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The sparse norm constraint (l0; l1; l2 and lp) least mean square algorithm (LMS) is established technique
for modeling sparse systems. However, when applied in target systems with uncertain sparsity, such
as temporal-spatial-varying sparse underwater acoustic (UWA) channel, the parameters tuning (the
step-size and parameter p) of lp-LMS faces significant challenges. In this paper, with the purpose to sim-
plify the complicated dual-parameter selection problem via gradient strategy, a dual parameters opti-
mization lp-LMS (DPO-lp-LMS) algorithm is derived by iteratively adjusting the step-size and the
parameters p in parallel along the descent gradient. Convergence analysis of the proposed algorithm is
given. A numerical simulation under varying sparsity systems exhibits that the proposed algorithm out-
performs the lp-LMS algorithms driven by the existing optimization approaches in convergence speed and
steady-state error. Meanwhile, a field shallow water experiment of UWA communication demonstrated
that the proposed algorithm achieves superior performance under the framework of direct adaptation
turbo equalization (DA-TEQ).

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction

The adaptive filter algorithms have been widely utilized in var-
ious applications such as beamforming, channel estimation, and
channel equalization, within which the least mean square (LMS)
algorithm developed by Windrow and Hoff [1] features its simplic-
ity, robustness, and low computational complexity. In practical,
sparse system [2] that only contains a tiny proportion of significant
coefficients in the whole impulse response widely exists in popular
scenarios such as wireless communication channels and underwa-
ter acoustic (UWA) channels. Because the standard LMS does not
consider this type of sparse prior information, sparsity exploitation
under the framework of the LMS algorithm draws significant atten-
tion from the sparse system research community.

To enhance the modelling accuracy as well as to improve the
convergence performance of the adaptive filter for sparse systems,
some sparsity-exploitation LMS algorithms have been developed in
recent years [3–13]. The general solution for sparsity exploitation
adaptive filter algorithm can be classified into two categories, 1)
proportionate-based adaptive algorithm, 2) sparse norm
constraint-based adaptive algorithm. In the proportionate-based
adaptive algorithm, different step-size is allocated to each filter
coefficient depend on the magnitude of the corresponding filter
weight coefficients named proportionate normalized LMS (PNLMS)
[12]. Althought the PNLMS offer good convergence behavior in
sparse system, but the performance is impacted in case of non-
sparse system. An improved PNLMS was reported in [13] that
improve the performance in case of sparse and non-sparse scenar-
ios. In the sparse norm constraint-based adaptive algorithm, sev-
eral sparse norm constraints have been incorporated into the
cost function of the standard LMS. In [3–5], Gu Yuantao et.al. pro-
posed l0-LMS, l1-LMS by incorborating the l0; l1 norm into the clas-
sical LMS for enhancing the convergence speed of zero coefficients.
For l0-LMS, l1-LMS, the convergence analysis are given in [7,8]. The
essence of these works lies in imposing various zero attraction (ZA)
factors on zero and non-zero coefficients of the weights. Similar
ideas are also used in normalized-LMS (NLMS), non-uniform norm
constraint LMS (NNCLMS) [3,4,6]. Recently, A modified Versoria
function-based ZA-LMS (MVZA-LMS), joint logarithmic hyperbolic
cosine adaptive filter (JLHCAF) algorithm was developed in
[10,11], which achieve faster convergence speed and better mod-
elling accuracy.

Returning to the definition of the norm, it is a metric of matrix
or vector. From this view, l0; l1 norm constrain lack of sparse adap-
tation factor, which indicates that the performance of l0; l1-LMS
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Fig. 1. Block diagram of a typical system/inverse system identification problem.
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will be impacted when the sparsity of the unknown system
changes. Thus, the p-norm-like constrain enable well aware the
sparsity of unknown system compare with the l0 and l1 norm via
adjusting the parameter p [14,15]. In [16], a gradient optimization
p-norm-like constraint LMS (called lp-LMS) was proposed, with the
parameter p adjusting with the sparsity of the system. The numer-
ical simulations show that the lp-LMS performs better than l0; l1-
LMS. However, the lp-lms discussed in [16] only use a constant
step-size. Thus it can not achieve a fast convergence rate and lower
mean square error (MSE) simultaneously.

For lp-lms, many step-size optimization approaches such as
variable step-size (VSS) mechanism [17,18] have been done via
using a quantity linear/nonlinear function, which constructs the
relation between the instantaneous error and step-size [19–21].
In [22], the VSS-lp-LMS was proposed by Wang et al., the modified
Gaussian function was used to adjust the step-size, and the VSS
function was constructed by the moving average method. Similar
investigations have been reported in [23,24]. Note that, herein this
type of lp-LMS algorithms driven by signle parameter optimization
is called simple parameters optimization lp-LMS (SPO-lp-LMS)
algorithm.

However, for target systems with uncertain sparsity, such as the
UWA channel, sparsity patterns experience temporal-spatial varia-
tions due to complicated propagation mechanisms and diverse
reflections at static or dynamic boundaries. To be specific, the
sparse pattern of the UWA channel consists of two parts, one is
the relatively stationary or slowly changing arrival multipaths
caused by the direct path or the bottom reflection [25]. The other
is the rapidly time-varying arrivals which is mainly caused by
the random unevenness of the ocean interface, the non-
uniformity of the seawater medium, and the multipath caused by
the organisms, air bubbles, wind waves and internal waves in the
ocean [26,27]. From the physical mechanism of sound propagation,
the latter one presents time-varying and uncertain. Thus, the over-
all underwater acoustic channel presents a time-varying dynami-
cal property with uncertain sparsity. Some field experiments of
underwater acoustic channels in [28–32] verify the property of
uncertainty sparsity, and the research in [33,34] reveals that
explicitly exploiting the uncertainty sparsity of UWA channels
can achieve better communication performance. As p parameter
and step-size parameter is designed to offer adjustability for spar-
sity pattern and convergence-misadjustments, respectively, in
such a target system with uncertain sparsity, tuning the parame-
ters of lp-LMS faces significant challenges. By simplifying the opti-
mization of p and step-size parameter into a gradient descent
problem, we try to develop a dual parameters optimization lp-
LMS (DPO-lp-LMS) algorithm to seek a tradeoff between algorithm
performance and computational complexity in the presence of
uncertain sparsity.

The novel contributions of this paper are as follows. First, a dual
parameters optimization lp-LMS (DPO-lp-LMS) algorithm for
temporal-spatial varying sparse UWA channel is derived by adopt-
ing gradient descent search for iteratively updating parameter p
and step-size in parallel. The bound of the step-size function is
derived, ensuring the convergence of the proposed algorithm. Sec-
ond, we compare the algorithm performance under the different
VSS mechanisms based on the framework of lp-LMS. The numerical
simulations show that the proposed DPO-lp-LMS performs better
than lp-LMS aided by other VSS mechanisms.

The rest part of this paper proceeds as follows. In Section 2, the
principle of sparse norm constrain LMS algorithms are briefly
described, and the principle of the VSS is explained. The proposed
DPO-lp-LMS algorithm derivation and its convergence analysis are
illustrated in Section 3. Section 4, Section 5 presents numerical
simulation and experimental results analysis, demonstrating the
2

performance comparison among the lp-LMS with different VSS
mechanisms and LMS. Section 6 concludes this article.

Notation: The vectors are represented by lowercase letters,
ð�Þ�; ð�ÞH , and ð�ÞT represents the conjugate operator, the conjugate
transpose operator, and the transpose operator, respectively. j � j
represents the absolute value, Eð�Þ represents the expectation oper-
ator, tr½�� denotes as a trace operator, and Rð�Þ represents the real
part operator.
2. Brief review of sparse norm constraint LMS with variable
step-size mechanism

The block diagram of a typical system/inverse system identifi-
cation problem is shown in Fig. 1 [1]. In this figure, considering
the input vector of the adaptive filter is
xðnÞ ¼ ½xðnÞ; xðn� 1Þ; � � � ; xðn� Lþ 1Þ�T ;wðnÞ ¼ ½w0ðnÞ;w1ðnÞ; � � � ;w
L� 1ðnÞ�T is the filter weights, vðnÞ is the background/system noise,
the L and n represents the filter length and the discrete time
instant, respectively. Thus, the estimated error between the adap-
tive filter output and expected output dðnÞ at nth iterative compu-
tation, i.e.

eðnÞ ¼ dðnÞ � xTðnÞwðnÞ: ð1Þ

For the sparse norm constraint LMS (l0-LMS, l1-LMS, lp-LMS), the
cost function is as follows:

Jsp�lms ¼
1
2
jeðnÞj2 þ cjjwðnÞjjp; ð2Þ

where 0 < c < 1 is a balanced factor. The constraint item jjwðnÞjjp
can be stated as follows for different sparse norm constraint LMS
algorithm:

jjwðnÞjjp ¼

jsuppðwÞj ;p ¼ 0
XL

i¼1

jwiðnÞj1 ;p ¼ 1

XL

u¼1

jwiðnÞjp ;0 < p < 1

8>>>>>>><
>>>>>>>:

; ð3Þ

where the suppð�Þ means the position set of the non-zero elements,
the L is the filter length. Specially, when 0 6 p � 1, the jj � jjp be ter-
med as p-norm-like.

The convergence speed and steady-state error are the primary
indicators of LMS performance. The pursuit of increasing the con-
vergence rate or reducing the steady-state error is the motivation
for developing improved norm constraint LMS. Many studies on
VSS mechanisms have been done to promote the convergence rate
of the adaptive algorithm. Some typical VSS mechanisms are sum-
marized in Table 1. The essence of the VSS mechanism is using the
step-size sequence instead of the constant step-size.



Table 1
The summary of VSS mechanisms.

Step-size
update equation

Parameters References Denotation Computational
Complexity

l ¼ blðn� 1Þ þ ð1� bÞajeðnÞj2expð�bjeðnÞj2Þ a; b;b [22] VSS1 OðnÞ
l ¼ bf 1

1þexpð�ajeðnÞjmÞ � 0:5g a;b;m [19] VSS2 OðnÞ
l ¼ b tanhðajeðnÞjcÞ a; b; c [20] VSS3 OðnÞ

l ¼ cf1� expð�ajeðnÞjbÞg a; b; c [21] VSS4 OðnÞ
l ¼ alðn� 1Þ þ ce2ðn� 1Þ a; c [23,24] VSS5 OðnÞ

l ¼ alðn� 1Þ þ chðn� 1Þ
hðn� 1Þ ¼ a

b hðn� 2Þ þ e2ðn�1Þe2ðn�2Þ
Bðn�1Þ

BðnÞ ¼ Pn�1
j¼0 b

je2ðn� j� 1Þe2ðn� j� 2Þ

a; c; a; b [23] MRVSS Oðn2Þ

l ¼ lðn� 1Þ þ a @Jfe2ðnÞg
@l

a [35,36] DPO OðnÞ
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Collectively, the implementation ideas of the variable step-size
mechanisms can be categorized as follows under two different
criteria:

1) utilize the instantaneous error to map the step-size function
via linear/non-linear function
lðnÞ ¼ fðlðn� 1Þ; eðnÞÞ; ð4Þ

where fð�Þ denotes the step-size mapping function.

2) use the optimization approach to achieve the optimal step-
size
lopt ¼ argminjjJsp�lmsjj: ð5Þ

Dirctly addressing the Eq. (5) to obtain optimum step-size is a
complicated optimization problem. In spired by the gradient opti-
mization for the parameter p [16], a novel stragety of simultane-
ously optimizting step-size and p at each iteration, call dual
parameters optimization lp LMS (DPO-lp-LMS), is illustrated in
the Section 3. Note that, for the purpose of comparison, we incor-
porate the VSS mechanism mentioned in Table 1 with lp-LMS and
named them follows: VSS1-lp-LMS, VSS2-lp-LMS, VSS3-lp-LMS,
VSS4-lp-LMS, VSS5-lp-LMS, and MRVSS-lp-LMS.
3. Derivation and discussion of the proposed algorithm

This section presents the derivation of the proposed algorithm,
the convergence analysis, and a brief discussion of the effect of the
algorithm parameters.

3.1. Derivation of the proposed DPO-lp-LMS

Generally speaking, simultaneously optimizing the parameter p
and the step-size is a complicated multi-parameter optimization
problem involving the highly non-linear supersurface. Herein a
novel DPO-lp-LMS algorithm is derived by simplifying it into a par-
allel gradient descent iteration [16,35] from the perspective of
approximate simplification. Specially, for the lp-LMS, the corre-
sponding cost function can be expressed as follow [16]:

Jp ¼ 1
2 jeðnÞj2 þ cjjwðnÞjjp

jjwðnÞjjp ¼
XL

i¼1

jwiðnÞjp;0 < p < 1:
ð6Þ

The updated equation of the step-size l can be obtained:

lðnÞ ¼ lðn� 1Þ þ aRð@Jp
@lÞðnÞ; ð7Þ

where the @Jp
@l can be derived from the Eq. (6), namely:
3

@Jp
@l ¼ eðnÞxHðnÞg�ðn� 1Þþ
cp � sgn½jwðn� 1Þj� � ½wðn� 1Þ�gðn� 1Þ;

ð8Þ

where gðnÞ ¼ @wðnÞ
@l ; b ¼ cp.

Using the update equation of lp-LMS, the iterative equation of g
can be written as follow:

gðnÞ ¼ gðn� 1Þ þ xðnÞe�ðnÞ � lx�ðnÞxTðnÞgðn� 1Þ
�cpðp� 1Þ � sgn½jwðnÞj�2 � jwðnÞjp�2 � gðn� 1Þ: ð9Þ

The gradient of the cost function (2), (3) with respect to the p
can be written as:

GpðnÞ ¼ @ 1
2jeðnÞj2þcjwðnÞjpð Þ

@p

¼ cjwðnÞjp lnðjwðnÞjÞ:
ð10Þ

Following the numerical analysis in [16], the sign function of GpðnÞ
is uesed to reduce the possibility at local minimums,

sgnðGpðnÞÞ ¼ sgnðjwðnÞj � IÞ; ð11Þ
where I is a unit column vector with the same size ofwðnÞ. Thus, the
optimization formulation of p can be simplified by as follow:

pnþT ¼ pn � dsgn½1T
XnþT

j¼n

GpðjÞ�

¼ pn � dsgn½1T
XnþT

j¼n

jwjðnÞj � 1�;
ð12Þ

where the d is the step-size for controlling the descent gradient
updating, and the T is the update periods of p. For avoiding p over-
flow and leading to norm constrain failure, the newest p is limited
between 0 and 1. Namely,

pnþT ¼ minðpnþT ;0:99Þ;pnþT P 1
maxðpnþT ;0:01Þ;pnþT � 0

:

�
ð13Þ

Consequently, the proposed algorithm is described using MATLAB
like pseudo-codes, as illustrated in Algorithm1.

Algorithm1: Pseudo-codes of the proposed algorithm
(DPO-lp-LMS)

1: Given : lini;j; p; �;a; b; d; L; T
2: Initial : w ¼ zerosðL;1Þ;lð1Þ ¼ lini

3: For n = 1, 2, � � �, do
4: Input new xðnÞ and dðnÞ;
5: eðnÞ ¼ dðnÞ � xðnÞTwðnÞ;
The optimization of parameter p:

6: pnþT ¼ pn � dsgnð1T
PnþT

n jwðnÞj � 1Þ

(continued on next page)
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a (continued)

Algorithm1: Pseudo-codes of the proposed algorithm
(DPO-lp-LMS)

The optimization of step-size:
7: optimize the step-size lðnÞ based on Eqs. (7)–(9)

8: wðnþ 1Þ ¼ wðnÞ þ lðnÞeðnÞx�ðnÞ � j pnþTsgnjwðnÞj
�þjwðnÞj1�pnþT

Output: filter weights w
Table 2
Simlation parameters used in Bellhop Model

Simulation Parameters Value

Carriers frequency [kHz] 15.5
The depth of water [m] 8
Transmitter depth [m] 4
Receiver depth [m] 1, 3, 5, 7

Communication distance [km] 1
3.2. Brief discussion

The section will provide a brief convergence analysis of the pro-
posed algorithm.

Define the filter weight error vectors as:

vðnÞ ¼ wðnÞ �wo; ð14Þ
where the wo is the expected output vector.

Here, four assumptions are assumed for analysis: 1) the input
sequence xðnÞ is the Gaussian sequence with zero mean and the
variance is Rx; 2) the input sequence xðnÞ independent of wðnÞ;
3) eðnÞ � Nð0; d2e Þ and independent of xðnÞ;wðnÞ, respectively; 4)
the step-size lðnÞ also is independent of xðnÞ;wðnÞ, respectively.

Correspondingly, based on the Algorithm1, we can obtain:

vðnþ 1Þ ¼ ðI� lðnÞxðnÞxTðnÞÞvðnÞ
þlðnÞxðnÞe�ðnÞ � c psgnjwðnÞj

jwðnÞj1�p

¼ ðI� lðnÞRÞvðnÞ þ lðnÞxðnÞe�ðnÞ � B;

ð15Þ

where: R ¼ xðnÞxTðnÞ;B ¼ c psgnjwðnÞj
jwðnÞj1�p .

The covariance matrix of gðnþ 1Þ can be expressed as follow:

E½vðnþ 1ÞvTðnþ 1Þ� ¼ E½vðnÞvTðnÞ�
�lðnÞE½vðnÞvTðnÞxðnÞxTðnÞ� � E½vðnÞBT �
�lðnÞE½xðnÞxTðnÞvðnÞvTðnÞ�
þl2ðnÞE½xðnÞxTðnÞvðnÞvTðnÞxðnÞxTðnÞ�
þlðnÞE½xðnÞxTðnÞgðnÞBT �
þl2ðnÞE½e�ðnÞe�ðnÞxðnÞxTðnÞ� � E½BgTðnÞ�
þlðnÞE½BvTðnÞxðnÞxTðnÞ� þ E½BBT �;

ð16Þ

To simplify the expression of Eq. (16), denote
Sðnþ 1Þ ¼ E½vðnþ 1ÞgTðnþ 1Þ�; SðnÞ ¼ E½vðnÞvTðnÞ�, and E½xðnÞxTðnÞ�
¼ Rx, the Eq. (16) can be written as [37]:

Sðnþ 1Þ ¼ SðnÞ � lðnÞSðnÞRx

�E½vðnÞBT � � lðnÞRxSðnÞ
þ2l2ðnÞ½RxSðnÞRx�
þl2ðnÞRxtrðRxSðnÞ�Þ
þlðnÞRxE½vðnÞBT � þ l2ðnÞd2eRx

�E½BvTðnÞ� þ lðnÞE½BvTðnÞ�Rx þ E½BBT �:

ð17Þ

The trace operator is imposed on the (17), we obtain:

tr½Sðnþ 1Þ� 6 lðnÞtr½RxE½vðnÞBT �� � tr½E½BvTðnÞ��
þl2ðnÞd2e tr½Rx� � tr½E½vðnÞBT � þ tr½E½BBT ��
þlðnÞtr½E½BvTðnÞ�Rx� þ tr½SðnÞ��
f1� 2lðnÞtr½Rx� þ l2ðnÞtr2½Rx� þ 2l2ðnÞtr½R2

x�g;

ð18Þ

where the E½vðnÞBT �; E½BBT � is bounded [16]. Therefore, the conver-
gence of the euqation (18) depend on:

j1� 2lðnÞtr½Rx� þ l2ðnÞtr2½Rx� þ 2l2ðnÞtr½R2
x�j < 1: ð19Þ
4

Thus, if the lðnÞ meets the Eq. (19), the proposed algorithm will
convergence:

0 < lðnÞ < 2tr½Rx�
tr2½Rx� þ 2tr½R2

x�
: ð20Þ

The parameters of proposed the algorithm can be selected as
follows:

The choice of j; p; d: the initialization of these parameters, can be
referenced from [16].

The choice of a; b;g: the function of these parameters is adapted
to adjust the step size in each iteration. In DPO-lp-LMS, the param-
eter a must be set as a small positive value that helps avoid algo-
rithmic divergence. It should be noted that a small positive value
does not mean a small positive awill enable a high modeling accu-
racy. For the parameter b, its selection has a wide adjustment
range, b 2 ð0;1Þ, which affects the step-size. For g, the initial value
must be set g ¼ 0.

The computational complexity: The computational complexity
per iteration of the standard lp-LMS algorithms is listed in [16].
For the proposed algorithm, compared with standard lp-LMS algo-
rithms, the computational complexity increases mainly because of
the VSS mechanism, which is given in Table 1.
4. Numerical simulation

In this Section, the proposed DPO-lp-LMS is compared with LMS,
lp-LMS driven by other VSS mechanisms (summarized in Table 1)
in the application of UWA channel estimation via numerical simu-
lations. The UWA channels are generated by the Bellhop ray-
tracing software [38], the simulation settings are provided in
Table 2, and the corresponding simulation channels are depicted
in the Fig. 2. It can be seen from Fig. 2 that the simulation channels
at different receiving depths show spatial varying sparsity pat-
terns, corresponding to different sparsity ratio (SR) which is
defined as the ratio of non-zero tap counts (with an amplitude
large than 0.1) to the total channel length [6].

The transmitted signal in all experiments is a Gaussian
sequence with zero mean and unit variance. The corresponding
signal-to-noise ratio (SNR) is 15 dB. All results are obtained from
100 times Monte Carlo simulation. The mean square deviation
(MSD) is used to evaluate the performances of all compared
algorithms:

MSD ¼ E½jjhest � h0jj22�; ð21Þ
where hest is the estimated channel from different algorithms, h0

denotes the ground-truth of the channel.
The first experiment investigates the performance of DPO-lp-

LMS with varied parameters a; b, and the simulation channel
(Sim-Ch1) are adopted in this experiment.

The second experiment is designed to test the convergence per-
formance of the proposed algorithm under various SRs. The simu-
lation channels (Sim-Ch2, Sim-Ch3, and Sim-Ch4) are employed in
this experiment. The SR of the unknown system changes twice
Sound source angle [	] [ �60, 60]
Sound speed [m/s] 1511.00
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Fig. 2. Simulation channels at different receiving depths. (Sim-Ch1, Sim-Ch2, Sim-
Ch3 and Sim-Ch4 correspond to the receivers at different depths, 1 m, 3 m, 5 m, and
7 m, respectively.).
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Fig. 4. MSD curves of DPO-lp-LMS with different b driven by Sim-Ch1.
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throughout this simulation, at 5000th and 10000th, corresponding
to 0.057, and 0.2.

Fig. 3 and Fig. 4 reveal the algorithm performance under various
parameter settings. Except for a 2 ½9e� 8;9e� 7;2e� 6;9e� 6�,
other parameters are fixed: lini ¼ 5e� 3;j ¼ 3e� 4;
b ¼ 4e� 2;g ¼ 0. Fig. 3 shows the MSD curves of proposed algo-
rithms with different a. It can be seen from Fig. 3 that too small
a will impact the performance of the proposed algorithm. Further-
more, the large a will accelerate convergence and reduce the MSD.
Contrary to the set up pararmeters mentioned previous, the
parameter fixed except b, namely, lini ¼ 5e� 3;
j ¼ 3e� 4;a ¼ 2e� 6;g ¼ 0; b 2 ½1e� 3;5e� 2;5e� 1�. The per-
formances with different b driven by Sim-Ch1 are shown in
Fig. 4. It can be referred to that the various b have little impact
0 500 1000 1500 2000
Number of iterations

10-3

10-2

10-1

100

M
SD

=9e-8
=9e-7
=2e-6
=9e-6

Fig. 3. MSD curves of DPO-lp-LMS with different a driven by Sim-Ch1.

5

on the performance, and the hefty b enables to obtain a higher con-
vergence speed for the proposed algorithm.

The simulation results of the second experiment driven by Sim-
Ch2, Sim-Ch3, and Sim-Ch3 are presented in Fig. 5 and Fig. 6. The
MSD curves of the proposed algorithm and other algorithms
(LMS, MVZA-LMS, JLHCAF) are given in Fig. 5. The parameters of
candidate algorithms are carefully chosen to make their conver-
gence speed the same and provided in Table 3. At the initial
5000 iterations, namely the system stays in most sparse
(SR = 0.057), DPO-lp-LMS, MVZA-LMS, and JLHCAF obtains a low
steady-state MSD than LMS. As the sparsity of the system changes,
i.e., the SR changes from 0.057 to 0.2, the MVZA-LMS algorithm
shows a significant performance degradation and is worse than
LMS. The LMS and the JLHCAF algorithm are more robust in the
sparsity-change system, the reason is that the LMS algorithm does
not have a sparse constraint item, while the JLHCAF algorithm has.
Although the JLHCAF has a sparse aware item, its sparse aware con-
straint term plays a weak role in the case of same step-size param-
eters. The DPO-lp-LMS algorithm obtains a large performance gain
compared with the LMS algorithm in the more sparse system
because of the optimization of the step-size and the parameter p.
When the SR increased, the gap in convergence MSD between
the proposed algorithm and the LMS algorithm narrows, which
means that in a less sparse system, the performance of the pro-
posed algorithm will be impacted and tend towards the LMS
algorithm.

Fig. 6 compares proposed DPO-lp-LMS with the lp-LMS aided by
different VSS mechanisms. It is worth noting that the algorithms
denoted by the legend in Fig. 6 are consistent with Table 1. The
parameters of all compared algorithms are carefully chosen as
given in Table 4 to optimize the minimum steady-state MSD of
each algorithm for the initial 5000 iterations. Various VSS mecha-
nisms improve the convergence performance to different degrees.
From the standpoint of the unknown system’s sparsity, with the
variety of system SRs, the convergence MSDs of all candidate algo-
rithms are increased. Compared with other VSS mechanisms, the
proposed algorithm is feasible to the unknown system with differ-
ent sparsity. Some insights can be obtained from the Fig. 5 and
Fig. 6. The proposed algorithm has a low steady-state MSD with
a slightly fast convergence rate. This is because each step-size opti-
mization increment takes into account the gradient from the
steady-state MSD to the step-size, and the corresponding MSD is
minimized when the optimal value of the step-size is obtained
for each iteration. It is important to note that the step-size should



Fig. 5. MSD curves of DPO-lp-LMS, LMS, MVZA-LMS, and JLHCAF with various SRs.

Table 3
Parameters in the Second experiment between LMS, JLHCAF, MVZA-LMS, and DPO-lp-
LMS

Algorithms Parameters

LMS l ¼ 2e� 2
DPO-lp-LMS lini ¼ 2e� 2;j ¼ 2e� 4;a ¼ 1e� 6; b ¼ 1e� 5

JLHCAF l ¼ 2e� 2; k ¼ 7:5e� 1;q ¼ 1e� 7; a ¼ 2e� 1
MVZA-LMS l ¼ 2e� 2;q ¼ 1e� 3; a ¼ 1
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be constrained by the Eq. (20) [39], which can be ensured by a
smaller value of a ,b.

Overall, the results indicate that the proposed algorithm
achieves excellent performances in terms of modeling accuracy
and system tracking ability. Thus, it is feasible for time-varying
UWA communication applications [31,40].
5. Experiment and analysis

Based on a real-world sea trial, the proposed algorithm DPO-lp-
LMS and the other algorithms (i.e., l1-LMS, l0-LMS, LMS, JLHCAF,
and MVZA-LMS) are adopted in UWA direct-adaptation turbo
equalization (DA-TEQ) for the purpose of performance comparison
and evaluation.
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5.1. DA-TEQ with the DPO-lp-LMS algorithm

A single-carrier single-input-multiple-output (SIMO) UWA
communication system is considered. Fig. 7 shows the detailed
system structure. In the transmitter site, the information bit
sequence a of length n is encoded by a forward error code (FEC)
encoder, and the coded bits b are interleaved c and mapped to
symbols s and transmitted. Propagation through the UWA channel
with L length, the baseband signal received at time instant k can be
expressed as follow (the ideal state is assumed in the receiver site)
[41]:

yk ¼
XL�1

l¼0

hlsk�l þwk; ð22Þ

where the sk�l is the transmitted symbol at the time k� 1, the hl is
the lth coefficient of UWA baseband channel impulse responses
between the transmitter and the receiver, and the wk is the additive
noise. On the receiver side, the DA-TEQ is adopted for symbol
recovery.

As shown in the Fig. 7, the equalizer compute the extrinsic like-
lihood ratio (LLR) of the interleaved bit kefcng from the equalized
symbol x̂n. The extrinsic LLRs kefcg be regarded as the prior infor-
mation passing into the decoder after de-interleave. Afterward, the
decoder output the extrinsic information of the coded bits kefbg.
The prior information will be passed to the equalizer in the next
0005100001
 iterations

p
-LMS

6000 6200 1.06 1.08 1.1 1.12

104

2

4

6

10-3

ent VSS mechanisms with various SRs.



Table 4
Parameters set up in the Second experiment

Algorithm Name Parameter

VSS1-lp-LMS a ¼ 0:1; b ¼ 1; b ¼ 0:98;j ¼ 0:00015;p ¼ 0:85; T ¼ 1
VSS2-lp-LMS a ¼ 1000;b ¼ 0:02;m ¼ 3;j ¼ 0:0003;p ¼ 0:85; T ¼ 1
VSS3-lp-LMS a ¼ 100; b ¼ 0:009; c ¼ 1;j ¼ 0:0003; p ¼ 0:85; T ¼ 1
VSS4-lp-LMS a ¼ 100; b ¼ 2; c ¼ 0:01;m ¼ 2;j ¼ 0:0003; p ¼ 0:85; T ¼ 1
VSS5-lp-LMS a ¼ 0:97; c ¼ 0:0005;lini ¼ 0;lmin ¼ 0:01;lmax ¼ 0:017;j ¼ 0:0003; p ¼ 0:85; T ¼ 1
MRVSS-lp-LMS lini ¼ 0:03;a ¼ 0:9; c ¼ 0:003, a = 0.9, b = 0.99999, j ¼ 0:0003; p ¼ 0:85; T ¼ 1
DPO-lp-LMS lini ¼ 0:015;a ¼ 0:000002; b ¼ 0:0001;g ¼ 0;j ¼ 0:0003; p ¼ 0:85; T ¼ 1

Fig. 7. The structure of UWA system.

Fig. 8. The UWA communication sea trial in Wuyuan Bay. (Tx, Rx represents the
transmitter site, receiver site respectively.)

Fig. 9. The deployment of the sea experiment in Wuyuan Bay.

Fig. 10. The packet format of the transmit signal in the sea experiment.
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iteration after interleaving. Meanwhile, the decoder also outputs
the hard-decision information bits â. With multiple exchanges of
information between the equalizer and decoder, the reliability of
the hard-decision information bits will be improved. The detailed
approaches for computing the LLRs can be referenced from these
papers [42,43].

For the equalized symbol x̂n, it can be computed as:

x̂n ¼ fHn yne
�jĥpðnÞ; ð23Þ

where the fn represents the feedforward filter coefficients. The yn is

the receive vector, and the ~dn decision symbol vectors. The ĥp is the
estimation phase generated by phase locked loop (PLL) [44] for
phase correction.

The updated of the fn under the minization mean square error
(MMSE) criterion can be expressed as [44]:

fn ¼ fn�1 � lf e
�
nyne

�jĥpðnÞ; ð24Þ

where the en is the decision error between the training symbol and
the estimated symbol, and the lf is the update step-size for the
adaptive filter algorithm.

5.2. Results analysis

The field experiment was conducted in Wuyuan Bay, Xiamen,
China, with the map of which presented in Fig. 8. A SIMO UWA
communication system was deployed as shown in Fig. 9. Two
transducers were mounted on the Tx site and Rx site, respectively.
The Tx transducer was placed about 4 m below the sea surface,
while the Rx transducers were placed approximately 3 m and
4 m below, respectively. The water depth in Wuyuan Bay was
about 8 m, with a measured sound velocity profile as shown in
Fig. 9. The horizontal communication range between the Tx and
Rx was approximately 800 m.

The carrier frequency was 13–18 kHz, the symbol rate was 1.2 k
symbols/s, and the sampling frequency of the receiver was 96 kSps.
The packet format of the transmit signal is presented in Fig. 10,
7

consisting of a linear frequency modulation (LFM) preamble, train-
ing sequences, and data frame. In the data sequences, the informa-
tion bits were encoded, interleaved, andmodulated into 768 binary
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phase shift keying (BPSK) symbols. The information bits were
encoded using the turbo product code (TPC) with rate-1/2, and
the Chase algorithm was adopted for decoding. During the experi-
ment, long-term noise data were also collected during the experi-
ment to test the performance of DA-TEQ.

For DA-TEQ, the channel estimation is not required. However,
the adaptive channel estimation algorithm based on LMS was
employed to illustrate the channel structure clearly. The estimated
UWA channels were presented in Fig. 11 (denoted as Ch1, Ch2,
respectively). For the channel of Ch1, the UWA channel exhibits a
dynamic sparse structure with uncertain sparsity, and the first arri-
val block with the strongest energy appears at around 4 ms, deter-
mined by both the direct and the first surface bouncing sound rays.
Similar to channel of Ch1, the channel of Ch2 also exhibits a sparse
structure with varying sparsity, and the channel only has the most
vital energy at around 5 ms, corresponding to the direct propaga-
tion path. Through alone the Geo-time direction, the sparsity of
the UWA channel changes constantly and presents a significant
uncertain sparsity with the time evolution. The sparsity of channel
of Ch1 and Ch2 has changed, possibly influenced by the marine
environment after 0.25 s. In terms of the channel structure of
Ch1 and Ch2, the channel of Ch2 is more sparse than Ch1 with
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Fig. 11. Channel impulse responses
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slowly time-varying sparsity. That is means that the data recovery
for Ch2 will be easy than Ch1.

Following the principle of DA-TEQ, the LMS, l1-LMS, l0-LMS and
the DPO-lp-LMS were employed to update the equalizer coeffi-
cients, respectively. The length of the feedforward filter is set as
4. The specific parameters of the equalizer are given in Table 5,
where for LMS types of DA-TEQ, the lf is the step-size, and for
DPO-lp-LMS types of DA-TEQ, the lf ini

is the initial step-size, the
j is the parameters of the sparse regular term, the a; b is the
parameters for adjusting the step-size. The bit error rate (BER) is
a metric index of the DA-TEQ in the condition of various SNRs illus-
trated in Fig. 12.

Some phenomenons can be observed from Fig. 12. As the num-
ber of iterations increases, the BER decreases gradually. After nine
iterations, the DPO-lp-LMS type DA-TEQ achieves zero BER in the
condition of �2 dB measured noise under Ch1, and �3 dB mea-
sured noise under Ch2. In Ch1, the DA-TEQ driven by proposed
algorithm performs better than LMS, l1-LMS, l0-LMS, JLHCAF, and
MVZA-LMS driven when the iteration has not yet started. This is
because other algorithms (LMS, l1-LMS, l0-LMS, JLHCAF, and
MVZA-LMS type DA-TEQ) presuppose a constant sparse pattern,
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Table 5
Parameters set up of LMS, DPO-lp-LMS, l1-LMS, and l0-LMS

DA-TEQ
Type

Parameters

Ch1 Ch2

LMS lf ¼ 3e� 1 lf ¼ 3e� 2

DPO-lp-LMS lf ini
¼ 4:5e� 1;j ¼ 4e� 4;a ¼ 1e� 6

b ¼ 1e� 5; p ¼ 0:85

lf ini
¼ 3e� 2;j ¼ 5e� 4;a ¼ 2e� 7

b ¼ 1e� 5; p ¼ 0:85
l1-LMS lf ¼ 3e� 1;j ¼ 4e� 4 lf ¼ 3e� 2;j ¼ 4e� 4

l0-LMS lf ¼ 3e� 1;j ¼ 4e� 4 lf ¼ 3e� 2;j ¼ 4e� 4
JLHCAF lf ¼ 3e� 1; k ¼ 7:5e� 1;q ¼ 1e� 7; a ¼ 2e� 1 lf ¼ 3e� 2; k ¼ 8:5e� 1;q ¼ 1e� 7; a ¼ 2e� 1

MVZA-LMS lf ¼ 3e� 1;q ¼ 1e� 3; a ¼ 1 lf ¼ 3e� 2;q ¼ 1e� 3; a ¼ 0:9

Fig. 12. The performance of DA-TEQ in Ch1, and Ch2.
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and there is a mismatch for the channel of Ch1 with uncertain
sparsity, resulting in recovery performance impact.

Meanwhile, for other algorithms, the step-size of each iteration
is not optimal and the best feedforward filter taps cannot be
obtained quickly and accurately. As the iterative equalization pro-
ceeds, it can be seen that all algorithms eventually achieve zero
BER in the �2 dB measured noise. In Ch2, the performance of all
the algorithms is significantly improved before starting the
iteration equalization, which is due to the simpler structure of
Ch2. Specifically, the DA-TEQ performance driven by DPO-lp-LMS,
9

l1-LMS, l0-LMS, and MVZA-LMS enables zero BER in the �2 dB mea-
sured noise without iteration equalization, while this performance
bound requires nine DA-TEQ iterative equalizations driven by the
LMS and JLHCAF to be achieved. The performances improved of
l1-LMS, l0-LMS, and MVZA-LMS type DA-TEQ should be contributed
on the constant sparsity in Ch2. This phenomenon is consistent
with the conclusion obtained by numerical simulation, i.e., the pro-
posed algorithm performs better in more sparse systems than the
LMS, JLHCAF.
6. Conclusion

A dual parameters optimization lp-LMS (DPO-lp-LMS) algorithm
is proposed for temporal-spatial varying sparse UWA channel. By
converting the complicated dual parameter optimization problem
into a parallel gradient descent iteration, the proposed algorithm
is capable of alleviating the problem of low convergence speed
and high steady-state error. Finally, numerical simulation and field
UWA communication experiment in shallow water indicate that
the proposed DPO-lp-LMS yields better performance in UWA com-
munication when compared with other variants of lp-LMS algo-
rithms, at the presence of uncertain sparsity.
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