labels A, B, C as in Fig. 9.12, signifying the symmetries
SU(2)A, SU(2)B, SU(2)C , acting on the indices a, α, u respectively.

The ultraviolet curve for this system is given by a sphere with three puncturesA, B, C, and the
Seiberg-Witten curve is given by

Σ : λ2 − φ(z) = 0 (9.5.1)

where φ(z) is given by the condition that the coefficients of the double poles are given by µ2
A, µ2

B,
µ2
C at each of the punctures A,B,C, as in (9.3.7).
Now, the SU(2) theory with four flavors can be obtained by taking two copies of trifundamen-

tals, and coupling an SU(2) gauge multiplet to them. We denote it by taking two trivalent vertices,
and connecting them by a line, as shown in Fig. 9.12. We put the exponentiated coupling q on the
connecting line.

Starting with this trivalent diagram, we can easily write down the Lagrangian of the theory.
The free parameters in the theory are the mass parameters µA,B,C,D and the UV coupling q. The
ultraviolet curve of this system is given by a sphere with four punctures A, B, C, D, and the
Seiberg-Witten curve is given by

Σ : λ2 − φ(z) = 0 (9.5.2)

where φ(z) is given by the condition that its residues are given by µ2
X at each of the punctures

X = A,B,C,D as in (9.2.10). The triality of the SU(2) theory with four flavors, shown already
in Fig. 9.11, can be depicted in terms of the trivalent diagrams as in Fig. 9.13.

This way, we can regard the trivalent diagram as a shorthand to represent the UV Lagrangian.
The Seiberg-Witten solution to this given UV Lagrangian theory is given just by replacing each
trivalent vertex with a three punctured sphere, and a connecting line with a connecting tube. This
is a surprisingly concise method to obtain the Seiberg-Witten solutions to N=2 gauge theories.
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Figure 9.14: SU(2) with adjoint plus one free hyper

9.5.2 Example: torus with one puncture

Let us see a few examples. First, take one trivalent vertex, and connect two out of the three lines by
an edge, see Fig. 9.14. We start from a trifundamental described by N=1 chiral multiplets qaαu,
but we couple the same SU(2) gauge multiplet to the index a and α. Then the combination (a, α)

is in the tensor product of two spin-1/2 representations. Therefore we can split it into a triplet and
a singlet, with additional index u = 1, 2:

qaαu → q′iu, q
′′
u, (9.5.3)

where i = 1, 2, 3 is the index for the triplet of SU(2).
In total, we just have one full hypermultiplet in the triplet, and another full hypermultiplet in

the singlet which is completely decoupled. Therefore this is essentially the N=2∗ SU(2) theory,
or equivalently theN=4 SU(2) theory with mass deformation to the hypermultiplet in the adjoint
representation. The adjoint mass µ is associated to the remaining one SU(2) flavor symmetry.

Its Seiberg-Witten solution is given by connecting two punctures of a three-punctured sphere
by a tube. As shown in Fig. 9.14, the ultraviolet curve is a torus with one puncture. The Seiberg-
Witten curve is then

λ2 − φ(z) = 0 (9.5.4)

where z is now a coordinate of the torus, which we take to be the complex plane with the identifi-
cation z ∼ z + 1 ∼ z + τ . As the origin of the coordinate is arbitrary, we put the puncture at the
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origin. The φ(z) is given by the condition that it has a double pole with a given strength at z = 0.
This uniquely fixes the form of φ(z) to be

φ(z) = (µ2℘(z; τ) + u)dz2 (9.5.5)

where ℘ is the Weierstraß function, and u is the Coulomb branch vev u = 〈tr Φ2〉/2.
Now it is clear that the theory at the coupling given by τ and the same theory at the coupling

given by τ ′ = −1/τ are equivalent after exchanging the monopoles and the adjoint quarks. The
space of the coupling can be identified with the moduli spaceM1 of the tori, i.e genus-1 Riemann
surfaces, which is given by

M1 = H/ SL(2,Z) (9.5.6)

where H is the upper half plane where τ takes the value in, and SL(2,Z) is the modular group
exchanging the edges of the torus. The duality group can be identified with the modular group.

9.5.3 Example: sphere with five punctures

0
A

B C

q q'A

B

C

D

E

∞

1

D

E

qq' q'

Figure 9.15: An SU(2)2 theory and its curve

As another example, take three trivalent vertices and connect them as shown in Fig. 9.15. The
leftmost trivalent vertex counts as Nf = 2 flavors for SU(2)1, and the rightmost one counts as
Nf = 2 flavors for SU(2)2. In addition, we have a hypermultiplet coming from the central trivalent
vertex, qaiu where a is for SU(2)1 and i is for SU(2)2. The remaining index u = 1, 2 is an index
for the flavor symmetry. In older literature it was more customary to denote this hypermultiplet
charged under SU(2)1 × SU(2)2 using N=1 chiral multiplets (Qi

a, Q̃
a
i ) which are

Qi
a = qaju=1ε

ij, Q̃a
i = qbiu=2ε

ab. (9.5.7)

This is usually called the bifundamental multiplet charged under SU(2)1 × SU(2)2.
The Seiberg-Witten solution to this theory is easily found, as shown in Fig. 9.15. We start

from three spheres, described by complex coordinates z1, z2, and z3. The punctures A,B are at
z1 = 0, 1; the puncture C is at z2 = 1; the punctures D,E are at z3 = 1,∞, respectively. To
connect z1 = ∞ and z2 = 0, we introduce w1 = 1/z1 and require the relation w1z2 = q′. This
simply means that we have via z1 = q′z2. Similarly, by connecting z2 = ∞ and z3 = 0, we have
z2 = qz3. Now we introduce z = z3 to describe the coordinate on the resulting sphere with five
punctures. Then the punctures are at z = 0, qq′, q, 1 and∞, each representing an SU(2) flavor
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symmetry which we call SU(2)A,B,C,D,E respectively. The gauge couplings of SU(2)1 × SU(2)2

can be identified with q and q′.
Let us denote the mass parameters associated to the flavor symmetries by µA,B,C,D,E . The

Seiberg-Witten curve is
λ2 − φ(z) = 0 (9.5.8)

where φ(z) needs to satisfy the asymptotic behavior

φ(z) ∼ µ2
X

z2
X

dz2
X (9.5.9)

where zX for X = A,B,C,D,E is a local coordinate on the ultraviolet curve such that the punc-
ture X is at zX = 0. From the conditions at A, B, C, D, we find that φ is given by

φ(z) =
P (z)

z2(z − 1)2(z − q)2(z − qq′)2
dz2 (9.5.10)

where P (z) is a polynomial. To impose the condition at E, we go to the coordinate w = 1/z.
For φ(z) to behave as ∼ dw2/w2, P (z) can have terms of up to z6. We see that φ(z) has seven
coefficients. Five combinations are mass parameters, and two linear combinations that do not
shift the coefficients of the double poles are the Coulomb branch parameters u = 〈tr Φ2〉/2 and
u′ = 〈tr Φ′2〉/2 of two gauge multiplets SU(2)1,2. From the Seiberg-Witten solution, we see that
this theory has strong-weak coupling dualities where five flavor symmetry groups SU(2)A,B,C,D,E
can be arbitrarily permuted, with an appropriate change of the couplings (q, q′) of the two gauge
groups. This extended duality was first found in [56].

9.5.4 Example: a genus-two surface

As the third example, let us take two trivalent vertices and connect them with three edges. There
are two topologically distinct ways to do this, as shown on the left hand side of Fig. 9.16.

The upper theory is an SU(2)l×SU(2)m×SU(2)r gauge theory. There are half-hypermultiplets
which are in

3⊗ 2⊗ 1, 1⊗ 2⊗ 3 (9.5.11)

and one full hypermultiplet charged under SU(2)m. Note that the trivalent-graph construction
does not allow us to consider theories with non-zero mass term for this last full hypermultiplet.
The lower theory is an SU(2)1×SU(2)2×SU(2)3 theory with two half-hypermultiplets in the tri-
fundamental representation. Again, the trivalent-graph construction does not allow us to introduce
non-zero mass term for this full hypermultiplet in the trifundamental.

The Seiberg-Witten solution is again easily obtained. To obtain the ultraviolet curve, we replace
two trivalent vertices with three-punctured spheres, and connect pairs of punctures with tubes. We
see that both are given by a smooth genus-2 surface. The Seiberg-Witten curve is a further double
cover given by

λ2 − φ(z) = 0 (9.5.12)
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Figure 9.16: Two SU(2)3 theories and their curves

where z is a complex coordinate of the genus-2 surface, and φ(z) is a smooth quadratic differential
on it. The space of quadratic differentials on a fixed genus-2 surface is complex three dimensional,
which we identify with the Coulomb branch vevs ui = 〈tr Φ2

i 〉/2.
Now it is clear that we can continuously deform the upper theory to the lower theory by tuning

the gauge couplings. The non-perturbative space of couplings can be identified with the moduli
spaceM2 of genus-2 Riemann surfaces, which is complex three dimensional. The duality group
is identified with the mapping class group G2 of the genus-2 surface, andM2 = T2/G2 where T2

is the Teichmüller space of the genus-2 Riemann surface, compare the genus-1 case (9.5.6).
Now a somewhat surprising mathematical fact is that T2 is equivalent to three copies of the

upper half plane H3 in the smooth sense, but not in the holomorphic sense12:

T2 ' H3 in the smooth sense,
T2 6' H3 in the holomorphic sense.

(9.5.13)

Naive perturbative analysis tells us that the space of the couplings of SU(2)3 is just three copies of
the upper half plane:

(τ1, τ2, τ3) ∈ H3 (9.5.14)
including the complex structure. Therefore, we find that the non-perturbative corrections can make
a rather drastic change in the complex structure of the parameter space of supersymmetric theories.

9.6 Theories with less flavors revisited
We found that writing the Seiberg-Witten curve of the Nf = 4 theory in the form

λ2 − φ(z) = 0 (9.6.1)
12The author thanks Jacques Distler for very illuminating discussions on this point.
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helps greatly in understanding the structure of the duality. Let us apply this idea to the curves for
theories with less number of flavors, Nf < 4.

9.6.1 Rewriting of the curves

First, consider the curve of the pure theory,

Λ2

z
+ Λ2z = x2 − u, with λ = x

dz

z
. (9.6.2)

In terms of λ, this can be written as

λ2 − φ(z) = 0, φ(z) = (
Λ2

z
+ u+ Λ2z)

dz2

z2
. (9.6.3)

We see that the quadratic differential φ(z) has singularities worse than those in theNf = 4 theory:
they now have order three poles at z = 0 and =∞. We can depict the situation of the curve as in
the upper row of Fig. 9.17. There, the roman numeral III shows that φ(z) has a third order pole at
the puncture. The singularities of φ(z) with higher poles form a new class of punctures, which we
call wild SU(2) punctures.

As an extension of the trivalent diagram encoding the UVLagrangian, let us introduce the nota-
tion that an edge stands for anN=2 SU(2) vector multiplet, and the black square at one end means
that we do not introduce any hypermultiplet. Then the translation from the diagram representing
the UV Lagrangian to the ultraviolet curve can be simply seen, as also shown in Fig. 9.17.

III III

nothing nothingSU(2) gauge

IIIIV

nothingSU(2) gauge

Λ

Λ z=0 z=∞

z=∞z=0

III

nothingone flavor SU(2) gauge

IV

one flavor

III

nothingnothing SU(2) gauge

III =

=

Figure 9.17: SU(2) theories with less flavors

Second, consider the curve of the Nf = 1 theory,

2Λ(x̃− µ)

z
+ Λ2z = x̃2 − u, with λ̃ = x̃

dz

z
. (9.6.4)
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Figure 9.18: An SU(2)4 theory and its curve

This can be written as

λ2 − φ(z) = 0, φ(z) = (
Λ2

z2
− 2Λµ

z
+ u+ Λ2z)

dz2

z2
(9.6.5)

where λ = xdz/z is shifted from λ̃. We find that the singularity at z = 0 changes to a pole of order
4. The Lagrangian and its Seiberg-Witten solution can be concisely summarized as in the lower
row of Fig. 9.17. The edge stands for an SU(2) gauge group. A black square on one side means
that we do not have any hypermultiplet there. A blue blob on another side means that we introduce
one hypermultiplet in the doublet. The solution is obtained by associating to a black square by a
sphere with a third order pole, denoted by III, and by similarly associating to a blue blob a sphere
with a fourth order pole, denoted by IV, and finally connecting them by a tube. Note that a fourth
order pole has its own SU(2) flavor symmetry and an associated mass parameter.

Summarizing, we consider a sphere with a regular puncture and a wild puncture of pole order
III as an empty theory, and a sphere with a regular puncture and a wild puncture of pole order IV
as a theory of decoupled doublet hypermultiplet, as shown in Fig. 9.17. Connecting the regular
punctures with a tube, we find the ultraviolet curves of less flavors.

9.6.2 Generalization

This generalization allows us to find the Seiberg-Witten solutions to a huge class ofN=2 theories
whose gauge group is a product of copies of SU(2). For example, consider a UVLagrangian theory
with gauge group SU(2)4 described by the left hand side of Fig. 9.18. In words, we first take three
copies of bifundamental hypermultiplets,

Qaiu, Q′usα, Q′′αxm. (9.6.6)

We showed in the figure how the indices are assigned to the edges of the trivalent diagram. We
emphasized the edges corresponding to the dynamical gauge groups by making them thicker. In
words, the indices a, i,m are for SU(2)A,B,C flavor symmetries. An SU(2) gauge multiplet couples
to the index u, with exponentiated coupling constant q, another SU(2) gauge multiplet to the index
α, with exponentiated coupling constant q′. We introduce another SU(2)1 gauge multiplet which
couples to the index s corresponding to the black square, and finally another SU(2)2 gaugemultiplet
which couples to the index x, with additional Nf = 1 hypermultiplet (Q′′′′x, Q̃

′′′′x). We can write
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down the Lagrangian if required, but now we see how concise the trivalent diagram summarizes
its structure.

Its Seiberg-Witten solution can be immediately obtained. It is given by

λ2 − φ(z) = 0, (9.6.7)

where φ(z) has three order two poles, one order three pole and finally an order four pole. Putting
them at z = 0, 1, z0, z1 and at∞ respectively, we see that φ(z) has the form

φ(z) =
P (z)

z2(z − 1)2(z − z0)2(z − z1)3
dz2 (9.6.8)

where P (z) is a polynomial. To have an order four pole at w = 1/z = 0, P (z) is seen to be
a degree-9 polynomial. Among the ten coefficients, three are mass parameters for SU(2)A,B,C
flavor symmetry, one is the scale of SU(2)1 for the black blob, another is the scale of SU(2)2, and
another for the mass parameter of the additional Nf = 1 flavor for SU(2)2. The four remaining
linear combinations can be identified with the four Coulomb branch parameters ui = 〈tr Φ2

i /2〉.
This is not a conformal theory: there are two dynamical scales Λ and Λ′. Still, we immediately see
from the structure of the ultraviolet curve that there are S-dualities exchanging the three regular
punctures at A, B and C.

10 Argyres-Douglas CFTs
In this section, we come back to the observation made at the end of Sec. 5.2 that there is a very
singular point of the Coulomb branch of theNf = 1 theory. We study the physics at that point and
its generalizations.

10.1 Nf = 1 theory and the simplest Argyres-Douglas CFT
Let us come back to the curve of SU(2) gauge theory with Nf = 1 flavor again:

Σ :
2Λ(x− µ)

z
+ Λ2z = x2 − u. (10.1.1)

With a generic choice of Λ and µ, there are three singularities on the u-plane. As we saw at the
end of Sec. 5.2, two singularities collide at u = 3Λ2 when we set µ = −3

2
Λ, see Fig. 10.1.

u

~ +Λ2~ −Λ2 z=0 z=∞
z=−1

MAD1

Figure 10.1: Argyres-Douglas point of Nf = 1 theory
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When u ∼ 3Λ2, three branch points of x(z) collide at z = −1. Then, both the A-cycle and the
B-cycle defining a and aD can be taken to be small loops around z = 0. This guarantees that both
a and aD are small. Therefore we simultaneously have very light electric and magnetic particles.
Such a point on the Coulomb branch is called the Argyres-Douglas point. This was first identified
in the case of pure SU(3) theory in [57], and extended to SU(2) theories with flavors in [58].

The monodromyMAD1 around u = 3Λ2 can be found in various ways. One is to multiply the
monodromies of the two colliding singularities of the Nf = 1 theory. Another is to follow how
the three branch points move. Setting u = 3Λ2 + δu, we find that the three branch points are at
z+ 1 ∝ δu1/3. This determines how the cycles are mapped, resulting in the monodromy. In either
method, we find

MAD1 ∼
(

1 1

−1 0

)
. (10.1.2)

The transformation on the low energy coupling byMAD1 is

τ 7→ τ ′ =
1

1− τ
. (10.1.3)

Note that τ = eπi/3 is a fixed point of this transformation; by an explicit computation, we can check
that τ − eπi/3 ∝ δu1/3. We find that the coupling is pinned at this strongly-coupled value.

The low energy limit is believed to be conformal. To isolate the physics in this limit, let us take

z = −1 + δz, x = Λ + δx, u = 3Λ2 + δu, µ =
3

2
Λ + δµ (10.1.4)

and make all variables with δ to be very small. The curve in terms of the new variables is approx-
imately given by

(δx)2 + δu = (δz)3 + δµδz. (10.1.5)

The differential is
λ = x

dz

z
∼ δxdδz. (10.1.6)

As the integral
∫
λ gives the mass of BPS particles, λ itself should have the scaling dimension 1.

The relation (10.1.5) means that the scaling dimensions [δx] and [δz] should satisfy

[δx] : [δz] = 3 : 2. (10.1.7)

This fixes the scaling dimensions of all the other variables involved:

[δu] =
6

5
, [δµ] =

4

5
. (10.1.8)

Note that the mass dimension, or equivalently the scaling dimension at the ultraviolet of the op-
erator u = tr Φ2/2 was 2. We find that the anomalous dimension is of order one, reducing [δu]

significantly.
As we are taking the limit δu→ 0, we are zooming into the neighborhood of the u-plane around

u = 3Λ2. In the limit, we can think of the low energy theory to be described by a theory with only
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Figure 10.2: Argyres-Douglas theory ADNf=1(SU(2))

a singularity at δu = 0, as shown on the left hand side of Fig. 10.2. We call the resulting theory
the Argyres-Douglas CFT ADNf=1(SU(2)).13

Let us revisit this limiting procedure from the 6d point of view. We first write the original
Nf = 1 curve in the form λ2 − φ(z) = 0. Recall that φ(z) has one order-3 pole and one order-4
pole, as was studied in Sec. 9.6 and shown in Fig. 9.17. We also have three branch points of φ(z)

on generic points. Suppose that we tune the parameters carefully so that two poles of φ(z) collide:

φ(z) ∼ (
P3(z)

(z − ε)3
+
P4(z)

z4
)dz2 =

P7(z)

(z − ε)3z4
dz2 → Q7(z)

z7
dz2 (10.1.9)

where Pd, Qd are generic polynomials of degree d at this stage. We end up having just one singu-
larity with an order-7 pole, as shown on the right hand side of Fig. 10.2. To have no singularity at
z =∞, we see that Q7(z) should be in fact of degree 3:

λ2 =
c+ c′z + µz2 + uz3

z7
dz2. (10.1.10)

By the coordinate transformation z → z/(az − b), we can set c = 1 and c′ = 0. We then have

λ2 =
1 + µz2 + uz3

z7
dz2. (10.1.11)

As the left hand side is of scaling dimension 2, we see that [z] = −2/5, and we conclude

[µ] =
4

5
, [u] =

6

5
(10.1.12)

which agree with what we found above. Note that the variable z is auxiliary, and therefore there is
no reason for its dimension to match.

In general for any conformal field theory, any dynamical scalar operatorO should have scaling
dimension larger than or equal to one:

[O] ≥ 1, (10.1.13)
13Unfortunately, there is no accepted universal naming system for Argyres-Douglas theories in the literature. In this

lecture note the author tries to provide one which might be more cumbersome than the ones in the literature but more
explicit in distinguishing various constructions.
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Figure 10.3: Argyres-Douglas point of Nf = 2 theory

and the equality is only attained whenO describes a free decoupled scalar boson. Then the operator
uwith [u] = 6/5 is a genuine operator in the theoryADNf=1(SU(2)). The object µ is regarded as a
parameter conjugate to u in the following sense. In anN=2 theory, we can consider a deformation
of the prepotential ∫

d4θF →
∫
d4θ(F +mO). (10.1.14)

Here, d4θ is the chiralN=2 superspace integral we briefly mentioned at the end of Sec. 2.4,O is an
operator andm is a parameter multiplying it. In anN=2 superconformal theory, the combination
mO therefore needs to have a scaling dimension 2. Then we should have

[m] + [O] = 2. (10.1.15)

We see that the pair µ and u satisfies this condition, see (10.1.12). We therefore regard µ as
the deformation parameter corresponding to the operator u.

10.2 Argyres-Douglas CFT from the Nf = 2 theory
Consider the curve of the Nf = 2 theory,

2Λ(x− µ)

z
+ 2Λ(x− µ)z = x2 − u (10.2.1)

where we set the masses of the two flavors the same. We can also use the curve of the alternative
form

(x− µ)2

z
+ 4Λ2z = x2 − u. (10.2.2)

Its moduli space for generic µ was shown in Fig. 8.9.
When µ = 0, two singularities without the Higgs branch attached collide. Instead, let us tune

the parameter µ so that the singularity with the Higgs branch collides with a singularity without,
see Fig. 10.3. For definiteness let us use the first form of the curve. Then this collision happens
when µ = 2Λ, at u = 4Λ2. The four branch points then collide at z = 1. We find that the
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monodromy around the resulting singularity is

MAD2 ∼
(

0 1

−1 0

)
, (10.2.3)

acting on the coupling as
τ → τ ′ = −1

τ
. (10.2.4)

The strong coupling value τ = i is the fixed point of this transformation, and the low-energy
coupling approaches this value when we let u→ 4Λ2.

Expanding the variables as before,

z = 1 + δz, x = 2Λ + δx, u = 4Λ2 + δu, µ = 2Λ + δµ, (10.2.5)

we find that the curve in the limit is

(δx)2 + δu = (δz)4 + δµδz2 + ∆µδz (10.2.6)

with the differential λ ∼ δxdδz. Here we reinstated a small difference ∆µ = µ1− µ2 between the
bare masses µ1, µ2 of two doublet hypermultiplets. Demanding λ to have scaling dimension 1, we
see that

[δx] =
2

3
, [δz] =

1

3
. (10.2.7)

Then we find
[δu] =

4

3
, [δµ] =

2

3
, [∆µ] = 1. (10.2.8)

We see again that [δu] + [δµ] = 2, and therefore δµ is a deformation parameter corresponding to
the operator δu. ∆µ is a mass parameter for the non-Abelian flavor symmetry SU(2)F . In general,
in a conformal theory, a non-Abelian flavor symmetry current Ja should have scaling dimension
3. TheN=2 supersymmetry relates it to the mass term, which is given for a Lagrangian theory by
the familiar term QQ̃ and has scaling dimension 2. Therefore, the non-Abelian mass parameter of
N=2 superconformal theory should always have scaling dimension 1. Our computation of [∆µ]

is consistent with this general argument. We call this resulting theory ADNf=2(SU(2)).
Let us study the limiting procedure of the Nf = 2 theory from the 6d point of view. Before

taking the limit, the curve in the first form (10.2.1) was λ2 = φ(z) with two order-4 poles of φ(z).
We collide them, and we end up with a singularity of order 8. Just as in the analysis before, we
conclude that the curve in the limit is given by

λ2 =
1 + µz2 + ∆µz3 + uz4

z8
dz2. (10.2.9)

We easily see that [z] = −1/3. Then we find the same scaling dimensions as in (10.2.8).
The curve in the second form (10.2.2), when written as λ2 = φ(z), had two poles of order 2,

and another of order 3. At the two order-two poles, the residues of xdz/z are ±(µ1 + µ2)/2 and
±(µ1 − µ2)/2, respectively. Let us collide an order-2 pole with the residue ±(µ1 + µ2)/2 and an
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Figure 10.4: Argyres-Douglas theory ADNf=2(SU(2))

order-3 pole to form a pole of order 5. We end up having a φ(z) with one pole of order 5, say at
z = 0, and another pole of order 2, with the residue±(µ1− µ2)/2, see Fig. 10.4. The curve in the
limit can also be easily found:

λ2 =
1 + δµz + δuz2 + (µ1−µ2

2
)2z3

z5
dz2 (10.2.10)

The last coefficient was fixed by the condition at z =∞. Demanding λ to have scaling dimension
1, we see that [z] = −2/3, and

[δµ] =
2

3
, [δu] =

4

3
. (10.2.11)

It is reassuring to find the same answer.

10.3 Argyres-Douglas CFT from the Nf = 3 theory
The special limit of Nf = 3 theory can be found in exactly the same way. We start from the curve
(8.5.1)

(x− µ− Λ)2

z
+ 2Λ(x− µ− Λ)z = x2 − u (10.3.1)

with the same mass for three flavors. On the u-plane, we have one singularity with the Higgs
branch, and two singularities without. We tune µ so that singularity with the Higgs branch collides
with another without, in a way that their monodromies do not commute. See Fig. 10.5.

The monodromy around the resulting singularities is

MAD3 =

(
0 1

−1 −1

)
(10.3.2)

with the action on the coupling given by

τ 7→ τ ′ =
−τ + 1

−τ
. (10.3.3)
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Figure 10.6: Argyres-Douglas theory ADNf=3(SU(2))

The fixed point is at τ = eπi/3.
In the 6d description, we had two poles of order two and one pole of order four. We collide an

order-2 pole and an order-4 pole, ending up with a pole of order six. The curve is then

λ2 =
1 + δµz + µ′z + δuz2 + (µ1−µ2

2
)2z3

z6
dz2 (10.3.4)

The differential λ has scaling dimension 1. Then [z] = −1/2, and we find

[δµ] =
1

2
, [δu] =

3

2
, [µ′] = 1, [∆µ] = 1, (10.3.5)

where we defined ∆µ = µ1 − µ2. Two parameters µ′ and ∆µ are of scaling dimension 1, and
we identify them with the mass parameters associated to the SU(3) flavor symmetry. We also see
[δµ] + [δu] = 2 again. We call this resulting theory ADNf=3(SU(2)).

10.4 Summary of rank-1 theories
10.4.1 Argyres-Douglas CFTs from SU(2) with flavors

So far we studied the Argyres-Douglas CFTs which were obtained by special limits of SU(2) gauge
theories with Nf = 1, 2, 3 flavors. The data of these and other related CFTs are summarized in
Table 10.1. The Argyres-Douglas CFTs are the first three rows of the table. The fourth row is for
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the SU(2) theory withNf = 4 massless flavors. The next two rows are for slightly different classes
of theories. Namely, if we consider SU(2) theory with more than 4 flavors or U(1) theory with
nonzero charged hypermultiplets, they are infrared free, see (8.1.5) and (8.3.13). They appeared
repeatedly as a local behavior close to a singularity on the u-plane.

In Table 10.1 we also tabulated the dimension of the Higgs branch. Let us quickly recall how
they are obtained. We know ADNf=1(SU(2)) does not have one, since its parent theory SU(2)

with Nf = 1 does not have one either. For ADNf=2(SU(2)), we consider SU(2) with Nf = 2

with a U(1) mass term. Then the Higgs branch is C2/Z2, whose quaternionic dimension is 1. For
ADNf=3(SU(2)), we consider SU(2) with Nf = 3. With a U(1) mass term, its Higgs branch can
be found by studying a point u = µ2

1 = µ2
2 = µ2

3 in a weakly-coupled theory. The physics there is
just U(1) with three charged hypermultiplets, with the Higgs branch of quaternionic dimension 2.
For free SU(2) theory with Nf ≥ 4 flavors, the quaternionic dimension is just 2Nf − dim SU(2),
and similarly for U(1) theory with N flavors it is given just by N − dim U(1). One funny feature
is that we see

dimH(Higgs branch) = h∨(flavor symmetry)− 1 (10.4.1)

for the first six rows, where h∨(G) is the dual Coxeter number, which is also a contribution to
the one-loop running C(adj) from the adjoint representation of G. These theories have just one
Coulomb branch modulus, and the low-energy theory on a generic point on the Coulomb branch
is just a free U(1) theory. Such theories are called rank-1.

10.4.2 Exceptional theories of Minahan-Nemeschansky

We have not discussed the theories listed in the remaining three rows. One way to motivate them
is to refer to a classical mathematical result of Kodaira. At a given point on the u-plane, we have
the ultraviolet curve C and the Seiberg-Witten curve Σ. The curve Σ is a torus, whose shape is
parameterized by its complex structure τ , which depend holomophically on u. Therefore we have
a fibration of torus over the complex plane with the coordinate u. The u-plane together with the
fiber Σ forms a complex two-dimensional space X .

Kodaira classified the possible types of singularities of such fibrations, and the first six rows of
Table 10.1 is an exact copy of part of that classification. The terminologies are of course different,
since he was a mathematician and we are studying N=2 gauge theories. Kodaira’s classification
had three more rows in addition to the first six rows, which motivated people that there should
be three additional theories corresponding to them. The Seiberg-Witten curves for these were
constructed first by Minahan and Nemeschansky in [59, 60].

In themathematical language, a singularity in the torus fibration creates a singularity in the total
space X of complex dimension two. It is locally of the form C2/Γ where Γ is a finite subgroup
of SU(2). They have a natural ADE classification, and we can associate a Lie group GΓ, see
Table 10.2.

Mathematicians associate this groupGΓ purely mathematically to a torus fibration, and we see
that they are exactly the flavor symmetries of the gauge theories, at least to the first six. Mathemati-
cians have associated exceptional groups E6,7,8 to the last three cases. It was thus quite tempting
that the putative theories which correspond to the last three rows have these exceptional groups as
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name monodromy flavor [u] # dimH(Higgs)

ADNf=1(SU(2))

(
1 1

−1 0

)
6/5 2

ADNf=2(SU(2))

(
0 1

−1 0

)
SU(2) 4/3 3 1

ADNf=3(SU(2))

(
0 1

−1 −1

)
SU(3) 3/2 4 2

SU(2) Nf = 4

(
−1 0

0 −1

)
SO(8) 2 6 5

SU(2) Nf > 4

(
−1 4−Nf

0 −1

)
SO(2Nf ) Nf + 2 2Nf − 3

U(1) with N flavors
(

1 N

0 1

)
SU(N) N N − 1

MN(E6)

(
−1 −1

1 0

)
E6 3 8 11

MN(E7)

(
0 −1

1 0

)
E7 4 9 17

MN(E8)

(
0 −1

1 1

)
E8 6 10 29

Table 10.1: Data of various rank-1 CFTs. # is the number of singularities colliding at u = 0, and
dimH Higgs is the quaternionic dimension of the Higgs branch, i.e. the real dimension /4.

Γ Zn D̂n−2 T̂ Ô Î
GΓ SU(n) SO(2n) E6 E7 E8

Table 10.2: Finite subgroups Γ of SU(2) and simply-laced Lie groupsGΓ. Here,Dn is the dihedral
group acting on the regular n-gon, T ,O, I, are the tetra-, octa-, and icosahedral groups, and the hat
above them are the lift from SO(3) to SU(2). The resulting group T̂ is called the binary tetrahedral
group, for example.
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the flavor symmetries. From the feature (10.4.1) relating the flavor symmetry and the dimension of
the Higgs branch, it is also tempting to guess the dimension of the Higgs branch of these theories.
We call these CFTsMN(E6),MN(E7) andMN(E8), respectively.

Note that it is rather hard to have an exceptional flavor symmetry in a classical Lagrangian
N=2 theory. We already know a general form of the Lagrangian: the superpotential as an N=1

theory is forced to be ∑
i

∫
QiΦQ̃i, (10.4.2)

and it is possible to check explicitly that the flavor symmetry visible in the ultraviolet is a product
of SU, SO and Sp groups. Therefore, if the exceptional symmetries are to appear, they need to
arise via strong-coupling effects. Once the reader comes to Sec. 12.4 of this note, s/he will find
exactly how this happens in the field theory setting.

Another way to construct the theories listed in the table uniformly is to use Type IIB string
theory and its non-perturbative version F-theory. This approach originates in [5] for SU(2) with
four flavors. For the general case, see e.g. [61]. The Seiberg-Witten curves of these rank-1 theories
can be constructed most uniformly in this approach, see e.g. [62].

The type IIB string theory is ten-dimensional, and it has objects called 7-branes and 3-branes,
where a p-brane extends along p spatial direction and one time direction. Let us say the spacetime
is of the form

R1,3 × R2 × R4. (10.4.3)

Put a 7-brane in the subspace
R1,3 × {0} × R4 (10.4.4)

and a D3-brane in the subspace
R1,3 × {u} × {0}. (10.4.5)

There are various types of 7-branes in F-theory, corresponding to Kodaira’s classification. They
can all be obtained by taking a number of the simplest of the 7-branes, called (p, q) 7-branes,
separated along the R2 direction and collapsing them at one point. Then the low-energy theory on
the D3-brane gives the corresponding N=2 theories.

Due to its tension, one (p, q) 7-brane creates deficit angles π/6. With n (p, q) 7-branes col-
lapsed to a point, the remaining angle is 1−n/12 of 2π. From this the scaling dimension of u can
be computed to be

u =
12

12− n
, (10.4.6)

which explains an interesting pattern in Table 10.1. These 7-branes obtained by collapsing a num-
ber of (p, q) 7-branes has a gauge symmetry F living on its eight-dimensional worldvolume. From
the point of view, this gauge symmetry F on the 7-brane becomes a flavor symmetry. The D3-
brane can be absorbed into this 7-brane as an instanton in the internal R4 direction of (10.4.4).
Then, the Higgs branch should be given by the one instanton moduli space of the group F . The
k-instanton moduli space of a group F has quaternionic dimension kh∨(F ) − 1, explaining the
relation (10.4.1).
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Figure 10.7: A higher Argyres-Douglas theory

10.4.3 Newer rank-1 theories

So far we saw that the structure of rank-1 theories closely follows that of the Kodaira classification,
listed in Table 10.1. Before going further, it should be mentioned that there are even more rank-1
theories, first found through the analysis of S-dualities of various gauge theories in [63]. Their
properties are reviewed from the point of view of the 6d construction in Sec. 7 of [64].

10.5 More general Argyres-Douglas CFTs: XN and YN
Let us switch gears and consider other Argyres-Douglas CFTs obtained from more complicated
gauge theories with gauge group of the form SU(2)n. As an example, consider a rather complicated
theory with gauge group SU(2)4 studied at the end of Sec. 9.6. By performing the same limiting
procedure we did in the SU(2) theory with Nf = 1, 2, 3, we can consider the theory described by
λ2 − φ(z) = 0 where φ(z) can have poles of very high order. The examples shown in Fig. 10.7
have either just one pole of order 13 or one order-9 pole and an order-11 pole. They describe
complicated 4d N=2 supersymmetric conformal field theories.

Let us introduce names to these theories. The XN theory is the superconformal field theory
corresponding to a sphere with one regular puncture and a puncture with an order-N pole, and the
YN theory is the superconformal field theory corresponding to a sphere with just a puncture with
an order-N pole, see Fig. 10.8. As can be seen from Fig. 10.2, Fig. 10.4 and Fig. 10.6, we know

Y7 = ADNf=1(SU(2)), Y8 = ADNf=2(SU(2)) = X5, ADNf=3(SU(2)) = X6. (10.5.1)

Also, recall the construction of the SU(2) theory with one flavor given in Fig. 9.17. There,
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Figure 10.9: Ordinary and wild gauge theories

a sphere with a regular puncture and a puncture of pole order 3 served as an empty boundary
condition, and a sphere with a regular puncture and a puncture of pole order 4 behaves as a free
hypermultiplet in the doublet of SU(2). Equivalently, we see

X3 = an empty theory, X4 = free hypermultiplet in the doublet of SU(2). (10.5.2)

We depicted them in the first row of Fig. 10.9.
More generally, we can have a two-punctured sphere with poles of arbitrary order N and N ′.

One example withN = 6 andN ′ = 5 is shown in the second row of Fig. 10.9. It can be understood
as an SU(2) gauge theory with somewhat unusual matter contents, described by two strongly-
interacting CFTsXN andXN ′ . Note that an order-2 pole always carries an SU(2) flavor symmetry,
and therefore the XN theory always has an SU(2) flavor symmetry. The SU(2) gauge symmetry
coming from the tube couples these two theories. This type of gauge theory withXN as part of its
matter contents is often called a wild gauge theory.

It is straightforward to find the running of the coupling of this theory. Assume a is very big, as
always. The branch points of λ2 = φ(z) is around where

Λ2

zN
dz2 ∼ udz2

z2
or Λ2zN

′
dz2 ∼ udz2

z2
. (10.5.3)
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= ⟨ jμ jν⟩
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⟨ jμ jν⟩ = bN⟨ jμ jν⟩free hyper

Figure 10.10: The running of the coupling measures the two-point correlator of the currents.

Then they are around

z− ∼
(

Λ

a

)2/(N−2)

, z+ ∼
( a

Λ

)2/(N ′−2)

. (10.5.4)

We find
aD ∼

2

2πi

∫ z−

z+

x
dz

z
∼ − 2

2πi
(

2

N − 2
+

2

N ′ − 2
)a log

a

Λ
. (10.5.5)

This means that the one-loop running is given by

Λ
d

dΛ
τ =

2

2πi
(bN + bN ′ − 4) (10.5.6)

where
bN = 2− 2

N − 2
. (10.5.7)

The contribution to the one-loop running from one doublet hypermultiplet is given by b = 1.
Then this bN can be roughly thought of as an effective number of doublet hypermultiplets, carried
by the theory XN . More precisely, bN measures the coefficient of the correlator of the symmetry
current jµ of the SU(2) flavor symmetry, see Fig 10.10. As shown there, for SU(2) with flavors,
the running of the gauge coupling is caused by the loop of gauge multiplets (shown as wavy lines)
or of hypermultiplets (shown as straight lines) coupled to the gauge fields via the SU(2) current
operator jµ. Then the contribution to the one-loop running measures 〈jµjν〉. The fact that theXN

theory contributes bN times a free flavor does means that

〈jµjν〉XN = bN〈jµjν〉free hyper in a doublet of SU(2). (10.5.8)
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Recall thatX3 is just empty andX4 is one free hypermultiplet in the doublet of flavor SU(2). Our
general formula correctly reproduces b3 = 0 and b4 = 1.

In the next section we will see that a singular limit of the pure SU(N) gauge theories becomes
the theory YN+4, whereas a singular limit of the pure SO(2N) gauge theories becomes the theory
XN+2. We will also see that SU(N) gauge theories with two flavors have a singular limit given by
XN+3.

Let us denote theArgyres-Douglas CFTs obtained from the pureG gauge theory asADNf=0(G),
and the Argyres-Douglas CFTs obtained from the SU(N) with two flavors as ADNf=2(SU(N)).
Then we can succinctly express these equivalences as

ADNf=0(SU(N)) = YN+4,

ADNf=0(SO(2N)) = XN+2,

ADNf=2(SU(N)) = XN+3.

(10.5.9)

We have already seen in (10.5.1) that ADNf=2(SU(2)), the Argyres-Douglas theories arising
from SU(2) with Nf = 2 flavors, is equivalent to both X5 and Y8. This coincidence is a manifes-
tation of the equivalence SU(4) ' SO(6) from the point of view of (10.5.9). Also, consider the
pure SO(4) theory, which is two copies of the pure SU(2) theory. Its most singular point is where
both copies are at the monopole point, thus realizing two free hypermultiplets. Indeed, this has an
SU(2) flavor symmetry, and is a doublet under it, realizing the fact

ADNf=0(SO(4)) = X4 = a free hypermultiplet in the doublet of SU(2). (10.5.10)

11 Theories with other gauge groups: SU(N) and SO(2N)

We have spent so many pages to study N=2 gauge theories with gauge group SU(2). In this
section we move on to the analysis of larger gauge groups. We will first study SU(N) gauge
theories in some detail, and then go on to the case SO(2N). We also analyze the Argyres-Douglas
CFTs obtained from these gauge theories, and show that they are given by the theoriesXN and YN
introduced in Sec. 10.5.

11.1 Semiclassical analysis
Let us consider SU(N) gauge theory with Nf hypermultiplets in the fundamental N -dimensional
representation. The N=2 vector multiplet consists of the N=1 adjoint chiral multiplet Φ and the
N=1 vector multiplet Wα, both N × N matrices. The hypermultiplets, in terms of N=1 chiral
multiplets, can be written as

Qa
i , Q̃i

a, a = 1, . . . , N ; i = 1, . . . , Nf . (11.1.1)

One branch of the supersymmetric vacuum is given by the condition

[Φ,Φ†] = 0. (11.1.2)
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This means that Φ can be diagonalized. We denote it by

Φ = diag(a1, . . . , aN),
∑

ai = 0. (11.1.3)

Let us consider a generic situation when ai 6= aj for all i 6= j. Then the gauge group is broken
from SU(N) to U(1)N−1. The W-boson mass is given by

MW = |ai − aj| (11.1.4)

for the W-boson coming from the entry (i, j) of the N × N matrix. As for the monopole, it is
known that the ’t Hooft-Polyakov monopole solution for the breaking from SU(2) to U(1) can be
directly regarded as a solution for the breaking from SU(N) toU(1), by choosing 2×2 submatrices
of N × N matrices, given by picking the entries at the positions (i, i), (i, j), (j, i) and (j, j) for
i 6= j. The masses are then

Mmonopole = |τUV (ai − aj)|. (11.1.5)

The one-loop running is

E
d

dE
τ =

1

2π
(2N −Nf ). (11.1.6)

Then the theory is asymptotically free when 0 ≤ Nf < 2N . The dynamical scale is then

Λ2N−Nf := Λ
2N−Nf
UV e2πiτUV . (11.1.7)

WhenNf = 2N , the theory is asymptotically conformal, and τUV is a dimensionless parameter in
the quantum theory.

When there are flavors, the N=1 superpotential in this vacua is∑
i

(QiΦQ̃
i − µiQiQ̃

i) =

∑
i

(Q1
i , Q

2
i , . . . , Q

N
i )


a1 − µi

a2 − µi
. . .

aN − µi



Q̃i

1

Q̃i
2
...
Q̃i
N

 . (11.1.8)

Then we have one massless charged hypermultiplet component whenever we have ai− µs = 0 for
some i and s.

In the strongly-coupled quantum theory, the definition of ai as the diagonal entries of the gauge-
dependent quantity Φ does not make much sense. Instead, as we did in the case of SU(2) gauge
theory, we define ai as the complex numbers entering in the BPS mass formula:

M ≥ |niai +mia
i
D +

∑
s

fsµs| (11.1.9)

where (ni,mi) are the electric and the magnetic charges under U(1)N−1 infrared gauge group, and
fs are the flavor charges. We can also consider gauge-invariant combinations of Φ defined as

xN + u2x
N−2 + · · ·+ uN−1x+ uN := 〈det(x− Φ)〉 (11.1.10)
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where x is a dummy variable. For N = 2, we had Φ ∼ diag(a,−a) and therefore u2 = −a2

up to quantum corrections. Similarly, for general N , uk is the degree k elementary symmetric
polynomials of the variables a1, . . . , aN up to quantum corrections. Our task then is to determine
the mapping between (u2, . . . , uN) and (a1, . . . , aN) including the quantum corrections.

11.2 Pure SU(N) theory
11.2.1 The curve

Without further ado, let us introduce the Seiberg-Witten curves. First, the Seiberg-Witten curve
for the pure SU(N) theory is given by

Σ :
ΛN

z
+ ΛNz = xN + u2x

N−2 + · · ·+ uN (11.2.1)

with the differential λ = xdz/z as always. The ultraviolet curveC is just a sphere with the complex
coordinate z. At each point on the ultraviolet curve z, we have N solutions to the equation above.
Therefore, Σ is an N -sheeted cover of C.

x
λiΣ :

C :

λk

λj

A

AiAj

z

x
λi

z
λj λk

Figure 11.1: W-boson of the SU(N) theory

Let us check that this curve reproduces the semiclassical behavior. We introduce variables ai
via

xN + u2x
N−2 + · · ·+ uN =

∏
i

(x− ai). (11.2.2)

We declare the A-cycle on the ultraviolet curve to be the unit circle |z| = 1. As the Seiberg-
Witten curve is anN -sheeted cover, we can lift this curve to each sheet, which we call the cycleAi.
Assume we are in the regime |ai| ∼ E independent of i, and E � Λ. Then, we can approximately
solve (11.2.1) by

xi = ai +O(Λ). (11.2.3)
It is more convenient to regard λ = xdz/z itself to be the coordinate of the sheets. Then we have

λi = ai
dz

z
+O(Λ). (11.2.4)
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The situation is shown in Fig. 11.1. The integral of λ on the cycle Ai is easy to evaluate:

ai :=
1

2πi

∮
Ai

λ = ai +O(Λ). (11.2.5)

Now we can suspend a ring-shaped membrane suspended between the i-th sheet and the j-th
sheet. The mass of this object is

| 1

2πi

∮
Ai

λ− 1

2πi

∮
Aj

λ| = | 1

2πi

∮
A

(λi − λj)| = |ai − aj|. (11.2.6)

This reproduces the mass of the W-boson.
To see the monopoles, we need to understand the structure of the branching of the N -sheeted

cover Σ → C. It is convenient to regard the combination y = ΛN(z + 1/z) as one coordinate.
Then, the equation (11.2.1) can be thought of determining the intersections of the graph of the
polynomial

y = P (x) = xN + u2x
N−2 + · · ·+ uN (11.2.7)

and a horizontal line
y = ΛN(z +

1

z
) (11.2.8)

as shown in Fig. 11.2. Of course the figure needs to be complexified, but the reader should be able
to get the idea.

P(x)

ΛN (z+1/z)

Figure 11.2: There are (N − 1) pairs of branch points in SU(N) pure theory

As is apparent, two out of N sheets meet at (N − 1) values of y = Λ(z + 1/z), each of which
becomes a pair z±i of branch points on the z-sphere with z+

i z
−
i = 1. Note that the i-th sheet and the

(i + 1)-st sheet meet at this pair of branch points. Then we can suspend a disk-shaped membrane
between this pair of branch points, as shown in Fig. 11.3.

x

Σ :

C :

λj
λk

λi

λi+1

Bi−Bi+1

Figure 11.3: Monopoles of SU(N) pure theory
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In the semiclassical regime when |ai| ∼ |E| � |Λ|, we have

|z+
i | ∼

EN

ΛN
, |z−i | ∼

ΛN

EN
. (11.2.9)

We call the path connecting z+
i and z−i as Bi. Then

Mmonopole = | 1

2πi

∫
Bi

(λi − λi+1)| (11.2.10)

∼ |(ai − ai+1)
1

2πi

∫ EN/ΛN

ΛN/EN

dz

z
| (11.2.11)

∼ |(ai − ai+1)
2N

2πi
log

E

Λ
|. (11.2.12)

This reproduces the mass of the monopole, by identifying

τ(E) =
2N

2πi
log

E

Λ
. (11.2.13)

This correctly reproduces the one-loop running of the pure SU(N) theory.

11.2.2 Infrared gauge coupling matrix

Let us check that our curve satisfies the condition that the coupling matrices of the low-energy
U(1)N−1 theory is positive definite. For this purpose we need to understand the geometry of the
Seiberg-Witten curve Σ better. This is an N -sheeted cover of C with 2N − 2 branch points z±i of
order 2 and 2 branch points z = 0,∞ of order N . The genus g of Σ is then determined by the
Riemann-Hurwitz formula14:

χ(Σ) = Nχ(C)− (2N − 2)− 2(N − 1) (11.2.14)

where χ(Σ) = 2 − 2g and χ(C) = 2 are the Euler number of the respective surfaces. We find
g = N − 1. The basis of the 1-cycles consists of (2N − 2) cycles Ai and B̃i, i = 1, . . . , N − 1,
where the intersections are given by

Ai · Aj = 0 = B̃i · B̃j, Ai · B̃j = δji . (11.2.15)

Here the dot product counts the number of intersections (including signs) of two one-cycles. The
resulting set of cycles is shown in Fig. 11.4.

The figures 11.3 and 11.4 are drawn in a rather different manner. The cycles from A1 to AN−1

can be directly identified. We have

AN = −A1 − A2 · · · − AN−1 (11.2.16)
14This is not hard to derive. Let us say we triangulate the curve C with V vertices, E edges and F triangles so that

the branch points are all at the vertices. We have χ(C) = V − E + F . We can just lift the edges and triangles to
Σ: we have NE edges and NF triangles. The vertices are however less than NV . At each vertex pi let the degree
of the branching be deg pi. Then there are NV −

∑
(deg pi − 1) vertices in the triangulation of Σ. We end up

χ(S) = Nχ(C)−
∑
i(deg pi − 1).
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B̃1

A2 A3A1

B̃2 B̃3

Figure 11.4: Cycles Ai and B̃i on the Seiberg-Witten curve of the pure SU(N) theory.

as far as the line integral of holomorphic forms are concerned. Correspondingly, the variables ai
as defined in (11.2.5) are not linearly independent, and we have

aN = −a1 − · · · − aN−1. (11.2.17)

The combinationBi−Bi+1 in Fig. 11.3 intersects withAi positively and withAi+1 negatively.
Then, we see

Bi −Bi+1 = B̃i − B̃i+1. (11.2.18)
Equivalently, B̃i is a closed one-cycle completing the open pathBi in a way independent of i. Then
we define

aiD :=
1

2πi

∮
B̃i
λ (11.2.19)

on the curve. Let us consider

τ ij :=
∂aiD
∂aj

= X ik
D (X−1)jk (11.2.20)

where

Xk
i :=

∂ai
∂uk

, Xjk
D :=

∂ajD
∂uk

. (11.2.21)

Defining

ωk =
∂

∂uk
λ
∣∣∣
constant z

, (11.2.22)

we find
τ ij = X ik

D (X−1)jk where Xk
i =

∮
Ai

ωk, Xjk
D =

∮
B̃j

ωk. (11.2.23)

It can be checked that ω2,3,...,N form a basis of holomorphic non-singular one-forms on Σ. The
matrix τ ij formed this way is known mathematically as the period matrix of Σ, and is known to
satisfy

τ ij = τ ji, Im τ ij is positive definite. (11.2.24)
From the first condition, we see that there is locally a function F (ai) such that

aiD =
∂F

∂ai
, τ ij =

∂2F

∂ai∂aj
. (11.2.25)

This justifies that we identify ai, aiD defined this way with the ai appearing in the low-energy
description of U(1)N−1 gauge theory. The inverse gauge coupling matrix is given by Im τ ij , whose
positive definiteness is guaranteed by the mathematical relation (11.2.24).

123



11.3 SU(N) theory with fundamental flavors
11.3.1 Nf = 1

Next, consider the SU(N) theory with one flavor (Q, Q̃) of bare mass µ. The curve is given by

Σ :
ΛN−1(x− µ)

z
+ ΛNz = xN + u2x

N−2 + · · ·+ uN . (11.3.1)

Recall that in the semiclassical analysis we saw that a light charged hypermultiplet arises when
ai ∼ µ. Let us check that the curve written above reproduces this behavior.

First, we introduce ai as before, and consider the semiclassical regime when all |ai| is far larger
than |Λ|. The A-cycle on the ultraviolet curve was |z| = 1 as before. Then we find ai ∼ ai +O(Λ)

just as was in the case of the pure theory.
To see additional singularities in the weakly-coupled region, define z̃ = z/ΛN−1. The curve is

then
x− µ
z̃

+ Λ2N−1z̃ = xN + u2x
N−2 + · · ·+ uN , (11.3.2)

which can be approximated by
x− µ
z̃

= xN + u2x
N−2 + · · ·+ uN =

∏
(x− ai) (11.3.3)

in the extremely weakly coupled limit. The equation factorizes and the curve separates into two
when ai = µ; otherwise the curve is a smooth degree-N covering of the z sphere. This shows that
when ai = µ, a one-cycle on the Seiberg-Witten curve shrinks, and the membrane suspended there
produces a massless hypermultiplet, see Fig. 5.9.

The one-loop running can also be checked. The branch points z+
i in the large z region is

unchanged, as the structure of the Nf = 1 curve in the large z region itself is unchanged from the
pure curve. Then

z+
i ∼ (E/Λ)N . (11.3.4)

In the small z region, the branch points are around where ΛN−1x/z and P (x) are of the same order.
Assuming |x| ∼ |ai| ∼ |E|, we see

z−i ∼ (Λ/E)N−1. (11.3.5)

Then the monopole has the mass

Mmonopole = | 1

2πi

∫
Bi

λ| (11.3.6)

∼ |(ai − ai+1)
1

2πi

∫ EN/ΛN

ΛN−1/EN−1

dz

z
| (11.3.7)

∼ |(ai − ai+1)
2N − 1

2πi
log

E

Λ
|. (11.3.8)

This gives
τ(E) =

2N − 1

2πi
log

E

Λ
(11.3.9)

as it should be.
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11.3.2 General number of flavors

More generally, we can consider the curve given by

Σ :
ΛN−NL

∏NL
i=1(x− µi)
z

+ zΛN−NR
NR∏
i=1

(x− µ′i)

= xN + u2x
N−2 + · · ·+ uN−1x+ uN (11.3.10)

where NL, NR ≤ N . Consider the case when µi and µ′i are all small. Further, consider the regime
where |ai| � Λ. As always we find ai = ai +O(Λ). The branch points are at

|z+
i | ∼

EN−NR

ΛN−NR
, |z−i | ∼

ΛN−NL

EN−NL
. (11.3.11)

Then we find

Mmonopole ∼ |(ai − ai+1)
1

2πi

∫ EN−NR/ΛN−NR

ΛN−NL/EN−NL

dz

z
| (11.3.12)

∼ |(ai − ai+1)
2N − (NL +NR)

2πi
log

E

Λ
|, (11.3.13)

and therefore the one-loop running is

τ(E) =
2N − (NL +NR)

2πi
log

E

Λ
. (11.3.14)

In the other regime when |µi|, |ai| � Λ, we can use the redefining trick to find singularities on
the Coulomb branch. For example, defining z̃ = z/ΛN−NL , the curve is∏NL

i=1(x− µi)
z̃

+ z̃Λ2N−NR−NL
NR∏
i=1

(x− µ′i) = xN + u2x
N−2 + · · ·+ uN−1x+ uN . (11.3.15)

Then the limit Λ→ 0 can be taken, which gives∏NL
i=1(x− µi)

z̃
=

N∏
i=1

(x− ai). (11.3.16)

This means that whenever ai = µs for some i and s = 1, . . . , NL, the curve splits into two, because
the equation can be factorized. The same can be done for the variable w = 1/z. Then we also
find singularities when ai = µ′s for some i and s = 1, . . . , NR. In total, these reproduce the
semiclassical, weakly-coupled physics of SU(N) theory with Nf = NR + NL hypermultiplets in
the fundamental representation. The situation is summarized in Fig. 11.5.

We have a sphere C described by the coordinate z. The curve Σ is an N -sheeted cover of C.
We have one M5-brane wrapping Σ. We call the 6d theory living on C the N=(2, 0) theory of
type SU(N). Roughly speaking, it arises from N coincident M5-branes.

125



Nf = nL BC 5d SU(N) MSYM Nf = nR BC

~zR~zL

Figure 11.5: SU(N) theory with flavors

ConsiderArg z as the sixth direction x6, and log |z| as the fifth direction x5. Reducing along the
x6 direction, we have a 5d theory on a segment. The 5d theory is the maximally supersymmetric
Yang-Mills theory with gauge group SU(N). The term

ΛN−NL
∏NL

i=1(x− µi)
z

(11.3.17)

in the curve can be thought of defining a certain boundary condition on the left side of the fifth
direction. We regard it as giving NL hypermultiplets in the SU(N) fundamental representation
there. Similarly, the term

zΛN−NR
NR∏
i=1

(x− µ′i) (11.3.18)

is regarded as the boundary condition such thatNR fundamental hypermultiplets there. By further
reducing the theory along the fifth direction, we have SU(N) gauge theory with Nf = NL + NR

fundamental hypermultiplets in total. We saw that the effect of the boundary conditions becomes
noticeable around when

log |zR| ∼ (N −NR) log
E

Λ
< 0, log |zL| ∼ (N −NL) log

Λ

E
> 0. (11.3.19)

In the five dimensional Yang-Mills, we have monopole strings, which have ends around |zR|
and |zL|. From the four-dimensional point of view, log |zL|/|zR| then controlled the mass of the
monopoles, which then gave the one-loop running of the theory.

Note that from the four-dimensional point of view, the split of Nf into NR and NL is rather
arbitrary. In fact, by redefining z, we can easily come to the form of the curve given by

Λ2N−Nf
∏Nf

i (x− µi)
z

+ z = xN + u2x
N−2 + · · ·uN (11.3.20)

where we defined µNL+i := µ′i. In this form the symmetry exchanging all Nf mass parameters is
manifest.
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From the higher-dimensional perspective, it is however sometimes convenient to stick to the
situation where the equation of the Seiberg-Witten curveΣ is of degreeN regarded as a polynomial
in x. This guarantees that Σ is always anN -sheeted cover of the ultraviolet curve C. Numerically,
this condition means that the boundary condition such as (11.3.17) and (11.3.18) also has degrees
less than or equal to N . This imposes the constraint N ≥ NL,R, and therefore 2N ≥ Nf . This is
the condition that the theory is asymptotically free or asymptotically conformal.

11.4 SO(2N) theories
Now let us quickly discuss the SO(2N) gauge theories.

11.4.1 Semi-classical analysis

The vector multiplet scalar Φ is an 2N × 2N antisymmetric matrix. Let us denote the hyper-
multiplets by (Qa

i , Q̃
i
a) where a = 1, . . . , 2N and i = 1, . . . , Nf . We consider the branch of the

supersymmetric vacuum given by
[Φ,Φ†] = 0. (11.4.1)

As Φ is antisymmetric, the outcome of the diagonalization is

Φ = diag(a1, . . . , aN ,−a1, . . . ,−aN). (11.4.2)

In general the gauge group is broken to U(1)N . The gauge invariant combination is given by

x2N + u2x
2N−2 + u4x

2N−4 + · · ·+ u2N = det(x+ Φ) (11.4.3)

where x is a dummy variable. Note that the odd powers automatically vanish due to the antisym-
metry. In fact ũN defined by the condition

u2N = ũN
2, ũN = a1a2 . . . aN (11.4.4)

is also invariant under SO(2N) but not under O(2N).
The W-bosons have masses

| ± ai ± aj| (11.4.5)
for i 6= j. Similarly, the monopole has the mass

|τ(±ai ± aj)|. (11.4.6)

By expanding the superpotential ∑
i

(QiΦQ̃
i + µiQiQ̃

i), (11.4.7)

classically we find that there is a massless hypermultiplet charged under one of U(1) gauge fields
when µs = ±ai for some i and s.

The one-loop running is given by

Λ
d

dΛ
τ = − 1

2πi
(2(2N − 2)− 2Nf ). (11.4.8)

Therefore the theory is asymptotically free for Nf < 2N − 2, and is asymptotically conformal
when Nf = 2N − 2.
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11.4.2 Pure SO(2N) theory

The Seiberg-Witten curve of the pure theory is given by

x2(
Λ2N−2

z
+ Λ2N−2z) = x2N + u2x

2N−2 + u4x
2N−4 + · · ·+ u2N (11.4.9)

with the differential λ = xdz/z. This is a 2N -sheeted cover of the ultraviolet curve C, which is
just a sphere with the complex coordinate z. By solving the equation, one finds 2N local solutions
±xi(z). Correspondingly, we define ±λi = ±xi(z)dz/z.

Let us study the weakly-coupled regime. We introduce ai by

x2N + u2x
2N−2 + u4x

2N−4 + · · ·+ u2N =
N∏
i=1

(x2 − ai2). (11.4.10)

The regime we are interested in is when |ai| � |Λ|.

−λjλj
−λi

λi

x
λiΣ :

C :

−λj

A

Ai−Aj

λj
−λi

z

x

z

Figure 11.6: W-boson of the SO(2N) theory

We draw the A-cycle on the ultraviolet curve at |z| = 1, see Fig. 11.6. On the A-cycle, the
equation (11.4.9) can be solved approximately to give

xi(z) = ai +O(Λ). (11.4.11)

We lift the A-cycle on C to the sheets of Σ. We have N pairs of cycles ±Ai. Then

ai =
1

2πi

∮
Ai

λ =
1

2πi

∮
λi = ai +O(Λ). (11.4.12)

We can now suspend ring-like membranes between sheets. They clearly have masses

|±ai ± aj|. (11.4.13)

We find that we need to impose the constraint that M2-brane cannot be suspended between the i-th
sheet and the (−i)-th sheet, to forbid the W-boson with mass |±2ai|. As for the monopoles, the
branch points are at around

z+ ∼
(
E

Λ

)2N−2

, z− ∼
(

Λ

E

)2N−2

. (11.4.14)
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Then the monopole mass can be approximately computed as in the case of SU(N) gauge theory:
we find

∼ |(ai − aj)
1

2πi

∫ z+

z−

dz

z
| = |(ai − aj)

2(2N − 2)

2πi
log

E

Λ
|. (11.4.15)

From this we see that the running coupling is

τ(E) =
2(2N − 2)

2πi
log

E

Λ
, (11.4.16)

correctly reproducing the one-loop analysis.
Let us study the low-energy coupling matrix τ ij . The branch points are at z = 0,∞ together

with N pairs on generic places of the z-sphere. At z = ∞, there are N − 2 solutions behaving
as x ∼ z1/(2N−2) and two solutions behaving as x ∼ z−1/2. Therefore it counts as a branch point
of degree 2N − 2 and another of degree 2. The structure of the branching at z = 0 is the same.
Next, consider one of N pairs of branch points of these latter type. When the sheets i and j meet
there, the sheets −i and −j meet at the same time. Slightly moving them apart, we find that there
are 4N branch points of degree 2 in total. Using the Riemann-Hurwitz theorem, we see

χ(Σ) = 2Nχ(C)− 2(2N − 3)− 2− 4N. (11.4.17)

Therefore the genus of the Seiberg-Witten curve is g = 2N − 1. Therefore, the independent
1-cycles on Σ can be labeled as Ã1, . . . , Ã2N−1 and B̃1,. . . , B̃2N−1 with the intersection

Ãi · Ãj = 0 = B̃i · B̃j, Ãi · B̃j = δji . (11.4.18)

Note that the curve Σ has the symmetry Z2 acting by x → −x. Under this symmetry, the differ-
ential is odd: λ → −λ. Correspondingly, only the 1-cycles L odd under this Z2 action can have∮
L
λ 6= 0. The cycles Ai for i = 1, . . . , N obtained by lifting the A-cycle on the ultraviolet curve

C to Σ are indeed odd. The period matrix τ ij computed as in (11.2.23) is an (2N − 1)× (2N − 1)

matrix, which is symmetric and whose imaginary part is positive definite. By restricting to the
subspace odd under Z2 action, we end up having N × N matrix, which is again symmetric and
whose imaginary part is positive definite.

11.4.3 SO(2N) theory with flavors in the vector representation

The curve of the SO(2N) theory with one hypermultiplet in the 2N -dimensional representation is

x2(
Λ2N−4(x2 − µ2)

z
+ Λ2N−2z) = x2N + u2x

2N−2 + u4x
2N−4 + · · ·+ u2N . (11.4.19)

Let us just see that there is a singularity in the Coulomb branch when ai = ±µ for some i. As
always, we assume |ai|, |µ| � |Λ| , make the redefinition z̃ = z/Λ2N−4 and take the limit of the
curve:

x2 (x2 − µ2)

z
= x2N + u2x

2N−2 + u4x
2N−4 + · · ·+ u2N . (11.4.20)
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This equation is factorized when ±ai = µ or ai = 0 for some i. The latter choice does not fit the
assumption that |ai| � |Λ|. Then we find the singularities when ±ai ∼ µ in the weakly-coupled
region.

In general, the curve of the SO(2N) with Nf = NR +NL hypermultiplets in the vector repre-
sentation is given by

x2(
Λ2(N−NR)

∏NR
i=1(x2 − µ2

i )

z
+ Λ2(N−NL)z

NL∏
i=1

(x2 − µ′i2))

= x2N + u2x
2N−2 + u4x

2N−4 + · · ·+ u2N . (11.4.21)

Let us check the one-loop running when µi = µ′i = 0. Assume |ai| � |Λ|. As always we find
ai = ai +O(Λ). The branch points on the ultraviolet curve are at around

z+ ∼
(
E

Λ

)2N−2−2NL

, z− ∼
(

Λ

E

)2N−2−2NR

. (11.4.22)

Then the monopole mass can be approximately computed as in the case of SU(N) gauge theory:
we find

∼

∣∣∣∣∣(ai − aj) 1

2πi

∫ z+

z−

dz

z

∣∣∣∣∣ =

∣∣∣∣(ai − aj)2(2N − 2− 2(NL +NR))

2πi
log

E

Λ

∣∣∣∣ . (11.4.23)

From this we see that the running coupling is

τ(E) =
2(2N − 2)− 2(NL +NR)

2πi
log

E

Λ
, (11.4.24)

correctly reproducing the one-loop analysis. Again, the condition that the theory is asymptotically
free or conformal is related to the fact that the left hand side of the equation of the curve has lower
degree than or equal degree to the right hand side.

11.5 Argyres-Douglas CFTs
Let us study the most singular point in the Coulomb branches of the theories we analyzed in this
section.

11.5.1 Pure SU(N) theory

First, take the curve of the pure SU(N) theory:

ΛN

z
+ ΛNz = xN + · · ·+ uN (11.5.1)

with the differential λ = xdz/z. We set z = 1 + δz, uN = 2ΛN + δuN and take the limit where
both δz and δuN are very small. We find

c δz2 = xN + u2x
N−2 + · · ·+ δuN (11.5.2)
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where c is an unimportant constant. The differential is now given by λ = xdδz ∼ δzdx. Introduc-
ing z̃ = 1/x, we find that the curve in this limit can be written as

c λ2 =
1 + u2z̃

2 + u3z̃
3 + · · ·+ ũN z̃

N

z̃N+4
dz̃2. (11.5.3)

Note that it has the same form as the curve we saw in Sec. 10.5, which arose from considering the
curve

λ2 = φ(z̃) (11.5.4)

where φ(z̃) is a quadratic differential with one pole of orderN + 4, see Fig. 11.7. This is the same
as the theory YN+4 introduced in Fig. 10.8. We have

ADNf=0(SU(N)) = YN+4. (11.5.5)

N+IV

Figure 11.7: The most singular point of pure SU(N) theory

Demanding that λ has scaling dimension 1, we find that

[uk] =
2k

N + 2
. (11.5.6)

Note that we have [uk] + [uN+2−k] = 2. At this point it is instructive to recall our discussions
around (10.1.13). We consider the prepotential deformation∫

d4θukuN+2−k (11.5.7)

where d4θ is the chiral N=2 superspace integral. As [uk] ≤ 1 ≤ [uN+2−k] when k ≤ N + 2− k,
we consider uk is the deformation parameter for the physical operator uN+2−k.

Take the simplest case N = 3. We have the theory with one operator with [u3] = 6/5 and a
corresponding parameter with [u2] = 4/5. These are the same as those of the Argyres-Douglas
CFT which arose from SU(2) with one flavor; in fact the curve and the differential are completely
the same:

ADNf=0(SU(3)) = Y7 = ADNf=1(SU(2)). (11.5.8)

11.5.2 SU(N) theory with two flavors

Next, consider SU(N) theory with two flavors. The curve is

(x− µ1)
ΛN−1

z
+ (x− µ2)ΛN−1z = xN + · · ·+ uN . (11.5.9)
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We already studied the case N = 2, so let us set N > 3. Then we expand as

uN−1 = 2ΛN−1 + δuN−1, z = 1 + δz (11.5.10)

and take the limit where δz, δuN−1 and µ1,2 are all small. The curve is

c (x− µ1 + µ2

2
)δz2 + c′ (µ1 − µ2)δz = xN + · · ·+ uN−2x

2 + δuN−1x+ uN (11.5.11)

with the differential λ = xdδz ∼ δzdx. Here c and c′ are unimportant constants.
We now define x′ by x = x′ − (µ1 + µ2)/2, shift δz by δz → δz − (c′/c)(µ1 − µ2)/(2x′), and

introduce z̃ = 1/x′. The curve is now

λ2 =
1 + ũ1z̃ + ũ2z̃

2 + · · ·+ ũN z̃
N + (µ̃1 − µ̃2)2z̃N+1

z̃N+3
dz̃2. (11.5.12)

Here we absorbed various unimportant numerical constants into the definition of variables with
tildes.

This is the curve λ2 = φ(z) with φ having one pole of order N + 3 and another of order 2, see
Fig. 11.8. This is the theory XN+3 introduced in Fig. 10.8. We have

ADNf=2(SU(N)) = XN+3. (11.5.13)

The most singular point of SU(N) theory with odd number of flavors gives anN=2 CFT, analyzed
in [65, 19]. The most singular point of SU(N) theory with even number of flavors Nf ≥ 4 does
not give an N=2 CFT, as we will see in Sec. 12.4.4.

N+III II

Figure 11.8: The most singular point of SU(N) theory with two flavors
.

11.5.3 Pure SO(2N) theory

Next, take the pure SO(2N) theory

x2(
Λ2N−2

z
+ Λ2N−2z) = x2N + u2x

2N−2 + · · ·+ u2N . (11.5.14)

Take
u2N−2 = 2Λ2N−2 + δu2N−2, z = 1 + δz (11.5.15)

and go to the limit where δu2N−2, δz are both small. The curve is

c δz2 = x2N−2 + · · ·+ δu2N−2 +
u2N

x2
(11.5.16)
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where c is an unimportant constant. The differential is given by λ = xdδz ∼ δzdz. In terms of
z̃ = 1/x2, the curve is

c λ2 =
1 + ũ2z̃ + · · ·+ ũ2N−2z̃

N−1 + u2N z̃
N

z̃N+2
dz̃2. (11.5.17)

This is again the curve λ2 = φ(z) with φ having one pole of rather high order N + 2 and another
of order 2, see Fig. 11.9. Therefore we find

ADNf=0(SO(2N)) = XN+2. (11.5.18)

N+II II

Figure 11.9: The most singular point of SO(2N) theory

Now, SU(4) and SO(6) have the same Lie algebra. Using (11.5.5) and (11.5.18), we find

Y8 = ADNf=0(SU(4)) = ADNf=0(SO(6)) = X5. (11.5.19)

Using (11.5.13), we find that these are also equivalent toADNf=2(SU(2)). This set of equivalences
explains what we saw in (10.5.1).

11.5.4 Argyres-Douglas CFTs and the Higgs branch

The SU(2) theory with Nf = 2 flavors has a Higgs branch of the form C2/Z2, but the pure SU(4)

theory does not have it in the ultraviolet. We just claimed

ADNf=0(SU(4)) = ADNf=2(SU(2)). (11.5.20)

How is this compatible? The discussion below summarizes the content of [66].
Note that the limiting Argyres-Douglas theory has an operator u of scaling dimension 4/3, a

corresponding parameter m of scaling dimension 2/3 and an additional mass parameter µ1 − µ2

of scaling dimension 1. When we realize it as a limit of the SU(2) theory with Nf = 2 flavors,
clearly the low energy theory has just one U(1) multiplet and µ1 − µ2 is an external parameter.

When we realize the same theory as a limit of the pure SU(4) theory, however, originally the
low energy theory has U(1)3 vector multiplet, and three Coulomb branch parameters u2, u3 and
u4. We saw that δu2 has scaling dimension 2/3, δu4 scaling dimension 4/3, and δu3 is of scaling
dimension 1. Therefore, we see that the mass parameter µ1 − µ2 of the limiting Argyres-Douglas
theory is now promoted to the vev δu3 of a U(1) multiplet in this realization. Equivalently, the
U(1) subgroup of the SU(2) flavor symmetry of the limiting theory is weakly dynamically gauged,
thus removing the Higgs branch.
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Similarly, we saw here that the pure SO(8) theory and the SU(3) theory with Nf = 2 flavors
both give rise to the CFTX6. In Sec. 10.5, we also learned that SU(2) theory withNf = 3 flavors
also has a point on the Coulomb branch where the low energy limit is described by the same theory
X6, see (10.5.1). The situation concerning their Higgs branches can also be studied similarly as
above. The limiting theory itself has an operator u of scaling dimension 3/2, a corresponding
deformation parameter m of dimension 1/2, and two mass parameters µ1 − µ2 and µ1 − µ3 for
the SU(3) flavor symmetry. This is most clearly seen in the description as a point on the Coulomb
branch of the SU(2) theory with Nf = 3 flavors.

In terms of SU(3) theory with Nf = 2 flavors, we have two Coulomb branch operators u2, u3,
the mass parameter m for the U(1) part of the flavor symmetry, and the mass parameter for the
SU(2) part µ1 − µ2. We see that u2 and u3 has scaling dimensions 1 and 3/2 respectively, m has
scaling dimension 1/2, and µ1−µ2 has dimension 1. Then we see that U(1) subgroup of the flavor
symmetry SU(3) is weakly gauged. The vev of this weakly-gauging U(1) vector multiplet is u2.

In terms of pure SO(8) theory, we have four Coulomb branch operators u2, u4, u6 and u8, but
as we discussed above, u8 = ũ2

4. Close to the Argyres-Douglas point, we see that u2, u4, u3 and ũ4

has scaling dimensions 1/2, 1, 3/2 and 1 respectively. We see that U(1)2 subgroup of the flavor
symmetry SU(3) is weakly gauged by the two U(1) vector multiplets with scalar components u4

and ũ4. The action of the outer automorphism S3 of SO(8) on the dimension-1 operators u4 and
ũ4 are generated by the parity operation ũ4 → −ũ4 and a 120◦ rotation acting on the u4-ũ4 plane.
This is exactly how the Weyl group of the flavor symmetry SU(3) acts on the two mass parameters
µ1, µ2, µ3 with µ1 + µ2 + µ3 = 0. Therefore we see that the outer-automorphism symmetry of
SO(8) can be identified with the Weyl group of the SU(3) flavor symmetry.

12 Argyres-Seiberg-Gaiotto duality for SU(N) theory

12.1 S-dual of SU(N) with Nf = 2N flavors, part I
12.1.1 Rewriting of the curve

We learned in the last section that the curve of SU(N) theory with 2N flavors is given by:∏N
i=1(x̃− µ̃i)

z̃
+ f

N∏
i=1

(x̃− µ̃′i)z̃ = x̃N + ũ2x̃
N−2 + · · ·+ uN (12.1.1)

where f is a complex number; the differential is λ̃ = x̃dz/z. This theory is superconformal, and
f is a function of the UV coupling constant τUV . We would like to understand the strong-coupling
limits of this theory.

As we did in Sec. 9, it is convenient to rewrite the curve in terms of the Seiberg-Witten differ-
ential λ, to the form

λN + φ2(z)λN−2 + · · ·+ φN(z) = 0. (12.1.2)
We start from (12.1.1). First we gather terms with the same power of x̃:

(1− 1

z̃
− f z̃)x̃N +♥1x̃

N−1 +♥2x̃
N−2 + · · ·+♥N = 0 (12.1.3)
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where
♥1 =

∑
µ̃i
z̃

+ f z̃
∑

µ̃′i. (12.1.4)

We divide the whole equation by (1− 1/z̃ − f z̃) and define x = x̃+♥1/(1− 1/z̃ − f z̃)/N . We
now have

xN +♣2x
N−2 + · · ·+♣N = 0 (12.1.5)

where ♣k has poles of order k at two zeros z̃1,2 of 1− 1/z̃ − f z̃ = 0, due to the shift from x̃ to x.
We set z = z̃/z̃1 so that one zero is now at 1, and another is at q = z̃2/z̃1.

Introducing λ = xdz/z, we have an equation of the form (12.1.2); φk(z) has poles of order at
most k at z = 0, q, 1 and∞. Consider the case when all µ̃i and µ̃′i are generic, and assume q � 1.
Then it is straightforward to determine how λ behaves close to each of the singularity. As we are
solving a degree-N equation, we have N residues at each singularity. They are given by

µ1, µ2, . . . , µN−1, µN , z∼ 0,

µ, µ, . . . , µ, (1−N)µ, z∼ q,

µ′, µ′, . . . , µ′, (1−N)µ′, z∼ 1,

µ′1, µ′2, . . . , µ′N−1, µ′N , z∼ ∞.

(12.1.6)

Here

µi = µ̃i −
1

N

∑
i

µ̃i +O(q),
∑

µi = 0; (12.1.7)

µ =
1

N

∑
i

µ̃i +O(q) (12.1.8)

and similarly for the µ′i, µ′. Note that µi and µ are the mass parameters which enter the BPS mass
formula. We found that they are related to the parameters µ̃i via a finite renormalization.

When N = 2, the structure of the residues at all four punctures were of the same type, as they
are all given by (m,−m). For N > 2, we see that the structure of the residues at z = 0,∞ and
the structure at z = q, 1 are different. The former is of the form (m1, . . . ,mN) with

∑
mi = 0,

and the latter is of the formm(1, 1, . . . , 1−N).
It is also instructive to consider the completely massless case, when we have µ̃i = µ̃′i = 0 for

all i. The original curve is just

xN

z
+ fxNz = xN + u2x

N−2 + · · ·+ uN . (12.1.9)

After the same manipulation as above, we find

φk(z) =
uk

(z − q)(z − 1)

dzk

zk−1
. (12.1.10)

Therefore,
φk(z) has poles of order k − 1 when z = 0,∞,
φk(z) has poles of order 1 when z = q, 1.

(12.1.11)
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We observe here again that the behavior of the poles are all the same when N = 2, while the
behavior at z = 0,∞ and the behavior at z = 1, q are distinct when N > 2.

z=0 z=∞

z=q z=1

Figure 12.1: The ultraviolet curve of SU(N) theory with 2N flavors

We have 2N mass terms in the system. First of all we split them into N mass terms encoded
in the region z ∼ 0, and another N mass terms in the region z ∼ ∞. Correspondingly, we started
from the flavor symmetry U(2N) and decomposed it into U(N)× U(N). We further decompose
each of U(N) into SU(N) and U(1). Combined, we use the decomposition of the flavor symmetry
of the form

U(2N) ⊃ U(N)× U(N) ' [SU(N)A × U(1)B]× [U(1)C × SU(N)D]. (12.1.12)

The residues of λ at the puncture A at z = 0 and those at the puncture D at z = ∞ encode the
mass terms for SU(N)A,D respectively, whereas those at the puncture B at z = q and those at the
puncture C at z = 1 encode the mass terms for U(1)B,C ; compare (12.1.6).

We then say that the singularity at z = 0 carry the SU(N) symmetry, the one at z = q carry
the U(1) symmetry, and similarly for those at z = 1, = ∞. We can visualize the situation as
in Fig. 12.1. We call the punctures at z = 0,∞ the full punctures, and those at z = q, 1 the
simple punctures. In the 6d viewpoint, these are four-dimensional defect objects extending along
the Minkowski R3,1, and they carry respective flavor symmetries on them.

WhenN = 2, the original symmetry is not just U(2) but SO(4). Accordingly, the split U(2) '
SU(2)× U(1) is enhanced to the following structure

SO(4) ⊃ SU(2) × SU(2)

∪ = ∪
U(2) ⊃ SU(2) × U(1)

(12.1.13)

and therefore the distinction of the types of punctures is gone.

12.1.2 Weak-coupling limit

0 ∞

q 1
A

B C

D A

B C

D
G G'

q=

Figure 12.2: Weakly coupled limit
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Clearly f ∼ q ∼ e2πiτUV in the weak coupling region, see Fig. 12.2. When the coupling is ex-
tremely weak, we can think that the four-punctured sphere on the left is composed of two three-
punctured spheres. In the tube region connecting the two, the behavior of λ is essentially given
just by

φk(z) ∼ uk
dzk

zk
. (12.1.14)

Writing ∏
(x− ai) = xN + u2x

N−2 + · · ·+ uN , (12.1.15)
we find that the residues of λ in the tube region is given by a1, . . . , aN . Therefore, we find full
punctures after we split off two spheres.

The resulting three-punctured sphere has one simple puncture and two full punctures. There-
fore it should carry U(1) × SU(N) × SU(N) symmetry. The four-punctured sphere represents
the SU(N) theory with 2N flavors. The tube region carries the SU(N) vector multiplet. Then
each three-punctured sphere just represents N flavors, i.e. hypermultiplets (Qa

i , Q̃
i
a) where a, i =

1, . . . , N . Then two SU(N) symmetries can be identified with those acting on the index a and i
respectively, and the U(1) symmetry is such that Q has charge +1 while Q̃ has charge −1.

The ultraviolet curve of the SU(N) theory with 2N flavors, shown in Fig. 12.1, is composed of
two copies of this three-punctured sphere. The 2N hypermultiplets are split intoN hypermultiplets
(Qa

i , Q̃
i
a) charged under SU(N)A and U(1)B, and another N hypermultiplets (Q′ai , Q̃

′i
a) charged

under SU(N)D and U(1)C .

0 ∞

q 1
A

B C

D 0 ∞

1
A

C B

D

q'=1/q

Figure 12.3: S-duality of SU(N) 2N flavors

12.1.3 A strong-coupling limit

Let us consider what happens when q → ∞. As shown in Fig. 12.3, it just ends up exchanging
the puncture B and C, at the same time redefining the coupling q via q′ = 1/q. This means that
this strongly-coupled limit turns out to be another weakly-coupled SU(N) gauge theory with 2N

flavors. This time, the 2N hypermultiplets are split intoN hypermultiplets (qai , q̃
i
a) and anotherN

hypermultiplets (q′ai , q̃
′i
a), but notice that the first N are charged under SU(N)A and U(1)C while

the second N are charged under SU(N)D and U(1)B. As we learned for the case of the SU(2)

theory with four flavors in Sec. 9.4, the new quarks are magnetic from the point of view of the
original theory.

We would like to understand the limit q → 1 too. We need to split the four-punctured sphere
as shown in Fig. 12.4. But the configuration of punctures are not what we already know: we have
two full punctures on one side, and two simple punctures on the other side. We need to study more
about the 6d construction before answering what happens in the limit.
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0 ∞

1
A

D C

B

q'=1−q

Figure 12.4: Another limit of SU(N) 2N flavors:

12.2 SU(N) quiver theories and tame punctures
12.2.1 Quiver gauge theories

To this aim, we introduce a new diagrammatic notation for N=2 gauge theories. This notation is
related to but distinct from the trivalent one introduced in Sec. 9.5.

A diagram is composed of squares and circles with integers written in them, and edges con-
necting squares and circles. A square withN stands for a U(N) flavor symmetry, and a circle with
N an SU(N) gauge symmetry. An edge connecting two objects with N and M written within
them represents a hypermultiplet (Qa

i , Q̃
i
a) where i = 1, . . . , N and j = 1, . . . ,M . They are in the

tensor product of the fundamental representation of SU(N) and SU(M), and is called the bifun-
damental hypermultiplet. Such a diagram specifies an N=2 gauge theory. This class of theories
is often called quiver gauge theories.

N N

N NN
0 ∞

q 1

q

0 ∞

1qq' q'
N NN

q
N

q'

Figure 12.5: SU(N) quiver theory

The simplest cases are when all the squares and circles have the same number N written in
them, see Fig. 12.5. The first one in the figure is just a bifundamental hypermultiplet. The second
one is the SU(N) theory with 2N flavors. The last one is an SU(N)1 × SU(N)2 theory, so that

• there is a bifundamental hypermultiplet for SU(N)1 × SU(N)2, and

• there are N fundamental hypermultiplets for SU(N)1, and
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• there are N fundamental hypermultiplets for SU(N)2.

Note that both SU(N)1 and SU(N)2 have zero beta function.
Their Seiberg-Witten solutions can be obtained by combining the knowledge we acquired so

far. Namely, each edge corresponds to the bifundamental hypermultiplet of SU(N) × SU(N),
which we know to come from a three punctured sphere of 6d theory of type SU(N), with two full
punctures and one simple puncture. All we have to do then is to prepare one such sphere for each
edge, and connect pairs of full punctures by tubes. For example, the Seiberg-Witten solution for
the third theory in Fig. 12.5 is given by

λN + φ2(z)λN−2 + · · ·+ φN(z) = 0 (12.2.1)

where φk(z) has five singularities, such that two at z = 0, = ∞ are full and the other three at
z = 1, q and qq′ are simple.

For simplicity, let us assume that all the mass parameters are zero. Then, from the condition
of the order of the poles of the singularities given in (12.1.11), the fields φk(z) are uniquely fixed
to be

φk(z) =
u

(1)
k z + u

(2)
k

(z − 1)(z − q)(z − qq′)
dzk

zk−1
. (12.2.2)

The reader should check that it has the correct behavior at z =∞. This theory is superconformal,
as both SU(1)1 and SU(2)2 have zero one-loop beta function. This is reflected by the fact that the
variables appearing in the Seiberg-Witten curve (12.2.1) can be assigned scaling dimensions in a
natural way. The differential λ should have scaling dimension one, since its integral gives the BPS
mass formula: [λ] = 1. We then set [z] = 0 and [φk] = k. This means that u(i=1,2)

k should be
two Coulomb branch operators with scaling dimension k. Indeed, we are dealing with an SU(N)2

gauge theory which is superconformal, and there are exactly one Coulomb branch operator of
scaling dimension k for k = 2, . . . , N .

12.2.2 N=2∗ theory

q

= =

τ

0
1

N

q

Figure 12.6: SU(N) plus adjoint: the N=2∗ theory.

A rather degenerate situation arises when we take just one bifundamental hypermultiplet (Qa
i , Q̃

a
i )

and couple one SU(N) gauge multiplet to both indices, see Fig. 12.6. The N ×N hypermultiplet
components now behave as an adjoint representation plus a singlet. The singlet part is completely
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decoupled, and therefore the theory is essentially the SU(N) gauge theory with an adjoint hyper-
multiplet. When massless this is the N=4 super Yang-Mills, whereas it is called N=2∗ theory
when massive. The Seiberg-Witten solution can then be obtained by taking a three-punctured
sphere and connecting the two full punctures. We end up having a torus with one simple puncture.
This solution was first found in [67], to which the readers should refer for details.

12.2.3 Linear quiver theories

So far we learned how to solve gauge theories shown in Fig. 12.5. They have the gauge group

SU(N)× · · · × SU(N)× · · · × SU(N) (12.2.3)

with bifundamentals between adjacent SU(N) groups, and additional N flavors each for the first
and the last SU(N) groups. All SU(N) groups have zero beta function.

Let us consider a slight generalization of this class of theories. The gauge group is of the
following form

SU(N)× · · · × SU(N)× SU(Nk)× SU(Nk−1)× · · · SU(N2)× SU(N1). (12.2.4)

We put the bifundamental hypermultiplets between adjacent SU(N) and SU(N ′). Such gauge
theories are often called linear quiver gauge theories, since the gauge factors are arranged in a
linear fashion.

Here, we introduce additional flavors for every SU group, so that they all have zero beta func-
tions. Define N0 = 0 and Nk+1 = N . Then the condition we need to impose is

Ni−1 +Ni+1 + ni = 2Ni, i = 1, . . . , k (12.2.5)

where ni is the number of additional fundamental hypermultiplet for SU(Ni). Since ni ≥ 0, we
have si ≥ si+1 where si = Ni −Ni−1. Clearly

∑k+1
i=1 si = N .

A decreasing sequence of integers s1 ≥ s2 ≥ · · · ≥ sk+1 whose sum is N is called a partition
of N . Then we can phrase our finding here by saying that this type of gauge theory can be charac-
terized by a partition of N . A partition can be graphically represented by a Young diagram. Here
we draw it by arranging boxes so that the widths of the rows are given by si. Examples are shown
for N = 4 on the left hand side of Fig. 12.7. There, additional ni flavors are shown by connecting
a box ni to a circle Ni.

What is the Seiberg-Witten solutions of this class of theories? There are a few independent
methods to arrive at the solutions. Originally they are obtained using a configuration of branes in
type IIA string theory and lifting it to M-theory [6]. We now also have a field theoretical derivation
in terms of instanton computation [68]. In this subsection, we just state the results, and give a few
justification. We will come back to this point in more details in Sec. 12.5.

The Seiberg-Witten solution is obtained by the following procedure. First, consider a sphere
of 6d theory of type SU(N), realizing the theory where all Ni is equal to N . As explained above,
we have two full punctures and a number of simple punctures. We then replace one full puncture
at z = ∞ with a new type of puncture labeled by the Young diagram, see the right hand side of
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4 3 24 1
1 0

4 3 24 1
1

4
0

4 4 34 2
1

4

0
4 4 44 2

2

0

4 4 44 44
0

= = = no puncture

Figure 12.7: SU(N) tame punctures
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Figure 12.8: The young diagram shown here has (si) = (4, 2, 2), (νk) = (1, 1, 1, 1, 2, 2, 3, 3),
(pk)

8
k=1 = (0, 1, 2, 3, 3, 4, 4, 5) and (ti) = (3, 3, 1, 1). The standard convention is to use the column

heights (ti) to label punctures.

Fig. 12.7. These new types of punctures, together with the simple and the full punctures introduced
already, are called tame SU(N) punctures.

A full puncture carries the flavor symmetry SU(N), and a simple puncture U(1). To correctly
reproduce the flavor symmetry of the total theory, the singularity at z =∞ labeled by this Young
diagram needs to be associated to the flavor symmetry

S[U(n1)× U(n2)× . . .U(nk)] (12.2.6)

where the S[· · · ] means that we remove the diagonal U(1) of the following unitary gauge groups.
The description becomes complete once we describe how the fields φk(z) behave at this new

puncture. When the hypermultiplets are all massless, the rule is given as follows. Given a Young
diagram with row widths s1 ≥ s2 ≥ · · · , define pk = k − νk where

(ν1, ν2, . . . , νN) = (1, . . . , 1︸ ︷︷ ︸
s1

, 2, . . . , 2︸ ︷︷ ︸
s2

, . . . , ) (12.2.7)

Then φk(z) should have a pole of order pk at the puncture. For an example, see Fig. 12.8.
When the hypermultiplets are massive, the rule goes instead as follows. Take the same Young

diagram, but describe it with column heights t1 ≥ t2 ≥ · · · tx where x is the number of columns.
Then λ should have N residues with following structure:

(µ1, . . . , µ1︸ ︷︷ ︸
t1

, µ2, . . . , µ2︸ ︷︷ ︸
t2

, . . . , ) (12.2.8)

where we need to impose ∑
tiµi = 0. (12.2.9)

We identify these residues with the mass parameters associated to the flavor symmetry (12.2.6).
There are ni mass parameters µ(i)

a , a = 1, . . . , ni for each U(ni). We then make the identification

(µ
(1)
1 , . . . , µ(1)

n1
;µ

(2)
1 , . . . , µ(2)

n2
; · · · ;µ

(k)
1 , . . . , µ(k)

nk
) = (µ1, µ2, . . . , µx). (12.2.10)

Note that
∑
ni equals the number of columns x. The individual ni corresponds to the number of

columns of a certain given height, say h, then there is an index a such that

ta = ta+1 = · · · = ta+ni−1 = h. (12.2.11)
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Then the Weyl group of the U(ni) flavor symmetry can be identified with the permutation of the
columns of height h.

It is conventional in the N=2 literature to label the punctures using column heights (ti). The
full puncture is then associated to the Young diagram (1, 1, . . . , 1), and the simple puncture has the
Young diagram (N − 1, 1). We can indeed check that the general formulas (12.2.7) and (12.2.8)
reproduce (12.1.6) and (12.1.11). Note also that the puncture of type (N) does not have poles at
all. This corresponds to an absence of the puncture.

2 2 2

2 2

= = no puncture=

Figure 12.9: SU(2) tame punctures

Let us apply this general discussion to the particular case N = 2 which we discussed exten-
sively in Sec. 9. There, we introduced a different diagrammatic notation using trivalent vertices,
reflecting special properties of SU(2), see Fig. 12.9. In the current approach, we see that both the
full puncture and the simple puncture for N = 2 have the Young diagram (1, 1), thus losing the
distinction. The only other type of puncture is (2), which corresponds to the absence of puncture
in the first place. Therefore the construction in this section does not give anything new forN = 2.

12.2.4 Tame punctures and the number of Coulomb branch operators

Let us check that the prescription described above reproduces the expected number of Coulomb
branch operators. Compare, for example, the first and the fourth rows of Fig. 12.7. The Seiberg-
Witten solutions are both given by

λ4 + φ2(z)λ2 + φ3(z)λ+ φ4(z) = 0. (12.2.12)

In both cases, φk(z) has one full puncture at z = 0 and five simple punctures at z = zi. The
puncture at z = ∞ changes types. For the theory at the first row, the puncture at z = ∞ is a full
puncture, where φk(z) has poles of order k − 1. This determines the fields φk(z) to be given by

φk(z) =
u

(1)
k + u

(2)
k z + u

(3)
k z2 + u

(4)
k z3∏5

i (z − zi)
dzk

zk−1
. (12.2.13)
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Note that the degree of the polynomial in the numerator is fixed by the order of the pole at z =∞.
We identify u(i)

k as the dimension-k Coulomb branch operator of the i-th SU(4) gauge group.
Now change the type of the puncture at z =∞. The allowed order of the pole there is reduced

by νk as given in (12.2.7). In this particular case, the orders of the poles for φ2(z), φ3(z), φ4(z)

are reduced by 0, 1, 2 respectively. This reduces the degree of the polynomials in the numerator
of (12.2.13) by 0, 1, 2 respectively, resulting in

φ2(z) =
u

(1)
2 + u

(2)
2 z + u

(3)
2 z2 + u

(4)
2 z3∏5

i (z − zi)
dz2

z
(12.2.14)

φ3(z) =
u

(1)
3 + u

(2)
3 z + u

(3)
3 z2∏5

i (z − zi)
dz3

z2
(12.2.15)

φ4(z) =
u

(1)
4 + u

(2)
4 z∏5

i (z − zi)
dz4

z3
. (12.2.16)

We identify u(i)
k as a dimension k Coulomb branch operator for the i-th gauge group. We see that

the third gauge group now has the Coulomb branch operators of dimension 2 and of dimension 3,
and that the fourth gauge group only has the Coulomb branch operator of dimension 2. This agrees
with our claim that the gauge group is now SU(4)× SU(4)× SU(3)× SU(2).

This analysis of the number of the Coulomb branch operators can be extended to arbitrary N
and to arbitrary Young diagram. By a straightforward but somewhat cumbersome combinatorial
computation we see that the pole structure (12.2.7) reproduces the structure of the gauge group as
given in (12.2.4).

12.2.5 Tame punctures and the decoupling

Now let us study what happens when we make the coupling of the last gauge group in (12.2.4)
very weak. When we completely turn off the coupling, we lose the last gauge group SU(Nk).
The new last gauge group is SU(Nk−1), which is now coupled to Nk + nk−1 hypermultiplets in
the fundamental representation. Note that Nk of them originally came from the bifundamental
hypermultiplet for SU(Nk−1)× SU(Nk).

This process for the quiver tail characterized by the Young diagram (3, 1) is shown on the
right hand side of Fig. 12.10. In terms of the ultraviolet curve, turning off the coupling of the last
gauge group corresponds to splitting off the last two punctures. When we completely decouple the
gauge group, we find a new puncture emerging. The type of this new puncture can be determined
by the rule explained above, from the resulting gauge theory with one less gauge group. In this
case, the newly appearing puncture on the left has the Young diagram (2, 1, 1). The decoupled
three-punctured sphere on the right hand side represents one hypermultiplet in the doublet repre-
sentation of SU(2). We intentionally do not discuss the new puncture arising on this decoupled
three-punctured sphere on the right; for more details, see [69, 70].
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Figure 12.10: Decoupling one.

4 4 3 2
q

⊃
q

4 3 2
1

q
q

Figure 12.11: Decoupling the next.

We can continue the process. Decoupling the next gauge group, the Young diagram becomes
(1, 1, 1, 1), i.e. the full puncture. The situation is shown in Fig. 12.11. The decoupled three-
punctured sphere on the right hand side represents two hypermultiplets in the triplet representation
of SU(3).

Note that SU(3) gauge group before the complete decoupling can be thought of as gauging
the SU(3) subgroup of the SU(4) flavor symmetry of the full puncture, as shown in the second
row of the figure. This splits four fundamental flavors coupled to SU(4) into a set of three flavors
and an additional one flavor. The SU(3) gauge group makes the first three into the bifundamental
hypermultiplet of SU(4)×SU(3), and one flavor remains to couple just to SU(4) on the upper row.

Another example of decoupling process for the puncture of type (2, 2) is shown in Fig. 12.12.
The decoupled three-punctured sphere on the right hand side represents an empty theory.
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Figure 12.12: Another example of decoupling.

12.3 S-dual of SU(N) with Nf = 2N flavors, part II
12.3.1 For general N

2⊃ 1 N−2
SU(2)

N N N

RN2N 2

Figure 12.13: S-dual of SU(N) with 2N flavors, explained.

Now we have learned enough techniques to understand the S-dual of SU(N) theory with 2N fla-
vors, see the first row of Fig. 12.13. Originally, we have a sphere with four punctures: two at z = 0,
∞ are full punctures, and two at z = q, 1 are simple punctures. We would like to understand the
limit q → 1. We end up decoupling two simple punctures from the other two. We already learned
what happens in this decoupling process.

The simple puncture is a puncture of type (N − 1, 1). Decoupling two of them, we generate a
puncture of type (N − 2, 1, 1). This puncture has a flavor symmetry SU(2)× U(1) when N > 3,
and SU(3) when N = 3. The behavior of the duality when N = 3 is somewhat more peculiar
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than the other cases. In any case, there is an SU(2) symmetry exchanging the last two columns
of height 2, and a weakly-coupled dynamical SU(2) group gauges this SU(2) symmetry. There is
in addition one flavor in the doublet representation for this SU(2) gauge group coming from the
almost decoupled sphere on the right, see the last row of Fig. 12.13.

The question is the nature of the sphere on the left hand side. It has three punctures: two are
full punctures, and one is of type (N−2, 1, 1). Assuming all the mass parameters are zero, we can
determine the behavior of fields φk(z) easily, as the pole structure at z =∞ is (p2, p3, . . . , pN) =

(1, 2, . . . , 2). We see that

φ2(z) = 0, φk(z) =
uk

(z − 1)k−1zk−1
dzk. (12.3.1)

This theory has one dimension-k operator for each k = 3, 4, . . . , N . The flavor symmetry is at least
SU(N)× SU(N) associated to the full punctures, and SU(2)×U(1) associated to the puncture of
type (N − 2, 1, 1). Call this funny conformal field theory RN , for which we introduce a graphical
notation as in Fig. 12.14. In the original theory, the symmetry SU(N) × SU(N) × U(1) was
part of the flavor symmetry SU(2N) rotating the whole 2N hypermultiplets in the fundamental
representation. We then need to demand that this theory RN has a larger flavor symmetry

SU(2N)× SU(2) ⊃ [SU(N)× SU(N)× U(1)]× SU(2). (12.3.2)

N−2

NN

RN2N 2

Figure 12.14: Strange theory of Chacaltana-Distler, RN .

We finally have the S-duality statement:

SU(N) theory with 2N flavors at the strong coupling q → 1

⇔

weakly-coupled SU(2) gauge multiplet coupled to one doublet and to the RN theory.
(12.3.3)

This general statement was found by Chacaltana and Distler in [69]. We know that the dual SU(2)

gauge coupling has zero beta function. Applying the analysis as in Sec. 10.5, we find that the
SU(2) flavor symmetry of the RN theory contributes to the running of the SU(2) coupling as if it
has effectively three hypermultiplets in the doublet. Equivalently, we have

〈jµjν〉RN = 3〈jµjν〉free hyper in a doublet of SU(2) (12.3.4)

where jµ is the SU(2) flavor symmetry current. See Fig. 12.15.
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RN

RN

= ⟨ jμ jν⟩free hyper

RN

SU(2) + 4 flavors SU(2) + a doublet + RN

= ⟨ jμ jν⟩
RN

⟨ jμ jν⟩ = 3⟨ jμ jν⟩free hyper

Figure 12.15: The SU(2) flavor symmetry current of the RN theory.

3 33

2
3

3
3 ⊃ 1

Figure 12.16: S-duality of SU(3) with 6 flavors involves the theoryMN(E6).
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12.3.2 N = 3: Argyres-Seiberg duality

WhenN = 3 we can say a little more about this duality. This was originally found by Argyres and
Seiberg in [71]; the presentation here follows that given by Gaiotto in [8].

Now the puncture of type (N−2, 1, 1) = (1, 1, 1) is a full puncture. Therefore the theoryR3 is
given by a sphere with three full punctures, see Fig. 12.16. The structure of φk(z) is already given
in (12.3.1). Therefore, this theory has just one Coulomb branch operator, of dimension 3.

We know that there is an enhancement of the flavor symmetry SU(3) × SU(3) associated to
two full punctures to SU(6), as in (12.3.2). We have three full punctures. Therefore, it should be
that the flavor symmetry F of this theory should be such that we have the following diagram

F ⊃ SU(6) × SU(2)

∪ ∪
SU(3)× SU(3)× SU(3) ⊃ SU(3)× SU(3)× U(1) × SU(2)

(12.3.5)

for any choice of two out of three SU(3)s. Fortunately, there is unique such F , that is E6, see
Fig. 12.17. There, on the left, we introduce a diagrammatic notation for this theory. On the center
and on the right, we have the extended Dynkin diagram of E6 with one node removed.15 We
clearly see subgroups SU(3)3 and SU(6) × SU(2). We already saw above that this theory has
only one Coulomb branch operator, and its dimension is three. This nicely fits the feature of a
rank-1 superconformal theory announced to exist in Sec. 10.4. This is equivalent to Minahan-
Nemeschansky’s theoryMN(E6).

33

3

Figure 12.17: The theoryMN(E6) = R3 = T3

We conclude that we have the following duality:

SU(3) theory with 6 flavors at the strong coupling q → 1

⇔

weakly-coupled SU(2) gauge multiplet coupled to one doublet
and to the theoryMN(E6) of Minahan-Nemeschansky.

(12.3.6)

We can give a few more checks to this duality. The first one concerns the current two-point
functions. Firstly, we computed the current two-point function for the SU(2) flavor symmetry in
(12.3.4). Then the whole E6 flavor currents, which include the SU(2) ones, should have the same

15There is a general theorem for any G stating that there is always a maximal subgroup whose Dynkin diagram is
given by the extended Dynkin diagram of G minus one node.
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coefficient in front of the two-point function. Note that SU(6) flavor symmetry of the SU(3) gauge
theory with six flavors is also a subgroup of this E6 flavor symmetry. Therefore, we should have

〈jSU(6)
µ jSU(6)

ν 〉SU(3), Nf=6 = 3〈jµjν〉free hyper in the fundamental of SU(6). (12.3.7)

This is indeed the case, since the left hand side can be computed in the extreme weakly-coupled
regime, where they just come from three hypermultiplets in the fundamental representation of
SU(6).

The second check is about the Higgs branch. The SU(3) theory with six flavors has a Higgs
branch of quaternionic dimension

3 · 6− dim SU(3) = 10. (12.3.8)

Let us perform the computation in the dual side. The theory MN(E6) has a Higgs branch of
quaternionic dimension 11, as we tabulated in Table 10.1. We have a doublet of SU(2) in addi-
tion, and we perform the hyperkähler quotient with respect to SU(2) gauge group. Therefore the
quaternionic dimension is

11 + 2− dim SU(2) = 10, (12.3.9)
which agrees with what we found above in the original gauge theory side. Here we only compared
the dimensions, but they can be shown to be equivalent as hyperkähler manifolds, see [72].

12.4 Applications
12.4.1 TN

N N NN N

N−2 times

N

2
N

N
N ⊃ 1N−1 N−2

Figure 12.18: Duality producing TN theory

We can now have some fun manipulating punctures. For example, consider a gauge theory with
gauge group SU(N)N−2, with bifundamental hypermultiplets between consecutive groups, to-
gether with N additional fundamental hypermultiplets for the first and the last one, see the first
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row of Fig. 12.18. The Seiberg-Witten solution is easily given: it is given by a sphere of type
SU(N) theory, with two full punctures and N − 1 simple punctures. We go to a duality frame
where we decouple all of these N − 1 simple punctures. Applying the decoupling procedure we
learned in Sec. 12.2, we find that we generate a quiver tail with gauge group

SU(N − 1)× SU(N − 2)× · · · SU(2), (12.4.1)

with bifundamental hypermultiplets between two consecutive groups and one doublet for the last
SU(2). The first SU(N − 1) gauges an SU(N − 1) subgroup of the flavor symmetry SU(N) of the
puncture of type (1, 1, . . . , 1), i.e. the full puncture.

NN

N

NN

N

Figure 12.19: The TN theory

In this way, we can construct a theory described by a sphere with three full punctures. This is
called the TN theory, see Fig. 12.19. Note thatR3 = T3. As we have three full punctures, the flavor
symmetry is at least SU(N)3. When N = 3, we saw above that this flavor symmetry enhances to
E6. When N ≥ 4, there are more than one gauge group in the original gauge theory. Therefore,
we do not have an enhancement from SU(N) × SU(N) to any other group. This matches with
the fact that there is no group containing SU(N)3 such that SU(N)2 enhances to SU(2N) when
N ≥ 4. Putting the punctures at z = 0, 1,∞, we see that φk has the form

φk =
u

(1)
k + · · ·+ u

(k−2)
k zk−3

zk−1(z − 1)k−1
dzk. (12.4.2)

Therefore this theory has one Coulomb branch operator of dimension 3, two Coulomb branch
operators of dimension 4, . . . , and N − 2 Coulomb branch operators of dimension N .

Now we can take two copies of this TN theory and couple them by an SU(N) gauge multiplet.
In the 6d construction, we just have four full punctures on the sphere. Therefore, we have the S-
duality structure exactly as in SU(2) theory with four flavors, exchanging all four punctures. In
fact, T2 theory is just the trifundamental hypermultiplet Qijk.

12.4.2 MN(E7)

Next, consider the duality shown in Fig. 12.21. We end up with a three-punctured sphere with two
full puncture and one puncture of type (2, 2). In the original gauge theory, we have six fundamental
flavors coupling to the SU(4) gauge multiplet with SU(6) flavor symmetry. To construct the ultra-
violet curve, we split these six flavors into four flavors and two flavors, and applied the rule shown
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Figure 12.20: S-duality of coupled copies of TN theory
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Figure 12.21: Duality producing theMN(E7)
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2

Figure 12.22: The theoryMN(E7).

in the third row of Fig. 12.7. Therefore, we see that the theory represented by the three-punctured
sphere have a flavor symmetry F of the form

F ⊃ SU(6) × SU(3)

∪ ∪
SU(4)× SU(2)× SU(4) ⊃ SU(4)× SU(2)× U(1) × SU(3)

. (12.4.3)

Thankfully, there is a unique such group F , that is E7, see Fig. 12.22. We can of course
compute the number of Coulomb branch operators this theory has, by studying φk(z). Here, let
us try a different procedure. Originally, we had the gauge group SU(4) × SU(2). Therefore, the
numbers of the Coulomb branch operators of dimension 2,3,4 were respectively 2, 1, 1. On the
dual side, the quiver tail contains SU(3)×SU(2), which has two operators of dimension 2 and one
operator of dimension 1. The theory represented by the three-punctured sphere should account for
the difference. Therefore there is just one Coulomb branch operator, of dimension 4. This again fits
the feature of a rank-1 superconformal theory announced to exist in Sec. 10.4. This is equivalent
to Minahan-Nemeschansky’s theory MN(E7). We can also check the agreement of the current
two-point functions and the dimensions of the Higgs branch, as we did at the end of Sec. 12.3.2.

12.4.3 MN(E8)

Generalizing this to the E8 symmetry is by now rather straightforward. We perform the duality as
shown in Fig. 12.23. In the dual side, we have a three-punctured sphere with one full puncture,
another of type (2, 2, 2), and of type (3, 3). We see that the flavor symmetry F of the theory should
satisfy

F ⊃ SU(5) × SU(5)

∪ ∪
SU(2)× SU(3)× SU(6) ⊃ SU(2)× SU(3)× U(1) × SU(5)

. (12.4.4)

This nicely fits the structure ofMinahan-Nemeschansky’s theoryMN(E8), see Fig. 12.24. Checks
of various properties are left as an exercise to the reader.
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Figure 12.23: Duality producing theMN(E8) theory
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Figure 12.24: E8 theory
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12.4.4 The singular limit of SU(N) with even number of flavors

Finally, let us study a non-conformal example. Consider SU(N) theory with Nf = 2n flavors,
with N > n. The curve is

ΛN−n∏n
i=1(x+ µ+ µi)

z
+ ΛN−n

n∏
i=1

(x+ µ+ µ̃i)
nz = xN + u2x

N−2 + · · ·+ uN (12.4.5)

with the differential λ = xdz/z. Here we demanded
∑

i µi + µ̃i = 0 and split the U(1) mass
term as µ. Clearly something happens when uN−n = 2ΛN−n around z ∼ 1. This point was first
considered in [73]. The correct physics was first discussed in [74]. We will see below that the
low-energy limit is an infrared-free SU(2) gauge theory coupled to the theories Rn and XN−n+4.

To study the infrared behavior, we let

uN−n,old = 2ΛN−n + uN−n,new, z = 1 + δz (12.4.6)

and assume the scaling

µi ∼ ε, uN ∼ εn, uN−1 ∼ εn−1, . . . , uN−n+2 ∼ ε2, (12.4.7)

and
u2 ∼ ε′2, u3 ∼ ε′3, . . . , uN−n+2 ∼ ε′N−n+2. (12.4.8)

We then need to assume
ε′N−n+2 ∼ ε2. (12.4.9)

In particular we have
ε� ε′ � 1. (12.4.10)

In the region x ∼ ε, we can approximate the curve (12.4.5) as

ΛN−n∏n
i=1(x+ µ+ µi)

z
+ ΛN−n

n∏
i=1

(x+ µ+ µ̃i)z

= (2ΛN−n + uN−n)xn + uN−n+2x
n−2 + · · ·+ uN (12.4.11)

with the scaling (12.4.7). When this is written as a degree-n equation for x, the coefficient of the
xn term is given by

ΛN−n

z
+ ΛN−nz − 2ΛN−n − uN−n (12.4.12)

In the limit ε→ 0, two zeros of (12.4.12) collide at z = 1. This is exactly the situation we studied
in Sec. 12.3 for SU(n) theory with 2n flavors in the q → 1 limit. We see that we generate the
Rn theory coupled to SU(2) gauge group; the operator uN−n+2 is now regarded as the Coulomb
branch vev of this SU(2). The parameters µi and µ̃i are now the mass parameters for the SU(2n)

symmetry of the Rn theory.
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In the region x ∼ ε′, the curve (12.4.5) can be approximated as

c δz2 = (xN−n + u2x
N−n−2 + · · ·+ uN−n+1

x
+
uN−n+2

x2
), (12.4.13)

where the differential λ = xdδz and c is an unimportnat constant. We already encountered this in
Sec. 11.5; this is the curve describing the Argyres-Douglas point of SU(N − n+ 1) theory with 2
flavors. Equivalently, we called this theory XN−n+4 in Sec. 10.5.

SU(N) with Nf = 2n
N− n +IV II

type-SU(2) type-SU(n)

n

n

n−2
SU(2) gauge

Figure 12.25: The most singular point of SU(N) with Nf = 2n flavors

Summarizing, we see that the limiting theory has the structure given in Fig. 12.25. Namely,
there is a weakly-coupled SU(2) gauge group, connecting the region x ∼ ε given by a sphere of
6d theory of type SU(n), representing the Rn theory, to the region x ∼ ε′, given by a sphere of 6d
theory of type SU(2), representing the theory XN−n+4.

In the intermediate region ε′ � x� ε, the curve is just

δz2 ∼ uN−n+2

x2
(12.4.14)

with λ = δzdx ∼ √uN−n+2dx/x. We see that there is an SU(2) gauge group, with

a ∼ 1

2πi

∮
δz
dx

x
∼ √uN−n+2. (12.4.15)

The dual coordinate aD is then given roughly by

aD ∼
2

2πi

∫ x∼ε

x∼ε′

√
uN−n+2

dx

x
∼ 2

2πi
a log

ε

ε′
. (12.4.16)

Using a ∼ ε and the relation (12.4.9), we see

aD =
2

2πi

N − n
N − n+ 2

a log a+ · · · . (12.4.17)

Recall that the running is given by

aD ∼
2

2πi
(4−Nf )a log a+ · · · (12.4.18)
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for SU(2) theory with Nf flavors. This system then effectively has

Nf =
5N − 5n+ 8

N − n+ 2
> 4. (12.4.19)

The SU(2) is now infrared free. Note that this is correctly the sum of the effective number of flavors
of the RN theory and the XN−n+4 theory, as computed already. Indeed, it is 3 for the RN theory,
and 2(N − n+ 1)/(N − n+ 2) for the XN−n+4 theory, see (12.3.4) and (10.5.8), respectively.

12.5 Tame punctures and Higgsing

4 4 44 44

4 3 24 1
1

4

Figure 12.26: Change of the type of the puncture.

In Sec. 12.2, we introduced punctures on the ultraviolet curve labeled byYoung diagrams in a rather
ad hoc manner. Examples for SU(4) case were shown in Fig. 12.7. In this last subsection of the
note, wewould like to study themeaning of theYoung diagram in slightlymore detail. For example,
how should we understand the process of changing the full puncture to the simple puncture, i.e. the
puncture of type (3, 1), shown in Fig 12.26? We will use this particular example of changing the
full puncture (1, 1, 1, 1) to the simple puncture (3, 1) as a concrete example throughout this section.
The extension to the general punctures should be left as an exercise to the reader. The content of
this section is based on an unpublished work with Francesco Benini, done sometime between 2009
and 2010.

The Seiberg-Witten curves are both given by

λ4 + φ2(z)λ2 + φ3(z)λ+ φ4(z) = 0. (12.5.1)

In both cases, φk(z) has one full puncture at z = 0 and five simples punctures at z = zi. For the
first, the puncture at z =∞ was full and for the second, it is a simple puncture, of type (3, 1, 1).
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Figure 12.27: Assignment of new names to the fields.

For the first, the fields φk(z) are given by

φk(z) =
u

(1)
k + u

(2)
k z + u

(3)
k z2 + u

(4)
k z3∏5

i (z − zi)
dzk

zk−1
. (12.5.2)

For the second, they are given by

φ2(z) =
u

(1)
2 + u

(2)
2 z + u

(3)
2 z2 + u

(4)
2 z3∏5

i (z − zi)
dz2

z
,

φ3(z) =
u

(1)
3 + u

(2)
3 z + u

(3)
3 z2∏5

i (z − zi)
dz3

z2
,

φ4(z) =
u

(1)
4 + u

(2)
4 z∏5

i (z − zi)
dz4

z3
.

(12.5.3)

Here, u(i)
k is the dimension-k Coulomb branch operator of the i-th gauge group, and the way to

determine them from the pole structure was described around (12.2.13).
It is clear that φk(z) in (12.5.3) is obtained by setting u(3,4)

4 = u
(4)
3 = 0 in (12.5.2). We will

explain below that we can start from the first theory, set the Coulomb branch parameters to this
subspace, and then move to the Higgs branch, realizing the second theory.

To facilitate the analysis of the Higgs branch, we introduce new names to the bifundamentals,
see Fig 12.27. We name the rightmost SU(N) flavor symmetry SU(N)0, and the gauge groups
SU(N)i=1,2,3,... from the right to the left. Introduce an auxiliary N -dimensional complex space
Vi for each of them. For each consecutive pair SU(N)i+1 × SU(N)i, we have a bifundamental
hypermultiplet (Qa

b , Q̃
b
a) where a = 1, . . . , N and b = 1, . . . , N are the indices for SU(N)i+1,

SU(N)i respectively. We regard Qa
b as a linear map Ai : Vi → Vi+1 and Q̃b

a as a map in the
reverse direction Bi : Vi+1 → Vi. Note that each pair (Ai, Bi) comes from one of the several
three-punctured spheres comprising the ultraviolet curve, as shown in the figure. Let us say that
there are k three-punctured spheres in total.

Let us introduce the notation

M ′
i := BiAi,

′M i := AiBi. (12.5.4)
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We will use the trivial identity

trM ′
i
n = trBiAi · · ·BiAi = trAiBi · · ·AiBi = tr ′M i

n (12.5.5)

repeatedly below.
Note that trMi := trM ′

i = tr ′M i is the mass term for the i-th U(1) flavor symmetry, which
can be naturally associated to the simple puncture of the i-th three-punctured sphere. We also have
two other gauge invariant combinations, namely

M ′
0|traceless := M ′

0 −
1

N
trM0,

′Mk|traceless := ′Mk −
1

N
trMk. (12.5.6)

M ′
0|traceless is an adjoint of SU(N) flavor symmetry associated to the full puncture of the rightmost

sphere, at z =∞. Similarly, ′Mk|traceless is an adjoint of the SU(N) flavor symmetry at the puncture
z = 0.

Now, we would like to make a local modification at the puncture z =∞, by giving a non-zero
vev to the adjoint fieldM ′

0|traceless. Other gauge-invariant combinations trMi for i = 1, . . . , k and
′Mk|traceless are ‘localized’ at other punctures. So we choose to keep them zero.

The F-term relation from the adjoint scalar in the gauge multiplet for SU(N)i is

M ′
i+1|traceless = ′M i|traceless. (12.5.7)

As we are imposing the condition trMi = 0, we can drop the tracelessness condition and just say

M ′
i+1 = ′M i. (12.5.8)

Then we have the following relations:

trM ′
0
n = tr ′M0

n = trM ′
1
n = tr ′M1

n = · · · = trM ′
k
n = tr ′Mk

n = 0 (12.5.9)

for arbitrary n.
This means that the gauge-invariant combinationM ′

0, transforming in the adjoint of the SU(N)

flavor symmetry, is a nilpotent matrix. They can be put in the Jordan normal form by a complexified
SU(N) rotation:

M ′
0 = Jt1 ⊕ Jt2 ⊕ · · · ,

∑
i

ti = N (12.5.10)

where Jt is the Jordan cell of size t,

Jt =


0 1

0 1

0 1
. . . . . .

0


︸ ︷︷ ︸

t

. (12.5.11)
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We again found a partition (ti) ofN . We argue below that this partition (ti) is exactly the Young
diagram labeling the punctures introduced in Sec. 12.2. To study the effect of the vev (12.5.10), we
need to find a choice of hypermultiplet fields (Ai, Bi) solving the F-term and the D-term relations.

V0V1 V0V1 V0V1

Figure 12.28: A graphical notation for matrices.

To write down such a choice, it is useful to introduce a further diagrammatic notation, see
Fig 12.28. An N -dimensional vector space V has N basis vectors. Let us denote them by a
column of N dots. A matrix whose entries are 0 or 1, from V to V ′ can be represented by a set
of arrows connecting the a-th dot for V to the b-th dot for V ′ if and only if the (a, b)-th entry of
the matrix is 1. In the center of Fig 12.28 we denoted a Jordan block J4 of size 4. The rightmost
diagram of the same figure is for a projector to the last two basis vectors.

V0V1V2V3V4

Figure 12.29: A particular point on the Higgs branch.

For concreteness, letN = 4, and give a nilpotent vev toM ′
0 of type (3, 1), namely it is given by

J3⊕J1. A solution to the F-term relations are given in Fig. 12.29. There, we see that the unbroken
gauge group is now SU(4)× SU(4)× SU(3)× SU(2).

In general, a solution to the F-term relations can be constructed as follows. Let us say we
would like to set M ′

0 = X , where X is in a Jordan normal form. We identify the vector spaces
V0 = V1 = V2 = · · · . Let us introduce the notationWi = ImX i and denote the projector to Wi

by PWi
. We then set

A0 = X, A1 = XPW1 , A2 = XPW2 , . . . (12.5.12)

and take
B0 = PW1 , B1 = PW2 , B2 = PW3 , . . . . (12.5.13)

Clearly, the remaining gauge group is of the form

· · · × SU(N3)× SU(N2)× SU(N1) (12.5.14)
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where
Ni = N − dimWi = N − rankX i. (12.5.15)

Define si = Ni − Ni−1. A short combinatorial computation shows that when X has the type de-
scribed by a Young diagramwhose i-th column from the left has height ti, the sequence (s1, s2, . . .)

is such that si is the width of the i-th row from the bottom. This is exactly the rule we already in-
troduced in Sec. 12.2 for the gauge group. Now let us determine the massless matter content of
the resulting theory.

An indirect but fast way to determine the matter content is as follows. We started from a su-
perconformal theory without any parameters. After the Higgsing, the only parameter with mass
dimensions is the vev of the hypermultiplet fields. By the general decoupling of the hypermultiplet
and the vector multiplet side of the Lagrangian, which we discussed in Sec. 7.1, we see that there
cannot be any mass terms or dynamical scales in the low-energy theory after the Higgsing. There-
fore, the resulting theory is also superconformal. We already determinedNi, and we can only have
bifundamental fields or fundamental fields. This shows that SU(Ni) should have exactly

ni = 2Ni −Ni+1 −Ni−1 (12.5.16)

fundamental hypermultiplets in addition.

V0V1V2V3V4

Figure 12.30: Mass terms generated for scalar fields.

Of course this result can also be obtained by a direct computation of the mass terms of the
various fields in the system. Note that originally, there is an N=1 superpotential trAiΦiBi and
trBiΦi+1Ai whereΦi is the adjoint scalar of the SU(N)i vector multiplet. As we gave vevs to some
components to Ai and Bi, we see that certain components of hypermultiplets scalars and vector
multiplet scalars pair up, due to the three-point couplings. One example is shown in Fig 12.30.
There, the vev of A1 represented by a red down-left arrow gives a mass term of a component of
the vector multiplet scalar of the gauge group for V2 and a component of B1.

V0V1V2V3V4

Figure 12.31: Remaining fields after the Higgsing.
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We see that always a bifundamental in SU(Ni+1) × SU(Ni) remains massless. But from a
careful analysis of the mass terms, we see that sometimes more charged hypermultiplets remain
massless. For example, as shown in Fig 12.31, the whole bifundamental between V3 and V2 remains
massless. At V2, SU(4) is broken to SU(3). Therefore, from the point of view of the unbroken
SU(4) at V3, we see there are an SU(4) × SU(3) bifundamental together with a fundamental of
SU(4). This can be generalized to see that the number of additional fundamental hypermultiplets
of SU(Ni) is given by (12.5.16).

V0V1V2V3V4

Figure 12.32: Flavor symmetry assignment.

In Sec. 12.2, we said that the puncture at z = ∞ carries all the flavor symmetry associated
to the additional ni fundamental hypermultiplets attached to SU(Ni). This sounded somewhat
counter-intuitive, since the flavor symmetry SU(ni) looks more associated to the i-th node. Now
we understand the physical mechanism operating here. Let us take the puncture of type (3, 1) again
for concreteness, see Fig 12.32. The vevX = M ′

0, which is from our rule is given byX = J3⊕J1,
is invariant under the U(1) rotation acting on the three basis vectors, as denoted by black dots in
the figure. This symmetry, if unaccompanied by the gauge rotation, does not fix the Higgs vevs
〈Ai〉 and 〈Bi〉. To make the symmetry compatible with the Higgs vev, we need to rotate at the same
time all the other basis vectors connected from the original black dots by the arrows representing
Ai and Bi.

We see that the Higgs vevs identify the U(1) flavor symmetry rotating three basis vectors of
V0 and the U(1) flavor symmetry rotating the last basis vector of V3. After the Higgsing, this
latter U(1) symmetry is exactly the flavor symmetry carried by the additional one fundamental
hypermultiplet of SU(4) at V3, denoted by green in the figure. This analysis can be generalized to
arbitrary types of punctures.

Summarizing, we found a new interpretation of the punctures introduced in Sec. 12.2. Such a
puncture can always be obtained from the full puncture, by first choosing the Coulomb branch vevs
to the right subspace, and then giving a nilpotent vev to the hypermultiplet combinationM ′

0 which
transforms in the adjoint of the flavor SU(N) associated to the full puncture. The vev given toM ′

0

causes some of the other hypermultiplet fieldsAi, Bi for i > 0 to have non-zero vevs, breaking the
original gauge group · · · × SU(N)× SU(N)× SU(N) to · · · × SU(N3)× SU(N2)× SU(N1).
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∞∞∞ Conclusions and further directions
In this lecture note, we first discussed the Lagrangian of N=2 supersymmetric gauge theory, and
then studied the Coulomb and Higgs branches of SU(2) gauge theories with various number of
flavors. Two related concepts, the Seiberg-Witten curve and the ultraviolet curve played very
important roles along the way. We then analyzed what happens when Coulomb branch vevs or
exactly-marginal coupling parameters are finely tuned. Sometimes the limit was described by a
dual weakly-coupled gauge theory, as was the case with SU(2) theory with four flavors. Most often,
however, we saw that we end up with new superconformal field theories, of Argyres-Douglas-type
or of Gaiotto-type.

For example, we saw the theories ADNf=1,2,3(SU(2)) and MN(E6,7,8) in Sec. 10.4, the the-
ories XN and YN in Sec. 10.5, RN in Sec. 12.3 and TN in Sec. 12.4. More and more N=2 su-
perconformal theories are being discovered, see e.g. [65]. This means that, to fully understand
the interrelations of N=2 supersymmetric systems, we cannot restrict our attention to just N=2

theories composed of vector multiplets and hypermultiplets.
The topics we covered in this lecture note are only a tip of a huge iceberg that is the study of

N=2 dynamics, and there are many other further directions of research. Let us list some of them.16
First, we can put an N=2 theory on a nontrival manifold:

• Using the topological twisting, it can be put on an arbitrary manifold [75]. When the man-
ifold is compact, the partition function is equivalent to what is known as the Donaldson in-
variant to mathematicians. Applying the Seiberg-Witten solution in the case of pure SU(2)

theory, Witten introduced a new mathematical invariant, now called the Seiberg-Witten in-
variant [76], which revolutionized four-dimensional differential geometry twenty years ago.

• We can put it on S1. Then the theory is effectively three-dimensional. As was first ana-
lyzed in [77], the Coulomb branch as a three-dimensional theory is naturally a fibration over
the Coulomb branch as a four-dimensional theory. The 3d Coulomb branch is hyperkähler,
and has the structure of a classical integrable system with finite degrees of freedom. This
integrable systemwas originally introduced in [67]. For modern developments, see e.g. [78].

• On the so-called Ω background. Very roughly speaking, it involves a forced rotation of the
entire Euclidean system on R4 around the origin. The spacetime is effectively compact and
we can define the partition function, which is usually called Nekrasov’s partition function.
For a recent comprehensive discussion, see e.g. [68]. In a certain limiting case, it is found
in [79] that it gives rise to a quantized integrable system which is a quantized version of the
Donagi-Witten integrable system.

• On a round or deformed S4. The spacetime is compact and the partition function can be
computed exactly, see e.g. [80, 81, 82]. The partition function is also known to be related to
2d conformal field theories on the ultraviolet curve, see e.g. [83, 84].

16The author did not try to be exhaustive and comprehensive here, and just cited a few recent ones. He is happy to
add as many citations upon request.
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• On S1 × S3. The partition function is called the superconformal index, and gives rise to
2d topological field theories on the ultraviolet curve. It also has a deep relation to various
important orthogonal polynomials, see e.g. [85, 86].

• Other backgrounds can also be considered. See [87] for S2 × S1 × R. A study of N=1

theories onT 2×S2 can be found in [88], and surelyN=2 systems can be similarly considered
there.

Second, we can study dynamical excitations and externally-introduced operators of these theories:

• We have seen how we can read off the number of BPS-saturated particle types from the
6d construction. The number is an integer and therefore it cannot usually change, but it
does jump at certain loci in the Coulomb branch. This is called the wall-crossing and is
an intensively-studied area, see e.g. [51]. The resulting spectrum can often be summarized
using a diagram, called the BPS quiver. This point of view was originally introduced in the
context of N=2 supergravity in [89]. For more recent developments, see e.g. [90, 91, 92].

• Instead of dynamical particles, we can introduce worldlines of external objects. These are
called line operators. See e.g. [93, 94].

• Once we allow the introduction of external line operators, there is no reason not to introduce
higher-dimensional external objects. When they have two spacetime dimensions, they are
called surface operators. A Seiberg-Witten curve can be defined intrinsically as the infra-red
moduli space of a surface operator [95]. Another interesting recent paper worth studying is
[96].

• We can then consider objects with three spacetime dimensions. This is an external domain-
wall. A recent study can be found e.g. in [97].

On these topics, the review [98] is a great source of information, although the review itself is meant
for mathematicians.

Third, the method described in this lecture note is not yet powerful enough to solve arbitrary
N=2 gauge theories. Many 4dN=2 theories do come from the 6dN=(2, 0) theory, but there are
also many which presently do not. Therefore we should also study alternative approaches.

• The 6d construction itself needs to be developed further. For tame punctures, further dis-
cussions can be found in e.g. [69, 64, 99] and for wild punctures, more can be found in
[100, 101].

• A 6d construction of 4d N=2 theory can always be uplifted to Type IIB string theory on
a non-compact Calabi-Yau manifold, which is a fibration over the ultraviolet curve. Even
when the non-compact Calabi-Yau is not a fibration over a curve, Type IIB string theory on
it often realizes a 4d N=2 field theory, and this gives an alternative to find the solution to
the N=2 systems, see e.g. [102, 103].
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• The N=2∗ theories, i.e. N = 4 super Yang-Mills deformed by a mass term for the adjoint
hypermultiplet, have been long solved for general gauge group G [14]. Somewhat surpris-
ingly, when G 6= SU(N), there is no known explicit string theory or M-theory construction
of these solutions. This clearly shows how primitive our current understanding is.

Fourth, there are many properties ofN=2 theories which are satisfied by all known examples,
but we do not currently have any way to derive them. It would be fruitful to devise new methods
to study these properties. Let us list a few questions in this direction.

• The chiral operators on the Coulomb branch of the N=2 gauge theories are clearly al-
ways freely generated. For example, in an SU(N) gauge theory, it is generated by trφk,
(k = 2, . . . , N ), which have no nontrivial relations. Experimentally, all the non-Lagrangian
theories obtained from the 6d construction still satisfy this property: the Coulom branch
operators are freely generated. The author conjectures this is in fact a theorem applicable to
every N=2 supersymmetric systems.

• In [104], it was argued that there is a non-zero lower bound in the change in the central
charge a along the RG flow between two N=2 superconformal field theories. Is there are
more rigorous derivation of this fact?

• Is it possible to characterize the whole zoo ofN=2 theories itself? As an analogy, consider
all the representation of SU(2). If we allow only the direct sum, we need all irreducible
representations to construct all possible representations. If we also allow the tensor product
and the extraction of an irreducible summand, we only need the two-dimensional irreducible
representation to generate all others.

We can pose a similar question forN=2 theories. If we allow only weak gauging, what kind
of generalized matter contents, i.e. hypermultiplets and other ‘irreducible’ strongly-coupled
theories, are needed to generate all theN=2 theories? If we also allow the strongly-coupled
limit, S-duality, and decomposition into the constituent parts, how much do we need? What
‘percentage’ of the theories can be obtained via 6d, string or M-theory constructions?

N=2 theories that are complete (in a certain technical sense) were classified in [91], and
N=2 weakly-coupled gauge theories were classified in [105]. These are however but two
tiny steps into the vast space of all possible N=2 theories.

Finally, the author would like to emphasize that even such innocent looking gauge theories as

• N=2 supersymmetric SU(7) gauge theory with a hypermultiplet in the three-index anti-
symmetric tensor representation, or

• N=2 supersymmetric SU(2)3 gauge theory with a massive full hypermultiplet in the trifun-
damental, (Qaiu, Q̃

aiu)

have not been solved yet. He would be happy to offer a dinner at the Sushi restaurant in the Kashiwa
campus to the first person who finds the solution to either of the two theories. There are many other
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N=2 gauge theories without known solutions, as listed in [105]. So this field should be considered
still wide-open.

Hopefully, those readers who came to this point should be at least moderately equipped to
tackle these and other recent articles onN=2 supersymmetric theories. It would be a pleasure for
the author if they would continue the study and contribute to extend the frontier of the research.
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