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Abstract

In motor control, high-level goals must be expressed in $eofriow-level motor commands.
An effective approach to bridge this gap, widespread in batire and robotics, is to acquire
a set of temporally extended actions, each designed foifgpgeals and task contexts. An ac-
tion selection module then selects the appropriate aatiargiven situation. In this approach,
high-level goals are mapped to actions, and actions prastueams of motor commands. The
first mapping is often ambiguous, as several actions orrag@vameterizations can achieve
the same goal. Instead of choosing an arbitrary action @npeterization, the robot should se-
lect those that best fulfill some pre-specified requirenmsrth as minimal execution duration,
successful execution, or coordination of actions with the

The key to being able to perform this selection lies in preolic By predicting the perfor-
mance of different actions and action parameterizatidresyobot can also predict which of
them best meets the requirement. Action models, which hamyraimilarities with human
forward models, enable robots to make such predictions.

In this dissertation, we introduce a computational modeltfi@ acquisition and applica-
tion of action models. Robots first learn action models frdmsavved experience, and then
use them to optimize their performance with the followingtinogls: 1)Subgoal refinement
which enables robots to optimize actions in action sequehygeredicting which action pa-
rameterization leads to the best performanceC@)dition refinemenandsubgoal assertion
with which robots can adapt existing actions to novel tasktexts and goals by predicting
when action execution will fail. 3)mplicit coordination in which multiple robots globally
coordinate their actions, by locally making predictionsatithe performance of other robots.
The acquisition and applications of action models have lbealizved and empirically evalu-
ated in three robotic domains: thedREER | soccer robots of our & oCup mid-size league
team, a simulated B21 in a kitchen environment, anea/PRCUBE robot arm.

The main principle behind this approach is that in robot caler design, knowledge that
robots learn themselves from observed experience complsmell the abstract knowledge
that humans specify.






Zusammenfassung

In der Bewegungssteuerung mussen abstrakte Ziele in kiemkBewegungsbefehlen ausge-
drickt werden. In der Natur wie in der Robotik kann diese Kélfrch Aktionen tGberwun-
den werden, die fur spezifische Ziele und Aufgabenkontegstilmmt sind. Ein spezielles
Modul wahlt dann die Aktionen aus, welche sich fir die jewgeilSituation eignen. Die Ab-
bildung von Zielen auf Aktionen ist haufig vieldeutig, da merle Aktionen oder Aktions-
parametrisierungen das gleiche Ziel erreichen kdnnerit &tee beliebige Aktion oder Ak-
tionsparametrisierung zu wahlen, sollte der Roboter jeewditzugen, die eine vordefinierte
Anforderung erfullen, wie etwa minimale Ausfihrungsdauersfihrungserfolg oder Koor-
dination mit anderen Robotern.

Die Vorhersage der Leistung bestimmter Aktionen erlaubtdesm Roboter zu erken-
nen, welche Aktion oder Aktionsparametrisierung die Ad&ung am Besten erfullen wer-
den. Aktionsmodelle, die Ahnlichkeit mit den ‘Forward Mdsledes Menschen haben, er-
maoglichen Robotern, solche Vorhersagen zu machen.

In dieser Dissertation stellen wir ein Berechnungsmodailden Erwerb und die An-
wendung dieser Aktionsmodelle vor. Zuerst werden Aktioodelle aus beobachteter Er-
fahrung erlernt. Drei Anwendungen der Aktionsmodelle weeralargestellt. 1Bubgoal
Refinementdas Aktionen in Aktionsketten optimiert, indem es voraggswelche Aktions-
parametrisierung zur besten Leistung fuhren wirdC@pdition Refinemenind Subgoal As-
sertion die vorhandene Aktionen neuen Aufgabenkontexten unce@iahpassen, indem sie
voraussagen, wann die Aktionsdurchfiihrung fehlschlagesh 8) Implicit Coordination mit
deren Hilfe Roboter durch lokale Vorhersagen lber die Legtanderer Roboter ihre Ak-
tionen koordinieren kbnnen. Der Erwerb und die AnwendundenAktionsmodelle sind
ausgewertet worden aufi®NEER | Fussballrobotern, auf einem simulierten B21 in einer
Kichenumgebung, und bei der Steuerung eir@eErRCUBE Arms.

Das Hauptprinzip dieses Ansatzes besteht darin, dass beimuE von Robotersteuer-
einheiten das Wissen, das sich Roboter selbst durch Benlmgchneignen, jenes durch den
Menschen bestimmte abstrakte Wissen gut komplettiert.
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1. Introduction

“Itis the ability to make predictions about the future
that is the crux of intelligence.”

Hawkins and Blakeslee (2004)

In human motor control, there is a distinction between kmgmhatto do and knowindgnow
to do it. This distinction is apparent in the brain, whereldetive and procedural knowledge
is acquired, stored and accessed in different mb;ﬁ.(ﬁﬁﬂﬂﬂ.Mﬂﬂthl&E]?';_QaMa.co_etlal.,

). The abstract nature and accessibility of decla&nowledge enables us to express

it in natural language. For instance, in the soccer scenaragure[1] ,what needs to be
done can be informally declared as: “To achieve a scorin@dppity, first approach the ball,
and then dribble it towards the opponent goal.” Not only cancemmunicate this explicit
formulation about goals and tasks to other humans, but welsantransfer it to robots by
encoding it in the robot’s controller.

In both nature|(WoIpert and Ghahranlani,
|ZOD_d);|.Ba.eLen.h4_]_9|70) and robotimkin,

), such abstract plans are often mapped

to actions. Actions are temporally extended
control routines that achieve specific goals,
and only apply to certain task contexts. In ‘
the example, the declarative knowledge can
be mapped to the actiorapppr oachBal |
anddr i bbl eBal | . With these actions, the Figure 1.1. Soccer scenario
robot now also knowkowto achieve its goﬁl

However, a problem remains. Although the actions specify twachieve the goal, there
are often several ways to execute them. Figurk 1.2 depictgxecutions of the same action
sequence. In the first, the robot naively executes the fitgirgand arrives at the ball with
the goal at its back, as depicted in Figlire I]2(a). This isdortunate position from which to

INote that we interpret the terms ‘procedural’ and ‘declaeatas they are used in cognitive sci-
ence (Cavaco et al., 2004), not as in the debate on procedtrsls declarative knowledge representations
in Artificial Intelligence in the late 1960s and early 197@gfograli| 1975).

1



Chapter 1 Introduction

start dribbling towards the goal. An abrupt transition agsdoetween the actions, as the robot
needs to brake to slowly and carefully maneuver itself betie ball in the direction of the
goal.

(a) An execution with an abrupt transition at (b) A time-optimal execution that exhibits
the intermediate goal. smooth motion.

Figure 1.2. Two alternative executions of the same actiquesece

Preferably, the robot should go to the balbrderto dribble it towards the goal afterwards.
The robot should, as depicted in the Figpire I]2(b), perfdrenfirst action sub-optimally in
order to achieve a much better position for executing thersg@action. The behavior shown
in Figure[1.2(0) has a higher performance, achieving thmate goal in less time.

This example demonstrates that although the angle of apiprogght not be relevant on an
abstract level, it does influence execution performance.vBat exactly is the best angle of
approach? Unfortunately, neither declarative nor procadunowledge suffices to answer this
qguestion. This is the remaining problem referred to presiypu

In this dissertation, we demonstrate that the key to solthiggproblem lies in a third kind
of knowledge: being able to predict the outcome and perfagaaf actions. In the running
example, if the robot could predict the performance of aliéve executions beforehand, it
could choose and commit to the fastest execution. To préwgotxecution duration of action
sequences, the robot must predict the execution durationdofidual actions. The robot
can learn these prediction models through experimentatioservation and generalization. It
does so by recording the results of executing the action vatious parameterizations, and
training learning algorithms with the data thus acquired.

1.1 Key Principles

One of the main motivations behind robotics research is te@lde robots that can assist
with or assume tasks that are either too dirty, too dangetoasprecise or too tedious for



Section 1.1 Key Principles

humansMG). Prolonging and increasing the indepparedof the disabled and the
elderly with assisting technologies such as robots is atedipted to have a large social
impact I 3). Examples of such tasks arepeirig rescue operations, au-
tonomous driving, providing mobility for the disabled, athoing the dishes.

Although there are several projects and conferences cdedrtid robots that learn more
or less from scratch how to act in the real WorILd_(.M.eLLaJEdZH).QAS;LKa.pJa.D_QLELI.LZQbG),
the resulting robots have certainly not yet reached a levarevthey can perform the tasks
described above. Currently, designers are still requmezhtode their knowledge about how

to solve real-world problems into the robot controller. kwstance, action selection is still

often specified manually as state-machirll.es_(_mlzs_cd Jﬂmﬂllﬂb}ttLZO_di_MuﬁL 1).

Here, the designer directly encodes knowledge about whichtional state the robot is in,
and which action should be executed in this state.

However, through experimentation, observation and gdimati®n, robots can learn com-
plementary knowledge, and use it to improve, adapt and agitheir controllers. Learned
knowledge can often be used to make decisions that are difictnumans to make. Further-
more, experience-based learning is grounded in real wid@vations, not human intuition.
It is exemplary that the 2006 winners of two well-known rabdtenchmarks, the &oCup

mid-size Ieaguel_(_G_a.b_eI_ellelL_Zb%) and the DARPA challM.LM6), empha-

size that their success could only be achieved through tbdir@tion of manual coding and

experience-based learning.

The main principle in this dissertation is thatman-specified knowledge and robot-learned
knowledge complement each other well in robot controll&€rse introduction and example in
Figure[1T.2 have briefly illustrated the other key principd@swhich this dissertation is based:

Principle | Declarative knowledge can be explicitly specified by humans

Principle Il Procedural knowledge is represented by a set of durativenact

Principle Il Mapping declarative to procedural knowledge is ambiguand, choosing the
mapping affects performance and behavior.

Principle IV  This ambiguity can be resolved with predictive knowledgeich leads to more
effective and efficient action execution.

Principle V Predictive knowledge can be learned from observed exparien

In the next sections, we describe these principles in mdeelde
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Principle |  Declarative knowledge: human specified

An important aspect of declarative knowledge is that it issmously accessible, and allows
us to declare our intentions and plans to others. An examgaéegiven in FigurETl1, in which
the task can be informally declared as: “First approach #tiednd then dribble it towards the
goal.” Other examples from soccer are: “Approaching théibahuch like navigating, except
that you should not bump into the ball before the desired posiee ball is achieved.” or “To
regain ball possession, only one player should approacheate

These statements are at a level of abstraction that makeswuakd for both human and
robot soccer players. The validity in both domains enalilegtansfer of declarative knowl-
edge from humans to robots, and programmers usually haveaidem in encoding this
knowledge in the controller. It also enables humans to gilxeca to robots in a declarative
way _C.a.Lp_e.nLQLelJaL_ZdOZ).

The Planning Domain Description Langua,;.&(.lﬂzx.a.ndlbngd,?@an example of a lan-
guage explicitly designed to encode such declarative kexbge. However, the knowledge can

also be implicitly encoded using the data structures antralftow of the programming lan-
guage. However, with the latter the robot cannot reasontadyamanipulate this knowledge,
and the encoding can be such that even other designers gaanghize the intentions from
the code.

For now, it is not so important how declarative knowledgeeisresented in the controller,
as long as it is clear that at some point during controlleigies designer will have explicitly
thought about the declarative statements above, and cbhdaedih the controller’'s language.
Examples of both explicitly and implicitly representingcthrative knowledge in robot con-
trollers are given in Sectiols.2 and5l2.1 respectively.

Principle Il Procedural knowledge: durative actions

The famous patient H.M. provided the first proof for the difiece between declarative and
procedural memory storade_(_S_qmiJJ_e_a.n_d_MjH_eL_i957). Hst 4ge of 27, a bilateral medial
temporal lobe resection was carried out to correct his agirgly debilitating epilepsy. Dur-
ing the operation, the amygdala, uncus, hippocampal gymd,anterior two-thirds of the
hippocampus were removed. After the operation, H.M. waapable of storing any novel
declarative facts, although the facts before his operatiere retained. Surprisingly, H.M.
could however learn and retain novel skills. For instancé&/.Hmproves at mirror-tracing
tasks over time with training, but when asked, reports liawia recollection of ever having

done such as task befoLe_(Q_a.b.Li.eLiAtlaL_iOO4).
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As H.M. demonstrates, procedural knowledge is not expfieihd consciously accessible
to humans, in contrast to declarative knowledge. This i®aloty the reason why program-
mers find it more difficult to transfer procedural knowledgerobots. Also, although ab-
stract descriptions of tasks are valid in general, procddurowledge is often very platform-
dependent. For instance, there might be differences imiotion (biped vs. wheeled), con-
trollable degrees of freedom (non-holonomic vs. holongyraad motor commands (action
potentials vs. voltages).

hALQIp.eLt_a.n.dﬁha.hLamMj_(ZdOO) describe well the difficuftynapping declarative knowl-

edge to procedural knowledge in the human motor system: rifgagy tasks are generally
specified at a high, often symbolic level, such as taking mkdof water from a glass. How-
ever, the motor system must eventually work at a detailegl |epecifying muscle activations
leading to joint rotations and the path of the hand in spaberdis clearly a gap between the
high-level task and low-level control.”.

Using durative actions to bridge this gap has proven to becaessful approach in both
nature LBa.eLenhE__ldﬂQ.JNleﬂLaﬂ.dﬁhahLaHlam.l 2000)cradics M ). Actions
encapsulate knowledge about how certain goals can be achiewertain task contexts. For
instance, human and robot soccer players will typicallyeha@srbbling, kicking, and passing
actions, that are only relevant in the context of soccer.oA¢s|ach of these actions achieve
different goals within different soccer contexts. Becaasgons only apply to limited task
contexts, they are eaS|er to design or learn than a contitbié must be able to deal with
all possible context @..Jambs.an.d.ddﬂ@.k) In cognitive science, ac-
tions are known amverse modelsand in robotics abehaviorsroutines or, confusinglycon-
trollers. We list which specific research field uses which terminolaggr on, in Tabl€=3]1.

In robotics, actions usually take parameters that allownth@ be used in a wide range of
situations. Instead of programming an actam bbl eBal | ToCent er , it is preferable to
program an actiowlr i bbl eBal | ( Pose) that can dribble the ball to any location on the
field, including the center. If each action is designed toecav large set of tasks, usually
only a small set of actions is needed to achieve most taskgivea domain. Having only a
few actions has several advantages: 1) The controllerscl@splex, making it more robust.
2) Fewer interactions between actions need to be considehach facilitates action selection
design and autonomous planning. 3) If the environment abgnonly a few actions need to
be redesigned or relearned, making the system more adamtideasier to maintain.

To achieve more complex tasks, actions are combined ancgtarated, using declarative
knowledge. As we saw in the example, “First approach the balll then dribble it towards
the goal.” is mapped to the action sequeap@r oachBal | ,dri bbl eBal | .
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So, declarative knowledge maps goals to actions, and puogekhowledge maps actions
to motor commands, which can be directly applied to the meystem. This divide and
conquer approach to control helps to bridge the gap betwiggmlével goals and low-level
motor commands.

Principle Il Ambiguous mappings affect performance

Mapping goals to actions is often ambiguous: several astmnaction parameterizations
can often achieve the same goal. This is a well known priediplhuman motor control,
where there are often more degrees of freedom availableatestrictly needed to solve
a task kSLhaaLandjnhMLeLgh.l)beOS). Actions are theh tsabe redundant or over-
expressive, and the freedom of movement that is not constiaby the task is called the
uncontrolled manifold in cognitive sciencle (Scholz andth&J[,L193|9), and null-space in
engineering LLHmpIeL_lQbh._NakanﬁhJAt la.L_iOOS). Theimddncy of actions raises an
important question. How should the excess degrees of fredu® parameterized? This
problem is known as the degree-of-freedom problem, or probbf redundancy resolu-
tlon ﬁZbOS).

In the example in Figurg_1.2{a) for instance, we saw that tt®ma sequence that arises
from the declarative knowledge can actually be executedanyhways. Such ambiguities
raise some important questions. “First approach the badltlaen dribble it towards the goal.”
maps to the action sequenappr oachBal | , dri bbl eBal | . But what is the best angle
of approach? From an abstract point of view, being at theibaufficient for dribbling it.
Although the angle of approach might not be relevant to tls& tan an abstract level, the
example clearly shows that it does influence execution padace.

The same holds for the other statements: “To regain ballgssssn, only one player should
approach the ball.” But which player should this be? Propéie fastest. But exactly who is
the fastest? “Approaching the ball is much like navigatiexgept that you should not bump
into the ball before the desired pose at the ball is achié\gadt. exactly when does the robot
bump into the ball?

One of the advantages of actions is that they can be designkeémed independently
of other actions. The questions arise when actions are eau contexts for which they
were not initially designed. For instance, “Which angle ppeoach is the best?” arose from

executing the action in the context of action sequences;\&n will the robot bump into
the ball?” arose from navigating in the context of approagtihe ball. Finally, “Who will be
the fastest?” arose from the context of playing in a mulbatteam.

One way to answer these questions is to design or learn nesnschat are tailored to
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the novel context in which the question arose. Instead ofguiiie generabppr oach-
Bal | ( Pose) in the scenario in Figurel.2, a new actiappr oachBal | | nOr der To-
Dri bbl eBal | (Pose, Posi tion) is designed or learned. This customized action takes
into account that the robot should dribble the ball to a cepasition afterwards. It therefore
takes the next location as a parameter, and the action aticomputes the optimal angle
of approach. Although this customized action might perfdr@tter in this specific context,
its long name already clearly implies the loss of generalityis manual action customization
soon becomes a laborious task, as each task context, aratearsually many, would require
their own task-specific action. In the next section, we preaa alternative solution, which
reuses existing actions based on predictive knowledge pastivate why it is preferable to
designing or learning novel actions.

Principle IV Predictive knowledge enables effective control

Although the actions in this dissertation themselves aredfixhis does not mean that their
application is fixed. Much freedom remains in the way actiares parameterized, and also
in which actions are executed in the first place. For instatioe originalappr oach-
Bal | (Pose) can be used very well to achieve the optimal execution in feifluZ(D), if
its parameter determining the angle of approach is coyreetl

Here, the advantage of having action parameters beconaes Theappr oachBal | | n-
Order ToDri bbl eBal | action does not have the angle of approach as an action parame
but somehow computes an optimal angle ‘inside’ the actiselfit However, which angle is
optimal depends on what is being optimized: time, energgomption, traveled distance, etc.
It also depends on which action will follow: a fast dribblestore, a careful dribble to prepare
for passing the ball, etc. To achieve good performance, efdtlese contexts would require its
own customized action. Instead, it is better to have theeaoghpproach in the parameter list
of a more general actiomppr oachBal | , which can achieve all these tasks. Exactly which
angle of approach is best in the current task context is uhted on-line ‘outside’ of the
action. With this approaclexisting actions are tailored to novel task contexts. Adapting or
refining already existing actions so that they can solve tag&s alleviates the need to design
or learn new actions. This leads to fewer actions, with &ladtivantages previously discussed.

By implementing the novel acticmppr oachBal | | nOr der ToDr i bbl eBal | , the de-
signer is specifyinghow an action should be executed in the context of action se@senc
Again, this is tedious and error-prone. It would be more emment if the designer would
only have to declare requirements that action executionldhmeet, such as “Execute ac-
tion sequences as quickly as possible.”, or “Do not bumptimédball when approaching it.”.
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Given the freedom caused by the redundancy of actions, tha& hould then attempt to
fulfill these requirements by tailoring actions on-line. the running example for instance,
the robot is required to minimize the expected executioratiom of the overall action se-

guence.

Context:
action sequence

Requirement:
minimize execution

duration

Prediction:
execution
duration

angle of
approach

| approachBall(Parameters) |

Existing actions
VS.
Novel actions

approachBallinOrderTo-
DribbleltTo(Parameters)

(Designer programs action
that minimizes execution duration)

Figure 1.3. Existing actions vs.
novel actions

{QLdOOS) call these regaimsnsubordinate criteria’, and

00) refer to them as ‘cost funstio

Note that these requirements are independent of the ac-
tion implementation, and hold for a variety of actions and
task contexts, which makes them generally applicable, and
therefore easy to formulate. On the other hand, the pa-
rameters and actions that fulfill these requirements depend
very strongly on action implementations and task contexts,
and will be different for each of them. Therefore, the
robot should preferably determine these parameters au-
tonomously on-line. This approach enables the designer
to specify requirements, rather than novel actions.

Transforming actions or choosing action parameteriza-
tions to fulfill requirements is only possible if the robotca
predict the outcome of actions and their parameterizations
Fulfilling the requirement “Execute action sequences as
quickly as possible.” can only be done if the robot knows
which action sequence will be the fastest beforehand. The
requirement “Do not bump into the ball when approaching
it.” can only be fulfilled if the robot can predict if it will
bump into the ball in some situation. Knowing which robot
is the quickest to the ball is only possible if each robot can

predict the approach time to the ball for each robot. Beirlg &thpredict the consequences
of actions is essential to answering the ambiguities andtopres that arise frofn Principle]ll,

androbots can tailor existing acti

ons themselves with predictive knowledge.

This approach is informally depicted in Figurel1.3. The fgt&p in reusing actions is to

specify a requirement. Then, t

he predictions relevant Hallfthis requirement are made.

This yields an action selection or action parameters. Tlewon is then performed with
existing actions. Note that these three steps are printédlohin the previous paragraphs.

The ambiguities and questions
resolved outside of the action.

On the other hand, when desi

related to efficient and &ffee@xecution of actions are so

gning novel actions for novkldastexts, the designer con-
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templates the requirements, makes predictions her/hipasel implicitly codes them in the
new action, as also depicted in Figlirel 1.3. In our approagmenv actions are created, but
existing actions are reused, refined and tailored to noskldantexts. With predictive knowl-
edge, robots can tailor actions to novel task contexts tekms. This alleviates the need for
designers to adapt or refine actions manually, and makesltio¢ more autonomous.

Principle V. Predictive knowledge can be learned

Action models enable robots to predict the performance twawne of actions, given a certain
parameterization. Examples are predicting the expectedution duration, or whether an
action is likely to succeed. But how is this predictive knedgde acquired?

It is learned from observed experience. First, each acti@exécuted for a multitude of pa-
rameterizations and the performances and outcomes anmgleelcA learning algorithm then
learns a generalized model that maps an action and its pseanagion to expected perfor-
mance. In the soccer domain for instance, robots learn wigirthe execution duration of
theirgoToPose action by simply navigating to random locations on the field aecording
the duration. After transforming the data to an appropfiieéture space, generalized models
are then learned by training model tr rBEﬁlQQZ) thie data.

The advantage of this approach over analytical methodsisttis based on real experience,
and therefore takes all factors relevant to performaneeantount. Also, many hand-coded
actions are difficult to formalize analytically, or analyss impossible because the inner work-
ings of the action are unknown. In principle, learning msan also be done on-line, so that

action models can adapt to changing environménls.(.[lea.uid‘.ﬁl&mitLLLEdS).
IB.QQILaD.d_B.eLKl?II_(ZQbO) summarize the difficulty of anabjticspecifying action models

for navigation actions well: “Navigation behavior is thesud of the subtle interplay of many
complex factors. These factors include the robot’s dynansensing capabilities, surround-
ings, parameterizations of the control program, etc. Iinipassible to provide the robot with
a deep model for diagnosing navigation behavior.”

Summary

The previous section treated the questions and ambig@sigsroblems which need to be
resolved. Let us now summarize this section from back tatfirmm a positive point of view,
in which ambiguities are seen as degrees of freedom or appbes to tailor actions to task
contexts:
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¢ Although actions are immutable (in this dissertation)réhs still freedom in how they
are parameterized and in which contexts they are executed.

e This freedom is an opportunity to tailor actions to noveltests.

e Predictive knowledge, which the robot can learn from obsémxperience, enables the
robot to tailor actions itself.

o Off-line, the designer can specify requirements that aaiecution should meet, which
the robot takes into account when tailoring actions on-line

e This is preferable to designing novel customized actiogsequirements are more gen-
eral, and fewer actions lead to more adaptive and robustaltars.

The relations between the key principles are also depictinimally in the flowchart in
Figure[L#. Throughout the dissertation, we will descrie representations and algorithms
used to implement this flowchart.

Principle | Principle Il Principle V Principle IV
Declarative knowledge: Procedural knowledge: Learn action models Predictive knowledge:
human specified action library Section 4 action models

5 Subgoal Refinement
6 Subgoal Assertion
7 Implicit Coordination

Refined
action sequence

Abstract Action
plan sequence

Figure 1.4. Relations between the key principles.

At his point, we would like to draw attention to the role of cative science in this disser-
tation. There is an increasing interest in exploiting hursi@ategies for dealing with complex
control in robotics, and an increasing exchange betweeaninetogies and computational

models used in cognitive science and robol*cs (Lopes anm%m,[zo_ok _M_e_ttaﬂl.,
2006;| Dearden and Demiris, 2005; Schaal and Schweighodes; Sloman|_2006). Action

models, which are inspired by human forward models, are @ ggample of this exchange.
Throughout the dissertation, we therefore also discussitieg science research that focuses
on the acquisition and application of predictive modelghaligh this research is an important
source of inspiration, in this dissertation the goal is nabitplicitly model cognitive processes,
or to reproduce empirical results from cognitive science.

1.2 Robotic Domains

The key principles are implemented in and applied to thréetio domains: robotic soccer,
service robotics and arm control. Such a variety of robots domains have been chosen

10
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to emphasize the generality of the system. Also, the diffiecbaracteristics of the domains
allow different aspects of action model applications torbestigated.

1.2.1 Robotic soccer

RoBOCUP is an international joint project to promote Al, roboticadarelated fields. It is an
attempt to foster Al and intelligent robotics research byvating a standard problem where
wide range of technologies can be integrated and examirtezicdntral topic of research is the
soccer game, aiming at innovations that can be applied talgoand industrially significant
problems. The ultimate goal of theoROCuUP project is that by mid-21st century, a team of
fully autonomous humanoid robot soccer players shall pigsirest the winner of the most
recent World Cup, comply with the official rule of the FIFA,cawin Jﬁﬂa.n.o.eLa'.l.lQ.d?).
Within RoBoCup, there are several leagues, each with their own technalbgiad re-
search challenges. The team of the Technische Universiiathen, the “A&i1LO0 RoBoCupP-
PERS (blulp_eLa.I.,l_ZOD_libLB.eetz_etJaL_zcbO4), has participatethe mid-size league since
1997. In this league, robots play on a field of approximately ®eters, four against four. The
main characteristics of this league is that the robots sandeact locally and autonomously.
One of the AsILO robots is depicted in Figufe IT.5(a). Experiments have asmlrzonducted
in the AcILO simulator, depicted in Figufe T.5]b). These robots aremedfieo as ‘FONEER I’
and ‘AONEER | (S)’ respectively, as these platforms are customizexNBER | robots from

ActivMedia AclnLM.edla_RQ.b.olLdsLl&‘bS). The hardware aadl$ of the AsiLo RoBOCuUP-
PERSare presented more elaborately in Apperidix B.

el == |+

]

N
dll - i

(a) AGcILO RoBOCuUPPERSIrobot (b) AGiLo simulator (c) ULmM SPARROWSrobot

Figure 1.5. Mid-size league soccer domain

In this adversary domain, performance and efficiency arengisd to achieving the goals
of the team. Tailoring actions to perform well within the @ivtask context is therefore a

11
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necessity. Since it is a multi-robot domain, it also allovgsta investigate how actions can
be tailored to scenarios with multiple robots. Multi-roletperiments are conducted in a
heterogeneous team with the soccer robots from the 3PARROWS (lKLa.elmhma.r_el_lal.,

), one of which is depicted in Figyre T.%(c).

1.2.2 Service robotics

One of the long-term goals in robotics is to develop robo#t ttan autonomously perform
house-hold tasks. Therefore, action models are acquidd@lied to a simulated articulated
B21 robot in a simulated kitchen environmeIJL(.MllLI.QLa.n.dﬁeléQQlS . The simulator is
based on the Gazebo simulator of the Player/Stage prbjmk@_et_ai._mﬂsy This open-
source project develops tools for robot and sensor apitat Gazebo simulates robots,
sensors and objects in a three-dimensional environmeset n Dynamic Engine provides
the physical simulation and realistic sensor feedbm ). Player is a network in-
terface and hardware abstraction layer, which the roboti$roller uses to communicate with
the Gazebo environment. Player facilitates the portingootiollers written in simulation to
real robots.

(a) Simulated B21 in the kitchen environment (b) POWERCUBE arm

Figure 1.6. Simulated kitchen environment ar@WERCUBE arm

The environment, depicted in Figre I.§(a) contains a dfgiitchen scenario, with furni-
ture and appliances. The positions of the pieces of fumiwe static and known. In addition,
the environment contains flatware (such as knives, forkd,spoons), cook-ware (pots and
pans), and dinnerware (including plates, cups, and bowls¢se objects are recognized and
are movable, so the robot can manipulate them. The positibtieese objects is known, if
they are within the field of view of the robot.

12
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The rich environment and six degrees of freedom arms prawigerobot with more ex-
pressive actions than in the robotic soccer domain, whiatideo more redundancy and opti-
mization potential. Furthermore, house-hold tasks aerkeactive, and require more complex
and longer-term planning, which is relevant in the contdxation sequence optimization in
Chaptefb.

1.2.3 Arm control

The third domain is a ®werCUBE arm from Amtec RObOtiCSL(Am.Le_LBQbQJidS_ZbO5),

shown in Figurg I.6(b). Each joint has a brushless servomath a Harmonic gear head,
and an incremental optical encoder to measure the posifite communication with the
computer is done using a high-speed CAN interface. We hawelynacluded this robot to
demonstrate the wide range of domains in which action margide learned and applied.

1.3 Contributions

[Principle’] and Principle]l on declarative and procedunabwledge are well established in

cognitive science and robotics, as was motivated in Seflfifin These are the assumptions
fundamental to this dissertation. The questions that dresa the ambiguous mapping of
declarative to procedural knowledde (Principl¢ Ill), assentially the problem statement:
How can these questions be answered in a robust and efficesnimthout requiring manual
programming? The solution to this problem is predictive wlealge [Principle TY), which

is acquired by experience-based learn[ng (Principle V)s Sblution contains the following
conceptual contributions:

e Arguing that existing actions can and should be tailoredaeehtask contexts, rather
than designing new customized actions.

e Demonstrating how robots can tailor actidghemselvesy using predictive knowledge.

e Demonstrating how robots can learn predictive knowledgmfobserved experience.

¢ Introducing a novel computational model for the acquisitemd application of action
models.

The technical contributions of this dissertation arisefrealizing these concepts in a work-

ing robot control system, and evaluation it on three robplatforms in a variety of domains.
These contributions are:

13
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Action model learning.  We demonstrate how robots can learn action models by executi
an action, observing the result, and generalizing thesereasons by training a model
with tree-based induction. Especially, we show how the nsstade of sparse data
by exploiting invariants in the features spaces, and inolyttermediate data without
violating the stationarity assumption.

We empirically evaluate the accuracy of the action modelsiclvare learned for a
variety of actions performed by the robots from Secfioh 1.2.

Subgoal refinement. Free action parameters at intermediate goals arise whepintap
declarative knowledge to actions. Current controllersroflisregard these parameters,
which lead to suboptimal performance. In the computatiomadle! of subgoal refine-
ment, these free parameters are explicitly reasoned afmadipptimized with respect to
the expected performance, predicted by action models.

Automatic subgoal refinement is realized as an extension ekesting PDDL planner,
and is applied to the three robotic platforms presented ali@€1.2, and a variety of
action sequences.

Subgoal refinement leads to significantly shorter executroas, with smooth motion
as a pleasing side-effect, as an empirical evaluation dstraies. We analyze the effect
on individual actions in a sequence, and investigate whbgaal refinement fails.

Condition refinement and subgoal assertion. When an action is applied to a new task
context, its specific goal changes. It is important to knovewkhis new goal can be
achieved, and when it cannot. Condition refinement is theqe® of learning the ac-
tion’s novel precondition, given the novel goal. Subgoakason uses condition refine-
ment to predict when actions will fail, and transforms th&acinto action sequences
that are predicted to succeed, by asserting a subgoal. Tampterization of this sub-
goal is constrained by the learned precondition, and op&thusing subgoal refinement.

On the RONEER | (S) robots, condition refinement is realized using treseldlainduc-
tion, which learns the precondition from example actioncexi®ens. Subgoal assertion
uses the learned model, as well as subgoal refinement torde&ean optimal interme-
diate goal.

An empirical evaluation verifies that the adapted actionghly successful at achieving
novel goals, such as approaching a ball.

Implicit coordination.  We present a computational model of implicit coordinatiothw
belief exchange, in which both state estimation and comaation are used to acquire

14
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states of others. Based on these states, utility predeiommade locally, to coordinate
actions globally.

Implicit coordination is realized on a team of three Ao robots, as well as in a het-
erogeneous team with onesA.0 and one WM SPARROWSrobot.

Implicit coordination is robust against communication astdte estimation failures,
which we demonstrate with an empirical evaluation. Implkdordination in the het-
erogeneous team demonstrates that robots with very ditfegedware and controllers
can coordinate with little change to the individual robontollers.

Because subgoal refinement, condition refinement and subgseartion enable robots to
autonomously adapt and refine existing actions to novel ¢asitexts, they are a contribu-
tion to the field of life-long learning. These methods alsldgpe the gap between symbolic
planning and robot plan execution, and are contributiormtb fields. Implicit coordination
enables robots to make only local decisions that have effethe global behavior of several
robots, and as such is a contribution to the field of multiraggstems.

Together, these conceptual and technical contributionsige a framework in which
knowledge specified in the controller by humans is complaetemefined and improved with
knowledge learned by robots themselves. The empiricabatiaihs verify that this leads to
more efficient and effective behavior.

1.4 Outline
The following is a synopsis of the individual chapters osttissertation.

Chapter £1- Computational Model.  This chapter introduces the terminology, concepts
and methodology used throughout this dissertation. It ptesents an overview of the
system.

Chapter 81- Related Work. Work related to action selection schemes, forward models an
action models are discussed. Both cognitive science amatioslresearch are treated.
Work related to specific applications of action models aesented in the respective
chapters.

Chapter fJ- Learning Action Models.  Action models are acquired by learning them
from observed experience. In this chapter, we describe hewmécessary experience is
gathered, and how generalized models are learned fromdtas d

15
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Chapter £1 Task Context: Action Sequences.  The first application of action models
is to tailor actions to perform well within a given action seqce. The method with
which this is done is calledubgoal refinement

Chapter &J- Task Context: Task Variants.  In this chapter we presestibgoal assertion
andaction refinemenin which action models used to parameterize available rstso
that they can be reused for a new task variant.

Chapter - Task Context: Multiple Robots.  Action prediction models are used to co-
ordinate the actions of multiple robots. By predicting tleefprmance of other robots,
a robot can adapt its actions accordingly. This is calbglicit coordination

Chapter 81- Conclusion. The content of this dissertation is summarized in this assioh,
and directions for future research are discussed.

Chapterd ¥ t@17 describe how action models are acquired grlgédmn the robots, and
contain the technical contributions. These four chaptexsetthe same structure. After an
introductory section, the computational model is prestnighe following sections in these
chapters then explain how the computational model is implged. After presenting the
empirical evaluation conducted on the robots, work spedificgelated to this chapter is dis-
cussed and compared with our work. The conclusion contasusranary of the chapter and
directions for future work.
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2. Computational Model

“Before turning to those mental aspects of the matter which
present the greatest difficulties, let the inquirer begimiastering
more elementary problems.”

Sherlock Holmes in “A Study in Scarlet’lELmW)

In this chapter, we introduce and formalize the basic cotscepd terminology used
throughout this dissertation. The relevant concepts arerdata structures or processes,
which manipulate these data structures. Examples fromabetic soccer domain are used
throughout.

The next section introduces tldgnamic system modethich describes the interaction of
an agent with its environment, and the role of the contrallighin the agent. In Sectidn 3.2,
we demonstrate that the concepts of durative actions amohastlection can elegantly be
described using the dynamic system model. At the end thisisfthapter give an overview
of the system presented in this dissertation.

2.1 Dynamic System Model

The standard model for control theory is the dynamic systeldehbyl.D_ea.n_a.ndMLeLLmahn
). In this model the world changes through the intéaadf two processes: théon-

trolled Process and theControlling Process, as depicted in Figuie2.1.

2.1.1 Controlled process

In robotic domains, th&nvironment Process is the physical world the robot is embodied
in, be it real or simulated. The evolution of the environmgrtcess is represented by a set
of state variableghat have changing values. The state of the environmenfliseimced by
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' Controlling Process

| ]
| ]
| ]
| ]
! State Belief |
. Estimation State |
| ]

Percept

Environment
Process

Sensing
Process

Figure 2.1. Dynamic system model

applyingMotor Commands to ilﬂ. Motor commands directly set some of the state variables
in the environment process and indirectly other ones. Tfezi@d state variables are called
thecontrollablestate variables. For instance, the robot can set the ttaorshand rotational
velocity directly, causing the robot to move, thereby iedtty influencing future positions of
the robot.

The robots used in this dissertation send motor commandbaocevare component at reg-
ular intervals. For instance, the motor command for theaoglaying robots with differential
drive is [, ¢], which specify the translational and rotational speedis Photor command is
processed by a hardware component and converted to votagls for both motors. In the
dynamic system model, the hardware component and its @iogesf motor commands are
part of the controlled process, not the controlling procédse only interface the controller
has to influencing the world’s state is the motor command.

The Sensing Process represents the sensor of the robot, which are embedded antie
ronment process. The unprocessed data structures thesesganerate are call®grcepts.
For the robot, often only a subset of the state variablesb&ervableto its perceptive sys-
tem, and only these variables are encoded in the perceptpéreepts of our soccer robots
for instance, are camera images, odometry, and messagegeefrom other robots. Note
that these percepts do not arrive as one single data steydiut arrive and are processed
asynchronously.

In the dynamic system model, motor commands are actuallgctabntrol signals. We prefer the term ‘motor
command’, as it emphasizes that all the control signalsimdissertation are sent to the motor system of a
robot.
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2.1.2 Controlling process

The controlling process’ task is to produce a sequence obnmemmmands that affect the
environment, for instance to achieve a certain goal. To dtheacontrolled process must often
first know the current state of the environment. This stagsignated from the percepts with
State Estimation. For instance, the soccer robots use the available perdsgitegy camera
images, odometry, and communication with teammate robmtspoperative state estimation
with opponent tracking_(.B_eetz_etl el.L..Z(bO4).

The output of the state estimation iBalief State. The belief state represents the robot’s
beliefs about the current values of the state variableseiemironment(_utz_eIJaL_ZdO4). Due
to limitations of sensors and state estimation, the true stiethe world cannot be determined

with full certainty and accuracy. Therefore, the socceptslvepresent state variables as ran-
dom variables with a Gaussian distribution defined by themaeal variancem al.,
|&Qi;|lhmn.et.ell]..ﬁ)b5). The controlling system does noikthe state of the world, but
rather has beliefs about it, hence the term ‘belief’ statke #ermworld stateshould rather
be used for the actual state of the world, andwioeld modelis the description of all possible
belief states. The belief state of the soccer robots comtanservable state variables related

to their own pose on the field, as well as those of its teamnaatdpponents. The position
of the ball is stored, as well as any unidentified obstaclehetield.

TheController takes a belief state as an input, and returns a motor comramsldisserta-
tion focusses on the designing and learning effective otlats. If the controller is not purely
reactive, it also has a internal state, which is describetnms ofinternal state variables.
Examples are the current goal, or the sequence of actiohsainnmitted to executing, as well
as their parameterizations. Furthermore, there is a digtimbetweerirectandderivedstate
variables. Direct state variables are directly providedtaye estimation (e.g. position of ball
and myself), whereas derived state variables are compytedrbposing direct variables (e.g.
distance to ball). No extra information is contained in dedi variables, but if chosen well,
they correlate better with the performance of the contrsl tas explained in SectignZ.11.1.

Summarizing, percepts are acquired through sensors emtvéndhe environment. State
estimation estimates the observable state variables fnempércepts, and stores them in the
belief state. The controller takes the belief states, ardragnes a motor command that
directs the environment into a desired goal state. Thesemuoimmands are sent to the
controlled process. For example, a soccer robot uses itsreafsensing process) to capture
images (percepts), converts them into ball and robot prston the field (belief state), and
gives velocity commands (motor commands) to the motorsingtiance to dribble the ball

(goal).
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2.2 Durative Actions and Action Selection

One way to design controllers is through direct programmiftge designer contemplates the
domain and the task to be executed, and fully specifies whitbrashould be executed in

which state. For the game of tic-tac-toe, it is feasibleutitotedious, to specify for each of

the 765 legal states, which move to play next. A more realstample is designing a PID

controller to control the temperature in a room. The per¢atrent temperature) and ‘motor
command’ (power for the heater) are continuous, so enumgratl states and commands
would be impossible. Nevertheless, a relatively simplefiom suffices to map each input to
an output.

When controllers perform tasks in complex dynamic domairssrhonolithic approach be-
comes tedious and error-prone. Imagine enumerating adiiplessituations in robotic soccer,
and specifying the desired velocity command for each of thBesigning a single PID con-
troller that can play soccer is just as infeasible.

The predominant approach in robotics to solve this probketo first design or learn a set
of actions [Principle]I), and then design or learn an acsefection module, that chooses
the appropriate action given the current contgxt (Prieclpl A schematic overview of the
organization of actions and action selection is depicteeigre[Z.2.

Action Library

e JH

Belief Action

-<—| Motaor Action
Command

Figure 2.2. System overview of actions and action seledhotme dynamic system model
controller. Procedural knowledge is stored in the actibnally, and declarative
knowledge is encoded in the action selection.

An Action is a control routine that produces streams of motor commdred®d on the pa-
rameters with which it is called. Actions can be executeti@real continuous world, because
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the motor commands they generate can directly be dispatohe&dhardware component. In
this dissertation, actions themselves have no interntd;steey are purely reactive.

The parameters of an action are either observed variabtes the belief state or
internal variables describing the current subgoal. Anysigéent information must be
stored outside of the action. As an example, the signaturthe@fjoToPose action is
goToPose( z,y,p,v, x4y, 04,7,) It navigates the robot from the current dynamic pose
[z,y, ¢,v], stored in the belief state, to a future goal posg {,, ¢4, v,], stored in the inter-
nal state. It does so by returning motor commandsy], representing the translational and
rotational velocity of the robot.

Note that in Figur€2]2, actions are depicted both as esfjtiexes) and processes (ovals).
On the one hand, actions are processes, as they transfaehdbates into motor commands.
On the other hand, the action selection considers actiofie teesources or entities it can
manipulate and reason about.

The main resource of an action based controller ishttgon Library, which contains a set
of actions that are frequently used within a given domaiactions are specified general, and
apply to a large set of the state space, only a few actionsesden to execute all possible
tasks in a certain domain.

Table[Z1 lists the actions used in this dissertation. Thiemparameters in the signatures
are partitioned, based on whether they hold in the currete sif the world or if they specify
the target the robot wants to achieve. Note that the first bserwable variables, and the
second are internal variables. Although learning and apglgction models is independent of
actual action implementations, we list their implememtasifor completeness in AppendiX A.
Here, we also discuss the exact meaning of the variablegisiginatures.

Robot Action Action Parameters Motor
Observed Internal Comm.
AGILO goToPose T, Y, O, v Tg,Yg> Pg» Vg v, ¢
ULM SPARROW goToPosi tion x,Y, ¢, v Ty, Yg; Vg v, @
B21 goToPose .Y, O, v Tg,Yg> Pg» Vg v, ¢
reach T, Y, 2,QT,aY, Q2 Ty, Yg, Zg, ALy, AYg, AZg ?
POWERCUBE  reach 62, g, b, gv 02,0000 6b I\ T2

Table 2.1. List of actions used in the application domains

This list might be shorter than expected. For instance,dbisbtful that robots could play
soccer if they can only navigate to a certain pose. It is thed gbthis dissertation to show
how only a few actions can be reused and customized to pevf@thin varying task contexts.
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In Chapters 5 to 7, we demonstrate how the robots parametitiz action to approach the
ball, dribble it, navigate efficiently through way-poingsd regain ball possession in a team
of robots.

The Action Selection module selects the appropriate action in a given contexiSecor
tion[3.], various approaches to designing and learningmastlection modules are presented.

2.2.1 Advantages of durative actions

When introducing Principle]il in Sectidn.1, some of theauhages of durative actions were
discussed. We repeat them here more elaborately, usingtioeptualization introduced in
this chapter.

Actions themselves are controllers, as their input is adssupset of variables from) a belief
state, and they return motor commaﬁidﬂowever, since actions only apply to certain limited
task contexts, they are easier to design or learn than aotientihat must be able to deal with
all possible contextslm ﬁbb&_\lambs_a.n.d_ddfmﬂk) For instance, a soccer
robot might have the actiodr i bbl eBal | , that only applies in states where the robot is in
possession of the ball. Designing or learning one monalitntroller that can play soccer
might be infeasible, but designing or learning an action ¢aa dribble is not.

Another advantage of durative actions is that they providénéermediate temporal ab-
straction between high-level goals and low-level motor oc@nds. Instead of having to di-
rectly select motor commands every few milliseconds, th®acelection module selects
actions every few seconds. Furthermore, actions providmaeptual abstraction. Because
actions are designed with a certain task and goal in ming,¢ae be selected based what
they do, thereby abstracting away frdrawthey do it. For instance, the name of the action
dri bbl eBal | alone already gives a clear indication of what it is intenttedo, although
it is unknown, and for action selection purposes irreleyvaaty it actually achieves what its
name indicates. These two abstractions enable the actiectise module to be specified on
a high level of abstraction.

Action based systems are also more adaptive. Single oraeaetions can be adapted
to new environments without having to change the actionciele module. Of course, this
only holds if the abstract functionality of the actions reénsathe same, and the implemen-
tation of the action is hidden from the action selection mMedI hese advantages are well-
known in Software Engineering, where this design approacknown as the Bridge Pat-

2The terms controller and action can in principle be usedchtangeably. In this dissertation, only the top-level
controller in the dynamic system model is referred to as trgroller, and the controllers at lower levels are
always referred to as actions.
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Section 2.3 Guide to the Remainder of the Dissertation

tern tB.l:u.eg.g.eha.n.d_D_uLIDIL_ZdOB).

Let us now summarize the advantages of using actions anchastiection in controller
design:

1. Learning and designing actions is facilitated becausgapply to only a subset of tasks.

2. Actions provide a conceptual and temporal abstractidwden high-level goals and
low-level motor commands.

3. These abstractions enable action selection at a high leheh facilitates controller
design.

4. Actions can be adapted, without affecting the actioncsiele module.

For animals with complex motor capabilities, especiallg tirst reason has lead to
the use ofinverse modelswhich is nature’s equivalent of an acticl.n_(_H.a.Lun.o_J:tlal&Eh;Q

Waolpert and Ghahramani, 2060; Jacohs and Jbtdan| 1993).

2.3 Guide to the Remainder of the Dissertation

In Sectior_LIL, some of the ambiguities and questions tma&irewhen mapping declarative
to procedural knowledgg (Principle]lll) were discussedr &fficient control in multi-robot
environments, controllers have to answer these questibigure[Z.B depicts an overview
of the system with an action-based controller in the dynasygtem model, along with the
guestions it must answer. These questions only arise iRineidsk contexts, along with
which they are listed.

The key to answering these questions is using predictivevietge [Principle Y), which
is compiled intoAction Models. Action models allow agents to reason about what their
actions can do, and how well. Instead of returning a motormoand, action models return the
expected performance of executing this action, given thasameters. In this dissertation, the
most frequently used performance measure is executiotiolira he action models used in
the different application domains are listed in Seclion3l. 5ome examples of action models
are presented in Sectionsl4.2 énd4.2.2.

The first step in the system is to acquire action models fon eation in the action library.
Action models are learned from observed experiefice (I[pim#). Gathering training ex-
amples is done in idle time, when the agent is not requirecettopm other tasks. Learning
these models compiles a wealth of experience into a conamskeinwhich generalizes over
situations not yet experienced. Action models are alsedtor the action library, alongside
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4) Acquire Action Models )
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(5) Context: Action Sequences
Q: How to optimally execute action sequences?
A: Subgoal Refinement
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(6) Context: Action Variants
Q: How to adapt actions to more specific goals?

A: Condition Refinement and Subgoal Assertionj

~
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7) Context: Multiple Robots
Q: How to coordinate actions of several robots?
A: Implicit Coordination

J

Figure 2.3. System overview for the acquisition and appbceof action models. Numbers

correspond to Chapter numbering.

their corresponding action. At operation time, these n®pegdict the expected outcome and

performance of actions, at negligible computational cost.

The system overview also depicts the questions that alge &xecuting actions in tasks
contexts [(PrincipleT]l). In Chaptdd 5 throu@h 7, we demoatst how these questions are

answered by tailoring actions to task contexts with leamatbn modelg(Principle V).
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3. Related Work

Related work on action selection schemes and the acquigifiaction models in nature and
robotics is presented in this chapter. The difference betwerward models, action models
and reinforcement learning values are explained. We coertharrelated work with the system
presented in this dissertation in the individual chapterste acquisition (Chaptéd 4) and
applications (Chaptefs 5 through 7) of action models, dffterespective system realizations
have been presented.

3.1 Action Selection Schemes

In Sectior2Z.R, the general computational model for colgrsiwith durative actions and ac-
tion selection were presented. We now briefly present folirkv@wn approaches to design-
ing action selection. They are introduced here for futuferesce; a more elaborate explana-
tion of their advantages, disadvantages and relation soréisiearch are provided throughout
the dissertation, for instance in Sectitns 4.1, 5.2.d[E6.T.

3.1.1 Direct programming

Actions provide a temporal and conceptual abstractionvleatan reason about, similarly to
the conscious deliberation of our own actions. This makesctiprogramming of the action
selection module feasible. The most straight-forward meils to code the action selection
directly into the programming language used for the robod'stroller. Alternatively, ee-

havior languagethat is tailored to developing controllers can be used. Rstance, several
languages exist that allow controllers to be designed mdef state charts. Examples of this
approach arel: (Lotzsch etl MM) in which state chagts@ited in XML, orlm_miml'

M&MMMMMMOZ) in which the samereavith UML. The advantage

of this approach is that since the designer has hand-codagitbing, the displayed behav-
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Chapter 3 Related Work

ior can be explained in terms of the designer’s knowledgeimtghtions. This can facilitate
behavior debugging.

Of course, the disadvantage is that the designer has to etehphand-code the action
selection module, which is tedious, as much time is needefinfe-tuning parameters. It is
also error-prone, as the designer cannot be expected teeforach possible situation and
specify an appropriate response, although these sitgatiaght occur in the real world. Also,
this approach does not scale well. The more complex the@nwient, the more actions and
interactions between actions must be taken into account wasigning action selection.

3.1.2 Motion blending

In motion blending approaches, there is no exclusive asbection, as all actions constantly
compute a motor command. The final motor command the coetn@turns is computed by
interpolating between the various motor commands, withreaiteweighting scheme. The
advantage of this approach is that there are no discretstitars between movements, which
is important if fluency of motion is required. Examples of totlers that use motion blending

are presented d;Lla.eg.eLan.d&hLisjalLQLdld%.)_J.nzl GJIM.*OZ and_S.a.tti.oltLeLillll_(,lQ.bB).
Most behavior-based approaches use motion blending aﬂ&ﬂald, hﬂ&é;LB.LO.QkISLJ&éG).

3.1.3 Hierarchical Reinforcement Learning

In Supervised Learning, a teacher provides the target wedaw@r for each input value vector,
for instance the appropriate action given a set of obsematiUnfortunately, the target action
is usually not available in motor control, as this is exaathat we want to learn. An alternative
approach to providing target actions is to specify targatiest Each time a robot is in such
as target state, it receives a reward. For the teacher, sigrdef this reward function is
often much more intuitive than specifying target actiongsatning actions that optimize the
accumulated reward over time is called the Reinforcemeatrieg problem.

Most Reinforcement Learning (RL) algorithms model the peabas a Markov Decision
Problem (MDP), which defines a set of discrete states, dseretions, probabilistic transi-
tions between states given certain actions, and the rewaadion k.S.ulLQn_a.n.d_B_ajtl).,_ld%).
RL algorithms often learn thealueof a state or state-action pair. Here, we concentrate on the
latter, which are calle®@-values Q-values represent the future reward an agent can expect
when executing actioa in states. This value is often discounted, which means that proximal
rewards are preferred over distal rewards. Once the Qwalgelearned, the controller simply
chooses the action with the highest Q-value.
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The problem of directly learning to select the best actierthius converted to learning the
Q-value function. In RL algorithms these values are lealneidcrementally updating values.
Each time a reward is found, the reward is back-propagatedgh the action sequence that
lead to the rewardl.(S.ulLo.n_a.n.d_EiiLhQ__]J998). Many improves@mthis initial idea have been
made, such as selective updating, intelligent exploratiguiating values off-line, allowing
continuous state and action spaces, etc. We do not elalmrabem here.

Even with these improvement, monolithic RL, in which oneweafunction is learned for
the entire domain, does still not scale to complex tmhmmos). This
main problem is that the number of state-action pairs forcwi@-values must be learned in-
creases exponentially with the number of dimensions in the and action space. Recent
attempts to combat thisurse of dimensionalititave turned to principled ways of exploiting

temporal abstractiorll_(_BaLLo_a.n_dM_a.ha.dsle\Lan_lZOOS). SewétheseHierarchical Reinforce-

ment Learningmethods, e.g. (Programmable) Hierarchical Abstract Mm@r@&
Andre and Russell, 2001), MAXQ (Dietterlch, 2000), and ©p$i (Sutton et all, 1959). Al
these approaches use the concept of actions (called ‘mesthisubtasks’, or ‘options’ re-
spectively). During training, the value for each primiti@etion in these actions is learned,
as well as the value for executing an entire action in a creﬂt&te.l_lli.ene.l:i.clhl_(ZQbO) and
lKJ.e'Ln.er_et_a.l. |(20d2) have demonstrated that learning tgb-tevel and low-level values si-
multaneously leads to even better results, as these vatpesd on each other. The advantages
and disadvantages of Hierarchical Reinforcement Learaiegliscussed in Sectibn 44.1.

3.1.4 Planning

In plan-based control, the robot explicitly reasons abbatgreconditions and effects of ac-
tions to select a sequence of actions to achieve a goal. Aoriant aspect of plan-based
robot control is that robots contemplate and commit to a eeqgel of actiorprior to execu-
tion. This allows the controller to consider interactiorefvieeen future actions, and resolve
conflicting goals in advance, before they are encounterédhen In recent years, a number
of autonomous robots, including Miner@éﬂoon, A9 D_Q.h.el:t)LeI_a‘I.LZO_(bO), and
Chip _EiLb;LeLaH_l&dB), have shown impressive perforreanclong term demonstrations.
The use of planning enables these robots to flexibly inteeleamplex and interacting tasks,
exploit opportunities, and optimize their intended cowkaction.

To reason about action sequences, the controller must beapioject them into the future
internally, without actually executing them in the real WiorPlanning approaches therefore
define the preconditions and effects of each actions. Theskarative components specify
when the action is applicable, and what its effects are wienwged. Planning systems take
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a set of actions and a goal that has the same format as a prg@oyahd generate a sequence
of actions that achieve the goal. In this sequence, the pdittons of each action are satisfied
by the effects of preceding actions. Furthermore, the préition of the first action is satisfied
by the current situation, and the effects of the last actiostreatisfy the goal. This represents
a valid plan to achieve the goal. As we shall see in Sefidnruthans can easily transfer
their declarative knowledge about the applicability arfé@s of actions to the preconditions
and effects of this action.

3.1.5 Different terminologies for actions

Table[31 lists some examples of the action selection appesadescribed above, and the ter-
minology for motor command and action they use. Cognitiver8® has also been included,
as this field also has a terminology for the analysis of dueaitctions and action selection.

In this dissertation, a durative action is simply referredas an “action” for reasons of
brevity. The term “motor command” refers to smallest unitoftrol, as a reminder that they
are very close to the execution on a motorized hardwarersyste

3.2 Predictive Models of Actions

In this section, we discuss work related to predictive medéhctions in nature and robotics.
The difference between forward models and action modelgptamed, and uses of these
models in humans and robot is presented.

3.2.1 Forward models in cognitive science

In cognitive science there is a distinction between invenselels, which map desired con-
sequences to motor commands, and forward models, which noég ommands to their
effects. Forward models make predictions, because cumetdr commands are mapped to
future outcomes.

ll:l.eLmh.o.Ili L’L&Qki) provided the first proof for the existenédasward models in humans,
in the context of object localization. Due to constant sdougof the eye, the projections of
objects in the world on the retina are constantly moving. dquére a stable image of the

world, the brain takes the position of the eye in its socket account. Instead of sensing the
eye’s position directly, a copy of the motor command senh®rhuscles of the eye is used
to predict the effect of the command on the eye’s position. oDRelmholtz’s simple and

ingenious experiments demonstrates this. If one eye i®d|and the position of the other
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Domain
Reference | Motor Command | Action
Control Theory

Dean and Wellmann (1991) Control Signal Controller

Jacobs and Jordan (1993) Control Signal Controller

Qin and Badgwell (1998) Controllable Variableg Controller

Direct Programming
Murray (2001) Command Skill
Lotzsch et al. (2004) Action Option

Behavior based / Motion Blending

Brooks (1986) Motion Command Module/Behavior

Jaeger and Christaller (1998) | Motor Command Behavior
Reinforcement Learning

Sutton et al. (1999) Primitive Action Option

Andre and Russell (2001) Action HAM, PHAM

Dietterich (2000) Action Subtask

Ryan (2004) Primitive Action Behavior

Planning

Fikes and Nilsson (1971) Low-level action Routine

Nilsson (1994) Primitive Action T-R Program

Ryan (2004) Primitive Action Behavior

Belker (2004) Motor Commands Action

Haigh (1998) Command Action

Bouguerra and Karlsson (2005)Action Executable Action

Cambon et al. (2004) Motion Action

Forward Models
Wolpert and Flanagan (2001) | Motor Command
Dearden and Demiris (2005) | Motor Command
Jordan and Rumelhart (1992)| Action

Inverse Model
Inverse Model
Inverse Model

Table 3.1. Different terminologies for actions and motamosands.

eye in the socket is moved artificially by pressing it with yéiager, the world seems to be
moving. Th explanation is that since no motor command is &etfite eye’s muscles, no copy
is sent to the forward model, and the prediction that comgexssor the movement of images
on the retina due to eye movements is missing. Hence, the Bealuces, the movements on
the retina must be caused by movement of the world.

In a more recent experimeIJJ_,_ALi_tf_eda{L_(Zd)OZ) asked subjexfollow the voluntary reach-
ing movements of their arm with their eyes. If the arm is hidféflem the subject’s view, the
subjects make saccadic movements to a location that peeldice position of their hand 196
ms in the future.

Especially in the last decade, many new discoveries aboufdrvard models are learned

and used have been made (Wolpert and Flandgan| 2001; WaksGhahramanl, 2000).
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This section presents an overview of these results.

Forward models are learned

Forward models are not entities that are fixed at birth, bat thust rather be learned and
updated through experience. This allows forward modelsie&rned for new action contexts,
or for newly acquired actions. Supervised learning can Ipdiegh because prediction errors
can easily be acquired by comparing the predicted and astii@bme of a motor command.
The neural mechanisms behind such predictive learning agally understood in electric
fish l.B.eILeLaJ.I.:I&d?). Itis hypothesized that “body babbliis a strategy to actively acquire
training data to learn such modells_(Ba.QJI:d_a.L_lZOOS).

Il_(ZO_b3) have demonstrated that humans Igdeah the forward model of
an actiorbeforethe final inverse model is learned. So, the brain learns tigirthe effects of
an action before perfecting the execution of the actiorifitbethe approach presented in this
dissertation a similar procedure is described. First aatmdels are learned from observed
experience for the actions in an action library. These aatiodels can then be used to tailor
actions to task contexts, such as action sequences or hautilpots.

Widespread use of forward models in human motor control

Humans use forward models in many task contexts. Some eranapé presented in this
section. Optimal control and social interaction, the iten@sked with &, are applications of
forward models that have implemented in our work as well.yTdre discussed in more detail
in Chaptefb and ChaptElr 7 respectively.

State estimation. Accurate control of the body requires on knowing the bodtgses such
as the joint angles, and the positions and velocities of lpadis. Due to neural trans-
mission and processing, sensory signals that providerrdtion about the body’s state
have considerable delay. Especially for fast movementgyra timely estimation of the
body’s state is essential. Alternatively, predictionsdzhen motor commands can be
used to update the state, even before the movement is edeimmm).eﬂ_an.dﬂanaglan,

). In control, the Kalman fiItemm) Is an exdanwhere state estima-
tion is also performed with both motor and sensor updates.

Sensory cancellation.  Prediction also allows sensory information to be filtereat, ih-
stance to cancel out the sensory effects caused by self mdtor example, it is im-
possible to tickle oneself, because the expected sensaseqgaences of this motion,
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predicted with forward models, are subtracted from theaeansory feedback. In an
recent experimeALJALle_eLt_a.n.d_Ela.ua{daﬂ_(iOOD had sulijekte themselves through
a robot interface. An arbitrary delay between the tickle owand and actual tickling
could be introduced through the robot interface. It was shthvat the larger the delay,
the more ‘ticklish’ the percept, presumably to a reductiortbie ability to cancel the
sensory feedback based on the motor command.

Context estimation.  Different contexts require different behaviors. Humares\ary good
at selecting the appropriate behavior, even under unoestaiditions. One explanation
is that several inverse models are tested for their ap@tgmess in parallel. For ex-
ample, when initially lifting an object of unknown weighs(the box empty or full?),
the forward models of the inverse models for lifting bothhligand heavy objects are
active. Once lifting commences, the error between the ptiedi and the actual move-
ment is measured for each forward model. The inverse modedsgmonding to the for-
ward model that generates the lowest error is then chosdreagppropriate controller.

l. 1) have integrated several of these p#reagrd-inverse models in
the MOdular Selection and Identification for Control (MO &Alframework.

Optimal control. *  Although there are infinitely many ways to perform most tasiksy are
usually solved with highly stereotyped movement patteIWSL().eU_a.n.dﬁha.hLa.m;’Lni,
). The optimal control framework assumes that thesedlypatterns are those
that minimize a certain cost function. In cognitive scienaee of the challenges is to
reverse-engineer this cost function, given the motiorgpastfound in empirical studies.

For instance, for reaching movements there exist optimatrobmodels that optimize

the smoothness of the trajecto};L(.ELas.h_a.n.d_I:ll);an.J 1985 ptbmess of the torque

commandsl(Uno et Al 1989) and variability of movement fidamd Wolpe't, 1998:

|S.'means_a.nd_D_emhli£_ZQb4).

Social interaction. * hA@lp.eﬂ.el.a'.l(ZOd?») hypothesize that forward models fanmhasis
of social interaction and imitation. There are many sintiles between the motor loop
and the social interaction loop. In the motor loop, a motenowand changes my body’s
state, whereas a communicative command (e.g. speechygjeshanges the mental
state of others. Possibly, we also use forward models tagirdee change in mental
state in others due to our own commands. It may be that the samputational mech-
anisms which originally evolved for sensorimotor prediaothave also been adapted for
other cognitive functions.
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Imitation. Once the responsible forward models for executing an at¢tame been recog-
nized, imitating the action is relatively straightforwagttivate the inverse models be-
longing to these forward models in the same order as the fdrmadels were recog-
nized. IL(ZOJ)B) describe a hierarchical versiothe MOSAIC system that

models this process.

3.2.2 Forward models in engineering

The widespread use of forward models in human motor contieldrawn the attention of

control and robotics communit)t_JQLdan_and_Rum.éll{aU_lSBﬁIZOduced Distal Learning,

which explicitly uses forward models to enable motor corgarning. The distal supervised

learning problem is defined bptentions that specify what the controller wants to achieve,
motor commandswith which the controller can influence the environment antcomesthe
result of executing motor commands in the real world. Thédjem is that the inverse model
has to map intentions to motor commands, but has no targetsv&br these motor commands.
There are target values for the outcomes, but these cannaftueenced directly by the inverse
model, which is why they are calledistal. Because the target values are distal, learning
the inverse model cannot be done with supervised learning.K&y to solving this problem
is learning an internal forward model, which maps motor cands to outcomes. Forward
modelscanbe learned with supervised learning, because they are ainggfppm actions to
proximal target outcomes. The resulting composite learsiystem with inverse and forward
models is treated as a supervised learning problem, whithedearned with any supervised
learning algorithm.

. Inverse Motor .~ "Environ- s,
—>

Intention COmATIERE <. ment . Outcome

~. 0 o — Tmeeeee 7 =

distal
Intention Inverse Motor Forward Outcome
LA Model Command model
~ - - E~~ -

Figure 3.1. The distal learning problem, with distal targatues (above). Forward models

proximal

proximal

are the key to solving the problem (below).

Recently, robotic forward models have also been learnethuBayesian networks, as de-
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scribed byl_[lea.uien_a.n.d_[leniir‘s_(ZbOS). The advantage of Sayanetworks is that they

allow the causal nature of a robot’s control system to be hiediasing a probabilistic frame-
work. anIa.nLeﬁ_eLEll.l_(ZO_dm) describe recent work at anogineup that also includes the use
of dynamic Bayesian networks.

In the networks used, nodes are random variables whichseprenotor commands, robot
states or observations, and edges represent causal assscietween these nodes. Motor
commands cause changes in the robot’s state, which is hidddrthis in turn causes changes
in the observations, which are accessible through thervisystem. The structure and pa-
rameters of the network is learned by data acquired througfiombabbling, similarly to the
approach described in Sectionl4.1.

A nice side effect of Bayesian networks is that the delay witich a motor command actu-
ally changes the robot’s state and observations is not fRgdletermining the log-likelihood
for varying delaySI._D_ea.Ld.en_a.n.(LD_en:'illjs_CZbOS) determihedl issuing a velocity command
leads to an observed velocity 550ms later. Such delays neusaken into account when
other mappings from motor command to observation are leéafoe instance when learning
a robotic action from human examples, aslﬂ 003) revtiee dead time is 300ms.

3.2.3 Action models

Forward models predict the outcome of executing a motor cantinwhereas action models
predict the cost of continually executing a durative actidorward models make prediction on
a time-scale of several 100ms, whereas action models ptediperformance or outcome of
an action on completion, possibly several seconds or mdtesifuture. Just Mal.
) hypothesize that forward models form the basis agfoderaction and imitation, we
hypothesize that forward models are reused to yield actiotats.

In principle, forward models can be called recursively tauate an action model. Instead

of making a prediction only one time step ahead, a sequeno®ir commands can be used
to update a simulated statetime steps in the future. If this sequence of motor commands
is generated by an inverse model, given the simulated stageare effectively simulating
the temporally extended effects of the inverse model on tineent state. This can be used
to determine how long the inverse model must be executedhie\ae a certain state, or if
this state can be achieved at all. A disadvantage of thisoagpris that the uncertainty of
the prediction grows with each recursive call. It has beenatestrated empirically that this
accumulated uncertainty prevents this approach from hesed in practicm 06).
Furthermore, the abstract effects of a durative action tiaghmore than the sum of individual
motor commands.
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@ @2) proposes the ERA (Exploration and Regresssennduction to produce Ac-
tion models) system, which learns action models from olexknata by training regression
trees. In this work, a robot learns the velocity with whicltc@n travel over terrains with
different roughness properties. This knowledge is usethfwave navigation plans.

) also uses regression trees to learn cost mdualgldor indoor navigation
actions. These models take features such as the time of tapdcount as well. This is
useful to predict the crowdedness of hallways, and thus timatidn of navigation. These
models are used to compute the best route in the office emagnt In another application,
search control rules for the planning rules are derived filoeregression tree rules.

|B_e_Lke|' @) describes how action models are learned fagaaon actions using model
trees and neural networks. The use of these models is destussre elaborately in Sec-
tionlSE.l.B.ugk_eLelll_(ZO_Qle) have a similar approach wébral networks.

In a sense, Reinforcement Learning algorithms also leararamodels. In RL, the policy

is the action, and the value is the predicted future rewamuyéver, values are learned for a
certain specific task and goal, whereas the action modealgpisdy described are only specific
to the action, and can be used for a variety of tasks. A corspatbetween values and action
models is made in Sectign4.4.1.

3.2.4 Terminology

For completeness, TableB.2 lists the different termine®dor action effectsvfhat) and
performance predictiorhpw wel) in different approaches. It is a repetition of Tablel 3.1,
where approaches that have no concept of action prediatoexaluded.

3.3 Cognitive Systems

Action models enable robots to reason about the outcome arfidrmance of their actions.
Such reflective capabilities are essential for any cogmsiystem. In this section, we discuss
work related to the overall approach of designing and remgizognitive systems.

In the overview paper “Systems That Know What They're Doirlﬁtas;hm.ahl_(m_dZ) de-
scribes the DARPA Information Processing Technology Offigmal to transform systems
which simply react to inputs to systems which are cognitivethe proposed architecture, a
differentiation between reactive, deliberative, refleetind self-awareness processes is made.
Reactive processes are simple reflexes and automated beltatines whose execution does
not need conscious effort. The bulk of decision making idgrered by deliberative pro-
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Domain
Prediction

Reference Action What? | How well?

Control Theory
Qin and Badgwell (1998) | Controller | Process Model| —

Reinforcement Learning
Sutton et al. (1999) Option — Q-value
Andre and Russell (2001) HAM, PHAM — Q-value
Dietterich (2000) Subtask — Q-value
Ryan (2004) Behavior Effects Q-value
Planning

Fikes and Nilsson (1971) Routine Effects —
Nilsson (1994) T-R Program Effects —
Ryan (2004) Behavior Effects Q-value
Belker (2004) Action Effects Action Model
Haigh (1998) Action Effects Action Model
Bouguerra and Karlsson (200%5)Executable Action| Effects —
Cambon et al. (2004) Action Effects —

Forward Models
Wolpert and Flanagan (2001) | Inverse Model Forward Model| —
Dearden and Demiris (2005) | Inverse Model Forward Model| —
Jordan and Rumelhart (1992) | Inverse Model Forward Model| —

Miscellaneous
Balac (2002) Action — Action Model
Buck et al. (2002b) Action — Neural Projection

Table 3.2. Differing terminologies for different approashto designing skill-based con-
trollers.

cessing, whereas reflective processes contemplate th&@atemaking process to reflect on
alternative approaches. In our approach, the reactivietative and reflective processes are
represented by the actions, action selection, and predibfaised action tailoring respectively.
Finally, self-awareness, the ability to realize that weiadéviduals with different experiences,
capabilities and goals, is an additional capability thatl@es even more powerful reflection.
In the project, the goal is to investigate how these prosessable systems to perform more
robustly and independently in application domains suchfasmation extraction, networking
and communications, or computational envisioning.

Cognitive Systems for Cognitive Assistar@dﬂoola [goject whose goal it is to
study cognitive submodules in the context of an integraystesn. The methodology in this
project is to iteratively determine and implement intermea steps, without losing track of
the ultimate goal of human-like performance. Another kapgple is to understand which
approach is best in which context: nature or nurture, readr deliberative, explicit or im-
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plicit representation. The project also stresses the itapoe of finding representations that
allow powerful interactions between submodules. In thisssgaction models can be thought
of as very powerful representations, as they facilitatdrobrstate estimation and many other
aspects of cognitive systems.

Cognition for Technical Systems (CoTeSys) is a cluster oé#&nce at the Technische Uni-
versitat MUncher‘L(_C_oleéyls__Zd)%). In this cluster, thesdififice between technical systems
and cognitive systems is that the latter use cognitive obatrd have cognitive capabilities.
Cognitive control “orchestrates reflexive and habitualdwedr in accord with long-term in-
tentions” LC_QIe_S_)l'tL_ZQb@. The ambition of this clusteoisriplement the research results in
cognitive vehicles, cognitive humanoid robots and in a dognfactory tB.uss.e.t.ellLZQb?).

The Modular Selection And Identification for Control (MOS&I architec-
ture tHa.LunQ_eLELI.LZ)_bl) integrates forward models into omnputational model for
motor control. This framework is intended to model two pesbé that humans must solve:
how to learn inverse models for tasks, and how to select tipgogpate inverse model,

given a certain task. MOSAIC uses multiple pairs of forwand eénverse models to do so.
The inverse models are learned during the task, and the fdrmadels are used to select
the appropriate inverse model in a certain context. Howetés architecture has not been
designed for robot control.

We are not aware of (robotic) controllers in which predictimodels are an integral and
central part of the computational model, and which are aeduautomatically, represented
explicitly, and used as modular resources for differentikiof control problems.
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4. Learning Action Models

“Skilled motor behavior relies on the brain learning bothdon-
trol the body and predict the consequences of this control”

Flanagan et all (2003)

As the quote above implies, prediction is the key to answetire questions related to
effectively and efficiently executing actions in differaiask contexts. As we saw in Sec-
tion[3Z1, humans do exactly this, by learning forward ni@dand extensively using them
in various motor control tasks. For instance, forward mea@ek used to improve state es-

timation, estimate contexts, optimize contrbl (Helmﬂd[tﬁ_mis hALo_lp_en_a_n_d_G_ha_hx_a_mE

mwﬁw iL_ZlOOZ) anel possibly the basis of social
interaction and imitatio zJL,_ZbOl). In someigia architectures of cognition
and motor control, predictive knowledge plays a more imgottrtole than declarative knowl-
edge ((Hawkins and Blakeslee, 2004: Grossherg,|1987; Haruaih) 2001).

The key to tailoring these actions to different task corgestacquiring the robotic equiv-
alent of forward models: action models. These models préalidnstance the performance
of an action, or its expected success. Whereas forward maougke their predictions on the
time-scale of a single motor command, action models do sarf@ntire durative action. The
goToPose action for instance takes the robot’s current and goal perse when called con-
tinually, returns motor commands that will navigate theaito the goal pose. The action
model that predicts the execution duration has the samatsign and predicts how long this
navigation action will take till completion.

Because it is difficult and error-prone to manually specdijan models, robots learn them
from experience, gathered by executing the action and wingethe result[(Principle vV in
SectionI]l). These action models are used to optimizerasgquences, coordinate multi-
ple robots, or adapt actions to new tasks. In this dissertafictions are not merely fixed
resources, but can be adapted, extended and tailored td coovexts. Based on a set of
‘innate’ actions, the robot learns more sophisticatedoastitself, by observing its actions,
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Chapter 4 Learning Action Models

learning models of them, and using these models to tailoorzcto new task contexts. With
this approach, robots become more autonomous and adaptive.

The role of learning action models within the system is higited in the system overview,
depicted in Figur€4l1l. For each action in the action librane or more action models are
learned. This is a two-step procedure, in which trainingadstfirst gathered by executing
an action for random action parameters, and transformiisgdta to an appropriate feature
space. A generalized model is then learned from these exarbpltree-based induction. This
action model is then incorporated in the action for whicls teiarned, as shown in Figurel.1.

1
1 Controller I . -
; : 4) Acquire Action Models
! Action Library : Learn models from observed experience
! !
s
i
|
| Belief Acti
! elie ction
E-ED)
!
| Motor )
Command e

_____________________________________

Figure 4.1. Acquiring action models within the overall gstoverview.

The next section presents how robots gather experiencénamthis data is transformed to
appropriate feature spaces. Secfion 4.2 presents exaofgesned action model. After an
empirical evaluation of the accuracy of the learned modeBdctior 413, we discuss related
work in SectioZHM. This chapter concludes with a summagecatior 4.b.

4.1 Acquisition of Training Data

Training examples are gathered by executing an action, asdreing the results. In this
chapter, robots record and learn to predict the executioatidm of actions, given their pa-
rameterization. To ensure that an action can be executednitiel and goal states should
be chosen from its preconditions and effects respectivdtythe moment this is performed
semi-automatically. The user defines ranges for the acaoanpeters that ensure that the pre-
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Section 4.1 Acquisition of Training Data

conditions and effects are met, and the actual action pdeas@re sampled from these ranges
randomly. The execution of an action from an initial to a gstate is called an episode. The
procedure is as follows:

1. Choose a random initial and goal state from the valid rarigestion parameters. This
ensures that the preconditions and effects are met, whiafagtees that the action can
be executed.

2. Select and execute another action that can achieve tied state. For instance, if a
model of thedr i bbl eBal | action is to be learned, the robot needs to be at the ball.
If it is not, theappr oachBal | action is executed beforehand. Using this preparatory
action in experience gathering alleviates the need for lmuntarvention with the robot,
for instance, to make sure that the preconditions of an@aetie met. This substantially
speeds up experience gathering in practice.

Sometimes, this step can be bypassed. When the effects ofian always satisfy its
preconditions, the goal state of one action can be choseg theinitial state of the
next action, and there is no need for a preparatory actioninstance, thggoToPose
action can be continually performed with varying parangtesthout any preparatory
action. Furthermore, in simulation, Step 2. is eliminatgdimply setting the state of
the world to the initial state. Here, this instant enviromtn@odification can be seen as
the preparatory action.

3. Execute the action for which a model will be learned, arwbrme the observable and
internal state variables. Basically, all the variablesmrobot’s belief state are recorded.
Which of them are relevant to learning the model is deterohate later stage. Realizing
that an unrecorded variable might be relevant to learniegatttion model requires re-
gathering the data, whereas recording all variables buisiag all only costs memaory.
Most robots in this dissertation record their state at 103dzan episode of seconds
duration containd0t examples.

4. If enough examples have been gathered then quit, elsatrigps Step 1. How many
examples are “enough” is discussed in Sediion#.1.3.

The running example in this section will be learning to pcethe execution duration of the
goToPose action for the simulated B21 in the kitchen environment.uFe§4.2 displays a
concrete example of gathered training data with this rolbtdre, 30 of 2948 executions of
goToPose with random initial and goal states are shown.
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@ random initial state
o random goal state

W )

y (m)

x (m)

Figure 4.2. Experience for thgoToPose action in the kitchen domain, in which the ac-
tion is performed thirty times. The implementation of thetian is described in
SectiorfAl.

The total number of executions is denoted with For instancen.=2948 for the example
above. We split this data into a training and test set. Thebmurof examples in the training
set is denotedV. If we include three fourth of the episodes in the training sas yields
N:%ne, which in the current example is 2200 episodes. The questgonow face is whether
these 2200 examples are enough to train a good model? Watitey algorithm trained with
this amount of data likely make erroneous predictions omipusly unseen cases?

In general, a hypothesis that is consistent with a suffigdatge training set is deemed
probably approximately corredPAC). A trained learning algorithm that has an error of at
moste with probability 1 — ¢ (i.e. is PAC) must be trained with at leaSttraining examples,
which is computed with Equatidn4.1.

1 1
N > —(ln—
_€(n5

Here,|H| is the number of possible hypotheses, which in our case arpdbsible model
trees. DeterminingH| for the model trees we use is beyond the scope of this resdarcive

+ In|H]|) (4.1)

a limited amount of costly training episodes. We use thrgegaaches:

Reduce the number of possible hypotheses |H|. By exploiting invariances, we can
map the data from the original direct state space to a loweeswssional derived fea-
ture space. This limits the number of possible hypothddésThis will be discussed in
Sectiol4TN.
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Section 4.1 Acquisition of Training Data

Increase the amount of training data ~ N. Instead of using only the first initial example
of each episode, we will also use intermediate data gatherdédde way to the goal, as
will be explained in Section4.1.2. Here, we must be carefttmviolate the stationarity
assumption, which poses that the training and test set neusaimpled from the same
probability distribution.

Track the error measure ¢ empirically. By computing the Mean Absolute Error (MAE)
as an estimate afover time as more data is gathered, we can determine wheabit st
lizes. At this point, we assume that is sufficiently large, and stop gathering data. We
demonstrate this in Secti@n Z11.3.

4.1.1 Appropriate feature spaces

Whilst gathering experience, the robot records all the nladde and internal state variables.
For the soccer robots, this includes the robot’s pose, tiie pasition, a teammate’s position,
and the target pose. Not all of these variables are relewdetitning an action model. For
instance, if we are gathering experience for a navigatitin@adhe position of the ball is irrel-
evant, whether it is seen or not. For learning, only infoiaggfieatures should be us@igh,
[1998)

Furthermore, the originally recorded state variables fthenbelief state do not necessarily
correlate well with the performance measure, which herexézw@ion duration. The state
variables recorded in the navigation task, shown to thandfigure[4.B8 are a good example.
The original seven dimensional state space contains thiaeliand goal dynamic pose. The
first column in Figuré 413 shows these variables, along wignagh that plots the execution
duration against, one of these seven variables. The example points in these qule the
same as in Figule4.2. clearly does not correlate well with time, and neither dodtreer six
features.

Fortunately, this state space contains several invarsandeich can be exploited to derive
feature spaces that correlate better with the performarezsune. ' .?@8) calls such
featuregrojective For instance, in the seven-dimensional state space,dhairg algorithm

has to learn to predict the execution duration for everyahand destination position sepa-
rately. Of course, it is the relative position of the dedima position to the initial one that
matters, not their absolute positions. By exploiting thasislational invariance, the state space
is reduced to the five-dimensional feature space depictdteisecond column of Figute#.3.
Here, the robot is always at the locatiih 0), anddx anddy are the difference between the
x andy coordinates of the initial and destination position. A ffignt reduction due to rota-
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tional invariance is possible, yielding the four-dimemsibfeature space depicted in the third
column off4.B.

7-D: X, y, @, V, Xg, Yg, Pg 5-D: dx, dy, @, v, ¢4 4-D: dist, angle_to, angle_at, v
Yy
y ,,,,,,,,,,,,,,
0} 0
9} o
E10 £10

A O ©
5 O ©

N
N

1

2 3
dist (m)
MAE = 1.93s MAE = 1.42s MAE = 0.72s

Figure 4.3. The original state space, and two derived feadpaces. The top figures depict
the features used, and the graphs plot time against ones# features.

By exploiting the invariances, we are reducing the dimeamaity of the feature space. This
again reduces the number of possible model trees which cdeabeed, which leads to a
decrease ofH| in Equation4]l. This equation specifies that with lowdt, fewer training
examples are needed to learn a PAC model. By the same regsorire accurate models (i.e.
lower €) can be learned on lower dimensional feature spaces, dgieeseime amount of data.

We have experimentally verified this by training the modeekttearning algorithm (to be
presented in Sectidn4.2) with data mapped to each of the thiffierent feature spaces in
Figurd4.B. For each feature space, the model is trainedVi#t2200 of then,=2948 executed
episodes. The Mean Absolute Error (MAE) of each of these hsodedetermined on the
separate test containing the remaining epij)des can be seen in Figute 3.3, the MAE is
lower when lower dimensional feature spaces are used. Q$epthis lower dimensionality

We prefer the MAE over the Root Mean Square Error (RMSE), @&sritore intuitive to understand, and the
cost of a prediction error is roughly proportional to theesaf the error. There is no need to weight larger
errors more.
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should not be achieved by simply discarding informativeifess, but rather by composing
features into projective features by exploiting invariesi.c

Automatic feature space generation

For many applications, it is common to design feature spawasually. State variables are
composed into higher level features using domain-speaifasedge. Unfortunately, manu-
ally designing such feature languages is tedious, becacereew learning problem usually
requires its own customized feature space. For instaniteretit actions might have different
parameters, and control different variables. Their actmuels will therefore need different
feature spaces to redu¢H| without abstracting away from relevant information. It Isa
error-prone, as variables that might intuitively seeml@vant are discarded, whereas in fact
they might be informative. We have demonstrated these t@blems in the application do-
main of face and mimic recognitioE_(AA[me.eLei L.L_deﬁ__jbOO&ere model trees are used
to learn objective functions for fitting algorithms.

To overcome these problems, we propose an algorithm thaireatically generates com-
pact feature spaces, based on Equation Discollerv (St IEQQB])). This is also known
as Constructive InductiOIIJ_LUu_and_MmcMIa_lbb_&_BJQﬂdmmmhaJsIJi,LmﬂIS). Equation
Discovery systems introduce new variables from a set ohmaetical operators and func-
tions. The algorithm explores the hypothesis space of albggns, restricted by heuristics
and constraintsLLa.ngJ_e;Le_tl A.L(le?) introduced the makeepresentative BACON, which
rediscovered Kepler's laWi? = kR?). A graphic example is depicted to the left in Figlird 4.4,
in which five input variables are mapped to the target by thegant = |i,| + (i2/i3) + /i5.
The advantage of Equation Discovery is that it yields a canhpgpresentation and human
readable output. For instance, the simplicity and elegan¢eepler’s law would not be ob-
vious from the learned weights in a neural network. The ugaher principle is also known
as Ockham’s Razor: “All things being equal, the simplestisoh tends to be the best one.”
However, the equations that can be generated are restoigtibe operators provided, and the
hypothesis space that arises might not contain the trugitumcin these cases, the learning
problem is said to banrealizable(Russell and Norv|g___20_b3).

Our novel approach combines the strengths of Equation Réesgpbeing the compactness
and interpretability of the resulting function, and otheadfine Learning techniques such
as model trees and neural networks, being their ability fgr@pmate complex non-linear
relationships. We do this by allowing Equation Discovergigcover many equations, which,
when applied to the input data, yield data that has a higheeledion with the target data.
Equation Discovery is halted at a certain depth, and fronmthkitude of generated equations
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Equation Discovery Machine Learning
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Equation Discovery as a Feature Generator for Machine Learning
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Figure 4.4. Combining Equation Discovery and Machine Legyto generate features.

(features), those most appropriate for learning are ssledthe algorithm essentially searches
for relationships between several input variables andarget variable that can be described
well with operators, and leaves more complex relationstupsachine learning.

The algorithm combines allinitial features with thé: given operators, yielding new equa-
tions. These new features are added to the original set.ig hepeated recursively times,
yielding equations with at mogX“~1) operators. Since the complexity of this algorithm is
O(k*~112"), we should avoid generating irrelevant features. To thi emthematical con-
straints eliminate equations that generate neutral elentey.x/z, x—z). Furthermore, term
reduction removes terms with the same semantics but diffeyentax (e.g.x - 1/y = z/y).
Also, units of the features are considered to avoid for exarapbtracting meters from mil-
limeters, or meters from seconds. Finally, domain dependperators can further control
search. For example, in a geometrical domain it makes seresddt trigonometric operators
and constraints how to use them, such as “apply: only to two distances”.

We further direct search by choosing only features thatiprelde target value well. This
is done by computing the linear correlation coefficiertdf the feature with the target value.
At each depth, only the a certain percentage of featureshigiiest correlation are added to
the set for further processing. This approach acceleratesls, but suffers the same problems
as other filter methodls_(_.]_o_hn_e{ la.L_;IJ994), which are mostited to not taking into account
the effects of the chosen features on the used learningithigpr=or more information on the

exact implementation of this algorithm, we referlm_(_Slmla.Isla.lm_OﬁlJ) orl.(.Ef.LU.g.EI’.._ZQbG).
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Feature spaces for all action models

The feature spaces used to learn each of the models areitistatle[4.1. The formulae used
to compute them from the action parameters listed in Talle& also given. The algorithm
presented in the previous section is not used in all dombautsg preliminary version did find

the appropriate features for tg@ ToPose actions.

Robot Action | Features

PIONEER | goToPose v,dist = \/(x — 24)*+ (y — yy)?,

angle_to = |angle_tos;gnedl,

angle_at = sgn(angle_tosigned)-
norm(¢, — atan2(y, —y,x, — ))

ULM SPARROW goToPosition | v,dist,angle_to

B21 goToPose vy, dist, angle_to, angle_at,
Aangle = |norm(¢, — ¢)|
reach distyy. = /(x —24)2 + (y — yg)? + (2 — 24)?

distyy = \/(x — 24)% + (y — yy)?, disty., dist,.,
angley, = atan2(y, — y,x, — x), angle,., angle,,

POWERCUBE  reach dist = \/(Ha —02)2 + (0" — 0%)2,
angley = norm(atan2(0 — 6°, 0% — 6*) — atan2(6Y,62)),
angley = norm(—atan2(0, — 6°,0% — 0*) + atan2(6" )

9’79
v =" ga’ —i—ébQ
vy = /02 + 6

norm(a): adds or subtractdr to a until is in range[—, 7|
angle_togignea = norm(atan2(y, — y, ry — ) — ¢)

Table 4.1. The feature spaces used to learn action models

4.1.2 Including intermediate examples

To gather data, the initial and goal states for an action laose@n randomly from the range of
valid action parameters. During execution, the observahtkinternal variables are recorded
at 10Hz. These variables are then transformed into feat@es such execution is called an
episode. Part of an episode is depicted in Figurk 4.2. Faruhent example, the B21 robot
performed 2948 navigation actions, so this yields2948 episodes.

To train the learning algorithm, ideally only the first exdmpf each episode should be
used. This is because only the first entries are from the sastrébdtion as the distribution
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time v Vg dist  angle_to angle_at
e 6.8 000 060 1.46 1.10 -1.63
e 6.7 000 060 1.46 1.10 -1.63
e 66 000 060 1.46 1.10 -1.63
e 35 053 060 0.65 0.98 1.23
e 34 051 060 0.62 1.02 1.16
e 33 048 060 0.60 1.05 1.08
e 02 040 0.60 0.08 0.03 -0.07

0.1 041 0.60 0.04 0.03 -0.06

0.0 043 0.60 0.00 0.00 -0.07

Table 4.2. An example episode. The first entry is determinetthé randomly chosen initial
and goal state. The projective features in the final entragdypass through (0,0).

from which the initial and goal states are chosen. So if thgimal distribution from which
these states are selected is uniform, the first entries wiliiformly distributed as well. This
is necessary to fulfil the stationarity assumption, whicmdeds that training and test set
are taken from the same probability distributiJ).n_(Bussmﬂ_Bl_Qn[L(l,l.ZO_Qb). This has been
visualized in Figur€4]5, in the upper left graph. Here theahstates of thirty episodes are
depicted, as in Figufe—4.3. The distribution of the distaamee time of all 2200 episodes are
shown in the histograms above and to the right of this graple. listogram shows that initial
distances to the goal are uniformly distributed. The modehed on these examples has a
Mean Absolute Error of 0.59s.

From Equatiori4]1, it can be inferred that more training dhtgher N) leads to more
accurate models) with higher probability §). For each episode, more data is easily acquired
by using the execution duration not only from the initiatstdut also from all the intermediate
states to the goal. These extra examples have also beededdhu Figuré4J2 and Figute 4.5,
in the center upper graph. Instead of 2200 examples, we nesvdiaost all 173336 examples,
which is all the training data collected in almost 5 hoursatifan execution. At first, this might
seem the optimal choice: the maximum amount of data, and erlewor. However, a closer
look shows another problem. Performance measures ofteglai@ with how far you are from
the goal stateHow far should be interpreted abstractly here; it could be a distaat angle,
some energy measure, time. Features that expreshovellarthe robot is from the goal state,
are usually good features for learning the mo Ml@ﬁlls such featurgsrojective
For instance, distance expresses very well how far we ane tine goal, in a geometric sense.

Such measures are defined relative to the goal position. dhatien for computing the
distance (/(z — z,)? + (y — y,)?) clearly shows that the first step is to subtract the goal co-
ordinates from the current coordinates. Most featuresefanming action models compute their
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ne=2200, nj=1 ne=2200, nj=all ne=2200, nj=30
N=2200 N=173336 N=65318
MAE=0.72 MAE=0.59 MAE=0.52
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Figure 4.5. The three upper graphs depict forty episodestrendistribution of the examples
for three values ofi; on the x-axis of the lower graph. The lower graph depicts
how the Mean Absolute Error and number of examples depentenumber of
examples per episode used.

values relative to the goal state. This approach entaitsthan the goal is almost achieved,
the distance measures will approach zero. The final row ietenple episode in Figuke%.2
clearly demonstrates this. In the center graph of Figude#.8pisodes end in the origin at
(0,0), even though the initial states are spread througiheutature space.

The histograms around the center graph in Fidgureé 4.5 showbtith distance and time
accumulate around zero. The distributions in the histograne strongly skewed to zero.
Similar patterns arise for other features and actions. Téosarity assumption is clearly
violated. Most learning algorithms trained with this abande of data around the origin will
be biased towards states that are close to the goal, andewilto predict these states very
accurately, at the cost of inaccurate prediction of statebér from the goal. Since it is more
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likely that the model will be queried for states further frdime goal, this is unacceptable.

One way to fulfill the stationarity assumption is to simplkeall the intermediate examples
from the episodes in the test set, and include them in thisé¢gss well. Although training and
test set would then both be sampled from the same probadbistyibution, this distribution
does notcorrespond to the distribution from which the goals areinally sampled. During
real operation time the distances from the initial stat@éocgoal will certainly not be as skewed
towards O as in the center graph of Figlird 4.5. However, ixé&#y during operation time
that we need the models to be accurate. Therefore, it is taistat our test set is sampled
from the same distribution as during operation time, whigans we should only use the first
example of each episode in the testaed fulfil the stationarity assumption when training the
model.

A good compromise between the approaches of using only gte@kample or all examples
of an episode is to use only the first few examples. The numiiateymediate examples per
episode included in the training data is denoted This means that the number of training
examples is roughly. - n; instead of just,., but still represents the original distribution of
initial states. Since the best valuegfis not clear analytically, we determine it experimentally.
The lower graph in FigurE—4.5 depicts how the Mean Absoluter5§IMAE) of the learned
model on a separate test set depends.Qrihe number of examples used per episode. In
this case, the minimum value for MAE is 0.52s, whenis 30. This means the first 30
examples, equivalent to the first 3 seconds of each episogleised. This yields a total of
65318 examples, as can be read from the right y-axis. Notéttbaumber of examples grows
linear withn; at first, but settles at 173336 after a while. This is becaose of the episodes
has more than 139 examples (i.e. no episode took longer 18s)1so increasing the number
of examples per episode has no effect. The upper left grapigurel4.b shows these truncated
episodes withn; examples each, and the distribution of examples in the driatos. The
distributions are close to the distributions from which thig#al and goal states are sampled,
shown in the right graph in Figute3.5.

Summarizing, not all intermediate examples should be usdthin an action model, as
the projective characteristics of good features biasesbael towards examples around the
origin, thereby violating the stationarity assumption. @& other hand, using more data from
each episode yields a more accurate model. A compromiseuisetohe first:; examples of
each episode. The value of that minimizes the MAE can be determined experimentally.
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4.1.3 Number of training examples needed

To learn an accurate action model, sufficient data must h&hblafor the learning algorithm
to build a model that generalizes well over unseen exampasthe other hand, the robot
should not take days to collect its data. To analyze how maagneles are needed to acquire
an accurate prediction model, the model is frequently rakthas more and more examples
become available. Once the mean absolute error betweermsefest set and the prediction
for these examples stabilizes, data acquisition is stapped
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MAE (s)
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0.6+

0'50 1 2

ne (x1000)

(number of episodes)

(a) The error of the learned model decreases as the (b) The error dependent on bothy and n;.
number of episodes. increases. The best value of; (30) is independent of..

Figure 4.6. Gathering more episodes leads to more accuadelm

Figure[4.6(d) demonstrates how the Mean Absolute Error (MAEcreases as more
episodes become available for training the model. Althahgherror has not stabilized com-
pletely, no more data is gathered. This is because the findéhused on the robots is actually
trained on all examples. Since there are no unbiased testpdaa left, its MAE cannot be
determined, but this model can be expected to be more aedhiaat the model trained on the
training set alone.

Finally, Figurg[4.6()) combines Figure 4.§(a) and Fidut by showing the MAE for all
combinations of,, andn;. There are two trends. First, more episodes means a morea&ecu
model can be learned, which we had already concluded fronatitm{Z.1, and visualized
in Figure[4.6(d). Second, the optimal value foris largely independent of the number of
episodes. This means we do not need to redetermieach time new data is gathered.

4.2 Learning Algorithms and Examples

Previous research on learning robot action models fromrgbdesxperience has used neural

networks kBugk_el_ellLZO_QIZb), as well as tree-based indu&]B.a.La.I:,l_Z)dZLB_elklEL_ZQbm
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m,@h) as learning algorithms. [n_LSlulpAtla.L_ZbOM have shown that there is no

significant difference in the accuracy of action modelsriedrwith neural networks or model
trees. However, decision and model trees have the advatitagthey can be converted into
sets of rules, which can then be visually inspected. As wédl sha in Sectioi_5]l4, model

trees can be optimized analytically. Therefore, we willil®only on decision and model trees
in this dissertation. We describe these algorithms in metaidin AppendiXX_C. Now, two
learned action model examples will be presented in moreldeta

4.2.1 Example |

In the soccer domain, the robots learn to predict the exactitne of thegoToPose action,
described in Sectidn A.1. The model is learned from 386 el@isoThe first 20 examples per
episode are used. The features usediatg angle_to, angle_at andv, sed 4.

To demonstrate what the model tree action model looks llkexample of execution dura-
tion prediction for a specific situation is depicted in FigdT. In this situation, the variables
dist, angle_to, andv (see Figur€4]3) are set to 1.5m, Gnd O0m/s respectively. The model is
much more general, and predicts accurate values fodamyangle_to, andv; these variables
are fixed for visualization purposes only. For these fixedes| Figur&417 shows how the pre-
dicted time depends amgle_at, once in a Cartesian, once in a polar coordinate system.

scenario: T T v
dist=1.5, ar 77/47
v=0.0, :
v,=0.0,
angle to=0.0
angle_at=[-m,n]

ol

38} R

3.6} 74 o
34} |

32+ E

|
L 66 i
2.8 40 ./{:

[ .
2.6 p—"" . ) g

0

execution duration (s)

1 2 3
angle of approach (radians)

model tree rule 40:
if (1.7 > dist > 1.3) A (angle to < 1.19) A (angle at < 1.36)
then time = 1.12*dist + 0.090*angle_at + 0.01l*angle_to + 0.91;

Figure 4.7. An example situation, two graphs of time predictor this situation with varying
angle_at, and the model tree rule for one of the line segments.

In the linear plot we can clearly see five line segments. Tlaams that the model tree has
partitioned the feature space tat=1.5mangle_to=0° andv=0m/s into five areas, each with
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Section 4.2 Learning Algorithms and Examples

its own linear model. Below the two plots, one of the learnaxtiet tree rules that applies to
this situation is displayed. An arrow indicates its lineavdal in the plots. The polar plot
clearly shows the dependency of predicted execution timtherangle of approach for the
example situation. Approaching the goal at O degrees issgsand would take a predicted
2.5s. Approaching the goal at 180 degrees means the robdd Wave to navigate around the
goal point, taking much longer (4.1s).

4.2.2 Example Il

In this example, the simulated soccer robots learn to predien using thggoToPose action
leads to a failure in approaching the ball. Such a failureicwhen the robot bumps into the
ball, before achieving the desired position and orientati®incegoToPose is not tailored
to approaching balls, using it often leads the robot to delWith the ball before achieving the
desired pose.

The robots again learn an action model from experience. Gaiecexperience, the robot
executegioToPose a thousand times, with random initial and goal poses. Thadalways
positioned at the destination pose. The initial and goakpoe stored, along with a flag
that is set td=ai | if the robot collided with the ball before reaching its desliposition and
orientation, and t®Success otherwise. The feature space is the same as for learning the
temporal prediction model afoToPose, as listed in TablgZl 1.

| angle_at_goal < 56°

7 N 56°
yes no
¥
| dist_to_goal > 0.93m | m

7\

yes no + —

B

Figure 4.8. The learned decision tree that predicts whethenwanted collision will happen.

The learned tree, as well as a graphical representationakitdepicted in Figule4.8. The
goal pose is represented by the robot, and different aresate if the robot can reach this
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Chapter 4 Learning Action Models

position withgoToPose without bumping into the ball first. Remember tlgggToPose
has no awareness of the ball at all. The model simply prediben its execution leads to a
collision or not. Intuitively, the rules seem correct. Wheaming from the right, for instance,
the robot always clumsily stumbles into the ball, long befagaching the desired orientation.
Approaching the ball is fine from any pose in the green area.

4.3 Empirical Evaluation

First, we evaluate the action models that predict the ei@twaturation. Tabl¢-4]3 lists the
number of episodes executed to gather data for the traileir@mg, the mean execution dura-
tion per episodé, the total duration of data gathering for the trainingisejtne, as well as the
model’s error (MAE) on a separate test set with the remai@ingepisodes.

Robot Action Sne t  t-2n. MAE
(s) (himm) (s)
ROBOTEQ R | goToPose 290 6.4 0:31 0.32
dri bbl eBal | 202 7.7 0:26 0.43
PIONEER | R | goToPose 223 6.5 024 0.36
PIONEER | S | goToPose 750 6.2 1:18 0.22
dri bbl eBal | 750 7.4 1:32 0.29
ULM SPARROW R | goToPosition 517 4.6 0:40 0.33
B21 S| goToPose 2200 9.0 545 0.52
reach 2200 2.6 1:38 0.10
POWERCUBE R | reach 1100 2.9 0:53 0.21

Table 4.3. List of actions and their action model statistics

For an unbiased evaluation of learned models, it is of coessential that the error measure
is determined over a separate test, not the training séf itbe point of evaluation is to
test how well the model generalizes over unseen examples @ast be taken when the
test set is used to determine the parameterization of aihgpatgorithm. For instance, the
learning algorithm is trained on the training set with diffiet learning rates, and the learning
rate which causes the lowest error on the test set is useddorihg. We used this approach
to determiney; in SectiorTZTR. It is important to note that although trst et is not used to
train the algorithm itself, its used to train this parameter, and information from the tetdtas
leaked into the resulting model. Therefore, we may not r¢hiseset for the final evaluation.

lRlJSSﬂL&D.d.N.QDle_(.ZQb3) consider timseking The results in Table4.3 have therefore been

acquired as follows:
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Section 4.3 Empirical Evaluation

1. First, the model tree is trained Wiéj"ne episodes for varying values of. The best
value ofn; is chosen based on the lowest error on a separate test setwigxamples.

2. After determiningr;, the first test set is no longer needed for testing, and itdeddo
the training set, which now contairjsae episodes, and approximately = %neni ex-
amples. A model is trained with these examples, and testédtessecond test set, which
contains the remainingn. episodes. The error so acquired is reported in Table 4.3.

3. The final model stored in the action library is therefomarned with alln. episodes,
but could not be evaluated, as no test data is left. Howewengumore data should
theoretically lead to a better model, according to Equddidn

Ne
1. Determine n;j Training Test X
2. Determine MAE Training Test
3. Learn final model Training

Figure 4.9. Distribution of training and test data

For clarity, the distribution of training and test data i thteps above is depicted in Fig-
ure[49. This approach might seem a bit cumbersome, butesiisisto ensure that we do not
peek, or use any training data to evaluate the learned model.

In the simulated domains and theWERCUBE arm, data is gathered until the error stabi-
lized. For the other first five actions, this is not yet the c&ee reason is that gathering data
on mobile robots is more cumbersome than in simulation orxedfarms. The amount of
data gathered for these actions has also consciously beetolketo demonstrate that good
models can be learned in little time (e.g. <30 minutes). Bviéh limited data, and resulting
sub-optimal accuracy of the action models, using these ldaieoptimization and coordina-
tion still yields very good results, as we shall see in thet tleeee chapters. In the outlook in
Sectio 81l we explain how more accurate models can be kkasieg data gathered on-line
during robot deployment.

To evaluate the accuracy of the action model that predidtgés in approaching the ball,
the simulated robot executes another thousand runs. Tilémgonfusion matrix is depicted
in Table[Z.4. The decision tree predicts collisions colyaotalmost 90% of the cases.

The model is quite pessimistic, as it predicts failure 61%ereas in reality it is only 52%.
In 10% of cases, it predicts a collision when it actually doneshappen. This is preferable
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Chapter 4 Learning Action Models

Observed Total
Fail Success | Predicted
Predicted Fai | 51% 10%| — 61%
Success 1% 38%| — 39%
] URERN
Total Observed 52% 48% 89%

Table 4.4. Confusion matrix for ball collision predictiof.he model is correct in 89% of
cases

to an optimistic model, as it is better to be safe than sorryis pessimism is actually no
coincidence; it is caused because a cost matrix that pesahzorrect classification éfai |

more than it doeSuccess is passed to the decision trJLi(AMlLen_a.nd_EIrlmK_lZOOS).

4.4 Related Work

Related work on learning forward models and action modelbots has already been pre-
sented in Section3.2.2 abd 312.3. This section will proddmmparison with the methods
described in this chapter.

Most similar to our work is that dﬂe@o@. Here, motteles are trained with data
gathered from navigating through hallway environmentsyds actually a discussion in ex-
actly this hallway environment prompted us to use modestrard extended their use to novel
domains and action 4;&(')04) also stresses the iamp@&tof defining an appropriate
feature space. Since the emphasis in this work is on indoggagon and obstacle avoidance,
features regarding the number of passages and their widtho{m vs. wide) are also included
in the feature space.

) proposes the ERA (Exploration and Regresssanimduction to produce Ac-
tion models) system, in which robots learn the speed witlclwvthey can travel over terrains
with different roughness properties, using regressioestreHowever, the speed with which
a robot can navigate over different terrains could simphabguired by navigating over the
terrain and computing the mean speed, without using reigresges. A closer inspection of
the visualized regression trees (Lﬂ&liala.c_le{l_al_.l 2000rd-1j show that this is exactly what
is happenin

. |(20.de) use neural networks to learn executioatohin prediction of a navi-
gation action. These models are learned from data gathemgdsimulation, and have not
been tested for accuracy on real robots. In this work, thebsuraf examples needed, or the
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Section 4.4 Related Work

use of intermediate data is not investigated. We have fobatrteural networks and model
trees do not have significant accuracy differences whenddaon the same data to learn an
action modell.(_S_Lqu_e_t_LL_md6a).

|le_eLa.|. I(ZO_O_da) propose the use of Hidden Markov Modeksaml action models. As this
work has more relevance to Chagier 6, it will be explainedexaaborately in Sectidn 6.4.2.

4.4.1 Reinforcement Learning

In Sectior 3213, we briefly compared action models with Qs acquired in Reinforcement
Learning (RL). The main differences between Q-values atidramodels are:

Reusable. Q-values are learned specifically for a certain environmweiti a specific reward
function representing a specific goal. The values are |elafoieall states, but for a
single goal. Action models are more general, as they desthnib action independent
of the environment, or the context in which they are callederéfore, action models

AﬁlQQS) ditsevsame conclusion when

can be transfered to other task cont
comparing action models with RL.

Meaningful. The performance measures we can learn, such as executiatodyare in-
formative values, with a meaning in the physical world. Relgehave no unit, and are
chosen arbitrarily.

Composable. Because action models return meaningful values, thesevaan be com-
posed into more complex values. For instance, a composéatip@nce measure could
take both execution duration and energy consumption intowad. Since the Value
compiles all performance information in a single non-deposable numeric value, it
cannot be reasoned about in this fashion.

Modular. In Hierarchical Reinforcement Learning, Q-values areriedrin the calling con-
text of the action. Policy learning can therefore only be elamthe context of the
pre-specified hierarchy/program. Action prediction msdek independent of the call-
ing context, so can be combined in any order. Also, the sdalenards are determined
arbitrarily. They can be 1000 or 1. Therefore, it is not pokesto add the rewards or
values of two actions in a meaningful way, for instance if qusance of actions is con-
sidered. Maybe one action has received a reward of 1000 feezng the desired state
execution, and the other only 1.
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Chapter 4 Learning Action Models

Scalable. The methods we proposed scale better to continuous and erstpte spaces. We
are not aware of the application of Hierarchical ReinforeatrLearning to (accurately
simulated) continuous robotic domains.

The advantage of Reinforcement Learning algorithms isith@ous mathematical frame-
work they provide, along with extensive experimental resean improving the algorithms.

4.5 Conclusion

Motor prediction is the key solution to many of the problemsauntered in human motor
control. Humans learn to predicting the outcome of actioosfobserved experience. In this
chapter, we describe a similar process for robots. The tegt is to acquire experience by
simply executing the action. The state space of this datiaeis tmapped to a feature space
with lower dimensionality, so that fewer action executi@me needed to learn an accurate
model. Intermediate data between the start and end of andspis included, whilst taking
care that the stationarity assumption is not violated, Wigiould occur due to the projective
nature of good features. Data acquisition is stopped wherettor of the learned model
stabilizes. A generalized model is then learned by trainwaglel trees with the training data.
An advantage of using model trees for this task is that theg te only use variables that are
relevant to predicting the target value. We demonstratesit@uirate action models are learned
for the actions of several simulated and real robots.

The results reported in this chapter have been published$tulp and Beebl__m_d'ﬂ:u),a,

MWMMMWM@WL&Q&@ Summaries of

these publications are given in Appenfik D.
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5. Task Context: Action Sequences

“It seemed to Quinn that Stillman’s body had not been used for

a long time and that all its functions had been relearned, s t
motion had become a conscious process, each movement broken
down into its submovements, with the result that all flow gowhs
taneity had been lost”

Paul Auster — The New York Trilogy

When it comes to elegant motion, robots do not have a goodagpun. Jagged movements
are actually so typical of robots that people trying to in@teobots will do so by executing
movements with abrupt transitions between them. For igstatiere is a dance called “The
Robot” which, according to Wikipedia is characterized“hyall movements are started and

finished with a small jerk..."AEr @7) gives an accurate description of this typaation
when introducing the character Stillman, a seriously iliso@, in the quote above.

In contrast, one of the impressive capabilities of animals laumans is their capability to
perform sequences of actions efficiently, and with seantlessitions between subsequent
actions. It is assumed that these typical patterns are thaseninimize a certain cost func-

tion (Wolpert and Ghahramani, 2000; Schaal and Schweigh28©5). So, in nature, fluency

of motion is not a goal in itself, but rather an emergent priypef time, energy and accuracy

optimization. In this section, we demonstrate that reqgioptimal execution of action se-
guences with respect to execution duration also autonligtleads to smooth natural motion
in robots.

Figure[I.2, repeated in Figureb.1, demonstrates an abraition that arises when ap-
proaching the ball to dribble it to a certain location. Suafpged motion is not just inefficient
and aesthetically displeasing, but also reveals a fundahproblem that inevitably arises
from the way robot controllers and actions are designed aadaned about. As discussed
in SectionCLIL[ PrincipleTJI, these abrupt transitionseafrise because action abstractions
abstract away from aspects that influence the performandhid case, the angle of approach
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Chapter 5 Task Context: Action Sequences

is abstracted away from when selecting the actions, alth@ugpviously influences the exe-
cution duration.

(a) An execution with an abrupt transition at (b) A time-optimal execution that exhibits
the intermediate goal. smooth motion.

Figure 5.1. A greedy and an optimal execution of the sameadisiction chain.

Because the angle of approach is not fixed by the plan, maryniediate subgoals are
possible. Automatically determining the optimal internatel subgoal is calledubgoal re-
finement It is based on extracting and optimizifrge action parameterslhe optimal values
of free action parameters are determined by requiring tipeeed cost of the execution of
the entire sequence of actions to be as small as possiblee Bxample above, the free action
parameter is the angle of approach, and the expected castaswhich is predicted with
action models described in Chapiér 4.

The behavior shown after applying subgoal refinement in feifuL(b) has a higher per-
formance, achieving the ultimate goal in less time. A plegside-effect is that it exhibits
seamless transitions between actions. The plots of theyaiden trajectories in the fields
demonstrate this. The lines on the trajectories reprekentbot’s pose and translational ve-
locity, recorded at 10Hz. The center of each line is the rehmmsition. The lines are drawn
perpendicular to the robot’s orientation, and their widipresents the translational velocity at
that point.

The main motivation for subgoal refinement from a controtlesign point of view is
that human designers or planning systems should reasorabnlyt abstractions of actions
(Principle]), and have the robot automatically optimizpexgs of the action that are relevant
for its execution with subgoal refinemept (Principlé 1V).

In Figure[5.2, subgoal refinement is highlighted within tigstem overview. The subgoal
refinement module takes an action sequence as its inputbpos#h free action parameters,
and returns the same action sequence, with refined subgoals.

The rest of this chapter is organized as follows. In the nektisn, the computational
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i Controller :
i Action Library i
; 5) Context: Action Sequences
i Q: How to optimally execute action sequences?
i A: Subgoal Refinement
| Belief Action
_E-) State Selection
| Motor .
Command Action

Figure 5.2. Subgoal refinement within the overall systenmoee.

model of subgoal refinement is introduced. The process oérgéing abstract action se-
guences through planning is presented in Sefidn 5.2. Téwegure of extracting and opti-
mizing free action parameters are described in Se€ildnrid3S&ctiol 2 M respectively. An
empirical evaluation of the effects of subgoal refinemerthathree robotic domains is pre-
sented in Section3.5. Related work is discussed in Sdcirafier which we conclude with
Sectiol 5.

5.1 Computational Model

Subgoal refinement can best be explained in the context afaabsiction chains. In an ab-
stract action chain, the preconditions of each action atiefiea by the effects of previous
actions. Preconditions of an action constrain the posstiakes in which the action can be ex-
ecuted, and the effects the states that might arise whenitaxgthe action until completion.
Figure[5.3(d) depicts an abstract action chain, with préitioms and effects represented as
subsets of the entire state space.

Note that there are many possible intermediate statesgasttirsection of preconditions
and effects yields a whole set of possible states, not just imthe ball approach example,
this set of intermediate states contains all possiblestatehich the robot is at the ball, eight
of which are also depicted in Figyre 5.3(a). In this set, atlables are equal, except the angle
with which the ball is approached. This action parametehésdfore calledree The first
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Current
state

Refined

State space subgoal

(a) Abstract action chain before subgoal refinement(b) Abstract action chain optimized with subgoal re-
finement.

Figure 5.3. Computational model of subgoal refinement

step in subgoal refinement is determining the free actioarpaters in a sequence of abstract
actions.

Since all the states in the intermediate set lead to suadessécution of the action se-
guence, we are free to choose whichever state we want. Exeeoutl succeed for any value
for the free angle of approach. As we saw in Figuré 5.1 somgesgahre better than others,
with respect to the expected performance. Therefore, tmnskstep in subgoal refinement is
to choose values for the free action parameters that migithie expected cost of executing
the entire sequence of actions. The expected cost is peddising action models.

To optimize action sequences, the robot must first genectitenasequences. In this dis-
sertation, this is performed using a symbolic planner. Téweegal computational model of
symbolic plan-based robot control is depicted in Fiduré & is similar to the models pro-

posed by Bouguerra and Karlsson (2005)land Cambon et akY28Rich are discussed more

detail in Sectiol’5.612.

The complete subgoal refinement system is also listed aslpsmde in Algorithn{IL.
Data structures from the abstract declarative planningaiioifsee Figur€hl4) have the pre-
fix ‘abs_’. The first step is to convert the continuous state varialnidbe belief state to an
abstract state, through a process called anchoringl{lin&iten the abstract state, goal, and
action library, the planning system then generates a cHaabgiract actions that can achieve
the goal (lindR). The abstract actions in this plan are thetantiated, given the correspond-
ing executable actions in the action library, and the stat@bles in the belief state (lifié 3).
Subgoal refinement takes the (partially) instantiatedbactequence, and optimizes it (lide 4).
Note that subgoal refinement only modifies existing actiaqueaces. It does not interfere
with the planning or execution processes. This means it mspadible with other planning
systems.
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Abstract

State il

Action Library

conditions

Anchoring y—=- | i
N action

model

Belief Action
: State Sequence
1
1
1
! Motor
Command

Figure 5.4. Computational model of subgoal refinement imacequence generation

input : abs_goal, (represented in PDDL)

beliefState, (belief state with state variables)

action_lib (library with PDDL representations, actions, and action aets)
output :exe_action_seq (an optimized sequences of executable actions)

abs_state =r eadFr onFi | e (beliefState.scenario_name) // ‘Anchoring’

abs_plan = pl anni ngSyst em(abs_state, abs_goal, action_lib) / / Sectiol &P
exe_action_seq =i nstanti at eAct i on (abs_plan, belief_state, action_lib) / / Sectiol5.B
exe_action_seq =r ef i neSubgoal s (exe_action_seq, action_lib) / / Sectiol 5.}l
returnexe_action_seq;

Algorithm 1: Overview of subgoal refinement.

a b~ W NP

5.2 Action Chain Generation

In the system implementation, the Planning Domain Dedonpt Language
(PDDL2.1 [Foxand long, 2003)) is used to describe abstratiorss, abstract states
and goals. The advantage of using this language is that ged as the input and output
format of the International Planning Competition, held nmaally in conjunction with
International Conference on Automated Planning and Sdmggumaking it a standard in
the planning community. For this reason, there are manyitscand examples available for
PDDL, as well as a multitude of planning system implemeatetithat efficiently generate
PDDL plans.

The actions in the action library, along with their precdiwtis and effects are specified
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1 1
| Goal |
| . . |
' | Abstract Action Library P :
: (:action goto (at cuptargetl cupl) Plan :
: :parame;_t_aig (?f(:'rom EEO —)place) ) Planning 1l:(goto tablel table2) :
:precondition (pos ?from 8
: :effe:t (and'>f ot System §=§grti:P tagieg :ugglit):el cupl arm2) i
| no os ?from os ?to :(goto table2 table
: ) { (e D (@ ) AbStI'aCt State 4:(put tablel cuptargetl cupl arm2) :
! . . (:init |
| [(zaction grip... (pos tablel) {
| (at cupplacel cupl) |
! (on table2 cupplacel) f
! A Abstract Planning Domain !
| |
|

Figure 5.5. Example of how actions, states, goals and plenspeecified in PDDL. Imple-
mentation of lindR in Algorithril1.

in PDDL, as depicted in the example from the service robatmsain in Figurd5]5. The
effects contains an add-list and a delete-list, that sp&diich new facts should be added and
removed to the abstract state. As can be seen, actions anddhditions are represented by
easy to interpret symbols.

Figure[25 depicts examples of an initial state and a goahénservice robotics domain.
Due to the symbolic nature of PDDL, these specifications ara &evel of abstraction that
can be understood by humans who have no experience with PBOilanning in general.
In this dissertation, goals are specified manually, depgndn the scenario, as is done in
the International Planning Competition. In the context d@ilarobotic controller, rules that
determine goals on-line can be written.

Converting the continuous variables from the belief state hamed symbols (e.g. PDDL

symbols) is called anchorinb_(_QQLa.d.as_th_a.n.d_S.a.lLfI.OlmIZDAs we currently do not consider

replanning, anchoring need only take place at the beginafnifpe planning process. As

anchoring is not the focus of this research, we manuallyigpéute initial abstract state,
which is constant for each scenario presented in Seclibrmbhése limitations are discussed in
more detail in Section’5.2.1. The actual planning procesd ts generate PDDL plans from
PDDL action and state specifications is performed by the afdesHeuristic Partial Order
PIannerl(iQun.&S_a.ndjimmJJIJﬁ_Zkﬂ)S)

The output of a PDDL planner is a list of abstract action wigimbolic parameters, also
depicted in Figur€hl5. Another example including caus#@difrom the soccer domain is
depicted in Figur€hl6. In a chain of abstract actions thegrdition of the first action is
satisfied by the current situation, and the preconditioralafther actions are satisfied by the
effects of preceding actions. The effects of the last aathust satisfy the goal. A chain of
abstract actions represents a valid plan to achieve the goal

1This planner can be downloaded free of coditat p: / / Www. t enpast i ¢. or g/ Vvhpop/
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Section 5.2 Action Chain Generation

Initial O : (robot posl) (ball pos2) (final pos3)

Step 2 : (approachball posl pos2)
0 -> (robot posl)
0 -> (ball pos2)

Step 1 : (dribbleball pos2 pos3)
2  -> (atball pos2)

Goal
0 -> (final pos3)
1 -> (atball pos3)

Figure 5.6. The output of VHPOP is a PDDL plan with causaldink

Causal links specify which action was executed previousichieve an effect which meets
the precondition of the current action. For instarize-'> (at bal | pos?2) ’indicates that
Step 2 of the plangppr oachbal |) is required to achievéat bal I pos2), which is a
precondiction ofdr i bbl ebal I ). The first ‘action’ or ‘Step 0’ is the initial state.

Each abstract action essentially enables the subsequismmsato be executed, until the
goal is reached. A chain of such abstract actions represevdid plan to achieve the goal.
Note that an action sequence is a list of executable actidghgpartially) instantiated, usually
continuous parameters. They are called sequences ratirectiains, to emphasize that the
strong causal link between subsequent abstract actionschaia is not explicit in action
sequences.

5.2.1 Discussion

Using symbolic planners to generate action sequencestiotstas a long tradition. Shakey,
one of the first autonomous mobile robots used PDDL-styleessmtations to determine ac-

tion sequences that would achieve its gcl)al (Nillsisgn__llb%sl;‘a_n_d_ujjssdr{_lg_h . More
recent examples include the work bLQdeethLandﬁflfdﬁm}i),l_Qamb.Qnﬂ_hl_(ZdM)

andLB_ougu.eLLa_aad_I&a.Lls:l.dn_(ZbOS). The approach explaméus chapter contributes to

this research area. Some reasons why symbolic planningngsoést to robotics are:

Abstraction. Symbolic planners abstract away from many aspects of theflsthte, so
planning and replanning is faster, and more complex problesn be dealt with.

Adaptation. Action sequences or action hierarchies must not be speaifiadvance, but
are generated on-line, depending on the situation at hamd.rakes the system more
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adaptive. The designer need only specify the preconditoniseffects of an action,
independent of the other actions in the library.

Predictive plan repair. Robots can reason about plans off-line before executiongde
ognize and repair failure@eaOO) in advance. Ofsmuthis is preferable to
encountering them during task execution.

Constraints. Constraints on actions are specified symbolica{LI;L_Qamb_aﬂJ 4&0}1) use

symbolic constraints to intuitively specify that largerj@tis cannot be placed upon
smaller ones.

VHPOP is, as most PDDL planners, a general purpose planoespecifically tailored
to robot planning. Other work focusses on problems that rieelde resolved to enable
symbolic planning on robotics, such as uncertainty, failtgcovery and action monitoring
h,_Z(bOS), geometric constralmlm(MLeLai.Lmﬂ@, and anchoring

_C‘A).La.d.eﬁ.QhLa.n.d_S.a.tﬁdt{'L_Zd01). The system presentedisnstittion abstracts away from

these problems to focus on the main contribution: the ogation of already generated plans.

Uncertainty. The symbols used in the symbolic state are either true or hotobotics
applications, this certainty cannot be achieved. The systeuld be more robust if

it took uncertainty into accountl._BQ.ugu.eLLa_a.n.d_Ka.leslﬁmdB present a system in

which probabilistic representation of states and a prdistéibiplanner are used.

Geometric constraints.  In robotics, the robot and objects physically take up spadhe
world. This places geometric constraints on the movemaéetsibot can make, and the
interactions that are possible with objects. W& Mov .Q.amb.o.n_et_AI I.._ZO.(|)4) system
takes these constraints into account, and maps them toriionms for actions.

Failure recovery. The current version of our system does not consider failaoovery
or replanning. In robotics, action can or are not always etegt; and their de-
sired effects not achieved. This requires that the planpaired or replanned from
scratch. Work on recognizing plan failures and plans reipaiude @JZEG) and

Bouguerra and Karlsso 05).

Anchoring. Anchoring usually involves complex tracking mechanismstntain the cor-
respondence between symbols in the symbolic state, andtsligeations in the belief

statel_QO.La.d.eﬁ.Qh.La.n.dﬁaIf.iIOhL(Zb01) provide an overvieanohoring in robotic plan-

ning.
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Section 5.2 Action Chain Generation

Implicit abstract representations

In Section3.T11, direct programming as a method to manu&@ign controllers was intro-
duced. In this approach, the abstract planning domain iorE[@.4 is not explicitly repre-
sented in the controller. Howeverjstimplicitly represented in the designer’s mind. Consider
the following trivial, hand-coded soccer playing conteolin Algorithm[2.

input : belief_state, (belief state with state variables)
output :motor_command

if hasBal | (belief_state) then
if faci ngGoal (belief _state) then
motor_command = shoot ( belief_state) ;
else
motor_command =dr i bbl eToGoal ( belief_state) ;
end
else
motor_command = appr oachBal | ( belief_state) ;
end

© 00 N O O~ WN PP

PP
= O

returnmotor_com mand ;

Algorithm 2: Hand-coded soccer action selection module.

=
N

This code has no merit in itself, except demonstrating hdleviong abstract concepts are
represented implicitly:

Sequentiality. the control flow of the program ensures that the action sempien
approachBal | -dri bbl eToGoal - shoot is executed. This sequence of actions
are not known in advance, but rather arise implicitly by ér@ing through state space,
thereby also traversing the corresponding action space.

Abstract state and action.  the functionhasBal | abstracts away from many aspects of
the state, and compresses it into one boolean vdlasBal | also implicitly encodes
the precondition of botdr i bbl eToGoal andshoot .

Abstract goal. From this code alone it is clear to us that the robot’s purpese score a
goal.

In principle, subgoal refinement can also be implementeldouit a planning system or ex-
plicitly encoding conditions. If there is only a fixed numlzdraction sequences, the designer
can still enable subgoal refinement by explicitly specidyihe free action parameters and the
models with which respect they should be optimized for eatlbatransition. This is actually
how the subgoal refinement system was initially implemertetbre realizing the planner.
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Chapter 5 Task Context: Action Sequences

Purely reactive systems cannot use subgoal refinementdapéinds on the commitment
to a future sequence of actions. If it is not clear that the Wwél be dribbled after hav-
ing approached it, the robot cannot anticipate the besteamghpproach the ball at. Both
direct programming (Sectidn3.1.1) and motion blendingc(i®a [31.2) methods often use
hysteris to avoid too frequent switching between behayiarsl the influent motion that
ariseskLolmh_eLlaL_zddA_;_KQbLalka_and_laHg_eL.Jzooa)e that hysteris is essentially com-
mitting to an action for a certain amount of time. Apparendlyen reactive systems cannot
dispense of commitment completely to avoid jagged motion.

We believe that explicitly encoding action abstractionprisferable, as having knowledge
about your own actions enables the robot to reason about angoiate them itself. This is
essential for autonomy, adaptivity, and intelligent bebiain general l(.D_e_a.r_d.e.n_a.n.d_Qe.n:Jiris,

). For instance, it allows subgoal refinement to be aated) and applied to previously
unknown action sequences.

5.3 Action Instantiation

The declarative PDDL plans that VHPOP generates are vetyaghswith clear semantics
of whatactions do, even without knowing how the actions are execut&is makes human
inspection of the plan feasible. However, it does not spduiiw this plan can or should be
executed in the real world. The next step is to map decla&inowledge to the executable
actions in the action library, i.e. the procedural knowkedd-or instance, the abstract ac-
tion(goto start ball) is converted to an action by determining the coordinatebef t
start andbal | symbols in the belief state, and instantiating the appabgraction with
them. This process is also known@serator instantiatiords_chmllLe.t_aJ.I_ZO_dO).

PDDL plans are instantiated with executable actions bydksticting symbolic actions and
causal links in the plan, and then instantiating the synebatitions one by one, as listed in
Algorithm[3. For each symbolic action, the executable acigaetrieved by its name (lidé 5),

after which its parameters are requested (line 6). The riegtis to determine the parameter
values of the executable action, by considering the cooredipg symbolic parameters of the
PDDL plan. The correspondence between the executablenguiameter and a symbolic
action parameter is determined based on an index in the e@ewaction parameter (lifé 8).

The symbolic parameters itself have no meaning in the bstak. They are just labels
used in the PDDL plan. However, causal links define predscatver these labels whiaio
have a meaning in the belief state. These predicates aefaheretrieved (lin€l9), and used
to extract the correct values from the belief state (lide 10)
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o N o O~ W

10
11
12
13
14

15

input :abs_output (the output of VHPOP, see Figureb.6 for an example)
output : exe_actions (a parameterized sequence of executable actions)

abs_actions = par seAct i ons( abs_output) ;
abs_links = par seCausal Li nks( abs_output) ;
/| For the example in Figufe®.6, the following now holds:
/| abs_actions = [ (approachbal |l posl pos2), (dribbleball pos2 pos3)]
/1 abs_links =
/1 {pos3=[Ofinal, latball], posl=[Orobot], pos2=[0ball, 2atball]}
exe_actions = {};
foreach abs_action in abs_actions do
exe_action = get Act i on(abs_action.name) // e.g.exe_action =approachBal |
exe_params = exe_action.get Par anet ers() // thenexe_params = [x0,y0,...]
foreach exe_par in exe_params do
abs_par = abs_action.params[exe_par.index] ;
/1 e.g.ifexe_par = x0, thenexe_par.index =0 andabs_par = pos1
abs_predicates = abs_links[abs_par];
/'l e.g.ifabs_par = posl, therabs_predicates =[ Or obot ]
value = beliefState.get Val ue(exe_par.name, abs_predicates) ;
exe_action.set Par amet er ( exe_par, value) ;
end
exe_actions.add(exe_action);
end
/1 For the example in Figufe3.6 and Fig{ire 53(a), the follgwiow holds:
/'l exe_actions = |
/'l approachBal | (x=0, y=1, ¢=0, v=0, xg=3,yg=1, ¢g=[-=, «],vg=[0,0.3]),
/1 dribbleBall (x=3,y=1, ¢=[-m, n],v=[0,0.3], xg=1,yg=3, ¢g=2. 6, vg=0) ]
returnexe_actions;

Algorithm 3: Action instantiation algorithm. Implementation of lifko8Algorithm[l.
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Chapter 5 Task Context: Action Sequences

Mapping symbolic predicates to continuous values is dortkerbelief state, with the call
made in lineZID. If the predicate holds in the current beltetes which is the case if it
starts with a0’ (the initial state is considered the first ‘action’), it qohy retrieves the value.
For ‘Orobot’ and ‘x’ it would return the x-coordinate of the current positiontbé robot.
Predicates that do not hold in the current state can alsareomsalues. For instance, the
at bal | predicate restricts the translational velocity betweem@® @.3m/s. If predicates
impose no such constraints, default values for the parartgtes are returned. For instance,
the values ofc-coordinates must be within the field, and angles are alwegsden = andr.

If several predicates hold, the ranges and values theyratercomposed.

Action parameters that are not bound to a specific value,diber a range of values are
calledfree action parameterdn the example below ling14 in Algorith@ 3 for instance, the
free action parameters at the intermediate goal are the ahgbproach, and the translational
velocity.

5.4 Subgoal Refinement

In Al action planningl(.lﬂzx_a.nd_m‘w ;.._ZiOB), actions in plars @most always fully parame-
terized, because there is no difference between an acibstsaction and its execution. The

abstraction of an action already describes everythingetiseto know about the action. Since
actions are only viewed at the abstract level in many plapdomains, each action is usually
tailor-made for a certain goal. Their is no redundancy or-@xpressiveness of actions, and
no free action parameters arise. Therefore, problems aimdiaption opportunities concern-
ing free action parameters are not as predominant in Al johan

Although the execution of actions plays a more importarg inlmodern robot planners
than it does in classical planners, robot planners stilvaetions at a level of abstraction
that ignores the subtle differences between actions. Bectne planning system considers
actions as black boxes with performance independent ofrilbe and subsequent steps, the
planning system cannot tailor the actions to the contexthaf execution. This curse often
yields suboptimal behavior with abrupt transitions betwaetions, as we saw in the example
in Figure[5.1(d). In this example, the problem is that in theteact view of the planner,
being at the ball is considered sufficient for dribbling tfa land the dynamical state of the
robot arriving at the ball is considered to be irrelevanttf@ dribbling action. Whereas these
variables are indeed irrelevant to the validity of the ptaey are relevant to the performance
of plan execution. Abstractions and free action parametegsnot only a curse, but also a
blessing, as action details should not be considered athbieaat planning level, to keep
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Section 5.4 Subgoal Refinement

planning tractable and preserve its declarative nature.sg@stem allows planners to reason
about high-level abstractions of actions, but also opt@®ithe way in which the action is
performed at a lower level.

Human actions are also often redundant and over-expressingary to actions in classical
Al planning. In human motor control for instance, there isstidction between the external
space, which is expressed in terms of task coordinates handternal space, which refers to
the internal coordinates of the muscle system. In most nmagks, the number of degrees of
freedom in the internal space far exceeds that in the eXtspaae l(_S_Qh.aa.La.n.d_S_QhMLelghbfer,

). The internal space therefore has a high level of @y with respect to the external
space. Put simply: there are many ways you can bring a glasatef to your lips of which,
in the words o ahi_(ZbOO), some are lslensnd some are silly. Free
action parameters also arise in robot actions. In robotit @ntrol for instance, one grip-
per position can often be achieved by many joint configunati@s depicted in Figufe.7.
Similarly, many angles of approach can achieve the taslkctipin FiguréLJ1.

The reason why we typically withess stereo-
typical ‘sensible’ and fluent (instead of ‘silly’)
movement is because redundancy in actions

End-Effector

\/— Stays Stationary

Various Joint-
Space Options

is exploited to optimize ‘subordinate crite-

ria’ (IS.Qha.a.La.ndehMLeig,thfeI{_ai)OS), or ‘cost
functions’ (Wolpert and Ghahramarli,_2000), such

as energy efficiency or variance minimization.

This process is called redundancy resolution or
null-space optimization.  In cognitive science,
one goal is to determine the cost function th?iﬁgure 57
is being optimized, given the empirical motion
datakAALleﬁn_and_G_hahLamEbL_zbOO).

Redundant actions in
robotic arm control. Im-

age taken from Mer,
Here, we specify the cost function in advance, ), with permission.

and optimize the free parameters in action sequences

with respect to the expected cost, which is predicted byactiodels. To optimize the action
sequence, the system will have to find those values for tleeaiton parameters for which the
overall execution duration of the sequence is the lowess dVerall performance is estimated
by simply summing over the action models of all actions tloaustitute the sequence. We first
demonstrate this process with two examples, and then gavgeaheral optimization approach.
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Chapter 5 Task Context: Action Sequences

5.4.1 Optimizing free action parameters: Examples

In Figure[&2.B, FigureE4.7 afd®.1 are combined. The first @largplots represent the pre-
dicted execution duration of the two individual actionsdidfferent values of the free angle of
approach. The overall duration is computed by simply adthioge two, as is depicted in the
third polar plot.

approachBall (s) dribbleBall (s) approachBall +
dribbleBall (s)

total = 7.4s total = 6.5s
)
A "y, 3.8s
i //// /////////'/
/1,
m.........umn||||||||“ ‘,,,,////
2.35 2.7 M

Figure 5.8. Selecting the optimal subgoal by finding theroptn of the summation of all
action models in the chain.

The fastest time to execute the fiegipr oachBal | can be read in the first polar plot. Itis
2.5s, for an angle of approach of 0.0 degrees, as indicatie ifirst plot. However, the total
time for executing botlappr oachBal | anddri bbl eBal | for this angle is 7.4s, because
the second action takes 4.9s. The third plot clearly shoatsthtis is not the optimum overall
performance. The minimum is actually 6.5s, for an angle 6f B&neath the polar plots, the
situation of FiguréBl1 is repeated, this time with the prtsti performance for each action.

A similar example, this time from the service robotics domas depicted in Figure4.9.
The scenario is very similar to the one in Figlirel 5.8: the Bpfraaches a way-point at
2m distance withgoToPose, and then executes anothgoToPose action to return to a
final position. This time, the intermediate translationalocity is also added as a free action
parameter. Of course, the different dynamics of the siredl&21 lead to different execution
times for this scenario. The angle of approach qualitativels the same effect as in the
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Section 5.4 Subgoal Refinement

soccer scenario. Note that with higher intermediate teditgial velocities, the first action
can be executed faster, as no braking is required beforgrayrat the subgoal. The lower
graph representing the first action is tilted towards us. él@s, higher translational velocities
in combination with a low angle of approach at the intermtdveay-point cause the second
action to be slower due to overshooting at the way-point.id\gae fastest execution of the
first action is at 0, and the overall fastest execution af p&ith a maximal target velocity of
0.7m/s.
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Figure 5.9. Example of free action parameter optimizatiotwio dimensions

For reasons of clarity, only one or two parameters are opéthin these examples, and we
simply ‘read’ the minima from the plot. Of course, the robotast be able determine this
minimum automatically and on-line, possibly with severakf action parameters and result-
ing high-dimensional search spaces. The next sectionsibledeo optimization methods.
The first approach is analytical, and only possible with maoees. The second is a genetic
algorithm, which is independent of the algorithm with whpediction models are learned.
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5.4.2 Analytical optimization of Model Trees

In Figure[5.D the three functions clearly consist of a bodrsi of 2-dimensional planes in the
2-dimensional feature space. In general, model treegiparthed-dimensional feature space
into £ partitions, and represent the data in each partition witidanensional hyperplane.

This representation allows an analytical minimization ajdel trees. The solution idea
is that the minimum of a hyperplane can be found quickly byedeining the values at its
corners, and taking the corner with the minimum value. Thacedure should be repeated
for all £ hyperplanes, which leads tocorner minima. The global minimum can then be
determined by choosing the minimum of all ‘minimal cornefe computational complexity
of this approach is far lower than that of sampling, or otlearsh techniques such as genetic
algorithms. To our knowledge, we are the first to propose atytioal optimization of model
trees, and we therefore devote several sections in App&ldixan accurate explanation of
this approach. Since the length of this explanation woustract from the main topics in this
chapter, we only give a summary here:

Complexities. The complexity of sampling methodsdxn?), in whichn is the number of
samples per dimension, addhe number of dimensions. Our novel analytical method
has a complexity of)(kd), in whichk is the number of hyperplanes, which is equivalent
to the number of rules, or leaves in the model tree.

Merging model trees. Determining the minimum of two or more model trees is done by
first merging the model trees into one, and then determiriiegriinimum of this one
model tree, as in Figufe$.9. The implementation of this mefis also presented in
Sectiol CB.

Non-mergeable model trees.  Unfortunately, there are some cases in which model trees
cannot be merged, and therefore summations of model treeptimized.

When merged model tree optimization is not possible, wawpé the free action parame-
ters with a genetic algorithrh_(_GQ_thlal:g__leQ), which we moesent.

5.4.3 Optimization with a Genetic Algorithm

Our implementation of the genetic algorithm (GA) uses ghta@sm (2% best individuals

passes to the next generation unmodified), mutation (on eéh®ining 98%), two-point

crossover (on 65% of individuals), and fithess proportiersslection (the chance of being
selected for crossover is proportionate to an individdahess) |(_G_Q_Ld.b_e}g__1§1|39).
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Section 5.4 Subgoal Refinement

To test and evaluate our GA implementation, we first appltei iseveral optimization
benchmarks, such as the De Jong’s function, Schwefel'difumand Ackley’s Path function.
The results and optimization times are reportemz In the subgoal refinement
scenarios to be presented in Secfion 5.5, the optimizatimais usually small in comparison
to the gain in performance. For the extreme scenario, whemeral actions with many free
action parameters are optimized, our implementation o&Aestill takes less than 0.5s to get
a good result.

0.0

Genetic
Algorithm
Optimization
Loop

Figure 5.10. Optimization in subgoal refinement with a geragorithm

Figurel5.ID depicts how the optimization with the GA is imttgd in the overall system. At
the top, an instantiated action sequence with bound anctten parameters is requested to
be optimized. Note that the parameters are labeled withemtifccation number (ID). These
are used to represent that certain parameters in diffecéoha always have the same value, as
they are identical. For instance, the goal orientatig ¢f theappr oachBal | is equivalent
to the initial orientation$) of dr i bbl eBal | . Therefore they share the ID ‘13’.
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The next step is to partition the action parameters in themstequence into two sets: one
set contains action parameters that are bound to a certie garing instantiation, and the
other set contains the free action parameters, along withidhge of values they can take.
Note that action parameters with the same ID are only staned m these sets, as they should
have the same value.

Each free action parameter is then represented as a floaiinggene on a chromosome.
The number of chromosomes in the population is the numbeeefgarameters multiplied by
25. The chromosomes in the initial population are initiadizvith random values from their
respective ranges. The standard GA loop is then startedlobpehalts if the best fitness has
not changed over the last 50 generations, or if 500 genesatice evaluated.

For a chromosome, the predicted execution duration is m@ted by calling the action
models with the fixed values from the set of bound parametard,the values of the free
parameters represented in the chromosome. Then, for eacmakomer the fitnessf is
computed withf. = t,,0s + tmin — te, Wheret,,,, andt,,;, are the maximum and minimum
execution duration over all chromosomes respectivelys Ttimula is chosen to guarantee
that the fitness is a non-negative number, which is necefsditness proportionate selection.

5.5 Empirical Evaluation

In this section, we introduce the scenarios and action segseto which subgoal refinement
is applied. Then, the results of applying subgoal refineraempresented.

In the robotic soccer domain, the action sequence to be ggtihis theappr oachBal |
action, followed by ar i bbl eBal | action, as in FigurE&.1. The free action parameters at
the intermediate state are the angle of approach and tredat@mal velocity.

To evaluate the effect of subgoal refinement in the servibetres domain, two scenarios
are tested. In the first scenario, the goal is to put a cup froentable to the other, which is
achieved by the action sequence depicted in Figurd 5.11adh episode in the evaluation,
the topology of the environment in each scenario stays tme shut the initial robot position,
the tables and the cups are randomly displaced along thesamd-igurd 5. TlL. Scenario 2 is
a variation of Scenario 1, in which two cups had to be deldere

The kitchen scenarios have many free action parametersauBeqreconditions usually
fix either navigation 6r manipulation motions but never bfitiey are independent), one of
these action parameter sets is always free. Furthermaralisktance the robot must have to
the table in order to grab a cup must be between 40 and 80cnxéakifi the precondition
of gri p). This range is another free parameter. As in the soccer uortiee velocity and
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1.GoToPose ’\4.pu
B

A

(a) Scenario parameterization. (b) Scenario plan.

Figure 5.11. Scenario 1. In each episode, the objects anditia robot position are differ-
ent. Possible positions are indicated by arrows.

orientation at way-points are also not fixed, so free formation as well. In Figure 512, an
example of free action parameters that arise from instiimgia plan in the kitchen scenario
are given. The green areas represent these ranges, whare sgeas represent a range of
possible positions, and the circular areas possible angles
In the arm control domain, sequences of reaching movemergexformed. Because this

particular task does not require abstract planning, we didise VHPOP. For demonstration

urposes, we had the arm draw the first letter of the first ndmeaah author oii_(_SlLTp_eLlal.,

), and chose the way-points accordingly. Figure S)isf{aws the BWERCUBE arm,

which is attached to a B21 robot, drawing an ‘F’. To draw thkgeers, only two of the
six degrees of freedom of the arm are used, as depicted imefg@3(0). The free action
parameters are the angular velocities at these way-points.

55.1 Results

Table[5.1 lists the results of applying subgoal refinemenhéodifferent domains and sce-
narios, wherez is the number of actions in the sequence, and the number of episodes
tested.

The baseline with which subgoal refinement is compared is@dyrapproach, in which the
next subgoal is optimized with respect to the executiontthmaf only the current action. In
this case, we say the horizénof optimization is 1. The downside of the greedy baseline is
that it also depends on the accuracy of the action model. Menvee chose this as a baseline,
because setting all free action parameters to zero ceriasudls to worse execution times, and
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Scenario2: Parameterization

Start
<> >
orl

Do

o

Door2

‘/ 1:(goto room0 room1 ?in)
2:(goto room1 cupplacelarm2 room1)

«— > " -—> 3:(grip cupplacelarm? cupplacel cupl arm2)

4:(goto cupplacelarm2 cupplace2arml room1l)
5:(grip cupplace2arml cupplace2 cup2 arm1l)
Scenario2: Action sequence 6:(goto cupplace2arml cupplace3arm2 room1)
7:(put cupplace3arm2 cupplace3 cupl arm2)
8:(goto cupplace3arm2 cupplace4arml room1l)
9:(put cupplaced4arml cupplace4 cup2 arm1l)
10:(goto cupplacedarml room2 room1)

[ .
1.goto ' ' 11.goto

Figure 5.12. Examples of free action parameter ranges itthéa scenario

optimizing them manually introduces a human bias. The ex@ttime of a single action is
denoted;, which has three indices referring to the horizon, the ef@sand the action in the
sequence. For instancgs, » refers to the second action in the 64th episode, that is ee
with a horizon of 1, which is greedy. The mean overall exeputiuration over all episodes is
denoted;,_,, and computed using Equatibnib.1.

Since subgoal refinement optimizes the execution durafitimeccurrent and next action, it

has a horizon of 2. The fourth columns lists the mean ovexaltetion duration with subgoal
refinement,_,, which is computed with an equation equivalent to Equdfidhith » = 2.

The improvement achieved with subgoal refinement in episadeomputed using Equa-
tion[5.2, and the mean over all episodes is computed usingt

2In (Stulp and Beetz, 2005b), improvements were computell Wit ¢j,—; /tj,—o.
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(a) The B21 robot drawing an ‘F’ with its®WER- (b) The two degrees of freedom used for drawing.
CuBE arm.

Figure 5.13. Arm control experiment

Scenario |« no thei thes theo/ther P

Soccer (Simu.)) 2 1000 9.8s 9.1s 6.6% 0.00
Soccer (Real) 2 100 10.6s 9.9s 6.1% 0.00
Kitchen (Sc. 1) 4 100 46.5s 41.5s 10.0% 0.00
Kitchen (Sc. 2) 13 100 91.7s 85.4s 6.6% 0.00
Arm control 4-5 4 10.6s 10.0s 5.7% 0.08

Table 5.1. Subgoal refinement results

1
th:l = E Zztl,p,a (51)
p=1 a=1
m_ t -
th=ap=j/th=1p=; = (1 = %{%) (5.2)
a=1 R
1 Sty
theo/the1 = — ] — &a=l 2Pt 5.3
h=2/th=1 nZ( Eazltl,p,a) (5.3)

p=1

The fifth column in Tabl¢5]1 lists the mean improvement aadewith subgoal refine-
mentt,_,/t,—;. Thep-value of the improvement is computed using a depentiéast with
repeated measures, as each episode is performed twicewdhcand once without subgoal
refinement. A significant and substantial improvement ceguall but one domain.

To visualize the qualitative effect of applying subgoalmefnent, the results from the arm
control domain are depicted in Figure 3.14. The angularoieés are set to zero (upper
row) or optimized with subgoal refinement (lower row). Thessxepresent the angles of
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the two joints. This figure demonstrates well that the triajees ares smoother with subgoal
refinement: the arms draws one long stroke, rather thanrdibbe line segments. Since
the arm control domain us mainly included for visualizatmmposes, there are only a few
episodes. For this reason the overall improvement is naifgignt (~0.05).

2

’ W
-2 0 2 -2 0 2 -2 0 2 -2 0 2

Figure 5.14. Drawing letters without (upper row) and witbmier row) subgoal refinement.
With refinement, letters are drawn faster and smoother.

Although optimizing speed also leads to smoother motion s tdomain,
' irid,_2004) have shown that variability imimation is a more likely
cause for smooth human arm motion. In this chapter, the naahig not to explain or model
human motion, but rather to demonstrate the effects of apiigp sequences of actions.

Interestingly enougl{_Simm.o.ns_a.n.d_D_e&i is (2004) have aks=d their methods to draw

letters with smooth writing motion 06).

5.5.2 Influence on individual actions

Table[5.1(d) and Table 5.I]b) demonstrate the effect of salbrgfinement on individual ac-
tions in the action sequence. The mean execution duratieadf action over all episodes is
computed using Equatién’.4.

1 n
hsar=—> ¢ 5.4
h=2,a=k n; 2.p,k ( )

The table to the left lists the execution of the individual@t of Scenario 1 from the service
robotics domaﬂn The right table lists the same from a scenario from the sadomain. In

3The grip and put actions take more time than in TRRIE 4.3,Umxthe actual closing and opening of the gripper

78



Section 5.5 Empirical Evaluation

this scenario, the simulated soccer robot navigates tovi@yrpoints on the field with the
goToPose action, as depicted in Figufe 5]15. At each way-point thdean§ approach
and translational velocity are optimized. This scenarial$® executed in 100 episodes with
different randomly placed way-points in each episode.

(a) Service robotics domain. (b) Soccer domain.
Action |h=1|h=2| Action |h=1|h=2|
a=1 (got oPose) | 4.4s| 5.7s a=1 (got oPose) | 4.2s| 4.8s
a=2 (grip) 20.8s| 18.5s a=2 (got oPose) | 6.0s| 4.9s
a=3 (got oPose) | 5.9s| b5.1s a=3 (got oPose) | 5.8s| 5.6s
a=14 (put) 15.4s| 12.2s a=4 (got oPose) | 6.7s| 5.0s
a=1.4 (total) 46.5| 41.5 a=1.4 (total) 22.7s| 20.3s

Table 5.2. Influence of subgoal refinement on the executioatidun of individual actions in
a sequence.

A clear effect on the individual actions is that the exeautturation of the first action
is slower with subgoal refinement, allowing the faster exeouof the other actions. The
difference is most striking in the last action in the tableta left. In the greedy approach,
the trouble the robot has caused itself by optimizing thad®as greedily often culminates in
a very awkward position to execute the last action.

5.5.3 Sequences with more actions

In Figure[5.Ib, an example episode from the soccer scemnamo $ectior . 5.5]2 is depicted.
Here the robot has to traverse four way-points withdlodoPose action. So far, we have
seen optimization with horizons &f = 1 (greedy) and. = 2. The standard approach with
h = 2 can easily be extended, so that subgoal refinement optireesxecution duration of
the nexth > 2 actions, as indicated by the colors in Figlire 5.15. The hitteehorizon: the
more subgoal refinement is preparing for actions furthenénftiture.

To evaluate the effect of optimizing more than two actionsquences of four actions are
optimized using subgoal refinement with different horizod$he two scenarios from Sec-
tion[E 5.2 are used: the soccer scenario depicted in Figlifdnd the kitchen scenario de-
picted in Figurd 5.111. The results are summarized in Talde Bhe first row represents the
baseline greedy approach with= 1, and the second row represents the results reported so

at the end of each reach action is incorporated into theracibis additional time is constant, and not taken
into consideration during optimization.
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Figure 5.15. Visualization of the subgoal refinement horizo

h=4

far with h = 2. The next two rows list the results of optimizing 3 and 4 at&xecution dura-
tions. Again, the reported times represent the executioatidun of the entire action sequence,
averaged over 100 episodes.

horizon Soccer Kitchen (Scen.1) Kitchen (Scen.2) \
> Imp. p-value| > Imp. p-value| >  Imp. p-value
h=11227 46.5 91.7
h=21]203 10.6% 0.000415 10.0% 0.00085.4 6.6% 0.041
h=3]20.2 0.7% 0.001406 15% 0.04185.3 0.1% 0.498
h=41202 0.2% 0.053 - - - - - -

Table 5.3. Effect of the subgoal refinement horizoon performance improvement.

Intuitively, the effect of future actions on the currentiantshould decrease, the further
the future action lies in the future. This is also the ratlerizehind receding horizon control,
which will be discussed in Sectidn’5.b.3. For instance, ymsition at the table influences
the time it takes to grab the cup on this table, as well as the it takes to navigate to the
next room. However, it will not likely influence the time nellto put down the cup in the
next room. It is interesting to see that the substantial ow@ment in both scenarios indeed
diminishes quickly after, = 2. Whereas a significant but only marginal improvement is
sometimes still to be had from= 2 to h = 3, and the improvement to = 4 is not significant
anymore.

5.5.4 Predicting performance decrease

There are many cases in which subgoal refinement does noaha&ffect. In the ball approach
scenario for instance, if the robot, the ball and the finatidason are perfectly aligned, there
is not much to be had from subgoal refinement, as the greedypagpalready delivers the
optimal angle of approach: straight toward the ball. On tbetrry, refining subgoals in
these cases might put unnecessary constraints on the iexecDiue to inaccuracies in the
action models and the optimization techniques, it is samegieven the case that the greedy
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approach does better than subgoal refinement. To evalieste #ffects, 1000 episodes where
executed in simulation with both = 1 andh = 2. Then, the overall improvement (6.6%)
is separated into episodes in which subgoal refinement vegr¢), kept equal @), or made
worse ¢ ) the execution duration, as listed in Tablel5.4

Before filtering| Total + 0 -
#episode 1000| 573 267 160
improv 6.6%| 16.2% 0.0% -17.1%

Table 5.4. Positive and negative influence of subgoal refammn execution duration.

This result shows that the performance improved in 573 ¢as®kin these cases causes a
16.2% improvement. In 267 cases, there is no improvemens.igho be expected, as there
are many situations in which the three positions are alreadghly aligned, and subgoal
refinement will have no effect. Unfortunately, applying ouethod also causes a decrease of
performance in 160 out of 1000 episodes.

To analyze in which cases subgoal refinement decreasesrparfoe, we labeled each of
the above episodes 0 or - . We then trained a decision tree to predict this nominalealu
This tree yields four simple rules which predict the perfanoe difference correctly in 87%
of given cases, as can be seen in the confusion matrix of éinedd decision tree in Talleb.5.
The learned decision tree is essentially an action modelRather than predicting the out-
come of an individual action, it predicts the outcome of gpyg action models to actions. We
will see another example of suchveeta action modeh Sectiol Z.Z4P.

Predicted
+ 0 - Totals
+148.6% 14% 1.5% — 51.5%
Actual 0| 8.1% 28.0% 0.8% — 36.9%
-1 1.4% 0.2% 10.2% — 11.8%
! ! RN

Totals 58.1% 29.6% 12.5% 86.7%

Table 5.5. Confusion matrix of the decision tree that priggiécformance decrease

The decision tree and a graphical representation are @epictFigurd 5.16. In this vi-
sualization of the decision tree, the robot always appresathe centered ball from the left
at different distances. The different regions indicate tvbethe performance increases, de-
creases, or stays equal. Three instances with differessi@lzation and are inserted. The
trajectories are a qualitative indication of the robot rooti
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| angle_between_goals < 122°

yes no
¥ N
| angle_between_goals < 50° | 0 |
yes no
N ~ O
| distl < 1.4m | | + | 7
yes no

El

Figure 5.16. The decision tree that predicts whether sulsgbaement will make the perfor-
mance better, worse or have no influence at all.

The rules declare that performance stays equal if the troegsoare more or less aligned,
and decrease only if the final goal position is in the same aseahich the robot is, but only
if the robot’s distance to the intermediate goal is smaltemt1.4m. Essentially, this last
rule states that the robot using tgeToPose action has difficulty approaching the ball at
awkward angles if it is close to it. In these cases, smalbt@ms in the initial position lead to
large variations in execution time, and learning an aceyggneral model of the action fails.
The resulting inaccuracy in temporal prediction cause®gtilmal optimization. Note that
this is a shortcoming of the action itself, not of subgoah@inent. The meta action model of
applying subgoal refinement is essentially telling us thi@igeal refinement is working fine,
but that theappr oachBal | is rather non-deterministic under certain conditions, aeeds
improvement.

After filtering | Total + 0 -
#episode | 1000| 557 389 54
improv 8.6%| 16.4% 0.0% -10.1%

Table 5.6. Positive and negative influence of subgoal refamtmn execution duratioafter
filtering for cases where a decreased performance is peedict

We then performed another 1000 test episodes, as deschibee,dut only applied subgoal
refinement if the decision tree predicted applying it woulkeld a higher performance. The
results are summarized in TabIel5.6. The performance ingpnewt due to subgoal refinement
is 6.6%, and is now 8.6%p{value is 0.000). More importantly, the number of cases irctvh
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performance is worsened by applying subgoal refinementdses from 160 (16.0%) to 54
(5.4%). Apparently, the decision tree correctly filters oases in which applying subgoal
refinement would decrease performance. Note that whenrpsafae is decreased, it is not
so dramatic anymore (-17.1%-10.1%): the decision tree is filtering out the worst cases.

5.6 Related Work

5.6.1 Classical planning

Problems involving choice of actions and action chains &enaegarded as planning prob-
lems. However, most planning systems do not aim at optimgiz@sources, such as time.
While scheduling systems would have an easier time reptiegetime constraints and re-
sources, most could not deal with the action choices in ttoblpm. Systems that integrate
planning and scheduling, such las_(S_m_iJ.h_H_aL_lZOOO), deetaloptimize resources, but ig-
nore interactions between actions and intermediate dyarsiates, so do not apply well to
continuous domain problems.

In PDDL EQx_a.n.d_Lo_dgLZO_(b3), resource consumption of astigrrepresented at an ab-
stract level. Planners can take these resources into aoeten generating plans. In contrast
to such planners, our system generates action sequentasstbatimized with respect to very

realistic, non-linear, continuous performance modelscivare grounded in the real world as
they are learned from observed experience. We are not awatbery planning systems that
generate abstract plans and simultaneously optimize thelgzhysical behavior of robots.

Least commitment planning also depends on the concept odiumbvariables@ld,

). The idea is to keep variables unbound as long as pesaiid bind them only when
is necessary. This makes plans more flexible, and plan egaaubre robust. However, vari-
ables that are never bound, are still unbound in the final. ptagxactly these that we use for
optimization.

Refinement planning is a method whose name bears simitamtith subgoal refine-
ment, but which describes another procéss.{,lﬁa.mb.ha.mpdii hm;'ls). Refinement plan-
ning searches for an action sequence that achieves the ypalbing away action actions
sequences that do not. Initially, all action sequences ansidered solutions. Subsequent

refinement operations then narrow the set of possible asgquences by adding constraints
to it. Our system does not refine the plans themselves to fithmhegequences, but rather the
execution of the plans, given a certain action sequencehoAgh resources are sometimes
represented during planning, planning in general is onigrested in finding a plan that is
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valid. Our system takes a valid plan, and finds a plan executiorniglogtimal with respect
to the predicted performance. In principle, a refinementiplag system could be used in the
“planning system” module in Figufe™.4.

5.6.2 Symbolic planning with action execution

|B_0.ugu.e|:r_a_a.n.d_lsa.tlssb|{_(ﬁ05) describe a computationaleinttiat is quite similar to

ours. In their model, the abstract plan domain is called ili@htion”, and the action
execution and sensing process is provided by the “ThinkapjGobot-control architec-
ture. The interface between the two is called the “Anchdringpdules. There are two
important differences between their models and ours. Bifsdll, probabilistic planners

are used in the abstract planning domain, being BURID]AN.U@BLLQk_eI_ai.I_l&SM) and
PTLPlan I(.Ka.tlss.o.n_a.n.d_S_thaMLn.ctLQ._ZbOZ). Therefores slystem can deal with probabilis-

tic belief states. The other enhancement is plan failuregeition and plan repair. Because
the focus of this dissertation is acquiring and applyingoactodels to tailor actions to task
contexts, we deliberately abstract away from these enna@aes. Note that our methods are
in no way incompatible to the ones described.in.(.B.o.ugu.etrthlss.ahLﬂ)dS), and merging
both approaches would combine the advantages of both,@assdisd in Sectidn 5.2.1.
ASYMov _Qa.mbgn_e.Lalleo_M) is another approach that bridges thbegaveen symbolic
planning and plan execution, in complex simulated 3-D emriments. The main goal is to rea-

son about geometric preconditions and consequences ofacthis is done by defining a
Configuration Space, in which constraints on mobile robots@bjects are expressed. Then,
symbols representing locations in the world are relatedtwstraints in Configuration Space.
This allows the specification of not only at a symbolic levet also with regard to the geom-
etry of an environment. The input of the planner is 1) a synctitdta file, specified in PDDL

2) the geometric data 3) and a semantic file that relates signdbgeometric data. Symbolic
planning is done with the ETRIC-FF ._HQ_t[manJWI_ZQdB) system, and geometric planning is
done with the Mbve3D library S.im.éQn_eLAILZO_bl). TheSy Mov library merges the result
of both using the semantic file.

Here again, we see great potential for mergi® Mov and subgoal refinement, as they are

complementary, rather mutually exclusive, as discussSédmiorE:Z]]J.L.amb.o.n_etl el.L_(Z(b04)

actually mentions that the resulting plan is improved anthoged in some way, but does not

describe how. In probabilistic motion planning, such a gostcessing step for smoothing the
generated paths is a common procedure. Subgoal refinemigtiswell be integrated in this
optimization step.

Hierarchical Reinforcement Learnir{g_(.B_a.m_a.n.d_Ma.h.adﬁlSiﬁﬁ.‘JB), which was introduced

84



Section 5.6 Related Work

in Sectio 3.1 also optimizes actions and action seqeebgemaximizing the expected re-
ward. In most of these approaches, the action sequencesiar herarchies are flxe@rr
MW@WIMW&M) The only approach we
know of that explicitly combines planning and Reinforcemegarning is RL-TOPS Re-
inforcement Learning - Teleo Operawr@mn_a.n.d_lien.dﬂltl{._lQbS). In this approach, se-
guences of actions are first generated based on their prigioosdand effects, using Prolog.
Reinforcement Learning within this action sequence is deitle HSMQ .D_i_eLLeJ:LcJ1|_Z)_dO).
Between actions, abrupt transitions arise too, and theoauticognizes that “cutting corners”
would improve performance, but does not present a solutRi-TOPS has been tested in

grid worlds and also more complex domaiIJS_(B;La.n_a.D.dJ Fliej.di)Z(DiDlt not in the context of
mobile robotics. A more recent RL-planning hybrid is pretsernin LG_m.unds_a.n.d_Kud.edko,

), though it is not clear how this work extends the worlRgan et al. In general, the
advantage of action models over Reinforcement Learning wiscussed in Section 4.4.1.
lB_eLkaLet_aJ. |(20_d3) use action models learned with modeistite optimize Hierarchical
Transition Network (HTN) plans. This work was already imtnced in Section’3.2.3. HTN
plans are structured hierarchically from high level goalshie most low level commands.

To optimize performance, the order of the actions, or theastthemselves are changed at
varying levels of the hierarchy. Rather than refining plditg system modifies the HTN plans
themselves, and therefore applies to HTN plans only. Ontiter thand, we refine an existing
action chain, so the planner can be selected independédiritlg optimization process

XFRMLearn is an approach that also elegantly combines d#acla and learned knowl-
edge to improve the performance of robot navigation exen E_eetLa.nd_B.elkHL_ZQbO). The
XFRMLearn system optimizes plans through plan transfoionatvhich is closely related to
subgoal assertion, which is presented in the next chapherefore, we postpone the discus-
sion of this work to Section 6.4.1.

5.6.3 Receding horizon control

Optimal control refers to “the use of online, optimal tragy generation as a part of the feed-
back stabilization of a (typically nonlinear) systed]L(ﬁBh.ﬁ.D.d.M.ULL&lL/L&@). Receding
horizon control is a subclass of optimal control approachews/hich an (optimal) trajectory
is planned up to an staigt + H,,) which lies between between the current st&te and goal
statez joq d&mn_a.n.d_l:lahLm_( EL_Astm_a.n_d_MudMOS) The ratiorekind receding
horizon control (RHC) is that there is a diminishing retunnaptimizing later parts of the
trajectory before beginning execution. The experimentcideed in Sectiol ’5.3.3 verified
this effect. After planning the next/, steps,H. steps of this trajectory are executed (with
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1 < H. < H,), and a new trajectory is computed from the new current st@te- H.) to
x(t+ H,+ H,).

I.|_(20_d2) apply receding horizon control imdated autonomous aerial
vehicles. In this application, a global visibility graph thie environment, which consists of
a 2D rectangular space with rectangular obstacles, is matst off-line. From this graph,
a global cost function is computed by approximating the etgxtime to reach the final
goal location for a limited set of key locations, e.g. comef obstacles. The cost graph is
recomputed if the environment changes. On-line, a tim@yattrajectory for the nextd,
steps is computed. The estimated remaining time from thé ldation of the trajectory
x(t + H,) to the final goal is computed using the global cost graph. Tl&nsteps of the
trajectory are executed, and the trajectory is recomputed.

: Hp=9 : | h=2 |
©00000000000000000000@ ©000000@000000@O00000@
analytical heuristic m
(a) Receding horizon control. (b) Subgoal refinement.

Figure 5.17. A graphical comparison of receding horizontmdrand subgoal refinement.
Small circles represent primitive commands, larger c&r@ee the initial, final,
or intermediate states. Filled circles are planned andropgid before execution,
unfilled ones are not.

The main similarity of RHC with subgoal refinement optiminatwith different horizons
is that the extent to which optimization takes place for fetactions is variable in both ap-
proaches. However, there are also some important diffeeebetween RHC and subgoal
refinement, which we will now describe with the help of Fighr#&1:

Primitive vs. durative actions. In optimal control in general, planning and optimization
are done for primitive motor commands. The result is a cotér@ or trajecory that
specifies which motor commands should be executed in theforae. In subgoal
refinement, planning is done with symbolic reasoning, artdropation is done for the
parameters of a durative action. Clearly, subgoal refinérekes place at a higher
level of abstraction. Rather than optimizing low-level totiers, subgoal refinement
optimizes their composition and concatenation in higlelglans.

First H, motor commands vs. intermediate subgoals. RHC optimizes the firstd,
motor commands, and is not committed to commands beyonddheoh, see Fig-
ure[ET¥. Subgoal refinement rather commits to certainrimdiate subgoals, and is
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not concerned with the exact motor commands with which teabgoals are reached.
The motor commands simply arise when executing the actieseshto achieve the
subgoal. The planner can therefore fix the general strucitbe plan, rather than
committing to only the first few steps.

Trajectory planning vs. symbolic planning. RHC focuses on trajectory planning. On
the other hand, the methods described in this chapter drerrabncerned with sym-
bolic planning, even if some of the actions, when executead lto trajectories. The
preconditions and effect of actions enable the designgpeoify constraints unrelated
to trajectories, such gshol di ng cup).

Analytical vs. learned models.  Optimal control and RHC approaches assume that deep
analytical models of all actions are available. As define@éctionLIL, [ Principle]ll
of this dissertation is that procedural knowledge is regmesd as a library of ‘innate’
durative actions. Elaborate models of these action may eavailable due to their
ad-hoc implementation and parameterization, or beca@seatmplex interaction of the
robot with its environment cannot be modeled WELL(.B.QQ[MH.Z)D})). In our
approach, the actions are essentially black boxes. Inipeachis is often the case for
real-world mobile platforms, but it also holds for humans eaplained in Sectiopn.1.
Based on introspection, humans simply find it impossiblegscdbe the primitive mo-
tor commands (i.e. muscle activations) involved in riding@ycle or walking, let alone
prove its optimality! However, the lack of analytic modelsed not keep use from ac-
quiring models from experience. By learning action models,system is also flexible
enough to acquire action models for changing actions, eor@efor which no model
can be acquired through analysis.

5.6.4 Redundancy resolution

Redundancy resolution, briefly discussed in Sedfioh 5.4 blean well studied in the context
of robot arm control. Arm poses are said to be redundant iethee many arm configurations
that can achieve the same task, as depicted in Figure 5.7Thede configurations are called
motion or null space, and finding the best configuration i¢edahull-space optimization,
which is equivalent to redundancy resolutidn._—l:uclllv 99dposes to use direct search
methods to find the configuration with the best fault toleesinanotion spaceL_Na.ka.niahLelI al.
) give an overview and experimental evaluation ofauggiother null-space optimization
techniques. All these approaches are analytical, whichtaslisadvantages described in
Sectior 5.613.
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5.6.5 Motion planning and execution

Generating collision-free paths from an initial to a finabobd configuration is also known as
robot motion generation. A common distinction between algms that generate such paths
is:

Global approaches. These approaches determine a path to the goal off-line defacu-
tion, based on a global snap-shot of the world. Because algladw of the world is
known, global constraints such as obstacles are taken atmuat, and ending up in
a local minimum is avoided. The problem such global alganghsolve is called the
basic motion planning problem. On-line, the predetermipatt is executed to actu-
ally achieve the goal configuration. Therefore, the envitent may not change during
execution, as this could invalidate the predetermined.path

Local approaches. To adapt to local changes, local approaches use sensorgniion to
direct there motion on-line during execution. This enaltesavoidance of obstacles.
Due to their local perspective, these approaches can gt stio local minima, such
as a dead-end in a corridor.

Hybrid approaches. By combining both local and global approaches, hybrid mashget
the best of both worlds. Examples are the system descrid&dﬁug_a.n.d_lsndll 5),
the Elastic Strips framewori( (Brock and Kh {'Lb__1|999), @ fhanning system and ex-
ecution system of GOFEFkJQth_aad_LaLOJHb_e__i991).

IB.I’_O_Qk_a.D.d_KhaliH_(_’I_QdQ) give an overview and examples oha#lé approaches. The meth-
ods presented in this chapter are a global approach, asdheipg) is performed off-line,
before plan execution. This means that failures in acti@tetion, for instance due to un-
foreseen or dynamic obstacles require replanning. The saids for all global approaches,
of which WMWL&LJZG@)axampIeS discussed in the
previous section. we will now present two hybrid approaclaesl discuss their relation to
subgoal refinement.

|Zha.ng.a.n.d.|$ndll|_(19_dS) propose a hybrid approach, based apatly computing a se-
guence of subgoals, and then traversing these subgoal a¥liding local obstacles on-line.
Subgoals are collision-free positions, and lines conngaubgoals should not intersect any
obstacles. The first step in this approach is therefore terahe a sequence of subgoals
that connects the initial state and final goal, using tangesyphs for mobile robots, and C-
Nets for robot arms. The resulting subgoals are then refindgdssveral heuristics, and con-
nected by non-uniform-B-splines, which ensure fluent motidien traversing the subgoals.
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Avoiding dynamic obstacles based on on-line sensor datane dy activating multiple fuzzy
controllers, some of which aim at approaching the next sahgehereas others avoid local
obstacles. Since subgoals need not be traversed pertefitbzy measure is used to determine
when a subgoal was passed.

In the Elastic Strip Framework (ESF) proposedl.b;LB.Lo_Qk_a.nﬂlKﬁﬁ _’L9&b), a set of

spheres, determined heuristically, defines the local fpaee around a configuration of a

robot. Along a trajectory determined with a global motioarmpling algorithm, a sequence of
configurations is chosen, which together are called théiektsip. The unification of the local
free spaces around these configurations is calleeldeic tunnel Obstacles exert external
repulsive forces represented by potential fields on theielstsip, causing it to stretch. As this
stretching does not affect the topology of the strip, théglaonstraints of the motion plan are
satisfied, and local minima are avoid i )rhbﬁ_’bléescribe the planning and
execution system of the mobile robot GOFER, which can beidernsd a predecessor of the
Elastic Strip framework. Hereghannelsare rectangular areas which the robot should traverse
in order to reach the goal. Within these rectangles, thetrisbioee to move, for instance to
avoid obstacles.

The quotes “The elastic tunnel can be imagined as a tunnekefdpace within which
the trajectory can be modified without colliding with obdésc’ and “The idea of gener-
ating subgoals is to use them for globally guiding the robotiom and still leaving some
freedom for the plan executor to react to uncertaintieS)’hm{.B_Lo_(;k_a.n.d_Khall )9) and
IIL19_§5) respectively, show the conceptumailarity of the elastic tunnebr
subgoalswith free action parameters. However, there are severabitapt differences as
well:

Optimization between subgoals vs. optimization of subgoal s themselves. In
hybrid approaches, the freedobetweenthe subgoals is more important than the
freedomat the subgoal itselfit is the path that matters, not so much the subgoal it leads
to. Note that this implies that hybrid approaches are nobnmgatible with subgoal
refinement, and they might complement each other well.

Freedom to react vs. freedom to optimize.  Also, the freedom in hybrid approaches is
exploited to react to unforeseen changes encounteredgdplam execution, whereas
subgoal refinement does so to optimize the expected perfmenaf the plan before-
hand. At first, it might seem futile to optimize subgoals & ghath to these refined sub-
goals cannot be achieved anyway due to unforeseen obstatb@gever, the rationale
behind subgoal refinement is that it is worth to spend somepatetional resources on
computing the optimal subgoal, because if no obstaclesrareuaitered and the world
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unfolds as predicted, this will lead to an improved perfang& This optimism in the

face of ignorance is rational, and can also be found.in.(ZMmbKn.ojl,l.L?&lS) and
9), where paths are initially chosehda smooth, so that at least
an unhindered traversal of subgoals will lead to fluent ettecu

Trajectory planning vs. symbolic planning. Whereas motion planning and execution
algorithms focus on collision-free paths, our methods dethl the more general prob-
lem of mapping symbolic plans to executable action sequdbeelarative plans allow
for higher levels of abstraction than standard motion plagnechniques, which fa-
cilitates the design of abstract actions and common-semsstraints. Of course, in
an operational system, geometric constraints must be td&eccount when mapping

symbols to configurations, as is donel’Ln_(_Qa.menJeILaLJZODzﬂﬁ)se is essentially the

same difference as discusse@ind.6.3.

5.6.6 Smooth motion as an emergent property

Most similar to our work, from the point of view of smoothnessan emergent property of
optimality requirements with redundant subgoals, is ther@gch OLKQ.LLaLa.D.d_BSI))L(.ZQbG).
In this work, a simulated robot maps its environment withgameasurements by traversing a

set of way-points. Reinforcement learns a policy that miné@s the error in the resulting map.
As a side-effect, smooth transitions at way-points ariges @pproach has not been tested on
real robots.

5.6.7 Smooth motion as an explicit goal

Many behavior based approaches also achieve smooth matianaeighted mixing of the
motor commands of several actiovhs_uaegﬁﬁmm;baﬁmm_dl.ﬁ%). In
these approaches, there are no discrete transitions beagéens, so they are also not visible
in the execution. In computer graphics, the analogous agpris callednotion blendingand

is also a wide-spread method to generate natural and flarsitions between actions, which
is essential for lifelike animation of characte@l@) presents visually impressive

results. More recent results are described_b;LS.ha.piLd 42@12'3) and_KmLa.LandﬁLeidller

). Since there are no discrete transitions betweeonactthey are also not visible in

the execution. In all these blending approaches, achieyptignal behavior is not an explicit
goal; it is left to chance, not objective performance measur

lHQI[UJﬁ.ﬂD.&D.d.D.UIL&hl.(ZO.(M) propose a very different tecglei for generating smooth

transitions between skills for the AIBO quadruped robotise Pperiodic nature of robot gaits
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allows them to be meaningfully represented in the frequetayain. Interpolating in this
domain yields smooth transitions between walking skillgac8 the actions we use are not
periodic, these methods do not apply.

5.6.8 Elvis the dog

On a more light-hearted note, we are happy to report that swence (if interpreted cor-
rectly) shows that dogs are capable of performing subgdialeraent. Figuré 5.18(a) shows
Elvis the Dog in a typical pose. Elvis and his master, Prafe$an Pennings of Hope Col-
lege (Michigan, USA), regularly go to the beach, where Edvipys fetching tennis balls from
the water, as depicted in Figyre 5.18(a). Elvis achieveshtifirst running along the beach
(action 1), and then swimming to the ball (action 2). Becauws®ing is much faster than
swimming, the optimal policy is not to go to the ball in a sijtailine, but rather run parallel to
the beach for a certain distance, and then swim to the baii,Eigure[5.I8(0). Which distance
this should be is a standard optimization problem, oftemdbin college tests. Interestingly
enough, Elvis seems to be solving this problem, as he chdbsesathematical optimal dis-
tance in varying scenarios. By measuring Elvis’ running sswdnming speed, Tim Pennings
could plot the optimal distance as in Figlire 5.18(c), takemf PenninﬁLZO_bS). The dis-
tances that Elvis actually chooses (the dots in the graptesept individual fetch episodes)
match this optimal line quite closely.

Action 1: run
Action 2: swim

y Soe *
2 *
. 14 -
Elvis ~v =
== 2 4 8 yx 12 16 20
(a) Elvis the dog. (b) The optimization problem. (c) Empirical data.

Figure 5.18. Elvis the dog solves the ‘beach optimizatiavbfgm’. Images used with per-
mission.

Why is this subgoal refinement? Because Elvis is choosingnteemediate goal (i.e. the
point where he enters the water) such that the overall execof the action sequence is
optimized. The scenario is very similar to the example inure§s.1, where performing the
first action suboptimally leads to a better overall perfanoea
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|G_a.LLegQ_a.n.d_BeLLu.Qh\ell_(2d06) challenge the notion thasi\performing global optimiza-

tion, and give a much simpler local optimization strategat golves the optimization problem
with the same result: go into the water as soon as the relgpiged of the ball to my own

position is lower than my swimming speed. However, acccgddﬂBen.n.i.n.g.i(ZO.b?), further
yet to be published experiments demonstrate that this samait be the whole story, and the
debate continues.

5.7 Conclusion

Durative actions provide a conceptual abstraction thaaswoned about either by the designer
during action selection design, or, if the abstraction ipliekly coded into the controller,
by the action selection system itself. Action abstractipagially achieve their abstraction
by not taking into account all action parameters. Althougdse free action parameters are
not relevant to the action on an abstract level, they oftenr@levant to the performance of
executing the plan.

As robots are becoming more dextrous, and their actions exqeessive, abstraction will
become more important for keeping action selection andniantractable. This also means
the gap between an action’s abstraction and its executibrwwden, and more free action
parameters arise. Suboptimal performance and jagged mistan unavoidable consequence
of leaving these free action parameters unconsidered.

In this chapter, we introduce subgoal refinement. Subg@iabr@ent not only contemplates
free action parameters, but exploits them by optimizingtketh respect to the expected over-
all performance, thereby turning the curse of free actioampaters into a blessing. Subgoal
refinement is realized as an extension to the standard lpadir causal link planner VHPOP,
which uses the Planning Domain Description Language toifypagstract actions, goals and
states. We show how free action parameters are extractédpdimized analytically or with
genetic algorithms, with respect to expected performanogpeited by action models.

Without subgoal refinement, the transitions between astare abrupt. In general, these
motion patterns are so characteristic for robots that getping to imitate robotic behavior
will do so by making abrupt movements between actions. htisresting to see that requir-
ing optimal performance can implicitly yield smooth traiais in robotics and nature, even
though smoothness in itself is not an explicit goal in eitth@main.

We believe this is an important contribution towards bndgihe gap between robot action
execution on the one hand, and planning systems and deiugecamponents in general on
the other. Subgoal refinement combines abstract humarfisdeknowledge with learned
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Conclusion

predictive knowledge.

The results reported in this cha

ter have been published(Smilp etal.,l.ZOd?;

Stulp and Beetz, 20b6; Stulp ef

Ohb_'_S_tulp_a.n.d_iBJiﬂﬁ.SJH:mal_ﬂlQéc). Summaries

of these publications are given in Appenfik D.
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6. Task Context: Task Variants

“Before we learn how to run, we must first learn how to walk.”

English proverb

In order to adapt to new environments and acquire new skitsremously, robots must be
able to learn. Learning generates new knowledge from esmpeei through experimentation,
observation and generalization. In practice, learningllgastarts from scratch, and knowl-
edge about previously learned skills is transfered to nekis, aSIMUﬁlI&.&D.d_DLlSlSL(ZOJbZ)
describe: “Learning is not an isolated task that starts fsoratch every time a new problem
domain appears.’i.lhmn_a.n.d_M.imtllellL(_'LbQB) call thfs-long learning from
SectiorLIl also adheres to this view, as it poses that egiatition can be tailored to novel
task contexts.

Let us again take an example from soccer. For both humansoéotis; approaching a ball
is very similar to navigating without considering the b&bth involve going from some pose
to another pose on the field as in Figlrel 6.1, and both shouichplemented to execute as
efficiently and fast as possible. However, there are algbliifferences between the objective
functions for these two tasks. When approaching the badliniportant to not bump into it
before achieving the desired pose, as depicted in Flgutb).1

This scenario can be described well in terms of the actiappr oachBal | and
goToPose. The required action for this taskappr oachBal | , which is very similar to the
goToPose action. However, sincgoToPose is not aware of the ball, it often collides with
the ball before achieving the desired pose. In fact, in 88BIZ.2, we determined empirically
that this action causes a collision more than half the timesdive this problem, one could
write a new action, e.gappr oachBal | . It would probably be very similar tgoToPose,
but take the ball into account. Instead of desigrampgpr oachBal | from scratch, it would
be better if the robot reused the simipwToPose, and adapt it to the current context. For
instance, althoughgoToPose fails at ball approach more than half the time, it ads@ceeds
at doing so quite often. In these cases, it can be reusedwtithange.
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e

{

(a) Both robots achieve the desired state with (b) When approaching the ball, one of the
goToPose. robots bumps into the ball before achieving the
desired state witgoToPose.

Figure 6.1. Similarities and differences between standawigation and ball approach.

The key to reuse is therefore being able to predict when thierawill fail, and when it
will succeed. When it is predicted to succeed, the actioxeés@ted as is. If the action will
fail, another action should be executed beforehand, suatlitie robot ends up in a state from
which the actiorwill succeed. This intermediate state between the actions & gutggoal.
This approach is therefore called subgoal assertion.

In Figurel®&.2, the action variant context is highlightedhiitthe system overview.

= 6) Context: Action Variants
Selection Q: How to adapt actions to more specific goals?
A: Condition Refinement and Subgoal Assertion

Figure 6.2. Condition refinement and subgoal assertionmitie system overview.

In the next section, we introduce the computational modsbubigoal assertion. The actual
implementation of subgoal assertion is presented in SE6ilh As we shall see, there is an in-
teresting relation between subgoal assertion and subgf@ment. An empirical evaluation
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of subgoal assertion is provided in Sectiod 6.3. We conclittea summary in Sectidn 8.5

6.1 Computational Model

Figure[6.3(d) depicts two possible initial states of a roabdtlue, and a goal state in white. In
both cases, a singtpoToPose action suffices to bring the robot from the initial state te th
goal state. The general case is depicted as a transitionthreprecondition to the effects of
an action beneath the scenario. Since the effects satisfgdhl, the action can achieve the
goal. The two points in the precondition represent the tatestdepicted in the field.
Figure[6.3(0) is basically a repetition of the same scenétiothis time the goal is that the
robot is at the same position, in possession of the ball. freg®, this means that the new
goal of approaching the ball is a subset of the former goalrply navigating there. When
executinggoToPose, the robot to the left succeeds at approaching the ball,Hgutdbot to
the right does not, as it bumps into the ball beforehand. hega, this is the case because the
effects ofgoToPose no longer satisfies the refined goal, as is depicted belowcéesio.

(a) Both initial states satisfy the precondition, (b) Since the goal has changed, not all states
so executinggoToPose leads to successful in the effects satisfy the goal. Therefore, ex-
completion in both cases. ecutinggoToPose does not lead to the goal

for all states in the precondition.

Figure 6.3. Computational model of condition refinement.

The effects ofgoToPose can now be partitioned into a subset which does satisfy the
new refined goal, and a subset which does not. These are eafgdswith blue (S) and
red (F) respectively. Analogously, the preconditions a#ifioned into a subseuccess
which leads to a final state which is in the subset of the effdtat satisfy the refined goal,
and a subsefFai | for which this is not the case. Because the effects, and qoesdly,
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preconditions of an action are refined for a new task, thisi@akn ascondition refinement
In SectiofZ.ZP we demonstrated that the refined preconditheSuccess subset) can be
learned from observed experience.

Once the refined precondition of a novel goal is known, it &/da determine if a particular
initial state will lead to a successful execution or not.tlfloes, the action is executed as is.
For instance, the robot to the left can simply executegb&oPose action, as it is in the
refined precondition. The robot to the right however is nokisTrobot now needs a novel
action, e.g.appr oachBal | , that enables it to go from any of the states infae | to the
refined goal. Or does it? Instead, theToPose action is used again, to take the robot from
theFai | subset to the&Success subset. Once this is doneg@ToPose action thatwill
succeed at approaching the ball is executed.

Figure 6.4. Computational model of subgoal assertion

Summarizing: if an action is predicted to succeed in a nowetext, execute it as is. if it
is predicted to fail, assert a subgoal from which the actwdhsucceed, and execute an extra
action to achieve this subgoal.

One issue remains open. In the running example there aré&ehfimany subgoals from
which approaching the ball will succeed. Any state from$aecess subset could be cho-
sen, but which one is the best? Fortunately, this problemakasdy posed and solved in
Chaptelb. Choosing the best subgoal from many is done usingosl refinement, as is
explained in Sectiohd.2.

The pseudo-code for the complete system described in tiggeas listed in Algorithn#,
an extension of Algorithral1 in the previous section. Subgsakrtion is applied just after the
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actions have been instantiated, but before subgoal refimermote that subgoal refinement
and assertion only modify existing action sequences. Tloayad interfere with the planning
or instantiation process. This means that they are conlpatith other planning systems.

input : abs_goal, (represented in PDDL)

beliefState, (belief state with state variables)

action_lib (library with PDDL representations, actions, and action aets)
output : exe_action_seq (an optimized sequences of executable actions)

abs_state =r eadFr onFi | e (beliefState.scenario_name) / / ‘Anchoring’

abs_plan = makePl an (abs_state, abs_goal, action_lib) / / Sectiorle.2

exe_action_seq =i nst anti at eAct i on (abs_plan, belief_state, action_lib) / / Sectiorle.3
exe_action_seq =assert Subgoal s (exe_action_seq,belief_state, action_lib) / / SectiolG.P
exe_action_seq=r ef i neSubgoal s (exe_action_seq, action_lib) / / Sectiod &2}
returnexe_action_seq;

Algorithm 4: Overview of subgoal assertion and subgoal refinement.

o O WDN PP

6.2 Subgoal Assertion

Subgoal assertion takes a sequence of actions, and reh@ssine sequenedth asserted
subgoal that are needed to assure successful executiasteasih Algorithmb. The main
loop goes through all actions, and leaggsToPose actions untouchedappr oachBal |
has no implementation itself, and is replacedjloyf oPos e actions. Only ongjoToPose is
needed if it is predicted to succeed at approaching the Dhls is the case if the initial state
isin theSuccess subset in Figurg6.3(p).

Determining these subsets manually is a difficult task, dw®mplex interactions between
the dynamics and shape of the robot, as well as the specifraatkastics of the action.
Therefore, these subsets are learned with a decision seesaribed in Sectidn 4.2.2.

If a success is predicted, og@ToPose is executed as is, with the same parameters as
theappr oachBal | action. If it is predicted to fail, a subgoal is assertege( params?2),
and inserted between tvgp ToPose actions. The action parametexge_params2 initially
receive default ranges. All parametersexe params2 are free, and are optimized with
subgoal refinement. This immediately follows subgoal dssgras listed in Algorithni4.
This ensures that the values fexe_params2 minimize the predicted execution duration,
and that the transition between the tg@ToPose actions is smooth.

One issue remains open. The intermediate goal between tlomsacnust lie within the
Success subset in Figure®l3, which for the ball approach task is asjtjpn in the green
areato the left in Figule4.8. This requirement puts coimgsan the values afxe_params2.

It must be ensured that the optimization process in subgbalement only considers states
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input :exe_actions (a sequence of (partially) instantiated actions)
output : exe_actions2 (a sequence of (partially) instantiated actions with agseiisubgoals)

1 exe_actions2 = {};
2 foreach exe_action in exe_actions do
3 switch exe_action.name do

4 case‘goToPose’
5 exe_actions2.add (exe_action) // Subgoal assertion never needed for this action
6 end
7 case‘approachBal |’
/| Getthe parameters related to the ‘from’ and ‘to’ states.
/| Uses the same indexing scheme as in IEE 6-8 of Algofliihm 3..
8 exe_paramsO = exe_action.get Par anet er s (0);
9 exe_paramsl = exe_action.get Par anet er s (1);
10 if goToPose.appr oachBal | Success(exe_params0, exe_params1) then
/' goToPose will do the job, subgoal assertion not needed
11 exe_actions2.add (new goToPoseke params0, exe_paramsl);
12 else
/| exe_params2 is set to the default ranges of the action parametegodbPose.
/| Same as in linds1I0=1L1 of Algorithith 3.
13 exe_params2 =...;
14 exe_actions2.add (new goToPoseke params0, exe_params?2);
15 exe_actions2.add (new goToPoseke params2, exe_paramsl);
16 end
17 end
18 .
19 end
20 end

21 returnexe_actions2;

Algorithm 5: Subgoal assertion algorithm. Implementation of [the 4 &fgkithm[4.
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from theSuccess subset of the refined precondition of the secgon@oPose action. There-
fore, the action model for this action is modified so thatitires an INVALID flag for these
states. This approach has been chosen as it requires Ibtiioation of the optimization
module. Chromosomes that lead to an invalid value simplgiveca low fitness.

1 goToPose.execut i onDur at i onApproachBal | (z,y,6,v,24,Y4,04,v9) {

2 if goToPose.appr oachBal | Success (z,y,0,0,24,y4,¢4,04) then
3 returngoToPose.execut i onDur at i on (z,y,¢,v,24,Y4.¢4,04);
4 else

5 returnINVALID;

6 end

7}

Algorithm 6: Modified goToPose action model for approaching the ball.

Analogously to Figuré&®hl8, the predicted execution duretiof the two actions, as well as
their summation are depicted in Figlirel6.5. Invalid valuest rendered. The second graph
depicts the function described in Algoritth 6. Note that tmeemoval of invalid values, the
shape of the functions on the ground plane in the last twohgraprresponds to Figuke ¥.8
and&.b.
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Figure 6.5. Search space for subgoal refinement in subgeeaites.

Subgoal assertion was implemented whilst the implementati the genetic algorithm was
still underway, so the optimization has instead been donebgom sampling. A thousand
states are randomly sampled from the success set of thed-efimelition, and the predicted
execution duration for bothoToPose actions is computed and added. The subgoal with the
minimal execution duration is then chosen to the interntediabgoal. As subgoal refinement
is applied, the transitions at this subgoal is usually simoot

In Figure[&.®, three instances of the problem are depictetteShe robot to the left is in
the area in which no collision is predicted, it simply exesgioToPose, without asserting a
subgoal. The model predicts that the other two robots wilid®with the ball when executing
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Figure 6.6. Subgoal assertion in the approach ball task

goToPose, and a subgoal is asserted. The subgoals, determined bgaulkfinement, are
depicted as well.

The entire process of condition refinement, subgoal assegitid subgoal refinement is en-
capsulated in a new abstract action, for instaayger oachBal | . This process of encapsulat-
ing several action into one is known as “chunking” in arcttisees such as SOAm al.,

) or ACT-R I(S_enLanj_QhLeLb_eLaad_An.d& 990). Matethere is no executable ac-
tion appr oachBal | , as the executablgoToPose is reused for this novel abstract action.
Creating a novehbstractaction is necessary however, as the preconditions andtefibéc
appr oachBal | are refined as compared to thosegofToPose.

6.3 Empirical Evaluation

To evaluate automatic subgoal assertion a hundred randbrapgpaioaches are executed in
simulation, once with assertion, and once without. Theltesue summarized in Table 6.1.
Before assertion, the results are, as is to be expected,sumilar to the results reported
in Table[Z4. A collision is again correctly predicted appneately half the time: 52% of
these hundred episodes. Subgoal assertion is applied se tases, and is almost always
successful: 50% of all episodes is transfered from havinglésion to a successful ball
approach. Only 2% of the episodes still have a collisionplesubgoal assertion. Because
no subgoal assertion is applied whenccess is predicted, there is no change in the lower
prediction row. Consciously choosing not to apply subgsakaion and not applying it are
equivalent.

Subgoal assertion is applied unnecessarily in 10% of epsolth this case, both episodes
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Observed Total
Fai | Success Predicted
Predicted Fai |l | 2% (=52%-50%) 60% (=10%+50%)— 62%
Success 1% 37% — 38%
! !
Total Observed 3% 97%

Table 6.1. Subgoal assertion results

with and without subgoal assertion are successful. Howé#weexecution with subgoal asser-
tion and consequent subgoal refinement is a significant 8&eslihan executing only the one
goToPose action. The performance loss in these cases seems an ddeemiat compared
to the pay-off of the dramatic increase in the number of ssfcétask completions.

Summarizing: if subgoal assertion is not necessary, it imlhys not applied. Half of the
time, a subgoal is introduced, which raises successfuldasipletion from 47 to 97%. Infre-
guently, subgoals are introduced inappropriately, wheadk to a small loss of performance
in terms of execution duration.

Condition refinement has not been implemented or evaluatedeoreal robots. Instead, a
failure model, similar to the one in Figure .8 was designethbnually tuning the parameters
of the model to a more cautious one. As subgoal refinementsalahways chooses a subgoal
somewhere on the border between the green and blue areauire[E@, we wrote a heuristic
that does the same. Thappr oachBal | action, although manually specified but still based
on the learned model and subgoal refinement, is used for aheafgots.

6.4 Related Work

6.4.1 Transformational planning

Sussman was the first to realize thigsin plans do not just lead to failure, but are actu-
ally an opportunity to construct more robust and improval‘lplk_s_usamjall_:l_dn). Although
this research was done in the highly abstract symbolic lsleakrld domain, this idea is still
fundamental to transformational planning.

In the XFRMLearn framework proposed lIJ;LB_e_elZ_a.n.(LBJEIILeLd'zXO@uman-specified
declarative knowledge is elegantly combined with robatsed knowledge. Navigation plans
are optimized with respect to execution time by analyziragsforming and testing structured
reactive controllers (SRCS,EeEbQQ). Designers $ipstcify rules for analyzing and
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transforming these plans, and the robot then learns froraresqce when these rules should
be applied. A substantial improvement in execution timemfa44% is achieved. The anal-
ysis phase has many similarities with condition refinemant transformation phase with
subgoal assertion. One difference with XFRMLearn is thatunwork, the analysis phase is
learned instead of human-specified. Another differenceas XFRMLearn improves exist-
ing plans, whereas condition refinement learns how to adagtdnging action requirements,
such as refined goals.

6.4.2 Learning preconditions, effects and action failures

Methods for learning preconditions, such as the methodepted in this chapter, are summa-
rized well by the following quote t@em%): “The prablef learning the preconditions
for an action model can be viewed as a problem of conceptiteain which the learner is
given instances of action success or failure, and inducemeept describing the conditions
which apply in successful instances.”.

In most of the research on learning preconditions, the qunttet is being induced is
symbolic. Furthermore, the examples consist only of symtiwht are not grounded in the
real world. The precondition is then learned from these etas) for instance through
Inductive Logic Programmingﬁ@%) or more spegdl methods of logic infer-
ence |(_S.ha.ha.f_a.n.d_Ad1lL_Zd06). However, neither symbolicrgtas nor a symbolic precon-
dition suffices to encapsulate the complex conditions thaedrom the robot dynamics and
its action parameterizations.

|S_thiLLet_a.|. I(ZO_dO) present a system in which non-symhgéaning operators are learned
from interaction of the robot with the real world. The exeaces of the robot are first parti-
tioned into qualitatively different outcome classes, tlgio a clustering approach. The learned
operators are very similar to previously hand-coded opesaOnce these classes are known,
the robot learns to map sensory features to these classes w#cision tree, similar to our
approach. This approach aims at learning to predict whathet will perceive after execut-
ing an action from scratch, whereas condition refinemens atmefining an already existing

symbolic preconditions based on changing goals.

' ' d_(ZO_d)O) propose a method for learningthezess rate of passing action
in the context of BBOCUP simulation league. Here a neural network is trained with(B00
examples in which a pass is attempted, along with the suarefsslure of the pass. This
information is used to manually code action selection relash as “Only attempt a pass if
it is expected to succeed with70%”. This is also a good example of integrating human-
specified and learned knowledge in a controller.
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In .EQx_eLaJ.,l_Z)D_db), an extension of the work lln.(.on.étlZDQﬁLl), robots use learned

action models to determine when an action is failing. Théaatnodel is learned by first

mapping raw sensor data to observations by feature deteatid classification techniques,
then mapping observations to evidence items with Kohonénarks, and evidence items to
states with state splitting_(_qu_edzJL,_ZQbGa). This apginoa used to learn a model of a
robot that takes panoramic images by turning on the spot alichdp at fixed intervals to take

pictures.

With this Hidden Markov Model of the action, 50 training ruase generated. At each
time-step, the log likelihood of the sequence of states msprded, given the learned model.
This yields 50 monotonously decreasing traces through/likeehood space. The range of
all these traces is defined to be normal behavior. Duringnggsiailures are induced such as

blocking the robot, or disconnecting communication. Ireghout of four error types this leads
to traces that fall outside the range of the normal behaarat,an error is correctly recognized.

The emphasis in this work is not on predicting the failurerofation in advance, but rather
recognizing when an action that is being executed is in thegss of failing, as the following
guote from (_EQx_el_AILZO_QtSb) demonstrates: “Plannersoreasth abstracted models of the
behaviors they use to construct plans. When plans are tumteethe instructions that drive an
executive, the real behaviors interacting with the unmtadhle uncertainties of the environ-
ment can lead to failure.” Therefore, cannot be used for itmmdrefinement, but rather for
execution monitoring.

6.4.3 Inductive transfer

The transfer of knowledge from one learning task to the nextiieen well studied within the
context of connectionist networkls (Pratt and Jen&ihgs_d)mlaere, it is termed “learning to
learn”, or “inductive transfer’l_(_G_r_o.[S.malrlu_Zd)Ol). Two wiatlown examples of this approach
are Explanation Based Neural Networks (EBNhI.).(Ihmn.a.n.ctMI',L’LQ.QIS) and Multi Task
Learning (MTL) | 7).

In EBNN .Ihmn_a.ad_MjLQhelllLMS), a neural networks leatims mappingf; from input
to target values in the training set. In addition, EBNN alsarhs a mapping to the slopes
(tangents) off; at the examples in the training set. These slopes providesmation on
how changes of the input features affect the network’s dut@od can therefore guide the
generalization of the training examples. This second slogievork represents a model of
the domain, and is used as an inductive bias for learninglnasks, with the same network
structure. This substantially reduces the number of nedadng examples for novel tasks.

Multi Task Learning (MTL) is based on a different type of knedge transfer. Suppose
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a mapping from four inputs to three different tasks must laened from examples. One
approach would be to train three neural networks, one foh ¢ask. With this approach,
each of the three networks must learn the mapping to the téripm scratch. Similarities

between tasks can therefore not be exploiLed_C_alrL Y p88Foses MTL, in which only

one network, in this case with three outputs, is learned,egécted in Figuré8l7. In this
network, representations that are common to all tasks aredd in the input to hidden layer
mapping, and task specific representations in the hiddeaotmublayer. Because all training
examples are used to learn the common representationjrigasnsignificantly faster than
%1 using a single network for each task. Empirical reshéige verified this@na,

).

A similarity with the approach in this chapter is the diffeti@tion between common task

knowledge, and specific task knowledge. Tg@wloPose action can be considered as the
common knowledge needed to complete both the navigatiorbaticapproach tasks. The
learned model (condition refinement) and subgoal assatmthe specific knowledge needed
to adapt theggoToPose action to the novel ball approach task.

Taskl Task?2 Task?2

Output Layer
Task specific

representation
Hidden Layer

Common task
domain representation

Input Layer
Inputl  Input2 Input3 Inputd

Figure 6.7. A multi task learning (MTL) network. Adapted finSilver and Mercet, 1998).

Both EBNN and MTL use multi-layer perceptrons as represamtaand the transfer of
knowledge is based on this representation. Furthermarde#itning performance and ease of
transfer depend on the topology of the network, which is husjzecified. Because MTL and
EBNN depend on these a priori design decisions, they areadtimited use for autonomous
learning WL@1). For instance, they could notgpdied to the task presented
in this chapter, as it is not learned using a neural network tli@ other hand, condition
refinement and subgoal assertion, although their scopmitell to novel tasks with refined
goals, could be used for tasks learned with neural networks.
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6.5 Conclusion

In this chapter, we present condition refinement, which edppeconditions to novel goals.
These preconditions are learned with decision trees frosemed experience, and are there-
fore grounded in the real world. Predicted failures are lvesbby asserting new subgoals,
from which execution is predicted to succeed. In an intergshterplay between condition
refinement and subgoal refinement, the best intermediagpalls chosen. We demonstrate
how thegoToPose action is reused to successfully approach the ball in thelsit®d soccer
domain.

Condition refinement is a good example of combining commass&nowledge, which is
provided by humans through the symbolic preconditiond) Witowledge that the robots learn
themselves. Also, condition refinement and subgoal asseatie important contributions to
bridging the gap between symbolic planning, and plan exacwin robots.

The results reported in this chapter have been publishedﬁiulp_a.n.d_B_e_eH_ZO.bh_ZO_d)SC,

). Summaries of these publications are given in Apipddd
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7. Task Context: Multiple Robots

“Wat heb je nou liever? Eén goed 11-tal of 11 goede 1-tallen?”
Johan Cruijff

As robotic systems are becoming more dextrous and soptesticthey are capable of ex-
ecuting more complex tasks. Many of these more complex egipdn tasks require two or
more robots to cooperate in order to solve the task. A keycgiehese systems is that mul-
tiple robots share the same workspace, and can therefor@rtract away from the actions
of other robots. The problem is how to tailor your actionghie tontext of actions of others.

Humans are very good at performing joint actions
in shared workspaces. Consider two people asse
bling a bookcase (or a robot, as in Figlrel 7.1). Wit
apparent ease, actions aa@ticipated and coordi-
nated: one person holds a shelf while the other scre
it in place, and so forth. A key aspect of this coop-
eration is that it is executed with little or no commu-
nication. Humans achieve this by inferring the inten
tions of others. Once the beliefs and desires of the co-

operating party are known, we simply imagine Wh‘?—Iigure 7.1. Two humans implicitly
we would do in that situationLD_em:Ie )87) calls coordinating the assem-
this the Intentional Stance. If iIsee you grab a screw-
driver, Ican assume that you intend to screw the shelf

bly of a RONEER | robot.

in place; there is no need for you to tell me. By integratingryimtentions into my own be-
liefs, 1Ican also anticipate that my holding the shelf wikeaur task, thereby coming closer to
our joint desire of assembling the bookcase. Implicit cowton is used by humans in many
domains: almost all team sports, construction of bookcasdthers, and also in traffic.

In contrast, coordination in multi-agent and multi-robgistems is usually achieved
by extensive communication of utilities. This is calledplicit coordination. Previous
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work on cooperation seems to have focussed almost exclygivethis form of coordina-

tion (Botelho and Alaml, 1999; Chaimowicz ef al., 2002; Dl Steniz, 2001 Parker, 1998;
hALeng.e.La.n.d_M.ala.clllZO_Q ). It has also been used in theERCupP mid-size league to allocate
roles to the different pIayerL&asﬂpﬂaAtmmWM.OZ). However,

implicit coordination has some important advantages oxpli@t coordination, related to:

Complexity. To enable utility communication, protocols and arbitratrmechanisms must
be adopted between communicating entities , which adds lexitips and can degrade
the system. It is generally argued that communication cahuaécceptable delays in

information gathering and should be kept mininlLaLaaALS_a.mM[ZO.Qb).

Safety. Because implicit coordination dispenses of the need fornaanication, there are
many multi-robot domains that could benefit from this apploaRescue robotics and
autonomous vehicles operating in traffic are examples ofadlesrin which robust com-
munication is not guaranteed, but where correct coordinaind action anticipation is

a matter of life and death. When it comes to saving humansmdizg accidents, it is
better to trust what you perceive, than what others tell yaeing is believing.

Human-robot interaction.  Another recent research focus in which implicit coordina-
tion plays an important role is human-robot interactiony fostance in assem-
bly (Zhang et AI.,LMQLKDML&M&IEKLMOl), spacelangtion MI.,

5) Or rescue roboticlé_(.ND.u.l’.b.a.Khs.h_GltlaL_JZOO5)- Ourarebegroup has a long-

term project for human-robot interaction in intelligenbrs ILZQbiZ:_RJ.Ilsu,
). The room and robot are equipped with cameras, lasgerénders and RFID

tags, which provide robots with accurate information abebat is going on in the

room. When a robot and a human perform a joint action in thered workspace, e.g.

setting the table in the kitchen, or seam welding in outecspiacannot be expected of
humans to continuously communicate their intentions.eadt the robot must be able
to anticipate a human’s intentions, based on predictiveeisoaf human behavior. We

consider anticipation to be essential for natural intéoadbetween robots and humans.

Mixed teams. In robotic soccer, there is an increasing incentive to ptaynixed teams.
Since robots in a mixed team usually have very different camigation software and
hardware, communication is often problematic. A solutiayuild be to unify the soft-
ware of the different robots of a potential mixed team. Thauld require substantial
rewriting of at least one of the team’s software. In our opmihis is undesirable. Why
should an autonomous mobile robot have to commit to any kfrgensor processing
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or control paradigm to be able to cooperate with another teeate, if both are pro-
grammed to interact in the same problem domain? Profedsioneer players certainly
do not need to take a language course before being able ts@tagr in a new country.
Implicit coordination could solve the communication pretol for robots in mixed teams
by eliminating communication altogether.

A necessity for implicit coordination is being able to preidhe outcome of the actions of
others, by taking their perspective. As we saw in Sedfiodl3ifis hypothesized that the basis
of social interaction and imitation in humans is also forrbgdorward modelMl.,

), as there are many similarities between the motoramolthe social interaction loop. It
may be that the same computational mechanisms which dedfopsensorimotor prediction
have adapted for other cognitive functions. As we shall seamplicit coordination, action
models also enable robots to predict the performance of abhets.

In this chapter, we apply implicit coordination to a typicalordination task from robotic
soccer: regaining ball possession. Regaining ball possessa goal for the team as a whole,
but only one of the field players is needed to achieve it. Thaathge of having only one
player approach the ball is obvious: there is less inteniggdetween the robots, and it also
allows the other robots to execute other important tasks) aa strategic repositioning or man
marking. Of course, the robots must agree upon which roblbamproach the ball. The in-
tuitive underlying locker-room agreemehL(_S_Lo_nmn_dAA:idQ_Q_b) is that only the robot who
is quickest to the ball should approach it. In Figlrd 7.2, linipcoordination is highlighted
within the overall system overview.

The next section presents the computational model of @kahd implicit coordination, and
SectiorZ.P demonstrates how this model is applied to tHérbatception task. In Sectidn 1.3
we discuss some issues related to applying implicit coattn to heterogeneous teams. In
the empirical evaluation in Sectidn ¥.4, we present thrgeeements, partially conducted

with the Neuroinformatics Group at University of Ulm. We ctude with related work and a
summary in Sectiorfs4.5 ahd17.6 respectively.

7.1 Computational Model

In Figure[ZB, the computational model of explicit coordioa is depictedlA[aiLa.n.dALeJ.leo
Z.O.i) informally describe a similar methodology. Throagtertain communication channel,
the robot receives the utilities of other robots with respedhe task and possible actions at
hand. The Joint Utility model then determines what the beba is, given the utilities of all
robots.
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!
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Action Library i
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State Selection

"

Motor

_ 7) Context: Multiple Robots
~"| command HEIET Q: How to coordinate actions of several robots?
A: Implicit Coordination

Figure 7.2. Implicit coordination within the system oveawi

Commu- Utiliti m My
nication HIEIEs Utility Model Action

Figure 7.3. Computational model of explicit coordinationyhich the utilities of other robots
are communicated. This is the standard approach in robotics

Implicit coordination, depicted in FigukeT .4, is a vartiof explicit coordination, in which
the utilities of others are not communicated, but computethke robot itself. It does so by
taking the perspective of others based on the states ofsptdueal utility prediction models.

State States of Perspective Utilities . -Joint My
Estimation Others Taker Utility Model Action

Figure 7.4. Computational model of implicit coordinatiortlvout communication, in which
utilities are computed from perceived states using actiodets. Humans use this
approach to coordinate.

7.2 Applying Implicit Coordination

Here, the concepts used in Figlrel 7.3 and Figure 7.4 areipgdlasing examples from the
ball interception task, more or less from back to front.
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My action. This is the action that the robot decides to execute. It shoellcoordinated with
the actions of other robots. When regaining ball possessinigmeans that only one
robot should approach the ball. This avoids interferende/désen robots, and enables
the robots that are not approaching the ball to perform d#sis, such as man marking
or other offensive positioning.

Utilities. In the ball interception task, the utility is approach timEhe faster a robot can
approach the ball, the higher the utility. This utility céretefore be computed by deter-
mining the execution duration of treppr oachBal | action, given the current belief
state. This time in its turn is acquired by calling the learaetion model for execution
duration of theappr oachBal | action, given the state of the robot and the ball. How
this model is acquired has been extensively discussed iptEiid.

Joint utility model.  The joint utility model formalizes the intuitive rule thahly one robot
should approach the ball. It computes the best action a wayoexecute, given its own
utility for this action, as well as the utilities of other rais. So, for the ball interception
task, the joint utility model returrsppr oachBal | if arobot predicted to be the fastest
to approach the ball, and another action otherwise. Fotdkis the joint utility model
therefore needs to know the expected time it will take to agpi the ball for all robots.

Note that in this computational model, the joint utility neddselects an action. For
integration in plan-based control, the joint utility modelld instead return a symbolic
goal. The planner then determines an action sequence tevadhis goal.

Of course, all soccer teams have implemented this strateggme way, to avoid all
robots continuously pursuing the ball. The contributiothefapproach presented here is
not to implement the concept of having only one robot goiregehIt rather shows how
exploiting action models to reason about the outcome of thierss of others enables
robots to become more independent of communication fordioation.

Communication. In explicit coordination, robots compute only their ownlityilocally. It
then sends its utility to the other robots, and receives thiéies of the other robots,
over some communication channel. In auction based appeei&atkﬂa.n.d_MaLa')Li
M), the utilities are sent to a single arbitrator, whiomeunicates roles or actions
back to the robots.

Perspective-taker. In implicit coordination, each robot computes the utilitiyadl robots
locally, without communicating the utilities. The perspee-taker enables each robot
to make this prediction with respect to the current task alokbstate. To do this, the
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robot swaps its own state with that of another robot in théebstate, and computes
the utility. This “perspective-taking’l_(ILa.tLo_n_eLlaLﬂ!b) is performed for all other
robots, until the utilities for all robots are known. To comtg the utility of others, the
perspective taker computes the execution oftppr oachBal | action for each robot.
To do so, it needs to know the state apr oachBal | action model of each robot.

States of others. As we saw, the robot needs to know the state of another rolim tble
to take its perspective. In the belief state of the soccents)lstates are represented by
a pose: the position and orientation of the robot. The stfteghers are determined
through the state estimation module.

7.2.1 Utility communication vs. shared belief

The most difficult aspect of implicit coordination is estiting the states of others. Especially
for robots with a limited field of view, such as ours, this isiplematic. Therefore, we resorted
to the communication of beliefs as a complement of statenesiton, to acquire a shared and
coherent representation, as depicted in Figude 7.5.

nication - °
States of Perspective Utilities _Joint My
Others Taker Utility Model Action
State
Estimation

Figure 7.5. Computational model of implicit coordinatiortiwshared belief (SB).

This computational model might seem contrary to our comgation-free paradigm, but
there is an important difference between communicatiildies and communicatingeliefs
which we shall explain in this section. Of course, impliaioedination without communi-
cation is the ideal situation, which we cannot achieve duenrtitations in sensors and state
estimation. Still, implicit coordination with state commiagation is preferable over explicit
coordination for the following reasons:

e Since explicit coordination is only possible if you know thlities of others, delays
or failures in utility communications often cause completerdination failure. With
implicit coordination, the robot can still rely on it's owreissors and state estimation
to deduce the utilities of others. Coordination might thehlme perfect, due to sensor
limitations, but at least it does not collapse completelne@f the experiments in the
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experimental evaluation verifies this (Q6 in Secfion 1.418)a sense, combining the
two methods exploits the best of both worlds.

e Improvements in sensor technology and state estimatiohadstwill allow robots to
autonomously acquire a increasingly complete and accesdimation of the states of
others. In RBOCUP for instance, almost all mid-size teams have resorted toi-omn
directional vision to achieve exactly that. So, beliefsdeskto infer the utilities of oth-
ers are becoming more complete and accurate, independeatrohunication. More
accurate state estimation essentially replaces comntionicaleams that have omni-
directional vision could probably abandon communicatittogether when using im-
plicit coordination. This is certainly not the case for @gjlcoordination, which always
fully relies on communication.

e To enable human-robot cooperation, robots will at sometgwne to rely on state es-
timation only, as humans cannot be expected to communicatestate. For instance,
lEalLQI’S.QD_QLililL(ZQbB) propose an approach that learnddughhuman navigation pat-
terns in urban environments from low-level sensors autangty. Implicit coordination
with shared belief is an intermediate step to this ideakbsitun.

Summarizing, the robots use communication as a backuprsyktbey cannot recognize
the intentions of others, rather than as the backbone af therdination. Improvements in
sensor and state estimation will therefore allow implicibalination to depend less and less
on belief communication. This is necessary to simplify camioation schemes, increase
coordination robustness, and enable human-robot coeperafthis work proposes a step in
this direction.

7.3 Implicit Coordination in Heterogeneous Teams

Due to scientific as well as pragmatic reasons, there is aiggowterest in the robotics field
to join the efforts of different labs to form mixed teams ot@omous mobile robots. For
many tasks, a group of heterogeneous robots with diverssbddies and strengths is likely
to perform better than one system that tries to encapsuiata all. Also, for many groups,
the increasing cost of acquiring and maintaining auton@moabile robots keeps them from
forming a mixed team themselves.

Therefore, the &1LO RoBoCuPPERShave formed a mixed team with theLM SPAR-

ROWS d_u_tz_e_t_a.“_zo_dél[_lsj;a_e_tmhmar_d Ja.L_ZbO4). The senstesof the UM SPARROWS
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consist of infrared based near range finders and a directedrea The available actuators are
a differential drive, a pneumatic kicking device and a paibtarrotate the camera horizontally
(180). One of the robots is depicted in Figlire I.5(c). As almdsiddots in this league, the
robots are custom built research platforms with unique@snsctuators, and software archi-
tectures. Therefore, forming a heterogeneous coopetatve presents an exciting challenge.
In the next sections, we discuss the enhancements needadht® emplicit coordination in
heterogeneous teams.

7.3.1 Action models

When applying these models on-line in a game situation,dhets must know which player
has which hardware platform to apply the correct model. Tea@ceach robot must have all
models learned for all robots on the field, as well as a magpamg player number to temporal
prediction model. This is implemented off-line.

Learning action models, in this case model trees that prédit approach time, is no dif-
ferent for the WM SPARROWSthan it is for the AsiLo RoBoCuPPERS Note that the action
the ULM SPARROWS use to approach the ball is slightly different, as no origotacan be
specified. Therefore, this action is callgdToPosi ti on. It took 40 minutes to gather the
data for this model, and the accuracy of the learned modeltees already listed in Talle%.3.

7.3.2 Sharing belief in heterogeneous teams

To share beliefs, the teams must agree upon structuresritapgulate the information they
want to exchange, and the communication framework overtwtis information is sent.

The information in the belief state contains the dynamicepafsthe robot itself, as well as
the positions of observed objects, such as the ball, teaezaad opponents. Each belief state
message is accurately time-stamped, so that delays in caroation can be registered.

The team communication uses a message-based, type safevetjbommunications pro-
tocol _thz_et_al.l_ZO_d4). It is transfered by IP-multicast,saich a protocol keeps the commu-
nicated data easily accessible and prevents subtle prograjrerrors that are hard to trace
through different teams. As the communication in a team @draamous mobile robots uses
some kind of wireless LAN, that is notoriously unstable, armection-less message based
protocol is mandatory. With this approach, network breakuoand latencies do not block

the sending robot. IP-multicast is also used to save baribdysihce this way each message
has only to be broadcasted once, insteach @imes forn clients.
The implementation uses the notify multicast module (NM{3he Middleware for Robots
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(MIrRO) _U_tz_el_aj.,l_zo_dZ). NMRO provides generalized CORBA based sensor and actuator
interfaces for various robot platforms as well as higheelésameworks for robotic applica-
tions. Additionally to the method-call oriented interfacdiRO also uses the event driven,
message-based communications paradigm utilizing the GOR&ification Service. This
standardized specification of a publisher/subscribeopadis part of various CORBA imple-
mentationsl_(_S_thj.dI_eLIaL_lfbi)__Islk_(ZbOS) describexcthx how MIRO is ported to the
AGILO robots.

Communicating the IDL-specified belief state discussedtid(Hz with all teammates
uses, on average, less than 10% of the available bandwidihstdndard 802.11b WLAN
(11 MBIt/s) U.tz.e[.a'.]_m_d4). This should be available, ewn heavily loaded networks,
such as those in&B80oCuP tournaments.

7.4 Empirical Evaluation

To evaluate the performance of applying implicit coordioin ball interception task, several
experiments are conducted, first with threei£o robots, and later with one@Lo and one
ULM SPARROWSTrobot.

7.4.1 Experimental design

Three experiments are conducted, in a dynamic, static amdaied environment. The ques-
tions we will answer with these experiments are: Q1) Do thmt® agree upon who should
approach the ball? Q2) Do the robots choose the quickest Q®?Are temporal predic-
tion models necessary, or would a more simple value suchstéande not suffice? Q4) How
robust is implicit coordination against errors in statemeation? Q5) When does implicit co-
ordination fail? Q6) How do communication quality and staséimation accuracy influence
coordination?

Dynamic environment experiment

This experiment is conducted with threes Ao robots, and in the heterogeneous team with
one AGILO robot and one UM SPARROWSTrobot. In the experiments, the robots continuously
navigated to randomly generated positions on the field. @Qnodot reached its destination,
the next random position is generated. These poses areagethauch that interference be-
tween the robots is excluded, as depicted in Fiure 1.6(a).about half an hour (18 000
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examples), the robots perform their random navigationimest Each robot records the state
estimation results locally every 100ms.

’k {9’ Prediction Ulm

Example Ulm| Agi \Who?
- -I'\I:"),--'DC.-AJ”O
Prediction Agilo Lilo
Example|UIm| Agi Who?|.
0/5.3s/3.4s Agilo|lm

% 1/5.45/3.2s Adgilo

@. ..

D 17998/2.1s| 4.2 | Ulm

(a) Random navigation without interference. (b) Log-files collected in the dynamic experiment.

Q‘\‘i\@

Figure 7.6. The dynamic experiment. The same experimenises @nducted with three
AGILO robots.

Figure[7.6(0) displays which information is gathered inteémy file in the experiment
with three AGILO robots. Apart from recording the temporal prediction focleaobot, the
robots also record who they think should approach the ba#iattime, without ever actually
approaching the ball. This allows much data to be recordetbrB the experiment, the robots
synchronize their clocks. The times stamps can therefous®eto merge the three distributed
files for further evaluation after the experiment.

Static environment experiment

In the previous experiment, it is impossible to measuredftdtmporal predictions are actually
correct, and if potential inaccuracies caused the robasmate of who is quickest to be
incorrect. Even if robots always agree on the same robd,ishof little use if the robot is

not indeed the fastest. Therefore a second experiment ducted. During this experiment,
the goal to approach is fixed. First, the robots navigate hdae positions and wait there.
They are then synchronously requested to record the samas@ the first experiment, but
only for the current static state, as shown in Figure 7.7)en, one after the other, the
robots are requested to drive to the goal position, and thbapproach duration is recorded,
see Figur¢ 7. 7(b). The log-files so acquired are almostiiclrib the ones in the dynamic
experiment. The only difference is that they also contas dbtual observed time for the
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robot. This static environment is less realistic, but aidive predicted time to be compared
with the actually measured time for each robot.

U afterwards... Observed
Predict: Episode |UIm | Agi /\Who?|
U: 1.2s * Predictic;n1ljln—1” I,'?o
. Episode | Ulm| Agi |Who?[:
A goes Prediction Agilo I}:ﬂnolﬂ
. Episode | UIm| Agi Who?[.
ﬁrSt 1/1.25|3.3s| UIm |im
L. P 213.75/3.65 Aqilo_
3.2s 200/3.95/ 5.4 | Um
(a) Step 1) Navigate to a random posi- (b) Step 2) Take turns (c) Log-files collected in the
tion, wait there. Record predictions. approaching the ball and  static experiment.

record observed result.

Figure 7.7. The static experiment. The same experimensesanducted with three@&LO
robots.

While executing this experiment, we realized a method taimeghe same data off-line.
The two log-files are identical to the log-files gathered wheanning the prediction model,
as they also contain the current state, the goal state, ance#th approach time. So, off-
line, two samples from both temporal prediction log-files @inosen randomly, and added the
predicted approach time for both robots. In order to do timg, sample of each pair had to be
transformed, so that the goal positions of both samplesmten This data is the same as we
would have acquired during the experiment. In a sense, itda enore realistic, as the robot
is moving in almost all samples, whereas it would have beasticst the experiment had been
conducted on-line.

Simulated experiment

Here, the experimental set-up is identical to the dynampedarment. The simulator presented
in SectiofB.2 in AppendikB allows us to vary two variableattmost strongly influence the
success of implicit coordination. The first is communicatjality. At random times, and for
random durations, communication is switched off in botlediions. By controlling the length
of the intervals, we can vary between perfect (100%) and % @mmunication. The second
is the field of view of the robot. We can set the view angle ofrtmot’s forward facing camera
between 0 (blind) and 360 (omni-directional vision) degreehe other robot and the ball are
only perceived when in the field of view. Gaussian noise witltaandard deviation of 9, 25
and 22 cm is added to the robot’s estimates of the positiotselfj the teammate and the ball
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respectively. These correspond to the errors we have dxservthe real robotm al.,
). Since the dynamics of the.d SPARROWS needed for simulation are not known,
this experiment is only conducted with three WO ROBOCUPPERS

Field of View Communication Quality
360°  225° 90° 100% 50% 0%

@&X @& @&
@& @& @ |
&X @& @&

Figure 7.8. In the simulated experiment, the field of view anthmunication quality can
be controlled. The experiment itself is identical to the a@ymc experiment in
Figure[Z®.
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Using the results of these experiments, we shall now andweeqtestions presented at the
start of this section.

Q1) Do the robots agree upon who should approach the ball?

To answer this question, we simply determined how oftenabts agreed on which robot
should approach the ball. The results are listed1h 7.1, énrthv labeled “Chose the same
robot?”. Given the accurate estimates the robots have ¢f @her’s states, and the accurate
predicted times that arise from this, it should not be ssipg that the robots have almost
perfect agreement (99% for agilo, 96% for the mixed team) ba should approach the ball.

Action Model Distance
Agilo Mixed | Agilo Mixed
Chose the same robot? | 99% Q1 96% 99% Q3 95%
Chose the quickest robot? 96% Q2 92%| 81% Q3 68%

Table 7.1. Accuracy of implicit coordination with sharediege

120



Section 7.4 Empirical Evaluation

Q2) Do the robots choose the quickest one?

Agreeing about who should go to the ball is of little use if di®sen robot is not actually the
quickest. Therefore, we would also like to know if the chosabot is actually the quickest
one to approach the ball. Of course, this could only be deterdnin the static experiment, in
which the actual times it took each robot to approach thedvaltecorded. A robot’s decision
to coordinate is deemed correct, if the robot that is thelggstwas indeed predicted to be the
quickest. In the experiment with three agilo robots, thetslare correct 96% of the time, and
in the mixed team 92%, as listed in Tablel7.1.

Q3) Are temporal prediction models necessary, or would a mor e simple value
such as distance not suffice?

Using distance as a rough estimate of the approach time,rmid({zMuLLa;La.n.d_Smlzeab.drg,

), would save us the trouble of learning action modelhodgh time is certainly strongly
correlated with distance, using distance alone leads tofgigntly more incorrect coordina-
tions. The last column in Tab[e"T.1 shows this. Agreementilisvery good (99%/95%),
but the robot that is really the quickest is chosen only 8 BY/®f the time. So, when using
distance, the robots are still very sure about who shouldoggb it, but they are also wrong
about it much more often.

Q4) How robust is implicit coordination against errors in st ate estimation?

As we saw, almost perfect coordination is achieved in theadyin experiment. This is not
SO surprising, as the robots have very accurate estimateaabf other’s states. To analyze
how noise in the estimates of the other robot’s states infle®roordination, we took the
original log files of the three AiLO robots, and added Gaussian noise of varying degrees to
the estimates that robots have of each other’s paseg/{l:]). The predicted times are then
computed off-line, based on these simulated log files.

The results are shown in Figurel7.9. The x-axis shows thelatdreviation of the Gaussian
noise added to the data. So the first column, in which there edded noise, represents the
results of the dynamic experiment with the three1ro RoBOCUPPERS which had been
listed in Tabld_Zll. The y-axis shows the percentage of elesrip which 0,1,2 or 3 robots
intend to approach the ball. Of course, ‘1’ means that coatthn succeeded. This graph is
only generated for the initial experiment with threelA0 ROBOCUPPERS

We can clearly see that coordination deteriorates whentsodbm not know each other’s
states so well. If you have a robotic (soccer) team, and kinevwstandard deviation between
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the robot estimations of each other’s positions, the grapésgan indication of how well
implicit coordination would work in this team.
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Figure 7.9. Influence of simulated state estimation errarsnplicit coordination.

Q5) When does implicit coordination fail?

In the log files of both the homogeneous and heterogeneonsiewe labeled all examples
in which exactly one robot decided to approach the ball Vdtitcess, and others with
Fai | . A decision tree is then trained to predict this value. Tlagrled trees are represented
graphically in Figurd_Z.10. For both prediction models th@mrule is that if the difference
in predicted times between two robots is small, coordimeitsdikely to fail, and if it is large,
it is likely to succeed. This is intuitive, because if thefelience between the times is large,
it is less likely that adding errors to them inverts which ¢inis the smallest. Note that in
between these two limits, there is a 'gray’ area, in which sather rules are learned. They
only accounted for a small number of example, so for clantydo not discuss them here.
Humans also recognize when coordination might fail. Fongxa, in sports like soccer or
volleyball, it is sometimes not completely clear who shagdor the ball. Humans solve this
problem by making a brief exclamation such as “Mine!”, or &ve it!". So in these cases,
humans resort to explicit coordination and communicate theentions. Not only do humans
have utility models of each other to coordinate implicithgy are also aware when confusion
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Difference in predicted times (s)

1] 0.40 0.85
. Coordination
Only Agil
Y Rare - Succeeds
0 0.48 1.48
Mixed Team Coordination
Succeeds

Figure 7.10. Representation of the decision trees thatgireaordination success.

might arise. The learned decision tree essentially previde robots with similar awareness,
as they predict when implicit coordination failure is ligeB5o, they can be used to determine
when robots should resort to other methods of coordinafoninstance, soccer robots could
have a simple locker-room agreement that when coordindidure is predicted, the robot
with the higher player number should approach the ball (ekol the goalie).

.

Figure 7.11. Example of implicit coordination with failupeediction. Solid green lines repre-
sent that only one robot would approach the ball at this mrsiDashed red lines
show when coordination is predicted to likely fail. The redbmust all approach
the ball from the right.

In Figure[Z1l, we present an illustration of how such falprediction can be used in
practice. It is easiest to understand this image if one imeggihat the robots are standing still
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Chapter 7 Task Context: Multiple Robots

at the drawn positions, and the ball is rolling slowly fronft i@ right. At every 5¢cm of the
ball's trajectory, the robots determine who should apphndhe ball at that time, using implicit
coordination. After ball interception, their goal is tolabie it in this direction. The robot that
is chosen to intercept it is connected to the current badi&tpn by a solid green line. When
the decision tree predicts that coordination might faig tbbots between which confusion
might arise are both connected to the ball’'s position by alested line. Note that this image
was generated in simulation, not with the real robots.

Q6) How do communication quality and state estimation accur acy influence
coordination?

The results of the simulation experiment, which show howptiormance of different coor-
dination strategies depends on the quality of communicatma the field of view, are depicted
in Figure[ZIP. Communication quality is the percentageaufkpts that arrive, and field of
view is in degrees. The z-axis depicts coordination sucedsish is the percentage that only
one robot intends to approach the ball. The computationaetsoof the different forms of
coordination are repeated below these graphs.

Since explicit coordination is based completely on comroatidn, it is not surprising that
it perfectly correlates with the quality of the communioati but is independent of the size
of the field of view. No communications means no coordingtamd perfect communication
means perfect coordination. For implicit coordinationh@iit communication, the relation is
converse. If arobot is able to estimate the states of otlegtarbit is able to coordinate better.
The third graph shows implicit coordination with belief tet@xchange (as used on our real
robots). If the robot has another in its field of view, it detéres the other’s state through state
estimation, otherwise it uses communication (if possitdexchange beliefs. These states are
then used to predict the utilities of others, independethiay are perceived or communicated.

This graphs clearly verify the hypothesis from SecfionT'tBat implicit coordination with
belief exchange achieves better performance with comratiaitloss than explicit coordina-
tion alone. Instead of complete coordination failure inecakcommunication loss, there is a
graceful decay, because a second system based on stai@iestican still be used to estimate
the utilities of others. In Sectidn"Z.2.1, we also hypothegdithat improvements in sensors
and state estimation would allow robots to acquire more ratetand complete belief states,
and rely less on communication for coordination. The armothe third graph in Figurie—Z12
represents this trend.
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State States of State States of
Estimation Others Estimation Others
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My Joint My Joint My Joint
Action Utility Model Action Utility Model Action Utility Model
Explicit Coordination Implicit Coordination Implicit Coordination (SB)

Figure 7.12. Results of the simulation experiment, whicbmshow the performance of co-
ordination strategies depends on the quality of commuioicand the field of
view.

7.5 Related Work

7.5.1 Explicit and implicit coordination

Previous research on cooperation focusses almost exelpson explicit coordina-
tion G_etkegLa.n.d_Maladi, 3). On the other hand, work on implicit coordinatiomally
assumes that all agents have access to a central and glptedentation of the world, which
is enabled by simulation, as ||J_(S_en_dt La.L__:l994), or glokatgption, as in the ®&8oCupP
small-size Ieagud.ﬂan&.a.n.dﬂ&.ell.h_ﬂOb.QA[eLos_o_'e 1960all this work, teammates
are not reasoned about explicitly, but are considered to & ranvironment entities, that
influence behavior in similar ways to obstacles or opponents

lsmne_andmmg) deal with the issue of low band-wedthmunication in the simu-
lation league witHocker-room agreements which players agree on assigning identification
labels to certain formations. During the game, only thebellg instead of complete forma-
tions, must be communicated.
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Chapter 7 Task Context: Multiple Robots

Man.d.ﬁlo]zenb.drg_(zd%) combine implicit and expliciordination to achieve ball

approach coordination in the simulation league. Firstheabot determines the distance of
each teammate to the ball. Based on this, each agent dekidesliapproach the ball or not.

Coordination is still explicit, because the agent who desitb approach the ball first must
‘lock’ a shared resource, which prevents other robots froiasig after it. The use of this
global resource requires communication.

Most similar to our work that olfAla.iJ_a.n.dALeldsJL(Zd03), in whirobots in the legged-

league also coordinate through implicit coordination watmmunicated states. Communi-

cation is essential, and assumed to be flawless. It is nostigeged how communication
loss influences coordination. The utility measure is a surhealristic functions, which are
represented as potential fields. Our utility models are igded in observed experience and
have a well-defined meaning. As the heuristic functions mavelear semantics, customizing
these functions to individual robots is difficult. Howevtris customization is essential for
achieving efficient coordination in a heterogeneous teatn mbots with different dynamics
and capabilities.

lB.u.Qk_et_a.'. |(20_de) describe a method in which robots are @sodinated by predicting
approach times locally. The motivation behind this workhiatta framework for communicat-

ing state was already available, and using implicit coatiom with action models was simply
easier to implement than novel utility communication anuitesition modules. The research
in this chapters extends this work by making a comparisorxpli@t and implicit coordina-
tion, learning models of when coordination fails, and eimagptoordination in heterogeneous
teams.

7.5.2 Action recognition and imitation

Implicit coordination requires an agent to be able to recgthe intention of an agent. In
our work, the intention to perform an action is directly ded from the utility of performing
this action in the current situation. In humans, intentians not only determined based on
utilities of actions, but also on the current behavior ofengh The first determines likely future
actions based on affordances, whereas the latter detesmatiens that are in the process of
being executed.

This requires the actions of other humans to be recognizad abstract level. An example
IS Ea.t.temn_edal[_zdos), in which high-level human natign patterns in urban environ-
ments are learned from low-level sensors autonomBu@yce human actions are recognized

1A manual approach to this solving problem is presenteml@D.
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at an abstract and/or goal-oriented level, they can be dejeex or imitated by the robot that
witnessed it, despite possible differences in the bodietmdf.l.D_ea.Ld.en_a.n.d_D_emjrils_(ZdOS)
for instance, have their robot learn to recognize human ledapping, and imitate it with its

gripper. Other work where abstract actions are recogninddteen reproduced or imitated by

robots includeéiMmﬂHﬂd&Mpﬁ.ﬁﬂdﬁM;ﬂ(‘Mﬂi;LEﬂhﬁgﬂﬂﬂ.ﬁle%).

The most sophisticated and complex application of actisoggition is human-robot co-
operatlon as proposed ||J_(Zha.ng_é El_idBB__B)ndelLand .N.ouLba.Ishsh_elJaIL_ZdOS)
l. I_lQ_EbQ) a human and a robot cooperate and icatedtheir actions to per-
form joint assembly tasks, being the construction of togeiftBaufix” construction kit parts.
The interesting aspect of this work is that the robot pdytiestimates the state and intention
of the human through vision-based state estimation, bataisits disambiguating statements

from the human through a natural language interface. A trgoiton of an example dialogue
between the human and robot is givenl.Ln_(_Kn.olLa.n.d_G_LOdlinefL’lz. This multi-modal ap-
proach essentially combines implicit coordination (bagedts state estimation) and explicit
coordination (based on communication of natural Iangual&e)sLQLeLdl.L(zo_(bG) describe a
more recent version of this system.

As the number of actions in robotic soccer is limited, andelzee little ambiguities between
them, we have chosen not to focus on action recognition, dher on the simpler task of
determining intended actions based on utility prediction.

7.5.3 Heterogeneous teams

The idea of cross team cooperation has some tradition witierR0BOCUP leagues. In the
simulation league, the source code of many teams is pullishéhe Internet allowing new
participants to base their new team on previous particgpaigimulation league tournaments.

The most similar mixed team cooperation effort was the Az&obot Team, a mid-size
team from various ltalian universities. They also used agpetary) publisher/subscriber
communication protocol, utilizing UDP. This team used &iptoordination (i.e. with utility
communication) to assign roles among the field pla 1 I.LZ)LI)O). Unfortu-
nately the Italian national team was dissolved after tb@ ®&uP tournaments in 2000.

One of the most successful mixed teams mBRCUP is the GermanTeam, which partici-
pates inthe legged- Ieagllm_(_R_l)EOOZ) The GermanTeapvoigperation of five universities
participating with one team and one code repository. Théaxge and integration of soft-
ware is enabled by a standardized hardware platform, asasellmodular software design.
The challenge we face is to integrate different hardwaréegys and software architectures,
for which integration has never been a primary goal. A bottgndesign, such as the Ger-
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manTeam has, would require complete rewrites of all system#stead we chose a software
package that extends each individual software architectur

Many RoBoCuP teams acquire coherent and complete beliefs by commumdcatid shar-
ing their belief states. The use of shared representatiasgwobably one of the key reasons

for the success of the Freiburg mid-size tela.m_(,Di.eLeLleIZﬁDi).

7.6 Conclusion

Whereas humans coordinate with little or no communicatiobots usually rely on extensive
communication of utilities or intentions. In this chapteg present a framework that enables
robots to reason about the utilities of others in a ball ception task, and coordinate their
global behavior by making only local decisions, based onatt#®n models and states of
the other robots. Unfortunately, the state estimation tsr@lable enough to accurately and
robustly determine the states of others, so it is necessatgrimunicate belief states. We
motivate why state communication is preferable over ytddmmunication. The robustness
of implicit coordination is demonstrated in both a homogrreand heterogeneous team of
soccer robots.

We show that action models outperform more simple perfoomaneasures such as dis-
tance, and that action models can be learned for robots ef tehms. Due to the redundancy
in using both state communication and estimation, impdicdrdination is more robust against
network failures, which we evaluate experimentally. Thesgects must be taken into account
when transferring multi-agent research to multi-robotrisaand is a contribution to both
fields.

The results reported in this chapter have been published(Stulp et a|.,|_ZOD_€ka;

WL@MMM&MWW@ Summaries

of these publications are given in Appenflk D.
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8. Conclusion

8.1 Future Work

In Chaptef#}, we demonstrated how the robots learn accuctitmanodels for actions with

up to 8 parameters. We expect that for a higher number of diraes, (partially) specify-

ing feature spaces manually and using tree-based induttigint not yield accurate models
anymore. How can more accurate models be learned, espdoialiigh-dimensional feature
spaces?

Gather data on-line. In this dissertation, data for training the models was aegluby ex-
ecuting actions with parameterizations sampled uniforimdyn all possible parameter
values in an off-line phase. An alternative is to gather datdine during the execution
of real-world tasks. This measure will likely have a very ifigs impact on the accu-
racy of the learned models. First of all, since data gatlgasthen not done off-line, but
parallel to actual robot deployment, more training dataciguared. More importantly
though, the training data contains action parameterizatibat are not generated ran-
domly, but rather arise during actual operation. In genéralto be expected that future
experiences will be similar to past experiences. Theretbeetraining set (experiences
from past actions) will be from the same probability digitibn as the ‘test set’ (future
experience from yet to be executed actions). In a sensetdtiergrity assumption is
fulfilled with respect to future unseen actions. The statrdyg assumption is necessary
to guarantee that the learned model is probably approxiyneterect with respect to
unseen exampIeE_(Buss.eLLa.n.d_Ndr{Li.g,_iOOB).

In the service robotics domai i J:[LdZOO7) destrate empirically that
training models with data gathered on-line improves theaahodel accuracy during
operation. We could image that robots operating in a vagétgal world environments
could first be provided with default general action modedsred from uniformly dis-
tributed examples. When the robot is put into operationtaitts gathering data itself,
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and retrains the action models with this data. It is to be etquethat the models so ob-
tained will be tailored to the context the robot is actingangd therefore more accurate
in than the general default action model.

Other learning algorithms.  To deal with high-dimensional spaces, we will use other
learning algorithms, which explicitly address the cursdiofensionality, in both classi-
fication (Cristianini and Shawe-TayIJ)_L__Zd)OO) and reg@s Mia;LakumaLe[_AlL_m_d)S).
The latter method, which is based on Locally Weighted ResyoegLWL), will be espe-
cially useful for on-line learning with large state spadeA/L is alazylearning method,

which means that all experiences are explicitly stored iatalthse. This is done in real
time from the continuous stream of training data. Queriesaaswered by construct-
ing a local model from data similar to the query. In the netanesghbor approach for
instance, the value of the data point closest to the quemstisred. LWL uses a more
complex model, by interpolating between data by perforniaoglly weighted regres-
sion. Often, robots with many degrees of freedom will onlg@amter a small subspace
of all possible configurations during execution. Lazy l&agrexploits this by storing
only data that is actually acquired during execution. Agalasly, local models are only
constructed using the actually observed data, assuminghtatationarity assumption
holds.

Apart from learning more accurate models, future work afsdudes the acquisition of
different types of action models. What different types df@acmodels can robots learn? And
what novel application might action models have?

Learning and optimizing other performance measures. In this dissertation, execu-
tion duration was used as the performance measure. Actidelsioould also be learned
for energy consumption, for instance. By combining différaction models, robots are
able to optimize multi-criteria performance measures. [@3csying objective functions
that consist of the combinations of both energy consumgdiwh execution duration,
they can both be optimized. By weighting individual perfamae functions differently,
the function to be optimized can be customized to specifioates. For instance, in
mid-size league robotic soccer, with its short constantatpmn time 15 minute, speed
is far more important then energy consumption. In servi@m®tics it is the other way
around.

Learning effects at the action parameter level. We have also done some preliminary
work on learning the effects of an action on a parameter lekel instance, even if
an action’s parameters include the target locatigny,, it is not likely that the robot
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will reach this location perfectly. By comparing the truedfifocation with the target
parameters, the Pioneer robots are able to learn the agamdcobustness of an action.
This could enable the robot to make well-informed decismm&ow to parameterize an
action. For instance, the learned models showed that a &ightttranslational velocity
causes the robot to reach the target less precisely. If attaggds to be reached with
high precision, the robot could choose to select a lowestedional velocity.

Adapting to changing actions. In this dissertation, we have assumed that durative ac-
tions are ‘innate’ and do not change over time. Learning risode-line during task
execution would not only lead to more accurate models, tag ahables the robot to
update the action models when an action has changed.

8.2 Final Summary

To adapt to novel environments and tasks, agents must bet@ldarn. Learning means
experimenting, observing the results of experimentataond generalizing over that which
was observed. Forward models, which predict the outcomeatbmtommands, are good
examples of knowledge that humans learn from experienceysato adapt to novel contexts.
The concept of a forward model can be extended to action rmpdaéich predict the outcome
of durative actions. We show how robots can acquire sucbraatiodels.

On the other hand, domain knowledge formalization as wedlledraction and reasoning
capabilities are currently not yet at a stage that enablastsdo robustly acquire declarative
common-sense knowledge autonomously. Therefore, it isvommthat such knowledge on
whatto do in the first place is specified by human controller designThe key idea in this
dissertation is to merge this human specification with ledraction models, as they comple-
ment each other well.

To do so, we develop a framework in which action models aregiatted in a controller,
partially specified by human designers. The action modedblerthe robot to autonomously
answer questions that designers find difficult to answer sedves, even for their own actions.
We realize several applications of action models, with apleasis on answering questions that
arise when applying existing actions to novel task contexts

e Subgoal refinement optimizes action sequences with dgrsakcified subgoals, by
extracting free action parameters, and optimizing theni waispect to the expected
performance, predicted with action models. The resultimgion is more efficient and
fluent.
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e Condition refinement and subgoal assertion, in which preitioms are refined by learn-
ing when executing an existing action will succeed at aghgmovel goals. Failure pre-
diction is resolved by introducing intermediate goals,ahare optimized with subgoal
refinement.

e Implicit coordination enables robots to coordinate thetians by reasoning about the
utilities of others, using action models and knowledge alttoel states of others. Coor-
dination that relies on state estimation and communicasianore robust than relying
on communication of utilities alone.

We demonstrate that enabling robots to refine and improve délséons and planshem-
selvesnot only alleviates the designer’s task, but also improliesrobot’s performance, au-
tonomy, adaptivity and robustness. Robots can only do $@if kearn to predict the outcome
of their actions from experience, as we do ourselves.
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A. Action Libraries

A.1 Action: goToPose

This is a navigation action that takes the robot to a targsttipn with a target orientation
and speed, and returns the desired translation and rahtietocity. It is implemented by
computing an intermediate position behind the goal posey&hehind is defined in terms of
the orientation at the desired pose. This intermediateipagilP) behind the desired pose is
then approached. As the robot closes in on the IP, the IP appes the final goal pose, thus
luring the robot towards the desired position. Since thetaohtially approaches the goal pose
from behind, it is has the correct orientation one the goakps reache jas
) outline a very similar method. Some example episoflésis action were visualized
in Figure[4.2.

This navigation action was used on the&lA0 robots previously with the Pioneer 1 con-
trollers. With different parameterizations, it could alsused for the AILO robots with the
RoBOTEQ controllers, as well as the simulated B21.

A.2 Action: goToPosition

The ULM SPARROWSTrobot is from a different research group altogether. Tieesfwe have
no knowledge of how thgoToPosi t i on of this robot was implemented. The interesting
aspect of learning and applying action models is that théadmpntation of the action need not
be known, because the models are learned from observedibgelmai an analysis of the inner
workings of the robot. However, it is necessary that actiarameters are known, as the robot
must known with which variables the action model should lberled and called. These are the
same as for thgoToPose actions, with the exception that the target orientatiomoare
set. It also returns a motor command that contains desiaadlation and rotational velocity,
though this knowledge is also irrelevant for learning orlgimg action models.
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A.3 Action: reach 2y

The exact implementation of this action was also not knowimadl been previously developed,
and integrated in the B21 model in the Player module of thgd?I&tage framework. For this
reason, the exact representation of the motor command lgweatn. Again, the signature of
the action was known, and listed in Tablel2.1. The x,y,z cioattés specify the 3-D location
of end of the arm relative to the robot body, and the ax,ajpaangles of the gripper relative
to the arm.

Again, the action parameters are all that is needed to ac@miraction model. The same
holds for humans. Although we have several inverse modet®(e) to reach for objects, we
are not aware that there are several of them, and find it diffioulexplain exactly how we
perform this actiorl_(_Ha.an_eLla{l_,_Z(i)Ol). We simply do. Nib&t this does not keep us from

learning forward models (action models) for these actilEdm(a.ga.n_eLaltlL_mbB).

A.4 Action: reach (powercueg)

In the POWERCUBE domain, the state is represented in joint space with thesaragld angular
velocities at both joints andb: 6, 62, 6°, ¢b. Ther each action on the BWERCUBE takes
the arm from one state to the next using a ramp velocity-grofihe ramp has three phases:
acceleration, cruise speed, de-acceleration. Each joteterates with a constant acceleration
value, reaches the desired cruise speed and stays thdiiehadins the de-acceleration phase,
which is done also with constant acceleration. The trajeetf both joints are synchronized
so they begin exactly at the same time, and have the samélenbis allows us to control
the combined speed of the end-effector of the arm at destegdss by decomposing this
speed and direction into the appropriate velocity for eaafitj A PID controller sends power
commands to the joints to allows fine control of the actionsThthe only action that has not
been programmed in C++, but in Python.
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B. AGILO RoBOCUPPERS: Hardware
and Tools

In this appendix, the hardware of thesA.0 RoBOCuPPERSWiIll be introduces, along with
some of the tools used in controller development.

B.1 AGILO RoBOCUPPERS hardware

The AGILO team is realized using inexpensive, off-the-shelf, easitgndible hardware com-
ponents and a standard C++ software environment. The teasist® of four customized
ActivMedia RONEER | robots kAﬂhLM.ed'La_RQ.me&i_lQ.b& (2); one of which is dgged in
figure[B1. The robot has a controller-board (2) and diffée¢mirive (3). For ball handling,
the robot has a passive ball guide rail (4) and a spring-bksé&thg device (5). The only
sensor apart from the odometry is a fixed, forward-facin@icGICD Firewire camera with a
lens opening angle of 9406). All computation is done on a standard 900 MHz laptop with
Linux operating system (7). The robot uses a Wireless LANa#e(8) for communication
with teammate a{L_ZO_de).

During the research, we upgraded the controller boards thenoriginal board delivered
with the RONEER | robot to the RBOTEQ AX2550 board l(BQ_b_Q_LQQ_I_dMM). Models
have been learned for both robots. When discussing thesésrofe shall normally refer to the
version with the novel BBOTEQ board, and explicitly mention when the originaldiREER |

board was used.

B.2 Simulator

Robot simulation in general is a powerful tool for the depah@nt of autonomous robot con-
trol systems because it allows for fast and cheap predietrthmakes experiments control-
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Wireless LAN (8)

CCD Camera (6)

Pioneer | Board (2)

900Mhz Laptop (7)
Pioneer | Base (1)
Kicker (5)
Differential Drive (3)

Ball guide rail (4)

Figure B.1. The hardware components of thell2o soccer robots.

lable and repeatable. The first step in developing or adgstiils for our robots is made in
the MRose simulatOL(B.u.Qk_QIJa]L_ZO:bZa). The main featuféseoMRose simulator shows
its focus on learning and designing controllers:

Accurate dynamics. The skills designed in the simulator can only be used on thé re
robots if the dynamics of the simulated robots is similanegioto that of the real robots.
Therefore, the dynamics have been learned using neurabretyfrom experience ob-

served on the real robo{s_(_B_u.Qk_el la.L_ZdOZa).

Fast. To learn actions and action models, sufficient experienegli¢o be available. To
quickly gather sufficient data, it is essential that simolatis an order of magnitude
faster than the real world time. The learned dynamics fatdithis, as well as simu-

lating the robots in only two dimensions. These featureblende simulator to run at
100x real-time.

No state estimation. Sensors and state estimation are not part of the simulat@rinac-
curacy and uncertainty that arise from sensing and stateasin are simulated.

We have equipped the physics engine of the MRose simulatbramew Graphical User
Interface, written in QIJ_(ILO.LLIQ_&ILZQbS). This GUI allowrse controller to visualize internal
parameterizations in the field, as shown in Fidurd B.2. Hibeblue circle is the intermedi-
ate goal, and the yellow circle the final goal. Circle radndi¢ates the desired translational
velocity. Such information is very useful for debugging. eTélider below allows the sim-
ulation acceleration to be set. It can be set from 0.1x (slation), over 1.0x (to monitor

136



Section B.3 Evaluation with Ground Truth

AGILO Simulator DI

it | | 1.00

Figure B.2. The Qt simulator GUI.

real-time behavior) to 100x (to gather data) real-time. figlel display can be turned off to
have the simulated world to run at top speed. The simulatoratso be started without the
GUI, allowing many examples to be gathered in little time

B.3 Evaluation with Ground Truth

Evaluating dynamic robotic multi-agent systems as in rigbsdccer is difficult for several
reasons. Since these systems are dynamic, it is difficuthptuce the state of the world at a
certain time or at certain time intervals without interfgyiwith the course of events. How to
accurately measure the position of a robot, if it is travghh 2m/s? Robotic platforms usually
suffer from noisy sensors and hidden state. A robot’s bekdfout the world are therefore
incomplete, uncertain and inaccurate. How to determingevaeoboteally was, if you only
have its belief state to judge by? Multi-agent systems aspiire that several subsystems
are evaluated at the same time, as well as the interactiows&e them. Furthermore, for the
experiments presented later, it is important that the éggare controllable and reproducible.
For these reasons, we have used our ground truth syglem_ﬁni J_ZQO_ZIa). This vision-
based system can automatically provgteund truthabout the state of the world in dynamic
robotic multi-agent systems. It is very similar to the glblaaw cameras use in thed8oCup
small-sized league. It consists of one or more cameras rad@afiove the field looking down-
ward. Each robot has a distinctive top-marker that is easletect by these cameras. Since
the cameras are static, and can locate the markers prectgslyields very accurate data on

137



Chapter B AGILO RoBOCUPPERS: Hardware and Tools

the location and orientation of each robot on the field.

The ground truth system consists of two cameras with an agerigle of 90, at a height of
approximately 3m above the field. The cameras are facing dawd) and together they cover
the whole training field, which is 6.4m x 10.4m. The robots baristinguished from one an-
other using color markers, exactly as in done in tle8BCUP small-size Ieagu@ws,

). Each camera grabs images at a rate of 15Hz. The firgeimarigurd B.B shows an
example of such an image. The images are then segmenteddrysoig the look-up tables
generated during color calibration, as the center imagei@frE[B.3 shows. The acquired
blobs are then filtered according to size and shape. Withdhéguration of blob groups, the
position, orientation, team and player number of each roantbe determined.

["—W

(a) Original image. (b) Relevant blobs. (c) Monitor view.

Figure B.3. Intermediate steps in ground truth image piogs.

This information is logged in a log-file, together with thdibestates of the other robots. It
can also be communicated to the robots themselves, as wie# psogram uses to monitor and
display the state of the world, as can be seen in the last iffigged B.3. In this example, there
are two robots, whose self-localization is displayed ireblliheir actual position, determined
by the ground truth system, is displayed as a white line, tdre af which indicates the robot’s
center. The orange ball is where robot 3 beliefs the ball f@bd the ground truth position is
displayed in red. This graphical display allows us to makiekgan-line inferences: “Robot 3
is localized very well, and has localized the ball reasonpd®bbot 1 is not localized that well,
but good enough for performing useful behavior.”

To determine the accuracy of robot localization by the gdbtrath system, we placed a
robot with marker on fifteen different positions on the fieldle measured the actual position
by hand groundground truth, so to speak), and compared it to the pose dstinty the
system. For the localization of the robots we have an acguwt0.3 to 5.2 cm and for its
orientation 1 to 2.3 Apart from the accuracy, another important issue is whedlraarker is
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detected at all. Three experiments, describeb.in.(ﬁlu]ﬂ,h@&la), were conducted to deter-
mine the robustness of marker detection. In a static enwigart, the number of false positives
is only 0.1%, and the number of false negatives is 1%, averager all eight markers. This
last value is 2.5% in dynamic environments.

2.3.1 Providing robots with the global state

Having access to the global game state also allows a thoeuajhation of the action selection
module, independent of the inaccuracies and uncertaithizg¢srise from the state estimation
performed locally on the robot.

In our system, the first step in developing or adapting contettines is made in the MRose

simulator,ﬁu.ck.eLAlLZO.QlZa). This simulator has an adeusmrned model of the robot dy-
namics, and can simulate multiple robots on one field in praising the same controller the
robots use in the real world. Even though this simulator leesignodels of the environment,
the low-level routines do not map to the real controller petlfy. Testing of the controller
on the real robot is necessary to fine-tune the low-levelimest Without ground truth, this
is difficult, as the robot’s imperfect state estimation nsaisedifficult to see the effects of
changes to the low-level controllers, because unexpeabdvior might arise due to false
self-localization.

To make this process easier we have enabled functionalifyrdwide the robots with
the global state, as computed by the ground truth cameras iglexactly the same as in
RoBoCupP small-size league. Using this set-up, we can test the robatsrol routines, with-
out depending on state estimation.
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C. Tree-based Induction

C.1 Decision Trees

A decision tree is a flow-chart-like tree structure, in whinkernal nodes denote a test on
an attribute, a branch represents an outcome of the testhaneaf nodes represent class
labels or class distributions. The famous decision treemmbyI.RusselLand_N.Qn]i&_(zdos)
from the textbook “Artificial Intelligence: A Modern Appraf” is depicted in FigureCl1. An
example set of attributes can be classified by traversingyéee choosing branches based on
the attributes in the example and the test in the nodes, aimgiaf is reached. The class in
this leaf is the classification for this set of attributes.the example, the waiting for a table
is decided on evaluating the attributeat r ons?, Wi t Est i mat e?, etc, until one of the
decision leave¥es or No is reached.

Decision trees can be learned from a set of examples, whiasistoof specific values as-
signed to the attributes, along with the value of the targggsc The decision tree is induced
by a process known as recursive partitioning. At the stérthe training examples are at the
root. A certain attribute is then chosen, and the examplkegartitioned inta: sets, one for
each of then values the attribute can take. In each set, all examplesthaveame value for
the chosen attribute. This partitioning continues reeeigion the set in each node, until all
or most examples at each node have the same target value.

The first issue in decision tree induction is which attribit@se to partition a set of exam-
ples. The ideal attribute would separate the examplespuate sets in which each example
has the same target class. Because such an ideal attritaftensnot available, airmpurity
measuras defined, which expresses the impurity as a real value. €bision trees algorithm
we usel(lMlLen_a.nd_ELal'llk_ZiOS), implements the C4.5 a@rl@@:&), which uses
the entropy/ as an impurity measure. The entropy of a Sewith target clasg which can
take the values,, . .., y, Is:
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Patrons?

none some full

L
‘ |Yes| | WaitEstimate? |

I

>60  30-60 10-30_ 0-10
no yes no yes
/ \ / \
| Reservation? || Fri/Sat? | |Yes | | Alternate? |
no yes nO/ yes nO/ \yeS
/ \ L \
|Barz | | Yes| - | Yes | | Raining? |
no/ >\/es no/ \yes

Wel [ Wl [

Figure C.1. A decision tree for deciding whether to wait fortable. Adapted

from ¢RussﬂLa.nd_N.Qmid._2Qb3).
— - _bi pi
I(S) = ;1 |S|log2|5| (C.1)

In this equationp; is the number of occurrences gfin S. Given this formula, the entropy
gain is defined as the entropy of the original set minus theaneimy entropy after splitting
the set based on some attribute

S|
B

Here, S, is the subset of in which the value of attributel is v in all examples. In the
algorithm used, the attribute used to split a set is the otlethve largest gain.

The second issue is when to stop splitting. If splitting awnes until all leaf sets are pure,
the decision tree will not likely generalize to unseen cakesto overfitting. One solution to
this problem is stop splitting once the impurity of a leasll#elow a certain threshold. Another
solution is to generate a very large tree, and prune brartblaeseflect noise or outliers. In
this approach, a subset of the training examples is usechergie a very large decision tree,
e.g. with pure sets at the leaves. Then, the remaining @idata is used to prune the tree.
Two leaf nodes are merged if the prediction error on the aéilich set is less with the resulting

gain(S,A) =1(S)— I1(S,) (C.2)

vevalues(A)
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smaller tree than it was with the bigger trmmw%)
For more information on decision trees, please IS.G.e_(QIHmmiIS) orkRuss.eLLa.n.d.N.o.uhg

). The WEKA implementation of the C4.5 algorithms we use described

in (Wi K, 2005).

C.2 Regression and Model Trees

Regression trees may be considered as a variant of decrsies) designed to approximate
real-valued functions instead of being used for classiboaiasks. Instead of a nominal value
in each leaf, regression trees have a value which is the mietre alata examples in the
partition. This representation requires a different split criterion. The algorithm chooses
the split that partitions the data into two parts such thatiitimizes the sum of the variance
in the separate parts.

Model trees take it one step further, as their leaves repre-
sent line segments, representing the data in a partm F

). These line segments are acquired by performing atdnd

multivariate linear regression on the examples in the famti
The impurity measure used to grow and prune model trees is:

1(5) = Z (yi — g(:))? (C.3)
1:8,€8
In which z; are the attribute values the in exampley; the
corresponding observed target value, amslthe value predicted
by the line function. In principle; could be a more complex _
. . . _ Figure C.2. Model trees.
model, such as neural networks, but in practice this appr@ac

seldom use@ﬂ%).

C.3 Optimization of Model Trees

This section will describe an analytical procedure to fine thinimum of a model tree, or
sums of several model trees.

One way to determine the minimum of a model tree experimgniglto sample along
all the dimensions (the variables with which it is called)tire model tree, and determine
which combination of samples returns the lowest value. @f®®, this minimum is only an
approximation of the actual minimum. The higher the sangptate, the higher its accuracy.
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Furthermore, sampling has a complexity@fn?), in whichn is the number of samples per
dimension, and the number of dimensions.

Our novel analytical method exploits the fact that a modet tis a set of rules, each a
bounded hyperplane. Determining the minimum of a boundgeiplane is very easy: sim-
ply determine the values at the bounds, and take the minimDar. approach is based on
determining the minimum of each hyperplane, and then takkisgninimum of all these val-
ues. This approach 8(kd), in which & is the number of hyperplanes, which is equivalent to
the number of rules, or leaves in the model tree.

Figure[CB shows a simple example for a one-dimensionatiegpace, and three one-
dimensional hyperplanes. In one-dimension, bounded pjgoees are simply line segments.

feature feature ' feature

value
value
value

Figure C.3. Determining the minimum of a model tree. Instefesampling along the x-axis,
it is more efficient to determine the minimum of each line segtpand take the
minimum of these minima.

3.3.1 Optimization of single model trees

In this section we will explain how this idea has been implatad. Below is fictional model
tree, kept simple for reasons of clarity. Its format is themeas the resultbuffer in the WEKA

program l(lMlLen_a.n.d_ELaHs_ZdOS).

dist <= 1.52

| dist <= 0.59 : 1.39+dist + 0.68+angle + 0.09

| dist > 0.59 :

| | angle <= 0.62 : 1.35+dist + 0.22+xangle + 0.13

| | angle > 0.62 : - 0.01xdist + 0.80+angle + 1.15
dist > 1.52 : 1.32+«dist + 0.51xangle + 0.15

The first step is to convert the decision tree into a set obrule

(dist <= 1.52) & (dist <= 0.59) : 1.39+dist + 0.68+angle + 0.09

(dist <= 1.52) & (dist > 0.59) & (angle <= 0.62) : 1.35xdist + 0.22+xangle + 0.13
(dist <= 1.52) & (dist > 0.59) & (angle > 0.62) : -0.01xdist + 0.80+xangle + 1.15
(dist > 1.52) : 1.32+dist + 0.51xangle + 0.15

ga88a
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Section C.3 Optimization of Model Trees

Then, the minimum for each rule (hyperplane) is determiiéelwill use R3 as an example.
First, we need to know the minimum and maximum values of albdes (e.g0 < dist < 3,
angle0 < angle < PI). In R3, the following ranges are valid.

R3: dist=[0.59..1.52], angle=[0.62..PI]
We determine the minimum of R3 by taking the extreme valuésase ranges. The smallest

value in the range is used if the variable is added, and theekigralue if it is subtracted. This
procedure is extremely fast, so there is little computatowreach rule. For R3 the result is:

R3: -0.01+[0.59..1.52] + 0.80+[0.62..PI] + 1.15
=> -0.01*1.52 + 0.80+0.62 + 1.15 = 1.63

So, the minimum value R3 can reach is 1.63. For all the rutese values are.

RL: 1.39+[0.00-0.59] +0. 68+[0.00- PI]+0.09 => 1.39x0.00+0.68+0.00+0.09 = 0. 09
R2:  1.35+[0.59-1.52] +0. 22+[ 0. 00- 0. 62] +0. 13 => 1.35+0.59+0. 22+0. 00+0. 13 = 0. 93
R3: -0.01%[0.59-1.52] +0. 80+[ 0. 62- PI]+1.15 => -0.01+1.52+0.80+0. 62+1.15 = 1. 63
R4: 1.32+[1.52-3.00] +0.51+[0.00- PI]+0.15 => 1.32+1.52+0.51+0.00+0.15 = 2.16

The last step is to simply take the minimum of the rule mini@®9, 0.93, 1.63, 2.16),
which is 0.09. From R1, it can be read that this minimum is esdd with dist=0.00 and
angle=0.00.

3.3.2 Processing bound variables

Often, some of the variables with which the model tree isechre already bound. For
instance, the value of ‘angle’ might be 0.7. The procedumaliioes not change at all, since
it operates on variable ranges, and the rangengfl e is simply defined to be [0.7,0.7]. As an
added benefit, this knowledge makes computation fastesseove can eliminate all rules in
which this value does not hold. In our simple example, an@lédoes not hold in R2.

Rl: (dist <= 1.52) & (dist <= 0.59) : 1.39+dist + 0.68+angle + 0.09

R3: (dist <= 1.52) & (dist > 0.59) & (angle > 0.62) : -0.01xdist + 0.80+angle + 1.15
R4: (dist > 1.52) : 1.32+xdist + 0.51rangle + 0.15

Then, as before, determine the ranges, choose the appeoptteeme value from this range,
and voila. Note that the angle has no real range, as it was set.

Rl: 1.39%[0.00-0.59]+0.68%[0.70,0.70] +0. 09 => 1.39%0.00+0. 68+0. 70+0. 09 = 0. 57
R3: -0.01%[0.59-1.52] +0. 80%[ 0. 70, 0. 70] +1. 15 => - 0. 01x1. 52+0. 80%0. 70+1. 15 = 1. 69
R4: 1.32x[1.52-3.00]+0.51%[0.70,0.70] +0. 15 => 1.32x1.52+0. 51x0. 70+0. 15 = 2. 50

So, the minimum this model tree can have with an angle of & 057, with dist=0.00.
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~

/O/\/

mtl + mt

Figure C.4. Merging model trees

3.3.3 Optimization of summations of model trees

In Sectio’&.¥ on subgoal refinement, we saw that the minimiutimeosum of two temporal
prediction models of two consecutive actions was deterdhiriehis means that we need to
determine the minimum of the sum of two model trees. This isedby first merging the
two model trees into one, and then determining the minimuth@fone model tree with the
methods described above. The intuition behind this apprsashown in Figur&Cl4.

Instead of merging the model trees directly, they are firaeded into sets of rules. These
rulesets are then merged. Here is an example of two model, teeel their corresponding
rulesets.

Model Tree 1 Rul eSet 1

a<=1 :

| b<=3 : 3xa+2+xb+1 (I nl) (a<=1) & (b<=3) : 3xa+2xb+1
| b>3 : 4xa+5+xb+6 (I nR) <=> (a<=1) & (b>3) : 4xa+5+b+6
a>1l : 3xa+dxb+1 (I nB) (a>1) : 3xa+dxb+1

Model Tree 2 Rul eSet 2

b<=2 : 1xa+l+«b+1 (I k) (b<=2) : 1lxa+lxb+1

b>2 :

| a<=2 : 1xa+3*b+2 (I nb) <=> (b>2) & (a<=2) : 1xa+3+b+2
| a>2 : 1xa+2xb+3 (I nb) (b>2) & (a>2) : 1xa+2xb+3

Merging these two sets is done by first merging each rule oé&etll with those of Rule-
Set2. The two lists of conditions are simply appended, aatltiear modelsl(m) are summed.
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This yields the following set of rules:

(a<=1) & (b<=3) :

(b<=2) : Imi

(b>2) & (a<=2) :

(b>2) & (a>2) :

(a<=1) & (b>3)
(b<=2) : Imt

| m2

(b>2) & (a<=2) :

(b>2) & (a>2) :

(a>1) : InB
(b<=2) : Ima

(b>2) & (a<=2) :

(b>2) & (a>2) :

I

| m6

| m6

Inb =>
Inb =>
b =>

I n6

Rul eSet 12 =

(a<=1) & (b<=3) & (b<=2) :
(a<=1) & (b<=3) & (b>2) & (a<=2) :
(a<=1) & (b<=3) & (b>2) & (a>2) :

(a<=1) & (b>3) & (b<=2) :
(a<=1) & (b>3) & (b>2) & (a<=2) :
(a<=1) & (b>3) & (b>2) & (a>2) :

Rul eSet 1 + Rul eSet 2

(a>1) & (b<=2) : I8+l md

(a>1) & (b>2) & (a<=2) :
(a>1) & (b>2) & (a>2) :

| M2+ md

| 8+l nb
| B+l nb

| mi+l n%

| 2+l nb

| N2+l n6

| mL+l mb
| mL+l n6

As can be seen, some of the lists of conditions contain coictay conditions. For in-
stance, in Im1+Im6, the conditiorfsa<=1) and( a>2) could never hold at the same time.
Therefore, any new rule with such contradictions is remduethis case Im1+Im6, Im2+Iim4,
Im2+Im6). This yields the six rules below. Summing the tweekr models is easily done.

(a<=1) & (b<=2)

(a<=1) & (b>3)
(a>1) & (b<=2)
(1<a<=2) & (b>2)
(a>2) & (b>2)

Co i+ i
(a<=1) & (2<b<=3) :
oI 2+l nb
©o B+ i
: I B+l nb
: I B+l nB

| mL+l mb

4% a+3*b+2
4% a+5*b+3
5+« a+8+b+8
4% a+5*b+2
4x a+7+b+3
4% a+6*b+4

This procedure has been visualized in Fidurd C.5

L2

L1

L3

Figure C.5. Example of two merged model trees

L5 L6

L4

a

0

L2+L5
L3+L5 L3+6
L1+L5
L1+L4 L3+L4
a

The minimum of this rule set can then be determined with théhods described in Sec-
tion[33.1. A downside of merging two rulesets is that theultesy rule set will have many
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more rules. The worst case scenario is that merging twoetdesithr1 andr»2 number of
rules yield a rule set with1 * r2 rules. This happens for instance when the two rulesets have
conditions on different variables. If conditions on vategbare contradictory, rules can be
eliminated, and the rule set contaiis 1  r2 rules.

We have merged many temporal prediction models in the sam®ain, and the merged
rulesets contain on averagel x r1 *x r2 rules. The number of rules in the learned models
trees is typically between 20 and 100, so merged rulesetaiodretween about 150 and 4000
rules. Note that determining the minimum of 4000 rules isallgumuch more efficient than
optimizing in the variable space, especially for higher elrsions, as their complexities are
O(k) andO(n?) respectively.

3.3.4 Non-mergeable model trees

Unfortunately, there are some cases in which it is not péssd optimize model trees in
combination with subgoal refinement. This is related to tiffergnt search spaces in subgoal
refinement and action model learning. The search space ahtuel tree is in the space
of derived features it is called with (e.glist, angle_to, etc), whereas the search space of
subgoal refinement uses direct variables (e,9,¢, etc.). Wemustuse the direct variable for
subgoal refinement, as actions share a frame of referencendtance, in the soccer example
in Figurel5.8 the performance of both actions depends orhizaed angle of approach, which
is theg, parameter in the first action, agdn the second. This means we cannot optimize the
actions separately, as this might lead to different valdes, @nd¢ respectively. Therefore,
the search space of subgoal refinement must be expressetsdédirect variables, some
of which might be shared by different action models.

This is itself is not a problem. For instance, the graphs gue[5.8 and Figure_ 3.9 both
have linear and planar models in each partition, which esatile analytical optimization
described in Sectidnd.3. This is because the direct varidialt is depicted on the-axis (@
at the intermediate subgoal) is thg parameter in the first action, agdn the second. These
two variables are used to compute theyle_at feature in the first model, and the.gle_to
feature in the second model. That the mappings fegrto angle_at in the first action and
to angle_at is linear can be read from the formula in Tabld 4.1. So, thtasas in Figur€5]9
arise from varyinguingle_at andangle_to in the two models. Because these features have a
linear mapping ta at the intermediate goal, the resulting surfaces are plavtesh enables
an analytical optimization.

However, when the mapping from a direct variable to a derieadure is surjective, or
bijective but non-linear, the models in each partition nhigbt be planar when plotted against
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the direct variable. In these cases, the assumption thamithienum of the partition must lie
at one of its corners will not hold, and our analytical opzation method is not applicable.
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D. Summaries of Publications

We will now briefly present which systems, methods and reguksented in this dissertation
were published in which journals and conferences. The gdpem 2004 are mostly on the

enabling technologies. In 2005, the papers contain preédngi work and overviews. The

final system and results described in this dissertation segepted in the papers from 2006
onwards.

B_eetz_eLal.J MA Beetz, M., Schmitt, T., Hanek, R., Buck, S., Stulp, F., Stdn¢D.,
and Radig, B. (2004). The &L0O robot soccer team experience-based learning and
probabilistic reasoning in autonomous robot contfaltonomous Robaqt$7(1):55-77.

An extensive journal article on the hardware, state estonaaind previous action se-
lection module of the &1Lo ROBOCUPPERS (SectiorI.Z]1)

U.tz_et_a.LJ bO_CLAL Utz, H., Stulp, F., and Mihlenfeld, A. (2004). Sharing bilieteams of
heterogeneous robots. In Nardi, D., Riedmiller, M., and ®ar) C., editorsRoboCup-
2004: The Eighth RoboCup Competitions and Conferer8penger Verlag.

Description of belief state exchange requirements, andirtiementation of the
CORBA-based communication module. Joint publication i University of UIm,
Germany, and University of Graz, Austria. (Section 4.3.2)

(Stulp et al.) 2004b)  Stulp, F., Kirsch, A., Gedikli, S., and Beetz, M. (2004b). G0

RoBOCUPPERS2004. In RoBOCUP International Symposium 2004isbon.

Team Description Paper of thee® .0 RoBoCupPPERSat the FoBoCupP Competitions
in Lisbon, Portugal. (Sectidn1.2.1)

.SlLﬂp_eI_a.L_liQDA.aj Stulp, F., Gedikli, S., and Beetz, M. (2004a). Evaluatindtiragent

robotic systems using ground truth. Rroceedings of the Workshop on Methods and
Technology for Empirical Evaluation of Multi-agent Sysseand Multi-robot Teams
(MTEE).
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Implementation ground truth system. The hardware (ceitiageras) and software
(computer vision algorithms) are explained, and its acouexaluated. (SectidnB.3)

Slu]p_a.n.d_B_eelz.'iOD_Sb_)J Stulp, F. and Beetz, M. (2005b). Optimized execution ofaacti

chains using learned performance models of abstract actidn Proceedings of the
Nineteenth International Joint Conference on Artificiadiigence (IJCAI)

Introduction of the computational model of subgoal refinetn&irst evaluation results
in the simulated soccer domain. (Chajbfler 5)

Smlp_a.nd_B_e_elzJEi.O_OE_Q)J Stulp, F. and Beetz, M. (2005c). Tailoring action parameter

zations to their task contexts. 1JCAI Workshop “Agents irmREme and Dynamic
Environments”.

An description of all applications of action models withimeocoherent system overview.
(Overview of dissertation)

Slulp.a.n.d.B.eelz.'EI.OD_S_a.)l Stulp, F. and Beetz, M. (2005a). Optimized execution ofoacti

chains through subgoal refinement. ICAPS Workshop “Plancixen: A Reality
Check”.

A brief overview of subgoal refinement from a planning pecsipe. (Chaptefls)

.SlLﬂp_a.n.d_B_e_elzJEI_O_O_G.)l Stulp, F. and Beetz, M. (2006). Action awareness — enabling

agents to optimize, transform, and coordinate plansProteedings of the Fifth Inter-
national Joint Conference on Autonomous Agents and Mdtia§ystems (AAMAS)

A brief overview of subgoal refinement and implicit coordina. (Overview of disser-
tation)

(Stulp et al.) 2006a) Stulp, F., Isik, M., and Beetz, M. (2006a). Implicit cooration in

robotic teams using learned prediction models. Plnceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA)

Extensive evaluation of implicit coordination within theorhogeneous @&iLO
RoBoCupPPERSteam . (Chaptdil7)

Jﬂk_el_a.L] };OD_GJ Isik, M., Stulp, F., Mayer, G., and Utz, H. (2006). Coordionatwith-
out negotiation in teams of heterogeneous robots.Prirceedings of th&kosoCup
Symposium

Integrates and extends the resuItSIQ_f_(_utLIELaL_l2004)|Snd[:(_el_a|.|_2®_€ka) by eval-

uating implicit coordination in heterogeneous teams. (Eal)
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Slu]p_eLa.L_liQ_O_G.bj Stulp, F., Pfliger, M., and Beetz, M. (2006b). Feature space ¢

eration using equation discovery. Rroceedings of the 29th German Conference on
Artificial Intelligence (KI)

Implementation and evaluation of the directed equatiooadiery system for generating
appropriate feature spaces. (Secfion#.1.1)

Slu]p_eLa.L_liQ_Oli Stulp, F., Koska, W., Maldonado, A., and Beetz, M. (2007)arBkess
execution of action sequences. Aacepted for the IEEE International Conference on
Robotics and Automation (ICRA)

Subgoal refinement integrated in the PDDL planner VHPOB! Fésults on real soccer
robots. Further evaluation in the service robotics and amtrol domain. (Section3.2)

Slulp.a.n.d.B.eelz.'EI.OD_&c.)J Stulp, F. and Beetz, M. (2008). Refining the execution of ab-

stract actions with learned action modéiscepted for the Journal of Artificial Intelli-
gence Research (JAIR)o appear.

Detailed description of subgoal refinement and assertiesgribing the relations be-
tween them. Psuedo-code listings. Includes the most reepirical evaluations as
described in this dissertation.

Slul;;)_a.nd_B_e_elzJiO_O_&b)J Stulp, F. and Beetz, M. (2008). Learning Predictive Knowl-

edge to Optimize Robot Motor Contréubmitted to the International Conference on
Cognitive Systems (CogSys 2Q08nder review.

Detailed analysis of the relationship between declaragprecedural and predictive
knowledge. Integration of subgoal assertion in subgoaleeient.

Slum_a.ad_B_e_elzJiO_O_&aﬂ Stulp, F. and Beetz, M. (2008). Combining Declarative, Broc

dural and Predictive Knowledge to Generate and Execute tRelaas Efficiently and
Robustly Submitted to the Special Issue of Robotics and Autonoma@iiensy on Se-
mantic Knowledge in Robotic&Jnder review.

Detailed analysis of the relationship between declaragprecedural and predictive
knowledge. Overview of related work on the interactionsuaein these different types
of knowledge, and how one can be learned from the other.

iomj Wimmer, M., Stulp, F., Tschechne, S., and Radig, B. (200&garh-
ing robust objective functions for model fitting in image enstanding applications. In
Chantler, M. J., Trucco, E., and Fisher, R. B., edit®tmceedings of tha7*" British
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Machine Vision Conference (BMVG)olume 3, pages 1159 — 1168, Edinburgh, Great
Britain.

iQQBj Wimmer, M., Stulp, F., Pietzsch, S., and Radig, B. (2008)arhe
ing Local Objective Functions for Robust Face Model Fittingccepted for the IEEE
Transactions on Pattern Analysis and Machine Intellige(i®MI). To appear.

In a parallel line of research, these two papers investitiegeautomatic selection of
features in the context of learning objective functions iad®l-based fitting applica-
tions, also with tree-based induction. It is complementaryhe work presented in
_S_Lujp_er_al.I_ZOD_éb), in which features are generated. Pipdication domain is face
and mimic recognition. The methods described in these pdpere not been applied
to action model learning as presented in this dissertabonhnevertheless give a good
example of how model trees can be used to learn performandelsmand select infor-

mative features.
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