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Abstract

In motor control, high-level goals must be expressed in terms of low-level motor commands.

An effective approach to bridge this gap, widespread in bothnature and robotics, is to acquire

a set of temporally extended actions, each designed for specific goals and task contexts. An ac-

tion selection module then selects the appropriate action in a given situation. In this approach,

high-level goals are mapped to actions, and actions producestreams of motor commands. The

first mapping is often ambiguous, as several actions or action parameterizations can achieve

the same goal. Instead of choosing an arbitrary action or parameterization, the robot should se-

lect those that best fulfill some pre-specified requirement,such as minimal execution duration,

successful execution, or coordination of actions with others.

The key to being able to perform this selection lies in prediction. By predicting the perfor-

mance of different actions and action parameterizations, the robot can also predict which of

them best meets the requirement. Action models, which have many similarities with human

forward models, enable robots to make such predictions.

In this dissertation, we introduce a computational model for the acquisition and applica-

tion of action models. Robots first learn action models from observed experience, and then

use them to optimize their performance with the following methods: 1)Subgoal refinement,

which enables robots to optimize actions in action sequences by predicting which action pa-

rameterization leads to the best performance. 2)Condition refinementandsubgoal assertion,

with which robots can adapt existing actions to novel task contexts and goals by predicting

when action execution will fail. 3)Implicit coordination, in which multiple robots globally

coordinate their actions, by locally making predictions about the performance of other robots.

The acquisition and applications of action models have beenrealized and empirically evalu-

ated in three robotic domains: the PIONEER I soccer robots of our ROBOCUP mid-size league

team, a simulated B21 in a kitchen environment, and a POWERCUBE robot arm.

The main principle behind this approach is that in robot controller design, knowledge that

robots learn themselves from observed experience complements well the abstract knowledge

that humans specify.





Zusammenfassung

In der Bewegungssteuerung müssen abstrakte Ziele in konkreten Bewegungsbefehlen ausge-

drückt werden. In der Natur wie in der Robotik kann diese Kluft durch Aktionen überwun-

den werden, die für spezifische Ziele und Aufgabenkontexte bestimmt sind. Ein spezielles

Modul wählt dann die Aktionen aus, welche sich für die jeweilige Situation eignen. Die Ab-

bildung von Zielen auf Aktionen ist häufig vieldeutig, da mehrere Aktionen oder Aktions-

parametrisierungen das gleiche Ziel erreichen können. Statt eine beliebige Aktion oder Ak-

tionsparametrisierung zu wählen, sollte der Roboter jene bevorzugen, die eine vordefinierte

Anforderung erfüllen, wie etwa minimale Ausführungsdauer, Ausführungserfolg oder Koor-

dination mit anderen Robotern.

Die Vorhersage der Leistung bestimmter Aktionen erlaubt esdem Roboter zu erken-

nen, welche Aktion oder Aktionsparametrisierung die Anforderung am Besten erfüllen wer-

den. Aktionsmodelle, die Ähnlichkeit mit den ‘Forward Models’ des Menschen haben, er-

möglichen Robotern, solche Vorhersagen zu machen.

In dieser Dissertation stellen wir ein Berechnungsmodell für den Erwerb und die An-

wendung dieser Aktionsmodelle vor. Zuerst werden Aktionsmodelle aus beobachteter Er-

fahrung erlernt. Drei Anwendungen der Aktionsmodelle werden dargestellt. 1)Subgoal

Refinement, das Aktionen in Aktionsketten optimiert, indem es voraussagt, welche Aktions-

parametrisierung zur besten Leistung führen wird. 2)Condition RefinementundSubgoal As-

sertion, die vorhandene Aktionen neuen Aufgabenkontexten und Zielen anpassen, indem sie

voraussagen, wann die Aktionsdurchführung fehlschlagen wird. 3) Implicit Coordination, mit

deren Hilfe Roboter durch lokale Vorhersagen über die Leistung anderer Roboter ihre Ak-

tionen koordinieren können. Der Erwerb und die Anwendungender Aktionsmodelle sind

ausgewertet worden auf PIONEER I Fussballrobotern, auf einem simulierten B21 in einer

Küchenumgebung, und bei der Steuerung eines POWERCUBE Arms.

Das Hauptprinzip dieses Ansatzes besteht darin, dass beim Entwurf von Robotersteuer-

einheiten das Wissen, das sich Roboter selbst durch Beobachtung aneignen, jenes durch den

Menschen bestimmte abstrakte Wissen gut komplettiert.
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1. Introduction

“It is the ability to make predictions about the future

that is the crux of intelligence.”

Hawkins and Blakeslee (2004)

In human motor control, there is a distinction between knowingwhatto do and knowinghow

to do it. This distinction is apparent in the brain, where declarative and procedural knowledge

is acquired, stored and accessed in different ways (Scoville and Milner, 1957; Cavaco et al.,

2004). The abstract nature and accessibility of declarative knowledge enables us to express

it in natural language. For instance, in the soccer scenarioin Figure 1.1,what needs to be

done can be informally declared as: “To achieve a scoring opportunity, first approach the ball,

and then dribble it towards the opponent goal.” Not only can we communicate this explicit

formulation about goals and tasks to other humans, but we canalso transfer it to robots by

encoding it in the robot’s controller.

In both nature (Wolpert and Ghahramani,

Figure 1.1. Soccer scenario

2000; Baerends, 1970) and robotics (Arkin,

1998), such abstract plans are often mapped

to actions. Actions are temporally extended

control routines that achieve specific goals,

and only apply to certain task contexts. In

the example, the declarative knowledge can

be mapped to the actionsapproachBall

anddribbleBall. With these actions, the

robot now also knowshowto achieve its goal1.

However, a problem remains. Although the actions specify how to achieve the goal, there

are often several ways to execute them. Figure 1.2 depicts two executions of the same action

sequence. In the first, the robot naively executes the first action, and arrives at the ball with

the goal at its back, as depicted in Figure 1.2(a). This is an unfortunate position from which to
1Note that we interpret the terms ‘procedural’ and ‘declarative’ as they are used in cognitive sci-

ence (Cavaco et al., 2004), not as in the debate on proceduralversus declarative knowledge representations
in Artificial Intelligence in the late 1960s and early 1970s (Winograd, 1975).

1



Chapter 1 Introduction

start dribbling towards the goal. An abrupt transition occurs between the actions, as the robot

needs to brake to slowly and carefully maneuver itself behind the ball in the direction of the

goal.

(a) An execution with an abrupt transition at
the intermediate goal.

(b) A time-optimal execution that exhibits
smooth motion.

Figure 1.2. Two alternative executions of the same action sequence

Preferably, the robot should go to the ballin order to dribble it towards the goal afterwards.

The robot should, as depicted in the Figure 1.2(b), perform the first action sub-optimally in

order to achieve a much better position for executing the second action. The behavior shown

in Figure 1.2(b) has a higher performance, achieving the ultimate goal in less time.

This example demonstrates that although the angle of approach might not be relevant on an

abstract level, it does influence execution performance. But what exactly is the best angle of

approach? Unfortunately, neither declarative nor procedural knowledge suffices to answer this

question. This is the remaining problem referred to previously.

In this dissertation, we demonstrate that the key to solvingthis problem lies in a third kind

of knowledge: being able to predict the outcome and performance of actions. In the running

example, if the robot could predict the performance of alternative executions beforehand, it

could choose and commit to the fastest execution. To predictthe execution duration of action

sequences, the robot must predict the execution duration ofindividual actions. The robot

can learn these prediction models through experimentation, observation and generalization. It

does so by recording the results of executing the action withvarious parameterizations, and

training learning algorithms with the data thus acquired.

1.1 Key Principles

One of the main motivations behind robotics research is to develop robots that can assist

with or assume tasks that are either too dirty, too dangerous, too precise or too tedious for

2



Section 1.1 Key Principles

humans (RAS, 2006). Prolonging and increasing the independence of the disabled and the

elderly with assisting technologies such as robots is also predicted to have a large social

impact (Cortés et al., 2003). Examples of such tasks are performing rescue operations, au-

tonomous driving, providing mobility for the disabled, anddoing the dishes.

Although there are several projects and conferences committed to robots that learn more

or less from scratch how to act in the real world (Metta et al.,2006; Kaplan et al., 2006),

the resulting robots have certainly not yet reached a level where they can perform the tasks

described above. Currently, designers are still required to encode their knowledge about how

to solve real-world problems into the robot controller. Forinstance, action selection is still

often specified manually as state-machines (Lötzsch et al.,2004; Obst, 2002; Murray, 2001).

Here, the designer directly encodes knowledge about which functional state the robot is in,

and which action should be executed in this state.

However, through experimentation, observation and generalization, robots can learn com-

plementary knowledge, and use it to improve, adapt and optimize their controllers. Learned

knowledge can often be used to make decisions that are difficult for humans to make. Further-

more, experience-based learning is grounded in real world observations, not human intuition.

It is exemplary that the 2006 winners of two well-known robotic benchmarks, the ROBOCUP

mid-size league (Gabel et al., 2006) and the DARPA challenge(Thrun et al., 2006), empha-

size that their success could only be achieved through the combination of manual coding and

experience-based learning.

The main principle in this dissertation is thathuman-specified knowledge and robot-learned

knowledge complement each other well in robot controllers. The introduction and example in

Figure 1.2 have briefly illustrated the other key principleson which this dissertation is based:

Principle I Declarative knowledge can be explicitly specified by humans.

Principle II Procedural knowledge is represented by a set of durative actions.

Principle III Mapping declarative to procedural knowledge is ambiguous,and choosing the

mapping affects performance and behavior.

Principle IV This ambiguity can be resolved with predictive knowledge, which leads to more

effective and efficient action execution.

Principle V Predictive knowledge can be learned from observed experience

In the next sections, we describe these principles in more detail.
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Principle I Declarative knowledge: human specified

An important aspect of declarative knowledge is that it is consciously accessible, and allows

us to declare our intentions and plans to others. An example was given in Figure 1.1, in which

the task can be informally declared as: “First approach the ball, and then dribble it towards the

goal.” Other examples from soccer are: “Approaching the ball is much like navigating, except

that you should not bump into the ball before the desired poseat the ball is achieved.” or “To

regain ball possession, only one player should approach theball.”

These statements are at a level of abstraction that makes them valid for both human and

robot soccer players. The validity in both domains enables the transfer of declarative knowl-

edge from humans to robots, and programmers usually have no problem in encoding this

knowledge in the controller. It also enables humans to give advice to robots in a declarative

way (Carpenter et al., 2002).

The Planning Domain Description Language (Fox and Long, 2003) is an example of a lan-

guage explicitly designed to encode such declarative knowledge. However, the knowledge can

also be implicitly encoded using the data structures and control flow of the programming lan-

guage. However, with the latter the robot cannot reason about or manipulate this knowledge,

and the encoding can be such that even other designers cannotrecognize the intentions from

the code.

For now, it is not so important how declarative knowledge is represented in the controller,

as long as it is clear that at some point during controller design, a designer will have explicitly

thought about the declarative statements above, and coded them in the controller’s language.

Examples of both explicitly and implicitly representing declarative knowledge in robot con-

trollers are given in Sections 5.2 and 5.2.1 respectively.

Principle II Procedural knowledge: durative actions

The famous patient H.M. provided the first proof for the difference between declarative and

procedural memory storage (Scoville and Milner, 1957). At the age of 27, a bilateral medial

temporal lobe resection was carried out to correct his increasingly debilitating epilepsy. Dur-

ing the operation, the amygdala, uncus, hippocampal gyrus,and anterior two-thirds of the

hippocampus were removed. After the operation, H.M. was incapable of storing any novel

declarative facts, although the facts before his operationwere retained. Surprisingly, H.M.

could however learn and retain novel skills. For instance, H.M. improves at mirror-tracing

tasks over time with training, but when asked, reports having no recollection of ever having

done such as task before (Gabrieli et al., 2004).
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As H.M. demonstrates, procedural knowledge is not explicitly and consciously accessible

to humans, in contrast to declarative knowledge. This is probably the reason why program-

mers find it more difficult to transfer procedural knowledge to robots. Also, although ab-

stract descriptions of tasks are valid in general, procedural knowledge is often very platform-

dependent. For instance, there might be differences in locomotion (biped vs. wheeled), con-

trollable degrees of freedom (non-holonomic vs. holonomic), and motor commands (action

potentials vs. voltages).

Wolpert and Ghahramani (2000) describe well the difficulty of mapping declarative knowl-

edge to procedural knowledge in the human motor system: “Everyday tasks are generally

specified at a high, often symbolic level, such as taking a drink of water from a glass. How-

ever, the motor system must eventually work at a detailed level, specifying muscle activations

leading to joint rotations and the path of the hand in space. There is clearly a gap between the

high-level task and low-level control.”.

Using durative actions to bridge this gap has proven to be a successful approach in both

nature (Baerends, 1970; Wolpert and Ghahramani, 2000) and robotics (Arkin, 1998). Actions

encapsulate knowledge about how certain goals can be achieved in certain task contexts. For

instance, human and robot soccer players will typically have dribbling, kicking, and passing

actions, that are only relevant in the context of soccer. Also, each of these actions achieve

different goals within different soccer contexts. Becauseactions only apply to limited task

contexts, they are easier to design or learn than a controller that must be able to deal with

all possible contexts (Haruno et al., 1999; Jacobs and Jordan, 1993). In cognitive science, ac-

tions are known asinverse models, and in robotics asbehaviors, routines, or, confusingly,con-

trollers. We list which specific research field uses which terminologylater on, in Table 3.1.

In robotics, actions usually take parameters that allow them to be used in a wide range of

situations. Instead of programming an actiondribbleBallToCenter, it is preferable to

program an actiondribbleBall(Pose) that can dribble the ball to any location on the

field, including the center. If each action is designed to cover a large set of tasks, usually

only a small set of actions is needed to achieve most tasks in agiven domain. Having only a

few actions has several advantages: 1) The controller is less complex, making it more robust.

2) Fewer interactions between actions need to be considered, which facilitates action selection

design and autonomous planning. 3) If the environment changes, only a few actions need to

be redesigned or relearned, making the system more adaptive, and easier to maintain.

To achieve more complex tasks, actions are combined and concatenated, using declarative

knowledge. As we saw in the example, “First approach the ball, and then dribble it towards

the goal.” is mapped to the action sequenceapproachBall, dribbleBall.
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So, declarative knowledge maps goals to actions, and procedural knowledge maps actions

to motor commands, which can be directly applied to the motorsystem. This divide and

conquer approach to control helps to bridge the gap between high-level goals and low-level

motor commands.

Principle III Ambiguous mappings affect performance

Mapping goals to actions is often ambiguous: several actions or action parameterizations

can often achieve the same goal. This is a well known principle in human motor control,

where there are often more degrees of freedom available thanare strictly needed to solve

a task (Schaal and Schweighofer, 2005). Actions are then said to be redundant or over-

expressive, and the freedom of movement that is not constrained by the task is called the

uncontrolled manifold in cognitive science (Scholz and Schöner, 1999), and null-space in

engineering (Hooper, 1994; Nakanishi et al., 2005). The redundancy of actions raises an

important question. How should the excess degrees of freedom be parameterized? This

problem is known as the degree-of-freedom problem, or problem of redundancy resolu-

tion (Schaal and Schweighofer, 2005).

In the example in Figure 1.2(a) for instance, we saw that the action sequence that arises

from the declarative knowledge can actually be executed in many ways. Such ambiguities

raise some important questions. “First approach the ball, and then dribble it towards the goal.”

maps to the action sequenceapproachBall, dribbleBall. But what is the best angle

of approach? From an abstract point of view, being at the ballis sufficient for dribbling it.

Although the angle of approach might not be relevant to the task on an abstract level, the

example clearly shows that it does influence execution performance.

The same holds for the other statements: “To regain ball possession, only one player should

approach the ball.” But which player should this be? Probably the fastest. But exactly who is

the fastest? “Approaching the ball is much like navigating,except that you should not bump

into the ball before the desired pose at the ball is achieved.” But exactly when does the robot

bump into the ball?

One of the advantages of actions is that they can be designed or learned independently

of other actions. The questions arise when actions are executed in contexts for which they

were not initially designed. For instance, “Which angle of approach is the best?” arose from

executing the action in the context of action sequences, and“When will the robot bump into

the ball?” arose from navigating in the context of approaching the ball. Finally, “Who will be

the fastest?” arose from the context of playing in a multi-robot team.

One way to answer these questions is to design or learn new actions that are tailored to
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the novel context in which the question arose. Instead of using the generalapproach-

Ball(Pose) in the scenario in Figure 1.2, a new actionapproachBallInOrderTo-

DribbleBall(Pose,Position) is designed or learned. This customized action takes

into account that the robot should dribble the ball to a certain position afterwards. It therefore

takes the next location as a parameter, and the action internally computes the optimal angle

of approach. Although this customized action might performbetter in this specific context,

its long name already clearly implies the loss of generality. This manual action customization

soon becomes a laborious task, as each task context, and there are usually many, would require

their own task-specific action. In the next section, we present an alternative solution, which

reuses existing actions based on predictive knowledge, andmotivate why it is preferable to

designing or learning novel actions.

Principle IV Predictive knowledge enables effective control

Although the actions in this dissertation themselves are fixed, this does not mean that their

application is fixed. Much freedom remains in the way actionsare parameterized, and also

in which actions are executed in the first place. For instance, the originalapproach-

Ball(Pose) can be used very well to achieve the optimal execution in Figure 1.2(b), if

its parameter determining the angle of approach is correctly set.

Here, the advantage of having action parameters becomes clear. TheapproachBallIn-

OrderToDribbleBall action does not have the angle of approach as an action parameter,

but somehow computes an optimal angle ‘inside’ the action itself. However, which angle is

optimal depends on what is being optimized: time, energy consumption, traveled distance, etc.

It also depends on which action will follow: a fast dribble toscore, a careful dribble to prepare

for passing the ball, etc. To achieve good performance, eachof these contexts would require its

own customized action. Instead, it is better to have the angle of approach in the parameter list

of a more general actionapproachBall, which can achieve all these tasks. Exactly which

angle of approach is best in the current task context is determined on-line ‘outside’ of the

action. With this approach,existing actions are tailored to novel task contexts. Adapting or

refining already existing actions so that they can solve novel tasks alleviates the need to design

or learn new actions. This leads to fewer actions, with all the advantages previously discussed.

By implementing the novel actionapproachBallInOrderToDribbleBall, the de-

signer is specifyinghow an action should be executed in the context of action sequences.

Again, this is tedious and error-prone. It would be more convenient if the designer would

only have to declare requirements that action execution should meet, such as “Execute ac-

tion sequences as quickly as possible.”, or “Do not bump intothe ball when approaching it.”.
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Given the freedom caused by the redundancy of actions, the robot should then attempt to

fulfill these requirements by tailoring actions on-line. Inthe running example for instance,

the robot is required to minimize the expected execution duration of the overall action se-

quence. Schaal and Schweighofer (2005) call these requirements ‘subordinate criteria’, and

Wolpert and Ghahramani (2000) refer to them as ‘cost functions’.

Note that these requirements are independent of the ac-

Figure 1.3. Existing actions vs.

novel actions

tion implementation, and hold for a variety of actions and

task contexts, which makes them generally applicable, and

therefore easy to formulate. On the other hand, the pa-

rameters and actions that fulfill these requirements depend

very strongly on action implementations and task contexts,

and will be different for each of them. Therefore, the

robot should preferably determine these parameters au-

tonomously on-line. This approach enables the designer

to specify requirements, rather than novel actions.

Transforming actions or choosing action parameteriza-

tions to fulfill requirements is only possible if the robot can

predict the outcome of actions and their parameterizations.

Fulfilling the requirement “Execute action sequences as

quickly as possible.” can only be done if the robot knows

which action sequence will be the fastest beforehand. The

requirement “Do not bump into the ball when approaching

it.” can only be fulfilled if the robot can predict if it will

bump into the ball in some situation. Knowing which robot

is the quickest to the ball is only possible if each robot can

predict the approach time to the ball for each robot. Being able to predict the consequences

of actions is essential to answering the ambiguities and questions that arise from Principle III,

androbots can tailor existing actions themselves with predictive knowledge.

This approach is informally depicted in Figure 1.3. The firststep in reusing actions is to

specify a requirement. Then, the predictions relevant to fulfill this requirement are made.

This yields an action selection or action parameters. The execution is then performed with

existing actions. Note that these three steps are printed inbold in the previous paragraphs.

The ambiguities and questions related to efficient and effective execution of actions are so

resolved outside of the action.

On the other hand, when designing novel actions for novel task contexts, the designer con-
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templates the requirements, makes predictions her/himself, and implicitly codes them in the

new action, as also depicted in Figure 1.3. In our approach, no new actions are created, but

existing actions are reused, refined and tailored to novel task contexts. With predictive knowl-

edge, robots can tailor actions to novel task contexts themselves. This alleviates the need for

designers to adapt or refine actions manually, and makes the robot more autonomous.

Principle V Predictive knowledge can be learned

Action models enable robots to predict the performance or outcome of actions, given a certain

parameterization. Examples are predicting the expected execution duration, or whether an

action is likely to succeed. But how is this predictive knowledge acquired?

It is learned from observed experience. First, each action is executed for a multitude of pa-

rameterizations and the performances and outcomes are recorded. A learning algorithm then

learns a generalized model that maps an action and its parameterization to expected perfor-

mance. In the soccer domain for instance, robots learn to predict the execution duration of

theirgoToPose action by simply navigating to random locations on the field and recording

the duration. After transforming the data to an appropriatefeature space, generalized models

are then learned by training model trees (Quinlan, 1992) with the data.

The advantage of this approach over analytical methods is that it is based on real experience,

and therefore takes all factors relevant to performance into account. Also, many hand-coded

actions are difficult to formalize analytically, or analysis is impossible because the inner work-

ings of the action are unknown. In principle, learning models can also be done on-line, so that

action models can adapt to changing environments (Dearden and Demiris, 2005).

Beetz and Belker (2000) summarize the difficulty of analytically specifying action models

for navigation actions well: “Navigation behavior is the result of the subtle interplay of many

complex factors. These factors include the robot’s dynamics, sensing capabilities, surround-

ings, parameterizations of the control program, etc. It is impossible to provide the robot with

a deep model for diagnosing navigation behavior.”

Summary

The previous section treated the questions and ambiguitiesas problems which need to be

resolved. Let us now summarize this section from back to front from a positive point of view,

in which ambiguities are seen as degrees of freedom or opportunities to tailor actions to task

contexts:
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• Although actions are immutable (in this dissertation), there is still freedom in how they

are parameterized and in which contexts they are executed.

• This freedom is an opportunity to tailor actions to novel contexts.

• Predictive knowledge, which the robot can learn from observed experience, enables the

robot to tailor actions itself.

• Off-line, the designer can specify requirements that action execution should meet, which

the robot takes into account when tailoring actions on-line.

• This is preferable to designing novel customized actions, as requirements are more gen-

eral, and fewer actions lead to more adaptive and robust controllers.

The relations between the key principles are also depicted informally in the flowchart in

Figure 1.4. Throughout the dissertation, we will describe the representations and algorithms

used to implement this flowchart.

Figure 1.4. Relations between the key principles.

At his point, we would like to draw attention to the role of cognitive science in this disser-

tation. There is an increasing interest in exploiting humanstrategies for dealing with complex

control in robotics, and an increasing exchange between terminologies and computational

models used in cognitive science and robotics (Lopes and Santos-Victor, 2005; Metta et al.,

2006; Dearden and Demiris, 2005; Schaal and Schweighofer, 2005; Sloman, 2006). Action

models, which are inspired by human forward models, are a good example of this exchange.

Throughout the dissertation, we therefore also discuss cognitive science research that focuses

on the acquisition and application of predictive models. Although this research is an important

source of inspiration, in this dissertation the goal is not to explicitly model cognitive processes,

or to reproduce empirical results from cognitive science.

1.2 Robotic Domains

The key principles are implemented in and applied to three robotic domains: robotic soccer,

service robotics and arm control. Such a variety of robots and domains have been chosen
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to emphasize the generality of the system. Also, the different characteristics of the domains

allow different aspects of action model applications to be investigated.

1.2.1 Robotic soccer

ROBOCUP is an international joint project to promote AI, robotics, and related fields. It is an

attempt to foster AI and intelligent robotics research by providing a standard problem where

wide range of technologies can be integrated and examined. The central topic of research is the

soccer game, aiming at innovations that can be applied to socially and industrially significant

problems. The ultimate goal of the ROBOCUP project is that by mid-21st century, a team of

fully autonomous humanoid robot soccer players shall play against the winner of the most

recent World Cup, comply with the official rule of the FIFA, and win (Kitano et al., 1997).

Within ROBOCUP, there are several leagues, each with their own technological and re-

search challenges. The team of the Technische Universität München, the “AGILO ROBOCUP-

PERS” (Stulp et al., 2004b; Beetz et al., 2004), has participatedin the mid-size league since

1997. In this league, robots play on a field of approximately 6x8 meters, four against four. The

main characteristics of this league is that the robots senseand act locally and autonomously.

One of the AGILO robots is depicted in Figure 1.5(a). Experiments have also been conducted

in the AGILO simulator, depicted in Figure 1.5(b). These robots are referred to as ‘PIONEER I’

and ‘PIONEER I (S)’ respectively, as these platforms are customized PIONEER I robots from

ActivMedia (ActivMedia Robotics, 1998). The hardware and tools of the AGILO ROBOCUP-

PERSare presented more elaborately in Appendix B.

(a) AGILO ROBOCUPPERSrobot (b) AGILO simulator (c) ULM SPARROWSrobot

Figure 1.5. Mid-size league soccer domain

In this adversary domain, performance and efficiency are essential to achieving the goals

of the team. Tailoring actions to perform well within the given task context is therefore a
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necessity. Since it is a multi-robot domain, it also allows us to investigate how actions can

be tailored to scenarios with multiple robots. Multi-robotexperiments are conducted in a

heterogeneous team with the soccer robots from the ULM SPARROWS (Kraetzschmar et al.,

2004), one of which is depicted in Figure 1.5(c).

1.2.2 Service robotics

One of the long-term goals in robotics is to develop robots that can autonomously perform

house-hold tasks. Therefore, action models are acquired and applied to a simulated articulated

B21 robot in a simulated kitchen environment (Müller and Beetz, 2006). The simulator is

based on the Gazebo simulator of the Player/Stage project (Gerkey et al., 2003). This open-

source project develops tools for robot and sensor applications. Gazebo simulates robots,

sensors and objects in a three-dimensional environment. The Open Dynamic Engine provides

the physical simulation and realistic sensor feedback (Smith, 2004). Player is a network in-

terface and hardware abstraction layer, which the robot’s controller uses to communicate with

the Gazebo environment. Player facilitates the porting of controllers written in simulation to

real robots.

(a) Simulated B21 in the kitchen environment (b) POWERCUBE arm

Figure 1.6. Simulated kitchen environment and POWERCUBE arm

The environment, depicted in Figure 1.6(a) contains a typical kitchen scenario, with furni-

ture and appliances. The positions of the pieces of furniture are static and known. In addition,

the environment contains flatware (such as knives, forks, and spoons), cook-ware (pots and

pans), and dinnerware (including plates, cups, and bowls).These objects are recognized and

are movable, so the robot can manipulate them. The positionsof these objects is known, if

they are within the field of view of the robot.
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The rich environment and six degrees of freedom arms providethis robot with more ex-

pressive actions than in the robotic soccer domain, which leads to more redundancy and opti-

mization potential. Furthermore, house-hold tasks are less reactive, and require more complex

and longer-term planning, which is relevant in the context of action sequence optimization in

Chapter 5.

1.2.3 Arm control

The third domain is a POWERCUBE arm from Amtec Robotics (Amtec Robotics, 2005),

shown in Figure 1.6(b). Each joint has a brushless servo motor with a Harmonic gear head,

and an incremental optical encoder to measure the position.The communication with the

computer is done using a high-speed CAN interface. We have mainly included this robot to

demonstrate the wide range of domains in which action modelscan be learned and applied.

1.3 Contributions

Principle I and Principle II on declarative and procedural knowledge are well established in

cognitive science and robotics, as was motivated in Section1.1. These are the assumptions

fundamental to this dissertation. The questions that arisefrom the ambiguous mapping of

declarative to procedural knowledge (Principle III), are essentially the problem statement:

How can these questions be answered in a robust and efficient way, without requiring manual

programming? The solution to this problem is predictive knowledge (Principle IV), which

is acquired by experience-based learning (Principle V). This solution contains the following

conceptual contributions:

• Arguing that existing actions can and should be tailored to novel task contexts, rather

than designing new customized actions.

• Demonstrating how robots can tailor actionsthemselves, by using predictive knowledge.

• Demonstrating how robots can learn predictive knowledge from observed experience.

• Introducing a novel computational model for the acquisition and application of action

models.

The technical contributions of this dissertation arise from realizing these concepts in a work-

ing robot control system, and evaluation it on three roboticplatforms in a variety of domains.

These contributions are:
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Action model learning. We demonstrate how robots can learn action models by executing

an action, observing the result, and generalizing these observations by training a model

with tree-based induction. Especially, we show how the mostis made of sparse data

by exploiting invariants in the features spaces, and including intermediate data without

violating the stationarity assumption.

We empirically evaluate the accuracy of the action models, which are learned for a

variety of actions performed by the robots from Section 1.2.

Subgoal refinement. Free action parameters at intermediate goals arise when mapping

declarative knowledge to actions. Current controllers often disregard these parameters,

which lead to suboptimal performance. In the computationalmodel of subgoal refine-

ment, these free parameters are explicitly reasoned about,and optimized with respect to

the expected performance, predicted by action models.

Automatic subgoal refinement is realized as an extension of an existing PDDL planner,

and is applied to the three robotic platforms presented in Section 1.2, and a variety of

action sequences.

Subgoal refinement leads to significantly shorter executiontimes, with smooth motion

as a pleasing side-effect, as an empirical evaluation demonstrates. We analyze the effect

on individual actions in a sequence, and investigate when subgoal refinement fails.

Condition refinement and subgoal assertion. When an action is applied to a new task

context, its specific goal changes. It is important to know when this new goal can be

achieved, and when it cannot. Condition refinement is the process of learning the ac-

tion’s novel precondition, given the novel goal. Subgoal assertion uses condition refine-

ment to predict when actions will fail, and transforms the action into action sequences

that are predicted to succeed, by asserting a subgoal. The parameterization of this sub-

goal is constrained by the learned precondition, and optimized using subgoal refinement.

On the PIONEER I (S) robots, condition refinement is realized using tree-based induc-

tion, which learns the precondition from example action executions. Subgoal assertion

uses the learned model, as well as subgoal refinement to determine an optimal interme-

diate goal.

An empirical evaluation verifies that the adapted action is highly successful at achieving

novel goals, such as approaching a ball.

Implicit coordination. We present a computational model of implicit coordination with

belief exchange, in which both state estimation and communication are used to acquire
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states of others. Based on these states, utility predictions are made locally, to coordinate

actions globally.

Implicit coordination is realized on a team of three AGILO robots, as well as in a het-

erogeneous team with one AGILO and one ULM SPARROWSrobot.

Implicit coordination is robust against communication andstate estimation failures,

which we demonstrate with an empirical evaluation. Implicit coordination in the het-

erogeneous team demonstrates that robots with very different hardware and controllers

can coordinate with little change to the individual robot controllers.

Because subgoal refinement, condition refinement and subgoal assertion enable robots to

autonomously adapt and refine existing actions to novel taskcontexts, they are a contribu-

tion to the field of life-long learning. These methods also bridge the gap between symbolic

planning and robot plan execution, and are contributions toboth fields. Implicit coordination

enables robots to make only local decisions that have effecton the global behavior of several

robots, and as such is a contribution to the field of multi-agent systems.

Together, these conceptual and technical contributions provide a framework in which

knowledge specified in the controller by humans is complemented, refined and improved with

knowledge learned by robots themselves. The empirical evaluations verify that this leads to

more efficient and effective behavior.

1.4 Outline

The following is a synopsis of the individual chapters of this dissertation.

Chapter 2 - Computational Model. This chapter introduces the terminology, concepts

and methodology used throughout this dissertation. It alsopresents an overview of the

system.

Chapter 3 - Related Work. Work related to action selection schemes, forward models and

action models are discussed. Both cognitive science and robotics research are treated.

Work related to specific applications of action models are presented in the respective

chapters.

Chapter 4 - Learning Action Models. Action models are acquired by learning them

from observed experience. In this chapter, we describe how the necessary experience is

gathered, and how generalized models are learned from this data.
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Chapter 5 - Task Context: Action Sequences. The first application of action models

is to tailor actions to perform well within a given action sequence. The method with

which this is done is calledsubgoal refinement.

Chapter 6 - Task Context: Task Variants. In this chapter we presentsubgoal assertion

andaction refinementin which action models used to parameterize available actions so

that they can be reused for a new task variant.

Chapter 7 - Task Context: Multiple Robots. Action prediction models are used to co-

ordinate the actions of multiple robots. By predicting the performance of other robots,

a robot can adapt its actions accordingly. This is calledimplicit coordination.

Chapter 8 - Conclusion. The content of this dissertation is summarized in this conclusion,

and directions for future research are discussed.

Chapters 4 to 7 describe how action models are acquired and applied on the robots, and

contain the technical contributions. These four chapters have the same structure. After an

introductory section, the computational model is presented. The following sections in these

chapters then explain how the computational model is implemented. After presenting the

empirical evaluation conducted on the robots, work specifically related to this chapter is dis-

cussed and compared with our work. The conclusion contains asummary of the chapter and

directions for future work.
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2. Computational Model

“Before turning to those mental aspects of the matter which

present the greatest difficulties, let the inquirer begin bymastering

more elementary problems.”

Sherlock Holmes in “A Study in Scarlet”, (Doyle, 1887)

In this chapter, we introduce and formalize the basic concepts and terminology used

throughout this dissertation. The relevant concepts are either data structures or processes,

which manipulate these data structures. Examples from the robotic soccer domain are used

throughout.

The next section introduces thedynamic system model, which describes the interaction of

an agent with its environment, and the role of the controllerwithin the agent. In Section 2.2,

we demonstrate that the concepts of durative actions and action selection can elegantly be

described using the dynamic system model. At the end this of this chapter give an overview

of the system presented in this dissertation.

2.1 Dynamic System Model

The standard model for control theory is the dynamic system model by Dean and Wellmann

(1991). In this model the world changes through the interaction of two processes: theCon-

trolled Process and theControlling Process, as depicted in Figure 2.1.

2.1.1 Controlled process

In robotic domains, theEnvironment Process is the physical world the robot is embodied

in, be it real or simulated. The evolution of the environmentprocess is represented by a set

of state variablesthat have changing values. The state of the environment is influenced by
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Figure 2.1. Dynamic system model

applyingMotor Commands to it1. Motor commands directly set some of the state variables

in the environment process and indirectly other ones. The affected state variables are called

thecontrollablestate variables. For instance, the robot can set the translational and rotational

velocity directly, causing the robot to move, thereby indirectly influencing future positions of

the robot.

The robots used in this dissertation send motor commands to ahardware component at reg-

ular intervals. For instance, the motor command for the soccer playing robots with differential

drive is [v, φ̇], which specify the translational and rotational speed. This motor command is

processed by a hardware component and converted to voltage levels for both motors. In the

dynamic system model, the hardware component and its processing of motor commands are

part of the controlled process, not the controlling process. The only interface the controller

has to influencing the world’s state is the motor command.

TheSensing Process represents the sensor of the robot, which are embedded in theenvi-

ronment process. The unprocessed data structures these sensors generate are calledPercepts.

For the robot, often only a subset of the state variables isobservableto its perceptive sys-

tem, and only these variables are encoded in the percept. Thepercepts of our soccer robots

for instance, are camera images, odometry, and messages received from other robots. Note

that these percepts do not arrive as one single data structure, but arrive and are processed

asynchronously.

1In the dynamic system model, motor commands are actually called control signals. We prefer the term ‘motor
command’, as it emphasizes that all the control signals in this dissertation are sent to the motor system of a
robot.
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2.1.2 Controlling process

The controlling process’ task is to produce a sequence of motor commands that affect the

environment, for instance to achieve a certain goal. To do so, the controlled process must often

first know the current state of the environment. This state isestimated from the percepts with

State Estimation. For instance, the soccer robots use the available percepts, being camera

images, odometry, and communication with teammate robots,for cooperative state estimation

with opponent tracking (Beetz et al., 2004).

The output of the state estimation is aBelief State. The belief state represents the robot’s

beliefs about the current values of the state variables in the environment (Utz et al., 2004). Due

to limitations of sensors and state estimation, the true state of the world cannot be determined

with full certainty and accuracy. Therefore, the soccer robots represent state variables as ran-

dom variables with a Gaussian distribution defined by the mean and variances (Schmitt et al.,

2002; Thrun et al., 2005). The controlling system does not know the state of the world, but

rather has beliefs about it, hence the term ‘belief’ state. The termworld stateshould rather

be used for the actual state of the world, and theworld modelis the description of all possible

belief states. The belief state of the soccer robots contains observable state variables related

to their own pose on the field, as well as those of its teammatesand opponents. The position

of the ball is stored, as well as any unidentified obstacles onthe field.

TheController takes a belief state as an input, and returns a motor command.This disserta-

tion focusses on the designing and learning effective controllers. If the controller is not purely

reactive, it also has a internal state, which is described interms of internal state variables.

Examples are the current goal, or the sequence of actions it is committed to executing, as well

as their parameterizations. Furthermore, there is a distinction betweendirectandderivedstate

variables. Direct state variables are directly provided bystate estimation (e.g. position of ball

and myself), whereas derived state variables are computed by composing direct variables (e.g.

distance to ball). No extra information is contained in derived variables, but if chosen well,

they correlate better with the performance of the control task, as explained in Section 4.1.1.

Summarizing, percepts are acquired through sensors embedded in the environment. State

estimation estimates the observable state variables from the percepts, and stores them in the

belief state. The controller takes the belief states, and determines a motor command that

directs the environment into a desired goal state. These motor commands are sent to the

controlled process. For example, a soccer robot uses its camera (sensing process) to capture

images (percepts), converts them into ball and robot positions on the field (belief state), and

gives velocity commands (motor commands) to the motors, forinstance to dribble the ball

(goal).
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2.2 Durative Actions and Action Selection

One way to design controllers is through direct programming. The designer contemplates the

domain and the task to be executed, and fully specifies which action should be executed in

which state. For the game of tic-tac-toe, it is feasible, though tedious, to specify for each of

the 765 legal states, which move to play next. A more realistic example is designing a PID

controller to control the temperature in a room. The percept(current temperature) and ‘motor

command’ (power for the heater) are continuous, so enumerating all states and commands

would be impossible. Nevertheless, a relatively simple function suffices to map each input to

an output.

When controllers perform tasks in complex dynamic domains this monolithic approach be-

comes tedious and error-prone. Imagine enumerating all possible situations in robotic soccer,

and specifying the desired velocity command for each of them. Designing a single PID con-

troller that can play soccer is just as infeasible.

The predominant approach in robotics to solve this problem is to first design or learn a set

of actions (Principle II), and then design or learn an actionselection module, that chooses

the appropriate action given the current context (Principle I). A schematic overview of the

organization of actions and action selection is depicted inFigure 2.2.

Figure 2.2. System overview of actions and action selectionin the dynamic system model
controller. Procedural knowledge is stored in the action library, and declarative
knowledge is encoded in the action selection.

An Action is a control routine that produces streams of motor commands, based on the pa-

rameters with which it is called. Actions can be executed in the real continuous world, because
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the motor commands they generate can directly be dispatchedto a hardware component. In

this dissertation, actions themselves have no internal state; they are purely reactive.

The parameters of an action are either observed variables from the belief state or

internal variables describing the current subgoal. Any persistent information must be

stored outside of the action. As an example, the signature ofthe goToPose action is

goToPose(x, y, φ, v, xg, yg, φg, vg) It navigates the robot from the current dynamic pose

[x, y, φ, v], stored in the belief state, to a future goal pose [xg, yg, φg, vg], stored in the inter-

nal state. It does so by returning motor commands [v, φ̇], representing the translational and

rotational velocity of the robot.

Note that in Figure 2.2, actions are depicted both as entities (boxes) and processes (ovals).

On the one hand, actions are processes, as they transform belief states into motor commands.

On the other hand, the action selection considers actions tobe resources or entities it can

manipulate and reason about.

The main resource of an action based controller is theAction Library, which contains a set

of actions that are frequently used within a given domain. Ifactions are specified general, and

apply to a large set of the state space, only a few actions are needed to execute all possible

tasks in a certain domain.

Table 2.1 lists the actions used in this dissertation. The action parameters in the signatures

are partitioned, based on whether they hold in the current state of the world or if they specify

the target the robot wants to achieve. Note that the first are observable variables, and the

second are internal variables. Although learning and applying action models is independent of

actual action implementations, we list their implementations for completeness in Appendix A.

Here, we also discuss the exact meaning of the variables in the signatures.

Robot Action Action Parameters Motor
Observed Internal Comm.

AGILO goToPose x, y, φ, v xg, yg, φg, vg v, φ̇

ULM SPARROW goToPosition x, y, φ, v xg, yg, vg v, φ̇

B21 goToPose x, y, φ, v xg, yg, φg, vg v, φ̇
reach x, y, z, ax, ay, az xg, yg, zg, axg, ayg, azg ?

POWERCUBE reach θa, θ̇a, θb, θ̇b θa
g , θ̇

a
g , θ

b
g, θ̇

b
g I1, I2

Table 2.1. List of actions used in the application domains

This list might be shorter than expected. For instance, it isdoubtful that robots could play

soccer if they can only navigate to a certain pose. It is the goal of this dissertation to show

how only a few actions can be reused and customized to performwell in varying task contexts.
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In Chapters 5 to 7, we demonstrate how the robots parameterize this action to approach the

ball, dribble it, navigate efficiently through way-points,and regain ball possession in a team

of robots.

The Action Selection module selects the appropriate action in a given context. InSec-

tion 3.1, various approaches to designing and learning action selection modules are presented.

2.2.1 Advantages of durative actions

When introducing Principle II in Section 1.1, some of the advantages of durative actions were

discussed. We repeat them here more elaborately, using the conceptualization introduced in

this chapter.

Actions themselves are controllers, as their input is also (a subset of variables from) a belief

state, and they return motor commands2. However, since actions only apply to certain limited

task contexts, they are easier to design or learn than a controller that must be able to deal with

all possible contexts (Haruno et al., 1999; Jacobs and Jordan, 1993). For instance, a soccer

robot might have the actiondribbleBall, that only applies in states where the robot is in

possession of the ball. Designing or learning one monolithic controller that can play soccer

might be infeasible, but designing or learning an action that can dribble is not.

Another advantage of durative actions is that they provide an intermediate temporal ab-

straction between high-level goals and low-level motor commands. Instead of having to di-

rectly select motor commands every few milliseconds, the action selection module selects

actions every few seconds. Furthermore, actions provide a conceptual abstraction. Because

actions are designed with a certain task and goal in mind, they can be selected based onwhat

they do, thereby abstracting away fromhow they do it. For instance, the name of the action

dribbleBall alone already gives a clear indication of what it is intendedto do, although

it is unknown, and for action selection purposes irrelevant, how it actually achieves what its

name indicates. These two abstractions enable the action selection module to be specified on

a high level of abstraction.

Action based systems are also more adaptive. Single or several actions can be adapted

to new environments without having to change the action selection module. Of course, this

only holds if the abstract functionality of the actions remains the same, and the implemen-

tation of the action is hidden from the action selection module. These advantages are well-

known in Software Engineering, where this design approach is known as the Bridge Pat-

2The terms controller and action can in principle be used interchangeably. In this dissertation, only the top-level
controller in the dynamic system model is referred to as the controller, and the controllers at lower levels are
always referred to as actions.
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tern (Bruegge and Dutoit, 2003).

Let us now summarize the advantages of using actions and action selection in controller

design:

1. Learning and designing actions is facilitated because they apply to only a subset of tasks.

2. Actions provide a conceptual and temporal abstraction between high-level goals and

low-level motor commands.

3. These abstractions enable action selection at a high level, which facilitates controller

design.

4. Actions can be adapted, without affecting the action selection module.

For animals with complex motor capabilities, especially the first reason has lead to

the use ofinverse models, which is nature’s equivalent of an action (Haruno et al., 1999;

Wolpert and Ghahramani, 2000; Jacobs and Jordan, 1993).

2.3 Guide to the Remainder of the Dissertation

In Section 1.1, some of the ambiguities and questions that remain when mapping declarative

to procedural knowledge (Principle III) were discussed. For efficient control in multi-robot

environments, controllers have to answer these questions.Figure 2.3 depicts an overview

of the system with an action-based controller in the dynamicsystem model, along with the

questions it must answer. These questions only arise in certain task contexts, along with

which they are listed.

The key to answering these questions is using predictive knowledge (Principle IV), which

is compiled intoAction Models. Action models allow agents to reason about what their

actions can do, and how well. Instead of returning a motor command, action models return the

expected performance of executing this action, given theseparameters. In this dissertation, the

most frequently used performance measure is execution duration. The action models used in

the different application domains are listed in Section 4.1.3. Some examples of action models

are presented in Sections 4.2 and 4.2.2.

The first step in the system is to acquire action models for each action in the action library.

Action models are learned from observed experience (Principle V). Gathering training ex-

amples is done in idle time, when the agent is not required to perform other tasks. Learning

these models compiles a wealth of experience into a concise model, which generalizes over

situations not yet experienced. Action models are also stored in the action library, alongside
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Figure 2.3. System overview for the acquisition and application of action models. Numbers
correspond to Chapter numbering.

their corresponding action. At operation time, these models predict the expected outcome and

performance of actions, at negligible computational cost.

The system overview also depicts the questions that arise from executing actions in tasks

contexts (Principle III). In Chapter 5 through 7, we demonstrate how these questions are

answered by tailoring actions to task contexts with learnedaction models (Principle IV).
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3. Related Work

Related work on action selection schemes and the acquisition of action models in nature and

robotics is presented in this chapter. The difference between forward models, action models

and reinforcement learning values are explained. We compare the related work with the system

presented in this dissertation in the individual chapters on the acquisition (Chapter 4) and

applications (Chapters 5 through 7) of action models, afterthe respective system realizations

have been presented.

3.1 Action Selection Schemes

In Section 2.2, the general computational model for controllers with durative actions and ac-

tion selection were presented. We now briefly present four well-known approaches to design-

ing action selection. They are introduced here for future reference; a more elaborate explana-

tion of their advantages, disadvantages and relation to this research are provided throughout

the dissertation, for instance in Sections 4.4.1, 5.2.1, and 5.6.7.

3.1.1 Direct programming

Actions provide a temporal and conceptual abstraction thatwe can reason about, similarly to

the conscious deliberation of our own actions. This makes direct programming of the action

selection module feasible. The most straight-forward method is to code the action selection

directly into the programming language used for the robot’scontroller. Alternatively, abe-

havior languagethat is tailored to developing controllers can be used. For instance, several

languages exist that allow controllers to be designed in terms of state charts. Examples of this

approach are (Lötzsch et al., 2004), in which state charts are coded in XML, or (Murray, 2001;

Arai and Stolzenburg, 2002; Obst, 2002) in which the same is done with UML. The advantage

of this approach is that since the designer has hand-coded everything, the displayed behav-

25



Chapter 3 Related Work

ior can be explained in terms of the designer’s knowledge andintentions. This can facilitate

behavior debugging.

Of course, the disadvantage is that the designer has to completely hand-code the action

selection module, which is tedious, as much time is needed for fine-tuning parameters. It is

also error-prone, as the designer cannot be expected to foresee each possible situation and

specify an appropriate response, although these situations might occur in the real world. Also,

this approach does not scale well. The more complex the environment, the more actions and

interactions between actions must be taken into account when designing action selection.

3.1.2 Motion blending

In motion blending approaches, there is no exclusive actionselection, as all actions constantly

compute a motor command. The final motor command the controller returns is computed by

interpolating between the various motor commands, with a certain weighting scheme. The

advantage of this approach is that there are no discrete transitions between movements, which

is important if fluency of motion is required. Examples of controllers that use motion blending

are presented by Jaeger and Christaller (1998), Utz et al. (2005), and Saffiotti et al. (1993).

Most behavior-based approaches use motion blending as well(Arkin, 1998; Brooks, 1986).

3.1.3 Hierarchical Reinforcement Learning

In Supervised Learning, a teacher provides the target valuevector for each input value vector,

for instance the appropriate action given a set of observations. Unfortunately, the target action

is usually not available in motor control, as this is exactlywhat we want to learn. An alternative

approach to providing target actions is to specify target states. Each time a robot is in such

as target state, it receives a reward. For the teacher, the design of this reward function is

often much more intuitive than specifying target actions. Learning actions that optimize the

accumulated reward over time is called the Reinforcement Learning problem.

Most Reinforcement Learning (RL) algorithms model the problem as a Markov Decision

Problem (MDP), which defines a set of discrete states, discrete actions, probabilistic transi-

tions between states given certain actions, and the reward function (Sutton and Barto, 1998).

RL algorithms often learn thevalueof a state or state-action pair. Here, we concentrate on the

latter, which are calledQ-values. Q-values represent the future reward an agent can expect

when executing actiona in states. This value is often discounted, which means that proximal

rewards are preferred over distal rewards. Once the Q-values are learned, the controller simply

chooses the action with the highest Q-value.
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The problem of directly learning to select the best actions is thus converted to learning the

Q-value function. In RL algorithms these values are learnedby incrementally updating values.

Each time a reward is found, the reward is back-propagated through the action sequence that

lead to the reward (Sutton and Barto, 1998). Many improvements on this initial idea have been

made, such as selective updating, intelligent exploration, updating values off-line, allowing

continuous state and action spaces, etc. We do not elaborateon them here.

Even with these improvement, monolithic RL, in which one value function is learned for

the entire domain, does still not scale to complex tasks (Barto and Mahadevan, 2003). This

main problem is that the number of state-action pairs for which Q-values must be learned in-

creases exponentially with the number of dimensions in the state and action space. Recent

attempts to combat thiscurse of dimensionalityhave turned to principled ways of exploiting

temporal abstraction (Barto and Mahadevan, 2003). Severalof theseHierarchical Reinforce-

ment Learningmethods, e.g. (Programmable) Hierarchical Abstract Machines (Parr, 1998;

Andre and Russell, 2001), MAXQ (Dietterich, 2000), and Options (Sutton et al., 1999). All

these approaches use the concept of actions (called ‘machines’, ‘subtasks’, or ‘options’ re-

spectively). During training, the value for each primitiveaction in these actions is learned,

as well as the value for executing an entire action in a certain state. Dietterich (2000) and

Kleiner et al. (2002) have demonstrated that learning the high-level and low-level values si-

multaneously leads to even better results, as these values depend on each other. The advantages

and disadvantages of Hierarchical Reinforcement Learningare discussed in Section 4.4.1.

3.1.4 Planning

In plan-based control, the robot explicitly reasons about the preconditions and effects of ac-

tions to select a sequence of actions to achieve a goal. An important aspect of plan-based

robot control is that robots contemplate and commit to a sequence of actionprior to execu-

tion. This allows the controller to consider interactions between future actions, and resolve

conflicting goals in advance, before they are encountered on-line. In recent years, a number

of autonomous robots, including Minerva (Beetz, 2001), WITAS (Doherty et al., 2000), and

Chip (Firby et al., 1996), have shown impressive performance in long term demonstrations.

The use of planning enables these robots to flexibly interleave complex and interacting tasks,

exploit opportunities, and optimize their intended courseof action.

To reason about action sequences, the controller must be able to project them into the future

internally, without actually executing them in the real world. Planning approaches therefore

define the preconditions and effects of each actions. These declarative components specify

when the action is applicable, and what its effects are when executed. Planning systems take
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a set of actions and a goal that has the same format as a precondition, and generate a sequence

of actions that achieve the goal. In this sequence, the preconditions of each action are satisfied

by the effects of preceding actions. Furthermore, the precondition of the first action is satisfied

by the current situation, and the effects of the last action must satisfy the goal. This represents

a valid plan to achieve the goal. As we shall see in Section 5.2, humans can easily transfer

their declarative knowledge about the applicability and effects of actions to the preconditions

and effects of this action.

3.1.5 Different terminologies for actions

Table 3.1 lists some examples of the action selection approaches described above, and the ter-

minology for motor command and action they use. Cognitive Science has also been included,

as this field also has a terminology for the analysis of durative actions and action selection.

In this dissertation, a durative action is simply referred to as an “action” for reasons of

brevity. The term “motor command” refers to smallest unit ofcontrol, as a reminder that they

are very close to the execution on a motorized hardware system.

3.2 Predictive Models of Actions

In this section, we discuss work related to predictive models of actions in nature and robotics.

The difference between forward models and action models is explained, and uses of these

models in humans and robot is presented.

3.2.1 Forward models in cognitive science

In cognitive science there is a distinction between inversemodels, which map desired con-

sequences to motor commands, and forward models, which map motor commands to their

effects. Forward models make predictions, because currentmotor commands are mapped to

future outcomes.

Helmholtz (1896) provided the first proof for the existence of forward models in humans,

in the context of object localization. Due to constant saccading of the eye, the projections of

objects in the world on the retina are constantly moving. To acquire a stable image of the

world, the brain takes the position of the eye in its socket into account. Instead of sensing the

eye’s position directly, a copy of the motor command sent to the muscles of the eye is used

to predict the effect of the command on the eye’s position. Onof Helmholtz’s simple and

ingenious experiments demonstrates this. If one eye is closed, and the position of the other
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Domain
Reference Motor Command Action

Control Theory
Dean and Wellmann (1991) Control Signal Controller
Jacobs and Jordan (1993) Control Signal Controller
Qin and Badgwell (1998) Controllable Variables Controller

Direct Programming
Murray (2001) Command Skill
Lötzsch et al. (2004) Action Option

Behavior based / Motion Blending
Brooks (1986) Motion Command Module/Behavior
Jaeger and Christaller (1998) Motor Command Behavior

Reinforcement Learning
Sutton et al. (1999) Primitive Action Option
Andre and Russell (2001) Action HAM, PHAM
Dietterich (2000) Action Subtask
Ryan (2004) Primitive Action Behavior

Planning
Fikes and Nilsson (1971) Low-level action Routine
Nilsson (1994) Primitive Action T-R Program
Ryan (2004) Primitive Action Behavior
Belker (2004) Motor Commands Action
Haigh (1998) Command Action
Bouguerra and Karlsson (2005)Action Executable Action
Cambon et al. (2004) Motion Action

Forward Models
Wolpert and Flanagan (2001) Motor Command Inverse Model
Dearden and Demiris (2005) Motor Command Inverse Model
Jordan and Rumelhart (1992) Action Inverse Model

Table 3.1. Different terminologies for actions and motor commands.

eye in the socket is moved artificially by pressing it with your finger, the world seems to be

moving. Th explanation is that since no motor command is sentto the eye’s muscles, no copy

is sent to the forward model, and the prediction that compensates for the movement of images

on the retina due to eye movements is missing. Hence, the brain deduces, the movements on

the retina must be caused by movement of the world.

In a more recent experiment, Ariff et al. (2002) asked subjects to follow the voluntary reach-

ing movements of their arm with their eyes. If the arm is hidden from the subject’s view, the

subjects make saccadic movements to a location that predicted the position of their hand 196

ms in the future.

Especially in the last decade, many new discoveries about how forward models are learned

and used have been made (Wolpert and Flanagan, 2001; Wolpertand Ghahramani, 2000).
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This section presents an overview of these results.

Forward models are learned

Forward models are not entities that are fixed at birth, but that must rather be learned and

updated through experience. This allows forward models to be learned for new action contexts,

or for newly acquired actions. Supervised learning can be applied, because prediction errors

can easily be acquired by comparing the predicted and actualoutcome of a motor command.

The neural mechanisms behind such predictive learning are partially understood in electric

fish (Bell et al., 1997). It is hypothesized that “body babbling” is a strategy to actively acquire

training data to learn such models (Rao et al., 2005).

Flanagan et al. (2003) have demonstrated that humans actually learn the forward model of

an actionbeforethe final inverse model is learned. So, the brain learns to predict the effects of

an action before perfecting the execution of the action itself. In the approach presented in this

dissertation a similar procedure is described. First action models are learned from observed

experience for the actions in an action library. These action models can then be used to tailor

actions to task contexts, such as action sequences or multiple robots.

Widespread use of forward models in human motor control

Humans use forward models in many task contexts. Some examples are presented in this

section. Optimal control and social interaction, the itemsmarked with a*, are applications of

forward models that have implemented in our work as well. They are discussed in more detail

in Chapter 5 and Chapter 7 respectively.

State estimation. Accurate control of the body requires on knowing the body’s state, such

as the joint angles, and the positions and velocities of bodyparts. Due to neural trans-

mission and processing, sensory signals that provide information about the body’s state

have considerable delay. Especially for fast movements, a more timely estimation of the

body’s state is essential. Alternatively, predictions based on motor commands can be

used to update the state, even before the movement is executed (Wolpert and Flanagan,

2001). In control, the Kalman filter (Kalman, 1960) is an example where state estima-

tion is also performed with both motor and sensor updates.

Sensory cancellation. Prediction also allows sensory information to be filtered, for in-

stance to cancel out the sensory effects caused by self motion. For example, it is im-

possible to tickle oneself, because the expected sensory consequences of this motion,
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predicted with forward models, are subtracted from the actual sensory feedback. In an

recent experiment, Wolpert and Flanagan (2001) had subjects tickle themselves through

a robot interface. An arbitrary delay between the tickle command and actual tickling

could be introduced through the robot interface. It was shown that the larger the delay,

the more ‘ticklish’ the percept, presumably to a reduction in the ability to cancel the

sensory feedback based on the motor command.

Context estimation. Different contexts require different behaviors. Humans are very good

at selecting the appropriate behavior, even under uncertain conditions. One explanation

is that several inverse models are tested for their appropriateness in parallel. For ex-

ample, when initially lifting an object of unknown weight (is the box empty or full?),

the forward models of the inverse models for lifting both light and heavy objects are

active. Once lifting commences, the error between the prediction and the actual move-

ment is measured for each forward model. The inverse model corresponding to the for-

ward model that generates the lowest error is then chosen as the appropriate controller.

Haruno et al. (2001) have integrated several of these pairedforward-inverse models in

the MOdular Selection and Identification for Control (MOSAIC) framework.

Optimal control. * Although there are infinitely many ways to perform most tasks, they are

usually solved with highly stereotyped movement patterns (Wolpert and Ghahramani,

2000). The optimal control framework assumes that these typical patterns are those

that minimize a certain cost function. In cognitive science, one of the challenges is to

reverse-engineer this cost function, given the motion patterns found in empirical studies.

For instance, for reaching movements there exist optimal control models that optimize

the smoothness of the trajectory (Flash and Hogan, 1985), smoothness of the torque

commands (Uno et al., 1989) and variability of movement (Harris and Wolpert, 1998;

Simmons and Demiris, 2004).

Social interaction. * Wolpert et al. (2003) hypothesize that forward models form the basis

of social interaction and imitation. There are many similarities between the motor loop

and the social interaction loop. In the motor loop, a motor command changes my body’s

state, whereas a communicative command (e.g. speech, gesture) changes the mental

state of others. Possibly, we also use forward models to predict the change in mental

state in others due to our own commands. It may be that the samecomputational mech-

anisms which originally evolved for sensorimotor prediction have also been adapted for

other cognitive functions.
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Imitation. Once the responsible forward models for executing an actionhave been recog-

nized, imitating the action is relatively straightforward: activate the inverse models be-

longing to these forward models in the same order as the forward models were recog-

nized. Wolpert et al. (2003) describe a hierarchical version of the MOSAIC system that

models this process.

3.2.2 Forward models in engineering

The widespread use of forward models in human motor control has drawn the attention of

control and robotics community. Jordan and Rumelhart (1992) introduced Distal Learning,

which explicitly uses forward models to enable motor control learning. The distal supervised

learning problem is defined byintentions, that specify what the controller wants to achieve,

motor commands, with which the controller can influence the environment, and outcomes, the

result of executing motor commands in the real world. The problem is that the inverse model

has to map intentions to motor commands, but has no target values for these motor commands.

There are target values for the outcomes, but these cannot beinfluenced directly by the inverse

model, which is why they are calleddistal. Because the target values are distal, learning

the inverse model cannot be done with supervised learning. The key to solving this problem

is learning an internal forward model, which maps motor commands to outcomes. Forward

modelscanbe learned with supervised learning, because they are a mapping from actions to

proximal target outcomes. The resulting composite learning system with inverse and forward

models is treated as a supervised learning problem, which can be learned with any supervised

learning algorithm.

Figure 3.1. The distal learning problem, with distal targetvalues (above). Forward models
are the key to solving the problem (below).

Recently, robotic forward models have also been learned using Bayesian networks, as de-
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scribed by Dearden and Demiris (2005). The advantage of Bayesian networks is that they

allow the causal nature of a robot’s control system to be modelled using a probabilistic frame-

work. Infantes et al. (2006) describe recent work at anothergroup that also includes the use

of dynamic Bayesian networks.

In the networks used, nodes are random variables which represent motor commands, robot

states or observations, and edges represent causal associations between these nodes. Motor

commands cause changes in the robot’s state, which is hidden, and this in turn causes changes

in the observations, which are accessible through the vision system. The structure and pa-

rameters of the network is learned by data acquired through motor babbling, similarly to the

approach described in Section 4.1.

A nice side effect of Bayesian networks is that the delay withwhich a motor command actu-

ally changes the robot’s state and observations is not fixed.By determining the log-likelihood

for varying delays, Dearden and Demiris (2005) determined that issuing a velocity command

leads to an observed velocity 550ms later. Such delays must be taken into account when

other mappings from motor command to observation are learned, for instance when learning

a robotic action from human examples, as in (Buck, 2003), where the dead time is 300ms.

3.2.3 Action models

Forward models predict the outcome of executing a motor command, whereas action models

predict the cost of continually executing a durative action. Forward models make prediction on

a time-scale of several 100ms, whereas action models predict the performance or outcome of

an action on completion, possibly several seconds or more inthe future. Just as Wolpert et al.

(2003) hypothesize that forward models form the basis of social interaction and imitation, we

hypothesize that forward models are reused to yield action models.

In principle, forward models can be called recursively to emulate an action model. Instead

of making a prediction only one time step ahead, a sequence ofmotor commands can be used

to update a simulated staten time steps in the future. If this sequence of motor commands

is generated by an inverse model, given the simulated state,we are effectively simulating

the temporally extended effects of the inverse model on the current state. This can be used

to determine how long the inverse model must be executed to achieve a certain state, or if

this state can be achieved at all. A disadvantage of this approach is that the uncertainty of

the prediction grows with each recursive call. It has been demonstrated empirically that this

accumulated uncertainty prevents this approach from beingused in practice (Dearden, 2006).

Furthermore, the abstract effects of a durative action might be more than the sum of individual

motor commands.
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Balac (2002) proposes the ERA (Exploration and Regression tree induction to produce Ac-

tion models) system, which learns action models from observed data by training regression

trees. In this work, a robot learns the velocity with which itcan travel over terrains with

different roughness properties. This knowledge is used to improve navigation plans.

Haigh (1998) also uses regression trees to learn cost models, but for indoor navigation

actions. These models take features such as the time of day into account as well. This is

useful to predict the crowdedness of hallways, and thus the duration of navigation. These

models are used to compute the best route in the office environment. In another application,

search control rules for the planning rules are derived fromthe regression tree rules.

Belker (2004) describes how action models are learned for navigation actions using model

trees and neural networks. The use of these models is discussed more elaborately in Sec-

tion 5.6.2. Buck et al. (2002b) have a similar approach with neural networks.

In a sense, Reinforcement Learning algorithms also learn action models. In RL, the policy

is the action, and the value is the predicted future reward. However, values are learned for a

certain specific task and goal, whereas the action models previously described are only specific

to the action, and can be used for a variety of tasks. A comparison between values and action

models is made in Section 4.4.1.

3.2.4 Terminology

For completeness, Table 3.2 lists the different terminologies for action effects (what) and

performance prediction (how well) in different approaches. It is a repetition of Table 3.1,

where approaches that have no concept of action prediction are excluded.

3.3 Cognitive Systems

Action models enable robots to reason about the outcome and performance of their actions.

Such reflective capabilities are essential for any cognitive system. In this section, we discuss

work related to the overall approach of designing and realizing cognitive systems.

In the overview paper “Systems That Know What They’re Doing”, Brachman (2002) de-

scribes the DARPA Information Processing Technology Office’s goal to transform systems

which simply react to inputs to systems which are cognitive.In the proposed architecture, a

differentiation between reactive, deliberative, reflective and self-awareness processes is made.

Reactive processes are simple reflexes and automated behavior routines whose execution does

not need conscious effort. The bulk of decision making is performed by deliberative pro-
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Domain
Prediction

Reference Action What? How well?

Control Theory
Qin and Badgwell (1998) Controller Process Model —

Reinforcement Learning
Sutton et al. (1999) Option — Q-value
Andre and Russell (2001) HAM, PHAM — Q-value
Dietterich (2000) Subtask — Q-value
Ryan (2004) Behavior Effects Q-value

Planning
Fikes and Nilsson (1971) Routine Effects —
Nilsson (1994) T-R Program Effects —
Ryan (2004) Behavior Effects Q-value
Belker (2004) Action Effects Action Model
Haigh (1998) Action Effects Action Model
Bouguerra and Karlsson (2005)Executable Action Effects —
Cambon et al. (2004) Action Effects —

Forward Models
Wolpert and Flanagan (2001) Inverse Model Forward Model —
Dearden and Demiris (2005) Inverse Model Forward Model —
Jordan and Rumelhart (1992) Inverse Model Forward Model —

Miscellaneous
Balac (2002) Action — Action Model
Buck et al. (2002b) Action — Neural Projection

Table 3.2. Differing terminologies for different approaches to designing skill-based con-
trollers.

cessing, whereas reflective processes contemplate this decision making process to reflect on

alternative approaches. In our approach, the reactive, deliberative and reflective processes are

represented by the actions, action selection, and prediction based action tailoring respectively.

Finally, self-awareness, the ability to realize that we areindividuals with different experiences,

capabilities and goals, is an additional capability that enables even more powerful reflection.

In the project, the goal is to investigate how these processes enable systems to perform more

robustly and independently in application domains such as information extraction, networking

and communications, or computational envisioning.

Cognitive Systems for Cognitive Assistants (Cosy, 2004) isa project whose goal it is to

study cognitive submodules in the context of an integrated system. The methodology in this

project is to iteratively determine and implement intermediate steps, without losing track of

the ultimate goal of human-like performance. Another key principle is to understand which

approach is best in which context: nature or nurture, reactive or deliberative, explicit or im-
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plicit representation. The project also stresses the importance of finding representations that

allow powerful interactions between submodules. In this sense, action models can be thought

of as very powerful representations, as they facilitate control, state estimation and many other

aspects of cognitive systems.

Cognition for Technical Systems (CoTeSys) is a cluster of excellence at the Technische Uni-

versität München (CoTeSys, 2006). In this cluster, the difference between technical systems

and cognitive systems is that the latter use cognitive control and have cognitive capabilities.

Cognitive control “orchestrates reflexive and habitual behavior in accord with long-term in-

tentions” (CoTeSys, 2006). The ambition of this cluster is to implement the research results in

cognitive vehicles, cognitive humanoid robots and in a cognitive factory (Buss et al., 2007).

The Modular Selection And Identification for Control (MOSAIC) architec-

ture (Haruno et al., 2001) integrates forward models into a computational model for

motor control. This framework is intended to model two problems that humans must solve:

how to learn inverse models for tasks, and how to select the appropriate inverse model,

given a certain task. MOSAIC uses multiple pairs of forward and inverse models to do so.

The inverse models are learned during the task, and the forward models are used to select

the appropriate inverse model in a certain context. However, this architecture has not been

designed for robot control.

We are not aware of (robotic) controllers in which prediction models are an integral and

central part of the computational model, and which are acquired automatically, represented

explicitly, and used as modular resources for different kinds of control problems.
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“Skilled motor behavior relies on the brain learning both tocon-

trol the body and predict the consequences of this control”

Flanagan et al. (2003)

As the quote above implies, prediction is the key to answering the questions related to

effectively and efficiently executing actions in differenttask contexts. As we saw in Sec-

tion 3.2.1, humans do exactly this, by learning forward models, and extensively using them

in various motor control tasks. For instance, forward models are used to improve state es-

timation, estimate contexts, optimize control (Helmholtz, 1896; Wolpert and Ghahramani,

2000; Wolpert and Flanagan, 2001; Ariff et al., 2002), and are possibly the basis of social

interaction and imitation (Haruno et al., 2001). In some holistic architectures of cognition

and motor control, predictive knowledge plays a more important role than declarative knowl-

edge (Hawkins and Blakeslee, 2004; Grossberg, 1987; Harunoet al., 2001).

The key to tailoring these actions to different task contexts is acquiring the robotic equiv-

alent of forward models: action models. These models predict for instance the performance

of an action, or its expected success. Whereas forward models make their predictions on the

time-scale of a single motor command, action models do so foran entire durative action. The

goToPose action for instance takes the robot’s current and goal pose,and when called con-

tinually, returns motor commands that will navigate the robot to the goal pose. The action

model that predicts the execution duration has the same signature, and predicts how long this

navigation action will take till completion.

Because it is difficult and error-prone to manually specify action models, robots learn them

from experience, gathered by executing the action and observing the result (Principle V in

Section 1.1). These action models are used to optimize action sequences, coordinate multi-

ple robots, or adapt actions to new tasks. In this dissertation, actions are not merely fixed

resources, but can be adapted, extended and tailored to novel contexts. Based on a set of

‘innate’ actions, the robot learns more sophisticated actions itself, by observing its actions,
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learning models of them, and using these models to tailor actions to new task contexts. With

this approach, robots become more autonomous and adaptive.

The role of learning action models within the system is highlighted in the system overview,

depicted in Figure 4.1. For each action in the action library, one or more action models are

learned. This is a two-step procedure, in which training data is first gathered by executing

an action for random action parameters, and transforming this data to an appropriate feature

space. A generalized model is then learned from these examples by tree-based induction. This

action model is then incorporated in the action for which it is learned, as shown in Figure 4.1.

Figure 4.1. Acquiring action models within the overall system overview.

The next section presents how robots gather experience, andhow this data is transformed to

appropriate feature spaces. Section 4.2 presents examplesof learned action model. After an

empirical evaluation of the accuracy of the learned models in Section 4.3, we discuss related

work in Section 4.4. This chapter concludes with a summary inSection 4.5.

4.1 Acquisition of Training Data

Training examples are gathered by executing an action, and observing the results. In this

chapter, robots record and learn to predict the execution duration of actions, given their pa-

rameterization. To ensure that an action can be executed, the initial and goal states should

be chosen from its preconditions and effects respectively.At the moment this is performed

semi-automatically. The user defines ranges for the action parameters that ensure that the pre-
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conditions and effects are met, and the actual action parameters are sampled from these ranges

randomly. The execution of an action from an initial to a goalstate is called an episode. The

procedure is as follows:

1. Choose a random initial and goal state from the valid rangeof action parameters. This

ensures that the preconditions and effects are met, which guarantees that the action can

be executed.

2. Select and execute another action that can achieve the initial state. For instance, if a

model of thedribbleBall action is to be learned, the robot needs to be at the ball.

If it is not, theapproachBall action is executed beforehand. Using this preparatory

action in experience gathering alleviates the need for human intervention with the robot,

for instance, to make sure that the preconditions of an action are met. This substantially

speeds up experience gathering in practice.

Sometimes, this step can be bypassed. When the effects of an action always satisfy its

preconditions, the goal state of one action can be chosen to be the initial state of the

next action, and there is no need for a preparatory action. For instance, thegoToPose

action can be continually performed with varying parameters, without any preparatory

action. Furthermore, in simulation, Step 2. is eliminated by simply setting the state of

the world to the initial state. Here, this instant environment modification can be seen as

the preparatory action.

3. Execute the action for which a model will be learned, and record the observable and

internal state variables. Basically, all the variables in the robot’s belief state are recorded.

Which of them are relevant to learning the model is determined at a later stage. Realizing

that an unrecorded variable might be relevant to learning the action model requires re-

gathering the data, whereas recording all variables but notusing all only costs memory.

Most robots in this dissertation record their state at 10Hz,so an episode oft seconds

duration contains10t examples.

4. If enough examples have been gathered then quit, else repeat from Step 1. How many

examples are “enough” is discussed in Section 4.1.3.

The running example in this section will be learning to predict the execution duration of the

goToPose action for the simulated B21 in the kitchen environment. Figure 4.2 displays a

concrete example of gathered training data with this robot.Here, 30 of 2948 executions of

goToPose with random initial and goal states are shown.
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Figure 4.2. Experience for thegoToPose action in the kitchen domain, in which the ac-
tion is performed thirty times. The implementation of this action is described in
Section A.1.

The total number of executions is denoted withne. For instance,ne=2948 for the example

above. We split this data into a training and test set. The number of examples in the training

set is denotedN . If we include three fourth of the episodes in the training set, this yields

N=3
4
ne, which in the current example is 2200 episodes. The questionwe now face is whether

these 2200 examples are enough to train a good model? Will a learning algorithm trained with

this amount of data likely make erroneous predictions on previously unseen cases?

In general, a hypothesis that is consistent with a sufficiently large training set is deemed

probably approximately correct(PAC). A trained learning algorithm that has an error of at

mostǫ with probability1 − δ (i.e. is PAC) must be trained with at leastN training examples,

which is computed with Equation 4.1.

N ≥ 1

ǫ
(ln

1

δ
+ ln|H|) (4.1)

Here,|H| is the number of possible hypotheses, which in our case are the possible model

trees. Determining|H| for the model trees we use is beyond the scope of this research, but we

can nevertheless use Equation 4.1 to determine strategies to learn more accurate models with

a limited amount of costly training episodes. We use three approaches:

Reduce the number of possible hypotheses |H|. By exploiting invariances, we can

map the data from the original direct state space to a lower-dimensional derived fea-

ture space. This limits the number of possible hypotheses|H|. This will be discussed in

Section 4.1.1.
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Increase the amount of training data N . Instead of using only the first initial example

of each episode, we will also use intermediate data gatheredon the way to the goal, as

will be explained in Section 4.1.2. Here, we must be careful not to violate the stationarity

assumption, which poses that the training and test set must be sampled from the same

probability distribution.

Track the error measure ǫ empirically. By computing the Mean Absolute Error (MAE)

as an estimate ofǫ over time as more data is gathered, we can determine when it stabi-

lizes. At this point, we assume thatN is sufficiently large, and stop gathering data. We

demonstrate this in Section 4.1.3.

4.1.1 Appropriate feature spaces

Whilst gathering experience, the robot records all the observable and internal state variables.

For the soccer robots, this includes the robot’s pose, the ball’s position, a teammate’s position,

and the target pose. Not all of these variables are relevant to learning an action model. For

instance, if we are gathering experience for a navigation action, the position of the ball is irrel-

evant, whether it is seen or not. For learning, only informative features should be used (Haigh,

1998).

Furthermore, the originally recorded state variables fromthe belief state do not necessarily

correlate well with the performance measure, which here is execution duration. The state

variables recorded in the navigation task, shown to the leftin Figure 4.3 are a good example.

The original seven dimensional state space contains the initial and goal dynamic pose. The

first column in Figure 4.3 shows these variables, along with agraph that plots the execution

duration againstx, one of these seven variables. The example points in these plots are the

same as in Figure 4.2.x clearly does not correlate well with time, and neither do theother six

features.

Fortunately, this state space contains several invariances, which can be exploited to derive

feature spaces that correlate better with the performance measure. Haigh (1998) calls such

featuresprojective. For instance, in the seven-dimensional state space, the learning algorithm

has to learn to predict the execution duration for every initial and destination position sepa-

rately. Of course, it is the relative position of the destination position to the initial one that

matters, not their absolute positions. By exploiting this translational invariance, the state space

is reduced to the five-dimensional feature space depicted inthe second column of Figure 4.3.

Here, the robot is always at the location(0, 0), anddx anddy are the difference between the

x andy coordinates of the initial and destination position. A further reduction due to rota-
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tional invariance is possible, yielding the four-dimensional feature space depicted in the third

column of 4.3.

Figure 4.3. The original state space, and two derived feature spaces. The top figures depict
the features used, and the graphs plot time against one of these features.

By exploiting the invariances, we are reducing the dimensionality of the feature space. This

again reduces the number of possible model trees which can belearned, which leads to a

decrease of|H| in Equation 4.1. This equation specifies that with lower|H|, fewer training

examples are needed to learn a PAC model. By the same reasoning, more accurate models (i.e.

lower ǫ) can be learned on lower dimensional feature spaces, given the same amount of data.

We have experimentally verified this by training the model tree learning algorithm (to be

presented in Section 4.2) with data mapped to each of the three different feature spaces in

Figure 4.3. For each feature space, the model is trained withN=2200 of thene=2948 executed

episodes. The Mean Absolute Error (MAE) of each of these models is determined on the

separate test containing the remaining episodes1. As can be seen in Figure 4.3, the MAE is

lower when lower dimensional feature spaces are used. Of course, this lower dimensionality

1We prefer the MAE over the Root Mean Square Error (RMSE), as itis more intuitive to understand, and the
cost of a prediction error is roughly proportional to the size of the error. There is no need to weight larger
errors more.
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should not be achieved by simply discarding informative features, but rather by composing

features into projective features by exploiting invariances.

Automatic feature space generation

For many applications, it is common to design feature spacesmanually. State variables are

composed into higher level features using domain-specific knowledge. Unfortunately, manu-

ally designing such feature languages is tedious, because each new learning problem usually

requires its own customized feature space. For instance, different actions might have different

parameters, and control different variables. Their actionmodels will therefore need different

feature spaces to reduce|H| without abstracting away from relevant information. It is also

error-prone, as variables that might intuitively seem irrelevant are discarded, whereas in fact

they might be informative. We have demonstrated these two problems in the application do-

main of face and mimic recognition (Wimmer et al., 2006, 2008), where model trees are used

to learn objective functions for fitting algorithms.

To overcome these problems, we propose an algorithm that automatically generates com-

pact feature spaces, based on Equation Discovery (Stulp et al., 2006b). This is also known

as Constructive Induction (Liu and Motoda, 1998; Bloedorn and Michalski, 1998). Equation

Discovery systems introduce new variables from a set of arithmetical operators and func-

tions. The algorithm explores the hypothesis space of all equations, restricted by heuristics

and constraints. Langley et al. (1987) introduced the classical representative BACON, which

rediscovered Kepler’s law (T 2 = kR3). A graphic example is depicted to the left in Figure 4.4,

in which five input variables are mapped to the target by the equationt = |i1|+(i2/i3)+
√

i5.

The advantage of Equation Discovery is that it yields a compact representation and human

readable output. For instance, the simplicity and eleganceof Kepler’s law would not be ob-

vious from the learned weights in a neural network. The underlying principle is also known

as Ockham’s Razor: “All things being equal, the simplest solution tends to be the best one.”

However, the equations that can be generated are restrictedby the operators provided, and the

hypothesis space that arises might not contain the true function. In these cases, the learning

problem is said to beunrealizable(Russell and Norvig, 2003).

Our novel approach combines the strengths of Equation Discovery, being the compactness

and interpretability of the resulting function, and other Machine Learning techniques such

as model trees and neural networks, being their ability to approximate complex non-linear

relationships. We do this by allowing Equation Discovery todiscover many equations, which,

when applied to the input data, yield data that has a higher correlation with the target data.

Equation Discovery is halted at a certain depth, and from themultitude of generated equations
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Figure 4.4. Combining Equation Discovery and Machine Learning to generate features.

(features), those most appropriate for learning are selected. The algorithm essentially searches

for relationships between several input variables and the target variable that can be described

well with operators, and leaves more complex relationshipsto machine learning.

The algorithm combines alll initial features with thek given operators, yielding new equa-

tions. These new features are added to the original set. Thisis repeated recursivelyd times,

yielding equations with at most2(d−1) operators. Since the complexity of this algorithm is

Θ(k2d
−1l2

d

), we should avoid generating irrelevant features. To this end, mathematical con-

straints eliminate equations that generate neutral elements (e.g.x/x, x−x). Furthermore, term

reduction removes terms with the same semantics but different syntax (e.g.x · 1/y = x/y).

Also, units of the features are considered to avoid for example subtracting meters from mil-

limeters, or meters from seconds. Finally, domain dependent operators can further control

search. For example, in a geometrical domain it makes sense to add trigonometric operators

and constraints how to use them, such as “applyatan only to two distances”.

We further direct search by choosing only features that predict the target value well. This

is done by computing the linear correlation coefficientr of the feature with the target value.

At each depth, only the a certain percentage of features withhighest correlation are added to

the set for further processing. This approach accelerates search, but suffers the same problems

as other filter methods (John et al., 1994), which are mostly related to not taking into account

the effects of the chosen features on the used learning algorithm. For more information on the

exact implementation of this algorithm, we refer to (Stulp et al., 2006b) or (Pflüger, 2006).
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Feature spaces for all action models

The feature spaces used to learn each of the models are listedin Table 4.1. The formulae used

to compute them from the action parameters listed in Table 2.1 are also given. The algorithm

presented in the previous section is not used in all domains,but a preliminary version did find

the appropriate features for thegoToPose actions.

Robot Action Features

PIONEER I goToPose v, dist =
√

(x − xg)2 + (y − yg)2,
angle_to = |angle_tosigned|,
angle_at = sgn(angle_tosigned)·

norm(φg − atan2(yg − y, xg − x))
ULM SPARROW goToPosition v, dist, angle_to
B21 goToPose vg, dist, angle_to, angle_at,

∆angle = |norm(φg − φ)|
reach distxyz =

√

(x − xg)2 + (y − yg)2 + (z − zg)2

distxy =
√

(x − xg)2 + (y − yg)2, distxz, distyz,
anglexy = atan2(yg − y, xg − x), anglexz, angleyz

POWERCUBE reach dist =
√

(θa − θa
g )

2 + (θb − θb
g)

2,

angle1 = norm(atan2(θb
g − θb, θa

g − θa) − atan2(θ̇b, θ̇a)),
angle2 = norm(−atan2(θb

g − θb, θa
g − θa) + atan2(θ̇b

g, θ̇
a
g ))

v =

√

θ̇a
2
+ θ̇b

2

vg =

√

θ̇a
g

2
+ θ̇b

g

2

norm(a): adds or subtracts2π to a until is in range[−π, π]
angle_tosigned = norm(atan2(yg − y, xg − x) − φ)

Table 4.1. The feature spaces used to learn action models

4.1.2 Including intermediate examples

To gather data, the initial and goal states for an action are chosen randomly from the range of

valid action parameters. During execution, the observableand internal variables are recorded

at 10Hz. These variables are then transformed into features. One such execution is called an

episode. Part of an episode is depicted in Figure 4.2. For thecurrent example, the B21 robot

performed 2948 navigation actions, so this yieldsne=2948 episodes.

To train the learning algorithm, ideally only the first example of each episode should be

used. This is because only the first entries are from the same distribution as the distribution

45



Chapter 4 Learning Action Models

time v vg dist angle_to angle_at

• 6.8 0.00 0.60 1.46 1.10 -1.63
• 6.7 0.00 0.60 1.46 1.10 -1.63
• 6.6 0.00 0.60 1.46 1.10 -1.63
: : : : : : :
• 3.5 0.53 0.60 0.65 0.98 1.23
• 3.4 0.51 0.60 0.62 1.02 1.16
• 3.3 0.48 0.60 0.60 1.05 1.08
: : : : : : :
• 0.2 0.40 0.60 0.08 0.03 -0.07
• 0.1 0.41 0.60 0.04 0.03 -0.06
• 0.0 0.43 0.60 0.00 0.00 -0.07

Table 4.2. An example episode. The first entry is determined by the randomly chosen initial
and goal state. The projective features in the final entry always pass through (0,0).

from which the initial and goal states are chosen. So if the original distribution from which

these states are selected is uniform, the first entries will be uniformly distributed as well. This

is necessary to fulfil the stationarity assumption, which demands that training and test set

are taken from the same probability distribution (Russell and Norvig, 2003). This has been

visualized in Figure 4.5, in the upper left graph. Here the initial states of thirty episodes are

depicted, as in Figure 4.3. The distribution of the distanceand time of all 2200 episodes are

shown in the histograms above and to the right of this graph. The histogram shows that initial

distances to the goal are uniformly distributed. The model trained on these examples has a

Mean Absolute Error of 0.59s.

From Equation 4.1, it can be inferred that more training data(higher N) leads to more

accurate models (ǫ) with higher probability (δ). For each episode, more data is easily acquired

by using the execution duration not only from the initial state, but also from all the intermediate

states to the goal. These extra examples have also been included in Figure 4.2 and Figure 4.5,

in the center upper graph. Instead of 2200 examples, we now have almost all 173336 examples,

which is all the training data collected in almost 5 hours of action execution. At first, this might

seem the optimal choice: the maximum amount of data, and a lower error. However, a closer

look shows another problem. Performance measures often correlate with how far you are from

the goal state.How far should be interpreted abstractly here; it could be a distance, an angle,

some energy measure, time. Features that express wellhow farthe robot is from the goal state,

are usually good features for learning the model. Haigh (1998) calls such featuresprojective.

For instance, distance expresses very well how far we are from the goal, in a geometric sense.

Such measures are defined relative to the goal position. The equation for computing the

distance (
√

(x − xg)2 + (y − yg)2) clearly shows that the first step is to subtract the goal co-

ordinates from the current coordinates. Most features for learning action models compute their
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Figure 4.5. The three upper graphs depict forty episodes, and the distribution of the examples
for three values ofni on the x-axis of the lower graph. The lower graph depicts
how the Mean Absolute Error and number of examples depend on the number of
examples per episode used.

values relative to the goal state. This approach entails that when the goal is almost achieved,

the distance measures will approach zero. The final row in theexample episode in Figure 4.2

clearly demonstrates this. In the center graph of Figure 4.5all episodes end in the origin at

(0,0), even though the initial states are spread throughoutthe feature space.

The histograms around the center graph in Figure 4.5 show that both distance and time

accumulate around zero. The distributions in the histograms are strongly skewed to zero.

Similar patterns arise for other features and actions. The stationarity assumption is clearly

violated. Most learning algorithms trained with this abundance of data around the origin will

be biased towards states that are close to the goal, and will tend to predict these states very

accurately, at the cost of inaccurate prediction of states further from the goal. Since it is more
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likely that the model will be queried for states further fromthe goal, this is unacceptable.

One way to fulfill the stationarity assumption is to simply take all the intermediate examples

from the episodes in the test set, and include them in this test set as well. Although training and

test set would then both be sampled from the same probabilitydistribution, this distribution

does notcorrespond to the distribution from which the goals are originally sampled. During

real operation time the distances from the initial state to the goal will certainly not be as skewed

towards 0 as in the center graph of Figure 4.5. However, it is exactly during operation time

that we need the models to be accurate. Therefore, it is essential that our test set is sampled

from the same distribution as during operation time, which means we should only use the first

example of each episode in the test setand fulfil the stationarity assumption when training the

model.

A good compromise between the approaches of using only the first example or all examples

of an episode is to use only the first few examples. The number of intermediate examples per

episode included in the training data is denotedni. This means that the number of training

examples is roughlyne · ni instead of justne, but still represents the original distribution of

initial states. Since the best value ofni is not clear analytically, we determine it experimentally.

The lower graph in Figure 4.5 depicts how the Mean Absolute Error (MAE) of the learned

model on a separate test set depends onni, the number of examples used per episode. In

this case, the minimum value for MAE is 0.52s, whenni is 30. This means the first 30

examples, equivalent to the first 3 seconds of each episode, are used. This yields a total of

65318 examples, as can be read from the right y-axis. Note that the number of examples grows

linear withni at first, but settles at 173336 after a while. This is because none of the episodes

has more than 139 examples (i.e. no episode took longer than 13.9s), so increasing the number

of examples per episode has no effect. The upper left graph inFigure 4.5 shows these truncated

episodes withni examples each, and the distribution of examples in the histograms. The

distributions are close to the distributions from which theinitial and goal states are sampled,

shown in the right graph in Figure 4.5.

Summarizing, not all intermediate examples should be used to train an action model, as

the projective characteristics of good features biases themodel towards examples around the

origin, thereby violating the stationarity assumption. Onthe other hand, using more data from

each episode yields a more accurate model. A compromise is touse the firstni examples of

each episode. The value ofni that minimizes the MAE can be determined experimentally.
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4.1.3 Number of training examples needed

To learn an accurate action model, sufficient data must be available for the learning algorithm

to build a model that generalizes well over unseen examples.On the other hand, the robot

should not take days to collect its data. To analyze how many examples are needed to acquire

an accurate prediction model, the model is frequently relearned as more and more examples

become available. Once the mean absolute error between a separate test set and the prediction

for these examples stabilizes, data acquisition is stopped.

(a) The error of the learned model decreases as the
number of episodesne increases.

(b) The error dependent on bothne and ni.
The best value ofni (30) is independent ofne.

Figure 4.6. Gathering more episodes leads to more accurate models

Figure 4.6(a) demonstrates how the Mean Absolute Error (MAE) decreases as more

episodes become available for training the model. Althoughthe error has not stabilized com-

pletely, no more data is gathered. This is because the final model used on the robots is actually

trained on all examples. Since there are no unbiased test examples left, its MAE cannot be

determined, but this model can be expected to be more accurate than the model trained on the

training set alone.

Finally, Figure 4.6(b) combines Figure 4.6(a) and Figure 4.5 by showing the MAE for all

combinations ofne andni. There are two trends. First, more episodes means a more accurate

model can be learned, which we had already concluded from Equation 4.1, and visualized

in Figure 4.6(a). Second, the optimal value forni is largely independent of the number of

episodes. This means we do not need to redetermineni each time new data is gathered.

4.2 Learning Algorithms and Examples

Previous research on learning robot action models from observed experience has used neural

networks (Buck et al., 2002b), as well as tree-based induction (Balac, 2002; Belker, 2004;
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Haigh, 1998) as learning algorithms. In (Stulp et al., 2006a), we have shown that there is no

significant difference in the accuracy of action models learned with neural networks or model

trees. However, decision and model trees have the advantagethat they can be converted into

sets of rules, which can then be visually inspected. As we shall see in Section 5.4, model

trees can be optimized analytically. Therefore, we will focus only on decision and model trees

in this dissertation. We describe these algorithms in more detail in Appendix C. Now, two

learned action model examples will be presented in more detail.

4.2.1 Example I

In the soccer domain, the robots learn to predict the execution time of thegoToPose action,

described in Section A.1. The model is learned from 386 episodes. The first 20 examples per

episode are used. The features used aredist, angle_to, angle_at andv, see 4.3.

To demonstrate what the model tree action model looks like, an example of execution dura-

tion prediction for a specific situation is depicted in Figure 4.7. In this situation, the variables

dist, angle_to, andv (see Figure 4.3) are set to 1.5m, 0◦, and 0m/s respectively. The model is

much more general, and predicts accurate values for anydist, angle_to, andv; these variables

are fixed for visualization purposes only. For these fixed values, Figure 4.7 shows how the pre-

dicted time depends onangle_at, once in a Cartesian, once in a polar coordinate system.

Figure 4.7. An example situation, two graphs of time prediction for this situation with varying
angle_at, and the model tree rule for one of the line segments.

In the linear plot we can clearly see five line segments. This means that the model tree has

partitioned the feature space fordist=1.5mangle_to=0◦ andv=0m/s into five areas, each with

50



Section 4.2 Learning Algorithms and Examples

its own linear model. Below the two plots, one of the learned model tree rules that applies to

this situation is displayed. An arrow indicates its linear model in the plots. The polar plot

clearly shows the dependency of predicted execution time onthe angle of approach for the

example situation. Approaching the goal at 0 degrees is fastest, and would take a predicted

2.5s. Approaching the goal at 180 degrees means the robot would have to navigate around the

goal point, taking much longer (4.1s).

4.2.2 Example II

In this example, the simulated soccer robots learn to predict when using thegoToPose action

leads to a failure in approaching the ball. Such a failure occurs when the robot bumps into the

ball, before achieving the desired position and orientation. SincegoToPose is not tailored

to approaching balls, using it often leads the robot to collide with the ball before achieving the

desired pose.

The robots again learn an action model from experience. To acquire experience, the robot

executesgoToPose a thousand times, with random initial and goal poses. The ball is always

positioned at the destination pose. The initial and goal pose are stored, along with a flag

that is set toFail if the robot collided with the ball before reaching its desired position and

orientation, and toSuccess otherwise. The feature space is the same as for learning the

temporal prediction model ofgoToPose, as listed in Table 4.1.

Figure 4.8. The learned decision tree that predicts whetheran unwanted collision will happen.

The learned tree, as well as a graphical representation of it, are depicted in Figure 4.8. The

goal pose is represented by the robot, and different areas indicate if the robot can reach this
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position withgoToPose without bumping into the ball first. Remember thatgoToPose

has no awareness of the ball at all. The model simply predictswhen its execution leads to a

collision or not. Intuitively, the rules seem correct. Whencoming from the right, for instance,

the robot always clumsily stumbles into the ball, long before reaching the desired orientation.

Approaching the ball is fine from any pose in the green area.

4.3 Empirical Evaluation

First, we evaluate the action models that predict the execution duration. Table 4.3 lists the

number of episodes executed to gather data for the training set 3
4
ne, the mean execution dura-

tion per episodet, the total duration of data gathering for the training sett · 3
4
ne, as well as the

model’s error (MAE) on a separate test set with the remaining1
4
ne episodes.

Robot Action 3
4
ne t t · 3

4
ne MAE

(s) (h:mm) (s)

ROBOTEQ R goToPose 290 6.4 0:31 0.32
dribbleBall 202 7.7 0:26 0.43

PIONEER I R goToPose 223 6.5 0:24 0.36
PIONEER I S goToPose 750 6.2 1:18 0.22

dribbleBall 750 7.4 1:32 0.29
ULM SPARROW R goToPosition 517 4.6 0:40 0.33
B21 S goToPose 2200 9.0 5:45 0.52

reach 2200 2.6 1:38 0.10
POWERCUBE R reach 1100 2.9 0:53 0.21

Table 4.3. List of actions and their action model statistics.

For an unbiased evaluation of learned models, it is of courseessential that the error measure

is determined over a separate test, not the training set itself. The point of evaluation is to

test how well the model generalizes over unseen examples. Care must be taken when the

test set is used to determine the parameterization of a learning algorithm. For instance, the

learning algorithm is trained on the training set with different learning rates, and the learning

rate which causes the lowest error on the test set is used for learning. We used this approach

to determineni in Section 4.1.2. It is important to note that although the test set is not used to

train the algorithm itself, itis used to train this parameter, and information from the test set has

leaked into the resulting model. Therefore, we may not reusethis set for the final evaluation.

Russell and Norvig (2003) consider thispeeking. The results in Table 4.3 have therefore been

acquired as follows:

52



Section 4.3 Empirical Evaluation

1. First, the model tree is trained with1
2
ne episodes for varying values ofni. The best

value ofni is chosen based on the lowest error on a separate test set with1
4
ne examples.

2. After determiningni, the first test set is no longer needed for testing, and it is added to

the training set, which now contains3
4
ne episodes, and approximatelyN = 3

4
neni ex-

amples. A model is trained with these examples, and tested onthe second test set, which

contains the remaining1
4
ne episodes. The error so acquired is reported in Table 4.3.

3. The final model stored in the action library is therefore trained with allne episodes,

but could not be evaluated, as no test data is left. However, using more data should

theoretically lead to a better model, according to Equation4.1.

Figure 4.9. Distribution of training and test data

For clarity, the distribution of training and test data in the steps above is depicted in Fig-

ure 4.9. This approach might seem a bit cumbersome, but is essential to ensure that we do not

peek, or use any training data to evaluate the learned model.

In the simulated domains and the POWERCUBE arm, data is gathered until the error stabi-

lized. For the other first five actions, this is not yet the case. One reason is that gathering data

on mobile robots is more cumbersome than in simulation or on fixed arms. The amount of

data gathered for these actions has also consciously been kept low to demonstrate that good

models can be learned in little time (e.g. <30 minutes). Evenwith limited data, and resulting

sub-optimal accuracy of the action models, using these models for optimization and coordina-

tion still yields very good results, as we shall see in the next three chapters. In the outlook in

Section 8.1 we explain how more accurate models can be learned using data gathered on-line

during robot deployment.

To evaluate the accuracy of the action model that predicts failures in approaching the ball,

the simulated robot executes another thousand runs. The resulting confusion matrix is depicted

in Table 4.4. The decision tree predicts collisions correctly in almost 90% of the cases.

The model is quite pessimistic, as it predicts failure 61%, whereas in reality it is only 52%.

In 10% of cases, it predicts a collision when it actually doesnot happen. This is preferable
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Observed Total
Fail Success Predicted

Predicted Fail 51% 10% → 61%
Success 1% 38% → 39%

↓ ↓ ց
Total Observed 52% 48% 89%

Table 4.4. Confusion matrix for ball collision prediction.The model is correct in 89% of
cases

to an optimistic model, as it is better to be safe than sorry. This pessimism is actually no

coincidence; it is caused because a cost matrix that penalizes incorrect classification ofFail

more than it doesSuccess is passed to the decision tree (Witten and Frank, 2005).

4.4 Related Work

Related work on learning forward models and action models onrobots has already been pre-

sented in Section 3.2.2 and 3.2.3. This section will providea comparison with the methods

described in this chapter.

Most similar to our work is that of Belker (2004). Here, modeltrees are trained with data

gathered from navigating through hallway environments. Itwas actually a discussion in ex-

actly this hallway environment prompted us to use model trees, and extended their use to novel

domains and actions. Belker (2004) also stresses the importance of defining an appropriate

feature space. Since the emphasis in this work is on indoor navigation and obstacle avoidance,

features regarding the number of passages and their width (narrow vs. wide) are also included

in the feature space.

Balac (2002) proposes the ERA (Exploration and Regression tree induction to produce Ac-

tion models) system, in which robots learn the speed with which they can travel over terrains

with different roughness properties, using regression trees. However, the speed with which

a robot can navigate over different terrains could simply beacquired by navigating over the

terrain and computing the mean speed, without using regression trees. A closer inspection of

the visualized regression trees (see Balac et al., 2000, Figure 1) show that this is exactly what

is happening.

Buck et al. (2002b) use neural networks to learn execution duration prediction of a navi-

gation action. These models are learned from data gathered during simulation, and have not

been tested for accuracy on real robots. In this work, the number of examples needed, or the
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use of intermediate data is not investigated. We have found that neural networks and model

trees do not have significant accuracy differences when trained on the same data to learn an

action model (Stulp et al., 2006a).

Fox et al. (2006a) propose the use of Hidden Markov Models to learn action models. As this

work has more relevance to Chapter 6, it will be explained more elaborately in Section 6.4.2.

4.4.1 Reinforcement Learning

In Section 3.2.3, we briefly compared action models with Q-values acquired in Reinforcement

Learning (RL). The main differences between Q-values and action models are:

Reusable. Q-values are learned specifically for a certain environment, with a specific reward

function representing a specific goal. The values are learned for all states, but for a

single goal. Action models are more general, as they describe the action independent

of the environment, or the context in which they are called. Therefore, action models

can be transfered to other task contexts. Haigh (1998) drawsthe same conclusion when

comparing action models with RL.

Meaningful. The performance measures we can learn, such as execution duration, are in-

formative values, with a meaning in the physical world. Rewards have no unit, and are

chosen arbitrarily.

Composable. Because action models return meaningful values, these values can be com-

posed into more complex values. For instance, a composed performance measure could

take both execution duration and energy consumption into account. Since the Value

compiles all performance information in a single non-decomposable numeric value, it

cannot be reasoned about in this fashion.

Modular. In Hierarchical Reinforcement Learning, Q-values are learned in the calling con-

text of the action. Policy learning can therefore only be done in the context of the

pre-specified hierarchy/program. Action prediction models are independent of the call-

ing context, so can be combined in any order. Also, the scale of rewards are determined

arbitrarily. They can be 1000 or 1. Therefore, it is not possible to add the rewards or

values of two actions in a meaningful way, for instance if a sequence of actions is con-

sidered. Maybe one action has received a reward of 1000 for achieving the desired state

execution, and the other only 1.
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Scalable. The methods we proposed scale better to continuous and complex state spaces. We

are not aware of the application of Hierarchical Reinforcement Learning to (accurately

simulated) continuous robotic domains.

The advantage of Reinforcement Learning algorithms is the rigorous mathematical frame-

work they provide, along with extensive experimental research on improving the algorithms.

4.5 Conclusion

Motor prediction is the key solution to many of the problems encountered in human motor

control. Humans learn to predicting the outcome of actions from observed experience. In this

chapter, we describe a similar process for robots. The first step is to acquire experience by

simply executing the action. The state space of this data is then mapped to a feature space

with lower dimensionality, so that fewer action executionsare needed to learn an accurate

model. Intermediate data between the start and end of an episode is included, whilst taking

care that the stationarity assumption is not violated, which could occur due to the projective

nature of good features. Data acquisition is stopped when the error of the learned model

stabilizes. A generalized model is then learned by trainingmodel trees with the training data.

An advantage of using model trees for this task is that they tend to only use variables that are

relevant to predicting the target value. We demonstrate that accurate action models are learned

for the actions of several simulated and real robots.

The results reported in this chapter have been published in:(Stulp and Beetz, 2005c,b,a,

2006; Isik et al., 2006; Stulp et al., 2006a,b, 2007; Stulp and Beetz, 2008c). Summaries of

these publications are given in Appendix D.
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“It seemed to Quinn that Stillman’s body had not been used for

a long time and that all its functions had been relearned, so that

motion had become a conscious process, each movement broken

down into its submovements, with the result that all flow and spon-

taneity had been lost.”

Paul Auster – The New York Trilogy

When it comes to elegant motion, robots do not have a good reputation. Jagged movements

are actually so typical of robots that people trying to imitate robots will do so by executing

movements with abrupt transitions between them. For instance, there is a dance called “The

Robot” which, according to Wikipedia is characterized by“...all movements are started and

finished with a small jerk...”. Auster (1987) gives an accurate description of this type ofmotion

when introducing the character Stillman, a seriously ill person, in the quote above.

In contrast, one of the impressive capabilities of animals and humans is their capability to

perform sequences of actions efficiently, and with seamlesstransitions between subsequent

actions. It is assumed that these typical patterns are thosethat minimize a certain cost func-

tion (Wolpert and Ghahramani, 2000; Schaal and Schweighofer, 2005). So, in nature, fluency

of motion is not a goal in itself, but rather an emergent property of time, energy and accuracy

optimization. In this section, we demonstrate that requiring optimal execution of action se-

quences with respect to execution duration also automatically leads to smooth natural motion

in robots.

Figure 1.2, repeated in Figure 5.1, demonstrates an abrupt transition that arises when ap-

proaching the ball to dribble it to a certain location. Such jagged motion is not just inefficient

and aesthetically displeasing, but also reveals a fundamental problem that inevitably arises

from the way robot controllers and actions are designed and reasoned about. As discussed

in Section 1.1, Principle III, these abrupt transitions often arise because action abstractions

abstract away from aspects that influence the performance. In this case, the angle of approach
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is abstracted away from when selecting the actions, although it obviously influences the exe-

cution duration.

(a) An execution with an abrupt transition at
the intermediate goal.

(b) A time-optimal execution that exhibits
smooth motion.

Figure 5.1. A greedy and an optimal execution of the same abstract action chain.

Because the angle of approach is not fixed by the plan, many intermediate subgoals are

possible. Automatically determining the optimal intermediate subgoal is calledsubgoal re-

finement. It is based on extracting and optimizingfree action parameters. The optimal values

of free action parameters are determined by requiring the expected cost of the execution of

the entire sequence of actions to be as small as possible. In the example above, the free action

parameter is the angle of approach, and the expected cost is time, which is predicted with

action models described in Chapter 4.

The behavior shown after applying subgoal refinement in Figure 5.1(b) has a higher per-

formance, achieving the ultimate goal in less time. A pleasing side-effect is that it exhibits

seamless transitions between actions. The plots of the navigation trajectories in the fields

demonstrate this. The lines on the trajectories represent the robot’s pose and translational ve-

locity, recorded at 10Hz. The center of each line is the robot’s position. The lines are drawn

perpendicular to the robot’s orientation, and their width represents the translational velocity at

that point.

The main motivation for subgoal refinement from a controllerdesign point of view is

that human designers or planning systems should reason onlyabout abstractions of actions

(Principle I), and have the robot automatically optimize aspects of the action that are relevant

for its execution with subgoal refinement (Principle IV).

In Figure 5.2, subgoal refinement is highlighted within the system overview. The subgoal

refinement module takes an action sequence as its input, possibly with free action parameters,

and returns the same action sequence, with refined subgoals.

The rest of this chapter is organized as follows. In the next section, the computational

58



Section 5.1 Computational Model

Figure 5.2. Subgoal refinement within the overall system overview.

model of subgoal refinement is introduced. The process of generating abstract action se-

quences through planning is presented in Section 5.2. The procedure of extracting and opti-

mizing free action parameters are described in Section 5.3 and Section 5.4 respectively. An

empirical evaluation of the effects of subgoal refinement inthe three robotic domains is pre-

sented in Section 5.5. Related work is discussed in Section 5.6, after which we conclude with

Section 5.7.

5.1 Computational Model

Subgoal refinement can best be explained in the context of abstract action chains. In an ab-

stract action chain, the preconditions of each action are satisfied by the effects of previous

actions. Preconditions of an action constrain the possiblestates in which the action can be ex-

ecuted, and the effects the states that might arise when executing the action until completion.

Figure 5.3(a) depicts an abstract action chain, with preconditions and effects represented as

subsets of the entire state space.

Note that there are many possible intermediate states, as the intersection of preconditions

and effects yields a whole set of possible states, not just one. In the ball approach example,

this set of intermediate states contains all possible states in which the robot is at the ball, eight

of which are also depicted in Figure 5.3(a). In this set, all variables are equal, except the angle

with which the ball is approached. This action parameter is therefore calledfree. The first
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(a) Abstract action chain before subgoal refinement.(b) Abstract action chain optimized with subgoal re-
finement.

Figure 5.3. Computational model of subgoal refinement

step in subgoal refinement is determining the free action parameters in a sequence of abstract

actions.

Since all the states in the intermediate set lead to successful execution of the action se-

quence, we are free to choose whichever state we want. Execution will succeed for any value

for the free angle of approach. As we saw in Figure 5.1 some values are better than others,

with respect to the expected performance. Therefore, the second step in subgoal refinement is

to choose values for the free action parameters that minimize the expected cost of executing

the entire sequence of actions. The expected cost is predicted using action models.

To optimize action sequences, the robot must first generate action sequences. In this dis-

sertation, this is performed using a symbolic planner. The general computational model of

symbolic plan-based robot control is depicted in Figure 5.4, and is similar to the models pro-

posed by Bouguerra and Karlsson (2005) and Cambon et al. (2004), which are discussed more

detail in Section 5.6.2.

The complete subgoal refinement system is also listed as pseudo-code in Algorithm 1.

Data structures from the abstract declarative planning domain (see Figure 5.4) have the pre-

fix ‘ abs_’. The first step is to convert the continuous state variablesin the belief state to an

abstract state, through a process called anchoring (line 1). Given the abstract state, goal, and

action library, the planning system then generates a chain of abstract actions that can achieve

the goal (line 2). The abstract actions in this plan are then instantiated, given the correspond-

ing executable actions in the action library, and the state variables in the belief state (line 3).

Subgoal refinement takes the (partially) instantiated action sequence, and optimizes it (line 4).

Note that subgoal refinement only modifies existing action sequences. It does not interfere

with the planning or execution processes. This means it is compatible with other planning

systems.
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Figure 5.4. Computational model of subgoal refinement in action sequence generation

input : abs_goal, (represented in PDDL)
beliefState, (belief state with state variables)
action_lib (library with PDDL representations, actions, and action models)

output : exe_action_seq (an optimized sequences of executable actions)

abs_state = readFromFile (beliefState.scenario_name) // ‘Anchoring’1

abs_plan = planningSystem (abs_state, abs_goal, action_lib) // Section 5.22

exe_action_seq = instantiateAction (abs_plan, belief_state, action_lib) // Section 5.33

exe_action_seq = refineSubgoals (exe_action_seq, action_lib) // Section 5.44

returnexe_action_seq;5

Algorithm 1: Overview of subgoal refinement.

5.2 Action Chain Generation

In the system implementation, the Planning Domain Description Language

(PDDL2.1 (Fox and Long, 2003)) is used to describe abstract actions, abstract states

and goals. The advantage of using this language is that it is used as the input and output

format of the International Planning Competition, held biannually in conjunction with

International Conference on Automated Planning and Scheduling, making it a standard in

the planning community. For this reason, there are many tutorials and examples available for

PDDL, as well as a multitude of planning system implementations that efficiently generate

PDDL plans.

The actions in the action library, along with their preconditions and effects are specified
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Figure 5.5. Example of how actions, states, goals and plans are specified in PDDL. Imple-
mentation of line 2 in Algorithm 1.

in PDDL, as depicted in the example from the service roboticsdomain in Figure 5.5. The

effects contains an add-list and a delete-list, that specify which new facts should be added and

removed to the abstract state. As can be seen, actions and their conditions are represented by

easy to interpret symbols.

Figure 5.5 depicts examples of an initial state and a goal in the service robotics domain.

Due to the symbolic nature of PDDL, these specifications are on a level of abstraction that

can be understood by humans who have no experience with PDDL,or planning in general.

In this dissertation, goals are specified manually, depending on the scenario, as is done in

the International Planning Competition. In the context of afull robotic controller, rules that

determine goals on-line can be written.

Converting the continuous variables from the belief state into named symbols (e.g. PDDL

symbols) is called anchoring (Coradeschi and Saffiotti, 2001). As we currently do not consider

replanning, anchoring need only take place at the beginningof the planning process. As

anchoring is not the focus of this research, we manually specify the initial abstract state,

which is constant for each scenario presented in Section 5.5. These limitations are discussed in

more detail in Section 5.2.1. The actual planning process used to generate PDDL plans from

PDDL action and state specifications is performed by the Versatile Heuristic Partial Order

Planner (Younes and Simmons, 2003)1.

The output of a PDDL planner is a list of abstract action with symbolic parameters, also

depicted in Figure 5.5. Another example including causal links from the soccer domain is

depicted in Figure 5.6. In a chain of abstract actions the precondition of the first action is

satisfied by the current situation, and the preconditions ofall other actions are satisfied by the

effects of preceding actions. The effects of the last actionmust satisfy the goal. A chain of

abstract actions represents a valid plan to achieve the goal.

1This planner can be downloaded free of cost athttp://www.tempastic.org/vhpop/
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Initial 0 : (robot pos1) (ball pos2) (final pos3)

Step 2 : (approachball pos1 pos2)

0 -> (robot pos1)

0 -> (ball pos2)

Step 1 : (dribbleball pos2 pos3)

2 -> (atball pos2)

Goal :

0 -> (final pos3)

1 -> (atball pos3)

Figure 5.6. The output of VHPOP is a PDDL plan with causal links.

Causal links specify which action was executed previously to achieve an effect which meets

the precondition of the current action. For instance ‘2 -> (atball pos2)’ indicates that

Step 2 of the plan (approachball) is required to achieve(atball pos2), which is a

precondiction of (dribbleball). The first ‘action’ or ‘Step 0’ is the initial state.

Each abstract action essentially enables the subsequent actions to be executed, until the

goal is reached. A chain of such abstract actions representsa valid plan to achieve the goal.

Note that an action sequence is a list of executable actions with (partially) instantiated, usually

continuous parameters. They are called sequences rather than chains, to emphasize that the

strong causal link between subsequent abstract actions in achain is not explicit in action

sequences.

5.2.1 Discussion

Using symbolic planners to generate action sequences for robots has a long tradition. Shakey,

one of the first autonomous mobile robots used PDDL-style representations to determine ac-

tion sequences that would achieve its goal (Nilsson, 1984; Fikes and Nilsson, 1971). More

recent examples include the work of Coradeschi and Saffiotti(2001), Cambon et al. (2004)

and Bouguerra and Karlsson (2005). The approach explained in this chapter contributes to

this research area. Some reasons why symbolic planning is ofinterest to robotics are:

Abstraction. Symbolic planners abstract away from many aspects of the belief state, so

planning and replanning is faster, and more complex problems can be dealt with.

Adaptation. Action sequences or action hierarchies must not be specifiedin advance, but

are generated on-line, depending on the situation at hand. This makes the system more
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adaptive. The designer need only specify the preconditionsand effects of an action,

independent of the other actions in the library.

Predictive plan repair. Robots can reason about plans off-line before execution, torec-

ognize and repair failures (Beetz, 2000) in advance. Of course, this is preferable to

encountering them during task execution.

Constraints. Constraints on actions are specified symbolically. Cambon et al. (2004) use

symbolic constraints to intuitively specify that larger objects cannot be placed upon

smaller ones.

VHPOP is, as most PDDL planners, a general purpose planner, not specifically tailored

to robot planning. Other work focusses on problems that needto be resolved to enable

symbolic planning on robotics, such as uncertainty, failure recovery and action monitoring

(Bouguerra and Karlsson, 2005), geometric constraints (Cambon et al., 2004), and anchoring

(Coradeschi and Saffiotti, 2001). The system presented in this section abstracts away from

these problems to focus on the main contribution: the optimization of already generated plans.

Uncertainty. The symbols used in the symbolic state are either true or not.In robotics

applications, this certainty cannot be achieved. The system would be more robust if

it took uncertainty into account. Bouguerra and Karlsson (2005) present a system in

which probabilistic representation of states and a probabilistic planner are used.

Geometric constraints. In robotics, the robot and objects physically take up space in the

world. This places geometric constraints on the movements the robot can make, and the

interactions that are possible with objects. TheASYMOV (Cambon et al., 2004) system

takes these constraints into account, and maps them to preconditions for actions.

Failure recovery. The current version of our system does not consider failure recovery

or replanning. In robotics, action can or are not always executed, and their de-

sired effects not achieved. This requires that the plan is repaired or replanned from

scratch. Work on recognizing plan failures and plans repairinclude (Beetz, 1996) and

(Bouguerra and Karlsson, 2005).

Anchoring. Anchoring usually involves complex tracking mechanisms tomaintain the cor-

respondence between symbols in the symbolic state, and objects locations in the belief

state. Coradeschi and Saffiotti (2001) provide an overview of anchoring in robotic plan-

ning.
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Implicit abstract representations

In Section 3.1.1, direct programming as a method to manuallydesign controllers was intro-

duced. In this approach, the abstract planning domain in Figure 5.4 is not explicitly repre-

sented in the controller. However, itis implicitly represented in the designer’s mind. Consider

the following trivial, hand-coded soccer playing controller in Algorithm 2.

input : belief_state, (belief state with state variables)
output : motor_command

. . .1

if hasBall (belief_state) then2

if facingGoal (belief_state) then3

motor_command = shoot(belief_state);4

else5

motor_command = dribbleToGoal(belief_state);6

end7

else8

motor_command = approachBall(belief_state);9

end10

. . .11

returnmotor_command ;12

Algorithm 2: Hand-coded soccer action selection module.

This code has no merit in itself, except demonstrating how following abstract concepts are

represented implicitly:

Sequentiality. the control flow of the program ensures that the action sequence

approachBall - dribbleToGoal - shoot is executed. This sequence of actions

are not known in advance, but rather arise implicitly by traversing through state space,

thereby also traversing the corresponding action space.

Abstract state and action. the functionhasBall abstracts away from many aspects of

the state, and compresses it into one boolean value.hasBall also implicitly encodes

the precondition of bothdribbleToGoal andshoot.

Abstract goal. From this code alone it is clear to us that the robot’s purposeis to score a

goal.

In principle, subgoal refinement can also be implemented without a planning system or ex-

plicitly encoding conditions. If there is only a fixed numberof action sequences, the designer

can still enable subgoal refinement by explicitly specifying the free action parameters and the

models with which respect they should be optimized for each action transition. This is actually

how the subgoal refinement system was initially implemented, before realizing the planner.
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Purely reactive systems cannot use subgoal refinement, as itdepends on the commitment

to a future sequence of actions. If it is not clear that the ball will be dribbled after hav-

ing approached it, the robot cannot anticipate the best angle to approach the ball at. Both

direct programming (Section 3.1.1) and motion blending (Section 3.1.2) methods often use

hysteris to avoid too frequent switching between behaviors, and the influent motion that

arises (Lötzsch et al., 2004; Kobialka and Jaeger, 2003). Note that hysteris is essentially com-

mitting to an action for a certain amount of time. Apparently, even reactive systems cannot

dispense of commitment completely to avoid jagged motion.

We believe that explicitly encoding action abstractions ispreferable, as having knowledge

about your own actions enables the robot to reason about and manipulate them itself. This is

essential for autonomy, adaptivity, and intelligent behavior in general (Dearden and Demiris,

2005). For instance, it allows subgoal refinement to be automated, and applied to previously

unknown action sequences.

5.3 Action Instantiation

The declarative PDDL plans that VHPOP generates are very abstract, with clear semantics

of what actions do, even without knowing how the actions are executed. This makes human

inspection of the plan feasible. However, it does not specify how this plan can or should be

executed in the real world. The next step is to map declarative knowledge to the executable

actions in the action library, i.e. the procedural knowledge. For instance, the abstract ac-

tion (goto start ball) is converted to an action by determining the coordinates of the

start andball symbols in the belief state, and instantiating the appropriate action with

them. This process is also known asoperator instantiation(Schmill et al., 2000).

PDDL plans are instantiated with executable actions by firstextracting symbolic actions and

causal links in the plan, and then instantiating the symbolic actions one by one, as listed in

Algorithm 3. For each symbolic action, the executable action is retrieved by its name (line 5),

after which its parameters are requested (line 6). The next step is to determine the parameter

values of the executable action, by considering the corresponding symbolic parameters of the

PDDL plan. The correspondence between the executable action parameter and a symbolic

action parameter is determined based on an index in the executable action parameter (line 8).

The symbolic parameters itself have no meaning in the beliefstate. They are just labels

used in the PDDL plan. However, causal links define predicates over these labels whichdo

have a meaning in the belief state. These predicates are therefore retrieved (line 9), and used

to extract the correct values from the belief state (line 10).
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input : abs_output (the output of VHPOP, see Figure 5.6 for an example)
output : exe_actions (a parameterized sequence of executable actions)

abs_actions = parseActions(abs_output);1

abs_links = parseCausalLinks(abs_output);2

// For the example in Figure 5.6, the following now holds:
// abs_actions = [(approachball pos1 pos2),(dribbleball pos2 pos3)]
// abs_links =
// {pos3=[0final,1atball], pos1=[0robot], pos2=[0ball,2atball]}
exe_actions = {};3

foreach abs_action in abs_actions do4

exe_action = getAction(abs_action.name) // e.g.exe_action = approachBall5

exe_params = exe_action.getParameters() // thenexe_params = [x0,y0,...]6

foreach exe_par in exe_params do7

abs_par = abs_action.params[exe_par.index] ;8

// e.g. if exe_par = x0, thenexe_par.index = 0 andabs_par = pos1
abs_predicates = abs_links[abs_par] ;9

// e.g. if abs_par = pos1, thenabs_predicates = [0robot]
value = beliefState.getValue(exe_par.name, abs_predicates) ;10

exe_action.setParameter(exe_par, value);11

end12

exe_actions.add(exe_action);13

end14

// For the example in Figure 5.6 and Figure 5.3(a), the following now holds:
// exe_actions = [
// approachBall(x=0,y=1,φ=0,v=0, xg=3,yg=1,φg=[-π,π],vg=[0,0.3]),
// dribbleBall(x=3,y=1,φ=[-π,π],v=[0,0.3], xg=1,yg=3,φg=2.6,vg=0) ]
returnexe_actions;15

Algorithm 3: Action instantiation algorithm. Implementation of line 3of Algorithm 1.
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Mapping symbolic predicates to continuous values is done inthe belief state, with the call

made in line 10. If the predicate holds in the current belief state, which is the case if it

starts with a ‘0’ (the initial state is considered the first ‘action’), it simply retrieves the value.

For ‘0robot’ and ‘x’ it would return the x-coordinate of the current position ofthe robot.

Predicates that do not hold in the current state can also constrain values. For instance, the

atball predicate restricts the translational velocity between 0 and 0.3m/s. If predicates

impose no such constraints, default values for the parameter types are returned. For instance,

the values ofx-coordinates must be within the field, and angles are always between -π andπ.

If several predicates hold, the ranges and values they return are composed.

Action parameters that are not bound to a specific value, but rather a range of values are

calledfree action parameters. In the example below line 14 in Algorithm 3 for instance, the

free action parameters at the intermediate goal are the angle of approach, and the translational

velocity.

5.4 Subgoal Refinement

In AI action planning (Fox and Long, 2003), actions in plans are almost always fully parame-

terized, because there is no difference between an action’sabstraction and its execution. The

abstraction of an action already describes everything there is to know about the action. Since

actions are only viewed at the abstract level in many planning domains, each action is usually

tailor-made for a certain goal. Their is no redundancy or over-expressiveness of actions, and

no free action parameters arise. Therefore, problems and optimization opportunities concern-

ing free action parameters are not as predominant in AI planning.

Although the execution of actions plays a more important role in modern robot planners

than it does in classical planners, robot planners still view actions at a level of abstraction

that ignores the subtle differences between actions. Because the planning system considers

actions as black boxes with performance independent of the prior and subsequent steps, the

planning system cannot tailor the actions to the contexts oftheir execution. This curse often

yields suboptimal behavior with abrupt transitions between actions, as we saw in the example

in Figure 5.1(a). In this example, the problem is that in the abstract view of the planner,

being at the ball is considered sufficient for dribbling the ball and the dynamical state of the

robot arriving at the ball is considered to be irrelevant forthe dribbling action. Whereas these

variables are indeed irrelevant to the validity of the plan,they are relevant to the performance

of plan execution. Abstractions and free action parametersare not only a curse, but also a

blessing, as action details should not be considered at the abstract planning level, to keep
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planning tractable and preserve its declarative nature. Our system allows planners to reason

about high-level abstractions of actions, but also optimizes the way in which the action is

performed at a lower level.

Human actions are also often redundant and over-expressive, contrary to actions in classical

AI planning. In human motor control for instance, there is a distinction between the external

space, which is expressed in terms of task coordinates, and the internal space, which refers to

the internal coordinates of the muscle system. In most motortasks, the number of degrees of

freedom in the internal space far exceeds that in the external space (Schaal and Schweighofer,

2005). The internal space therefore has a high level of redundancy with respect to the external

space. Put simply: there are many ways you can bring a glass ofwater to your lips of which,

in the words of Wolpert and Ghahramani (2000), some are sensible and some are silly. Free

action parameters also arise in robot actions. In robotic arm control for instance, one grip-

per position can often be achieved by many joint configurations, as depicted in Figure 5.7.

Similarly, many angles of approach can achieve the task depicted in Figure 5.1.

The reason why we typically witness stereo-

Figure 5.7. Redundant actions in

robotic arm control. Im-

age taken from (Hooper,

1994), with permission.

typical ‘sensible’ and fluent (instead of ‘silly’)

movement is because redundancy in actions

is exploited to optimize ‘subordinate crite-

ria’ (Schaal and Schweighofer, 2005), or ‘cost

functions’ (Wolpert and Ghahramani, 2000), such

as energy efficiency or variance minimization.

This process is called redundancy resolution or

null-space optimization. In cognitive science,

one goal is to determine the cost function that

is being optimized, given the empirical motion

data (Wolpert and Ghahramani, 2000).

Here, we specify the cost function in advance,

and optimize the free parameters in action sequences

with respect to the expected cost, which is predicted by action models. To optimize the action

sequence, the system will have to find those values for the free action parameters for which the

overall execution duration of the sequence is the lowest. This overall performance is estimated

by simply summing over the action models of all actions that constitute the sequence. We first

demonstrate this process with two examples, and then give the general optimization approach.
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5.4.1 Optimizing free action parameters: Examples

In Figure 5.8, Figures 4.7 and 5.1 are combined. The first two polar plots represent the pre-

dicted execution duration of the two individual actions fordifferent values of the free angle of

approach. The overall duration is computed by simply addingthose two, as is depicted in the

third polar plot.

Figure 5.8. Selecting the optimal subgoal by finding the optimum of the summation of all
action models in the chain.

The fastest time to execute the firstapproachBall can be read in the first polar plot. It is

2.5s, for an angle of approach of 0.0 degrees, as indicated inthe first plot. However, the total

time for executing bothapproachBall anddribbleBall for this angle is 7.4s, because

the second action takes 4.9s. The third plot clearly shows that this is not the optimum overall

performance. The minimum is actually 6.5s, for an angle of 50◦. Beneath the polar plots, the

situation of Figure 5.1 is repeated, this time with the predicted performance for each action.

A similar example, this time from the service robotics domain, is depicted in Figure 5.9.

The scenario is very similar to the one in Figure 5.8: the B21 approaches a way-point at

2m distance withgoToPose, and then executes anothergoToPose action to return to a

final position. This time, the intermediate translational velocity is also added as a free action

parameter. Of course, the different dynamics of the simulated B21 lead to different execution

times for this scenario. The angle of approach qualitatively has the same effect as in the
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soccer scenario. Note that with higher intermediate translational velocities, the first action

can be executed faster, as no braking is required before arriving at the subgoal. The lower

graph representing the first action is tilted towards us. However, higher translational velocities

in combination with a low angle of approach at the intermediate way-point cause the second

action to be slower due to overshooting at the way-point. Again, the fastest execution of the

first action is at 0◦, and the overall fastest execution at 64◦, with a maximal target velocity of

0.7m/s.
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Figure 5.9. Example of free action parameter optimization in two dimensions

For reasons of clarity, only one or two parameters are optimized in these examples, and we

simply ‘read’ the minima from the plot. Of course, the robotsmust be able determine this

minimum automatically and on-line, possibly with several free action parameters and result-

ing high-dimensional search spaces. The next sections describe two optimization methods.

The first approach is analytical, and only possible with model trees. The second is a genetic

algorithm, which is independent of the algorithm with whichprediction models are learned.
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5.4.2 Analytical optimization of Model Trees

In Figure 5.9 the three functions clearly consist of a bounded set of 2-dimensional planes in the

2-dimensional feature space. In general, model trees partition thed-dimensional feature space

into k partitions, and represent the data in each partition with ad-dimensional hyperplane.

This representation allows an analytical minimization of model trees. The solution idea

is that the minimum of a hyperplane can be found quickly by determining the values at its

corners, and taking the corner with the minimum value. This procedure should be repeated

for all k hyperplanes, which leads tok corner minima. The global minimum can then be

determined by choosing the minimum of all ‘minimal corners’. The computational complexity

of this approach is far lower than that of sampling, or other search techniques such as genetic

algorithms. To our knowledge, we are the first to propose an analytical optimization of model

trees, and we therefore devote several sections in AppendixC to an accurate explanation of

this approach. Since the length of this explanation would distract from the main topics in this

chapter, we only give a summary here:

Complexities. The complexity of sampling methods isO(nd), in whichn is the number of

samples per dimension, andd the number of dimensions. Our novel analytical method

has a complexity ofO(kd), in whichk is the number of hyperplanes, which is equivalent

to the number of rules, or leaves in the model tree.

Merging model trees. Determining the minimum of two or more model trees is done by

first merging the model trees into one, and then determining the minimum of this one

model tree, as in Figure 5.9. The implementation of this method is also presented in

Section C.3.

Non-mergeable model trees. Unfortunately, there are some cases in which model trees

cannot be merged, and therefore summations of model trees not optimized.

When merged model tree optimization is not possible, we optimize the free action parame-

ters with a genetic algorithm (Goldberg, 1989), which we nowpresent.

5.4.3 Optimization with a Genetic Algorithm

Our implementation of the genetic algorithm (GA) uses elitarianism (2% best individuals

passes to the next generation unmodified), mutation (on the remaining 98%), two-point

crossover (on 65% of individuals), and fitness proportionate selection (the chance of being

selected for crossover is proportionate to an individual’sfitness) (Goldberg, 1989).
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To test and evaluate our GA implementation, we first applied it to several optimization

benchmarks, such as the De Jong’s function, Schwefel’s function and Ackley’s Path function.

The results and optimization times are reported in (Koska, 2006). In the subgoal refinement

scenarios to be presented in Section 5.5, the optimization time is usually small in comparison

to the gain in performance. For the extreme scenario, where several actions with many free

action parameters are optimized, our implementation of theGA still takes less than 0.5s to get

a good result.

Figure 5.10. Optimization in subgoal refinement with a genetic algorithm

Figure 5.10 depicts how the optimization with the GA is integrated in the overall system. At

the top, an instantiated action sequence with bound and freeaction parameters is requested to

be optimized. Note that the parameters are labeled with an identification number (ID). These

are used to represent that certain parameters in different actions always have the same value, as

they are identical. For instance, the goal orientation (φg) of theapproachBall is equivalent

to the initial orientation (φ) of dribbleBall. Therefore they share the ID ‘13’.
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The next step is to partition the action parameters in the action sequence into two sets: one

set contains action parameters that are bound to a certain value during instantiation, and the

other set contains the free action parameters, along with the range of values they can take.

Note that action parameters with the same ID are only stored once in these sets, as they should

have the same value.

Each free action parameter is then represented as a floating point gene on a chromosome.

The number of chromosomes in the population is the number of free parameters multiplied by

25. The chromosomes in the initial population are initialized with random values from their

respective ranges. The standard GA loop is then started. Theloop halts if the best fitness has

not changed over the last 50 generations, or if 500 generations are evaluated.

For a chromosome, the predicted execution duration is determined by calling the action

models with the fixed values from the set of bound parameters,and the values of the free

parameters represented in the chromosome. Then, for each chromosomec the fitnessf is

computed withfc = tmax + tmin − tc, wheretmax andtmin are the maximum and minimum

execution duration over all chromosomes respectively. This formula is chosen to guarantee

that the fitness is a non-negative number, which is necessaryfor fitness proportionate selection.

5.5 Empirical Evaluation

In this section, we introduce the scenarios and action sequences to which subgoal refinement

is applied. Then, the results of applying subgoal refinementare presented.

In the robotic soccer domain, the action sequence to be optimized is theapproachBall

action, followed by adribbleBall action, as in Figure 5.1. The free action parameters at

the intermediate state are the angle of approach and the translational velocity.

To evaluate the effect of subgoal refinement in the service robotics domain, two scenarios

are tested. In the first scenario, the goal is to put a cup from one table to the other, which is

achieved by the action sequence depicted in Figure 5.11. In each episode in the evaluation,

the topology of the environment in each scenario stays the same, but the initial robot position,

the tables and the cups are randomly displaced along the arrows in Figure 5.11. Scenario 2 is

a variation of Scenario 1, in which two cups had to be delivered.

The kitchen scenarios have many free action parameters. Because preconditions usually

fix either navigation ór manipulation motions but never both(they are independent), one of

these action parameter sets is always free. Furthermore, the distance the robot must have to

the table in order to grab a cup must be between 40 and 80cm (as fixed in the precondition

of grip). This range is another free parameter. As in the soccer domain, the velocity and
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(a) Scenario parameterization. (b) Scenario plan.

Figure 5.11. Scenario 1. In each episode, the objects and theinitial robot position are differ-
ent. Possible positions are indicated by arrows.

orientation at way-points are also not fixed, so free for optimization as well. In Figure 5.12, an

example of free action parameters that arise from instantiating a plan in the kitchen scenario

are given. The green areas represent these ranges, where square areas represent a range of

possible positions, and the circular areas possible angles.

In the arm control domain, sequences of reaching movement are performed. Because this

particular task does not require abstract planning, we did not use VHPOP. For demonstration

purposes, we had the arm draw the first letter of the first name of each author of (Stulp et al.,

2007), and chose the way-points accordingly. Figure 5.13(a) shows the POWERCUBE arm,

which is attached to a B21 robot, drawing an ‘F’. To draw theseletters, only two of the

six degrees of freedom of the arm are used, as depicted in Figure 5.13(b). The free action

parameters are the angular velocities at these way-points.

5.5.1 Results

Table 5.1 lists the results of applying subgoal refinement tothe different domains and sce-

narios, wherea is the number of actions in the sequence, andn is the number of episodes

tested.

The baseline with which subgoal refinement is compared is a greedy approach, in which the

next subgoal is optimized with respect to the execution duration of only the current action. In

this case, we say the horizonh of optimization is 1. The downside of the greedy baseline is

that it also depends on the accuracy of the action model. However, we chose this as a baseline,

because setting all free action parameters to zero certainly leads to worse execution times, and

75



Chapter 5 Task Context: Action Sequences

Figure 5.12. Examples of free action parameter ranges in a kitchen scenario

optimizing them manually introduces a human bias. The execution time of a single action is

denotedt, which has three indices referring to the horizon, the episode, and the action in the

sequence. For instancet1,64,2 refers to the second action in the 64th episode, that is performed

with a horizon of 1, which is greedy. The mean overall execution duration over all episodes is

denotedth=1, and computed using Equation 5.1.

Since subgoal refinement optimizes the execution duration of the current ánd next action, it

has a horizon of 2. The fourth columns lists the mean overall execution duration with subgoal

refinementth=2, which is computed with an equation equivalent to Equation 5.1 with h = 2.

The improvement achieved with subgoal refinement in episodee is computed using Equa-

tion 5.2, and the mean over all episodes is computed using Equation 5.32.

2In (Stulp and Beetz, 2005b), improvements were computed with 1 − th=1/th=2.
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(a) The B21 robot drawing an ‘F’ with its POWER-
CUBE arm.

(b) The two degrees of freedom used for drawing.

Figure 5.13. Arm control experiment

Scenario a n th=1 th=2 th=2/th=1 p

Soccer (Simu.) 2 1000 9.8s 9.1s 6.6% 0.00
Soccer (Real) 2 100 10.6s 9.9s 6.1% 0.00
Kitchen (Sc. 1) 4 100 46.5s 41.5s 10.0% 0.00
Kitchen (Sc. 2) 13 100 91.7s 85.4s 6.6% 0.00
Arm control 4-5 4 10.6s 10.0s 5.7% 0.08

Table 5.1. Subgoal refinement results

th=1 =
1

n

n
∑

p=1

m
∑

a=1

t1,p,a (5.1)

th=2,p=j/th=1,p=j = (1 −
∑m

a=1 t2,j,a
∑m

a=1 t1,j,a

) (5.2)

th=2/th=1 =
1

n

n
∑

p=1

(1 −
∑m

a=1 t2,p,a
∑m

a=1 t1,p,a

) (5.3)

The fifth column in Table 5.1 lists the mean improvement achieved with subgoal refine-

mentth=2/th=1. Thep-value of the improvement is computed using a dependentt-test with

repeated measures, as each episode is performed twice, oncewith, and once without subgoal

refinement. A significant and substantial improvement occurs in all but one domain.

To visualize the qualitative effect of applying subgoal refinement, the results from the arm

control domain are depicted in Figure 5.14. The angular velocities are set to zero (upper

row) or optimized with subgoal refinement (lower row). The axes represent the angles of
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the two joints. This figure demonstrates well that the trajectories ares smoother with subgoal

refinement: the arms draws one long stroke, rather than discernible line segments. Since

the arm control domain us mainly included for visualizationpurposes, there are only a few

episodes. For this reason the overall improvement is not significant (>0.05).

Figure 5.14. Drawing letters without (upper row) and with (lower row) subgoal refinement.
With refinement, letters are drawn faster and smoother.

Although optimizing speed also leads to smoother motion in this domain,

(Simmons and Demiris, 2004) have shown that variability minimization is a more likely

cause for smooth human arm motion. In this chapter, the main goal is not to explain or model

human motion, but rather to demonstrate the effects of optimizing sequences of actions.

Interestingly enough, Simmons and Demiris (2004) have alsoused their methods to draw

letters with smooth writing motions (Dearden, 2006).

5.5.2 Influence on individual actions

Table 5.1(a) and Table 5.1(b) demonstrate the effect of subgoal refinement on individual ac-

tions in the action sequence. The mean execution duration ofeach action over all episodes is

computed using Equation 5.4.

th=2,a=k =
1

n

n
∑

p=1

t2,p,k (5.4)

The table to the left lists the execution of the individual action of Scenario 1 from the service

robotics domain3. The right table lists the same from a scenario from the soccer domain. In

3The grip and put actions take more time than in Table 4.3, because the actual closing and opening of the gripper

78



Section 5.5 Empirical Evaluation

this scenario, the simulated soccer robot navigates to fourway-points on the field with the

goToPose action, as depicted in Figure 5.15. At each way-point the angle of approach

and translational velocity are optimized. This scenario isalso executed in 100 episodes with

different randomly placed way-points in each episode.

(a) Service robotics domain.

Action h = 1 h = 2

a = 1 (gotoPose) 4.4s 5.7s
a = 2 (grip) 20.8s 18.5s
a = 3 (gotoPose) 5.9s 5.1s
a = 4 (put) 15.4s 12.2s
a = 1..4 (total) 46.5 41.5

(b) Soccer domain.

Action h = 1 h = 2

a = 1 (gotoPose) 4.2s 4.8s
a = 2 (gotoPose) 6.0s 4.9s
a = 3 (gotoPose) 5.8s 5.6s
a = 4 (gotoPose) 6.7s 5.0s
a = 1..4 (total) 22.7s 20.3s

Table 5.2. Influence of subgoal refinement on the execution duration of individual actions in
a sequence.

A clear effect on the individual actions is that the execution duration of the first action

is slower with subgoal refinement, allowing the faster execution of the other actions. The

difference is most striking in the last action in the table onthe left. In the greedy approach,

the trouble the robot has caused itself by optimizing three actions greedily often culminates in

a very awkward position to execute the last action.

5.5.3 Sequences with more actions

In Figure 5.15, an example episode from the soccer scenario from Section 5.5.2 is depicted.

Here the robot has to traverse four way-points with thegoToPose action. So far, we have

seen optimization with horizons ofh = 1 (greedy) andh = 2. The standard approach with

h = 2 can easily be extended, so that subgoal refinement optimizesthe execution duration of

the nexth > 2 actions, as indicated by the colors in Figure 5.15. The higher the horizonh the

more subgoal refinement is preparing for actions further in the future.

To evaluate the effect of optimizing more than two actions , sequences of four actions are

optimized using subgoal refinement with different horizons. The two scenarios from Sec-

tion 5.5.2 are used: the soccer scenario depicted in Figure 5.15 and the kitchen scenario de-

picted in Figure 5.11. The results are summarized in Table 5.3. The first row represents the

baseline greedy approach withh = 1, and the second row represents the results reported so

at the end of each reach action is incorporated into the action. This additional time is constant, and not taken
into consideration during optimization.
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Figure 5.15. Visualization of the subgoal refinement horizon h

far with h = 2. The next two rows list the results of optimizing 3 and 4 action execution dura-

tions. Again, the reported times represent the execution duration of the entire action sequence,

averaged over 100 episodes.

horizon Soccer Kitchen (Scen.1) Kitchen (Scen.2)
∑

Imp. p-value
∑

Imp. p-value
∑

Imp. p-value
h = 1 22.7 46.5 91.7
h = 2 20.3 10.6% 0.000 41.5 10.0% 0.000 85.4 6.6% 0.041
h = 3 20.2 0.7% 0.001 40.6 1.5% 0.041 85.3 0.1% 0.498
h = 4 20.2 0.2% 0.053 - - - - - -

Table 5.3. Effect of the subgoal refinement horizonh on performance improvement.

Intuitively, the effect of future actions on the current action should decrease, the further

the future action lies in the future. This is also the rationale behind receding horizon control,

which will be discussed in Section 5.6.3. For instance, yourposition at the table influences

the time it takes to grab the cup on this table, as well as the time it takes to navigate to the

next room. However, it will not likely influence the time needed to put down the cup in the

next room. It is interesting to see that the substantial improvement in both scenarios indeed

diminishes quickly afterh = 2. Whereas a significant but only marginal improvement is

sometimes still to be had fromh = 2 to h = 3, and the improvement toh = 4 is not significant

anymore.

5.5.4 Predicting performance decrease

There are many cases in which subgoal refinement does not havean effect. In the ball approach

scenario for instance, if the robot, the ball and the final destination are perfectly aligned, there

is not much to be had from subgoal refinement, as the greedy approach already delivers the

optimal angle of approach: straight toward the ball. On the contrary, refining subgoals in

these cases might put unnecessary constraints on the execution. Due to inaccuracies in the

action models and the optimization techniques, it is sometimes even the case that the greedy
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approach does better than subgoal refinement. To evaluate these effects, 1000 episodes where

executed in simulation with bothh = 1 andh = 2. Then, the overall improvement (6.6%)

is separated into episodes in which subgoal refinement improved (+), kept equal (0), or made

worse (-) the execution duration, as listed in Table 5.4

Before filtering Total + 0 -
#episode 1000 573 267 160
improv 6.6% 16.2% 0.0% -17.1%

Table 5.4. Positive and negative influence of subgoal refinement on execution duration.

This result shows that the performance improved in 573 cases, and in these cases causes a

16.2% improvement. In 267 cases, there is no improvement. This is to be expected, as there

are many situations in which the three positions are alreadyroughly aligned, and subgoal

refinement will have no effect. Unfortunately, applying ourmethod also causes a decrease of

performance in 160 out of 1000 episodes.

To analyze in which cases subgoal refinement decreases performance, we labeled each of

the above episodes+, 0 or -. We then trained a decision tree to predict this nominal value.

This tree yields four simple rules which predict the performance difference correctly in 87%

of given cases, as can be seen in the confusion matrix of the learned decision tree in Table 5.5.

The learned decision tree is essentially an action model too. Rather than predicting the out-

come of an individual action, it predicts the outcome of applying action models to actions. We

will see another example of such ameta action modelin Section 7.4.2.

Predicted
+ 0 - Totals

+ 48.6% 1.4% 1.5% → 51.5%
Actual 0 8.1% 28.0% 0.8% → 36.9%

- 1.4% 0.2% 10.2% → 11.8%
↓ ↓ ↓ ց

Totals 58.1% 29.6% 12.5% 86.7%

Table 5.5. Confusion matrix of the decision tree that predict performance decrease

The decision tree and a graphical representation are depicted in Figure 5.16. In this vi-

sualization of the decision tree, the robot always approaches the centered ball from the left

at different distances. The different regions indicate whether the performance increases, de-

creases, or stays equal. Three instances with different classification and are inserted. The

trajectories are a qualitative indication of the robot motion.
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Figure 5.16. The decision tree that predicts whether subgoal refinement will make the perfor-
mance better, worse or have no influence at all.

The rules declare that performance stays equal if the three points are more or less aligned,

and decrease only if the final goal position is in the same areaas which the robot is, but only

if the robot’s distance to the intermediate goal is smaller than 1.4m. Essentially, this last

rule states that the robot using thegoToPose action has difficulty approaching the ball at

awkward angles if it is close to it. In these cases, small variations in the initial position lead to

large variations in execution time, and learning an accurate, general model of the action fails.

The resulting inaccuracy in temporal prediction causes suboptimal optimization. Note that

this is a shortcoming of the action itself, not of subgoal refinement. The meta action model of

applying subgoal refinement is essentially telling us that subgoal refinement is working fine,

but that theapproachBall is rather non-deterministic under certain conditions, andneeds

improvement.

After filtering Total + 0 -
#episode 1000 557 389 54
improv 8.6% 16.4% 0.0% -10.1%

Table 5.6. Positive and negative influence of subgoal refinement on execution duration,after
filtering for cases where a decreased performance is predicted.

We then performed another 1000 test episodes, as described above, but only applied subgoal

refinement if the decision tree predicted applying it would yield a higher performance. The

results are summarized in Table 5.6. The performance improvement due to subgoal refinement

is 6.6%, and is now 8.6% (p-value is 0.000). More importantly, the number of cases in which
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performance is worsened by applying subgoal refinement decreases from 160 (16.0%) to 54

(5.4%). Apparently, the decision tree correctly filters outcases in which applying subgoal

refinement would decrease performance. Note that when performance is decreased, it is not

so dramatic anymore (-17.1%⇒-10.1%): the decision tree is filtering out the worst cases.

5.6 Related Work

5.6.1 Classical planning

Problems involving choice of actions and action chains are often regarded as planning prob-

lems. However, most planning systems do not aim at optimizing resources, such as time.

While scheduling systems would have an easier time representing time constraints and re-

sources, most could not deal with the action choices in this problem. Systems that integrate

planning and scheduling, such as (Smith et al., 2000), are able to optimize resources, but ig-

nore interactions between actions and intermediate dynamical states, so do not apply well to

continuous domain problems.

In PDDL (Fox and Long, 2003), resource consumption of actions is represented at an ab-

stract level. Planners can take these resources into account when generating plans. In contrast

to such planners, our system generates action sequences that are optimized with respect to very

realistic, non-linear, continuous performance models, which are grounded in the real world as

they are learned from observed experience. We are not aware of other planning systems that

generate abstract plans and simultaneously optimize the actual physical behavior of robots.

Least commitment planning also depends on the concept of unbound variables (Weld,

1994). The idea is to keep variables unbound as long as possible, and bind them only when

is necessary. This makes plans more flexible, and plan execution more robust. However, vari-

ables that are never bound, are still unbound in the final plan. It exactly these that we use for

optimization.

Refinement planning is a method whose name bears similarities with subgoal refine-

ment, but which describes another process (Kambhampati et al., 1995). Refinement plan-

ning searches for an action sequence that achieves the goal by pruning away action actions

sequences that do not. Initially, all action sequences are considered solutions. Subsequent

refinement operations then narrow the set of possible actionsequences by adding constraints

to it. Our system does not refine the plans themselves to find action sequences, but rather the

execution of the plans, given a certain action sequence. Although resources are sometimes

represented during planning, planning in general is only interested in finding a plan that is
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valid. Our system takes a valid plan, and finds a plan execution thatis optimal, with respect

to the predicted performance. In principle, a refinement planning system could be used in the

“planning system” module in Figure 5.4.

5.6.2 Symbolic planning with action execution

Bouguerra and Karlsson (2005) describe a computational model that is quite similar to

ours. In their model, the abstract plan domain is called “Deliberation”, and the action

execution and sensing process is provided by the “ThinkingCap” robot-control architec-

ture. The interface between the two is called the “Anchoring” modules. There are two

important differences between their models and ours. Firstof all, probabilistic planners

are used in the abstract planning domain, being BURIDAN (Kushmerick et al., 1994) and

PTLPlan (Karlsson and Schiavinotto, 2002). Therefore, this system can deal with probabilis-

tic belief states. The other enhancement is plan failure recognition and plan repair. Because

the focus of this dissertation is acquiring and applying action models to tailor actions to task

contexts, we deliberately abstract away from these enhancements. Note that our methods are

in no way incompatible to the ones described in (Bouguerra and Karlsson, 2005), and merging

both approaches would combine the advantages of both, as discussed in Section 5.2.1.

ASYMOV (Cambon et al., 2004) is another approach that bridges the gap between symbolic

planning and plan execution, in complex simulated 3-D environments. The main goal is to rea-

son about geometric preconditions and consequences of actions. This is done by defining a

Configuration Space, in which constraints on mobile robots and objects are expressed. Then,

symbols representing locations in the world are related to constraints in Configuration Space.

This allows the specification of not only at a symbolic level but also with regard to the geom-

etry of an environment. The input of the planner is 1) a symbolic data file, specified in PDDL

2) the geometric data 3) and a semantic file that relates symbols to geometric data. Symbolic

planning is done with the METRIC-FF (Hoffmann, 2003) system, and geometric planning is

done with the MOVE3D library (Siméon et al., 2001). TheASYMOV library merges the result

of both using the semantic file.

Here again, we see great potential for mergingASYMOV and subgoal refinement, as they are

complementary, rather mutually exclusive, as discussed inSection 5.2.1. Cambon et al. (2004)

actually mentions that the resulting plan is improved and optimized in some way, but does not

describe how. In probabilistic motion planning, such a post-processing step for smoothing the

generated paths is a common procedure. Subgoal refinements might well be integrated in this

optimization step.

Hierarchical Reinforcement Learning (Barto and Mahadevan, 2003), which was introduced
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in Section 3.1.3 also optimizes actions and action sequences, by maximizing the expected re-

ward. In most of these approaches, the action sequences or action hierarchies are fixed (Parr,

1998; Andre and Russell, 2001; Dietterich, 2000; Sutton et al., 1999). The only approach we

know of that explicitly combines planning and Reinforcement Learning is RL-TOPS (Re-

inforcement Learning - Teleo Operators) (Ryan and Pendrith, 1998). In this approach, se-

quences of actions are first generated based on their preconditions and effects, using Prolog.

Reinforcement Learning within this action sequence is donewith HSMQ (Dietterich, 2000).

Between actions, abrupt transitions arise too, and the author recognizes that “cutting corners”

would improve performance, but does not present a solution.RL-TOPS has been tested in

grid worlds and also more complex domains (Ryan and Reid, 2000), but not in the context of

mobile robotics. A more recent RL-planning hybrid is presented in (Grounds and Kudenko,

2005), though it is not clear how this work extends the work ofRyan et al. In general, the

advantage of action models over Reinforcement Learning were discussed in Section 4.4.1.

Belker et al. (2003) use action models learned with model trees to optimize Hierarchical

Transition Network (HTN) plans. This work was already introduced in Section 3.2.3. HTN

plans are structured hierarchically from high level goals to the most low level commands.

To optimize performance, the order of the actions, or the actions themselves are changed at

varying levels of the hierarchy. Rather than refining plans,The system modifies the HTN plans

themselves, and therefore applies to HTN plans only. On the other hand, we refine an existing

action chain, so the planner can be selected independently of the optimization process

XFRMLearn is an approach that also elegantly combines declarative and learned knowl-

edge to improve the performance of robot navigation execution (Beetz and Belker, 2000). The

XFRMLearn system optimizes plans through plan transformation, which is closely related to

subgoal assertion, which is presented in the next chapter. Therefore, we postpone the discus-

sion of this work to Section 6.4.1.

5.6.3 Receding horizon control

Optimal control refers to “the use of online, optimal trajectory generation as a part of the feed-

back stabilization of a (typically nonlinear) system” (Åström and Murray, 2008). Receding

horizon control is a subclass of optimal control approaches, in which an (optimal) trajectory

is planned up to an statex(t + Hp) which lies between between the current statex(t) and goal

statexgoal (Kwon and Han, 2005; Åström and Murray, 2008). The rationalebehind receding

horizon control (RHC) is that there is a diminishing return in optimizing later parts of the

trajectory before beginning execution. The experiments described in Section 5.5.3 verified

this effect. After planning the nextHp steps,He steps of this trajectory are executed (with
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1 ≤ He ≪ Hp), and a new trajectory is computed from the new current statex(t + He) to

x(t + He + Hp).

Bellingham et al. (2002) apply receding horizon control to simulated autonomous aerial

vehicles. In this application, a global visibility graph ofthe environment, which consists of

a 2D rectangular space with rectangular obstacles, is constructed off-line. From this graph,

a global cost function is computed by approximating the expected time to reach the final

goal location for a limited set of key locations, e.g. corners of obstacles. The cost graph is

recomputed if the environment changes. On-line, a time-optimal trajectory for the nextHp

steps is computed. The estimated remaining time from the final location of the trajectory

x(t + Hp) to the final goal is computed using the global cost graph. Then, He steps of the

trajectory are executed, and the trajectory is recomputed.

(a) Receding horizon control. (b) Subgoal refinement.

Figure 5.17. A graphical comparison of receding horizon control and subgoal refinement.
Small circles represent primitive commands, larger circles are the initial, final,
or intermediate states. Filled circles are planned and optimized before execution,
unfilled ones are not.

The main similarity of RHC with subgoal refinement optimization with different horizons

is that the extent to which optimization takes place for future actions is variable in both ap-

proaches. However, there are also some important differences between RHC and subgoal

refinement, which we will now describe with the help of Figure5.17:

Primitive vs. durative actions. In optimal control in general, planning and optimization

are done for primitive motor commands. The result is a control law or trajecory that

specifies which motor commands should be executed in the nearfuture. In subgoal

refinement, planning is done with symbolic reasoning, and optimization is done for the

parameters of a durative action. Clearly, subgoal refinement takes place at a higher

level of abstraction. Rather than optimizing low-level controllers, subgoal refinement

optimizes their composition and concatenation in high-level plans.

First Hp motor commands vs. intermediate subgoals. RHC optimizes the firstHp

motor commands, and is not committed to commands beyond the horizon, see Fig-

ure 5.17. Subgoal refinement rather commits to certain intermediate subgoals, and is
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not concerned with the exact motor commands with which thesesubgoals are reached.

The motor commands simply arise when executing the action chosen to achieve the

subgoal. The planner can therefore fix the general structureof the plan, rather than

committing to only the first few steps.

Trajectory planning vs. symbolic planning. RHC focuses on trajectory planning. On

the other hand, the methods described in this chapter are rather concerned with sym-

bolic planning, even if some of the actions, when executed, lead to trajectories. The

preconditions and effect of actions enable the designer to specify constraints unrelated

to trajectories, such as(holding cup).

Analytical vs. learned models. Optimal control and RHC approaches assume that deep

analytical models of all actions are available. As defined inSection 1.1, Principle II

of this dissertation is that procedural knowledge is represented as a library of ‘innate’

durative actions. Elaborate models of these action may not be available due to their

ad-hoc implementation and parameterization, or because the complex interaction of the

robot with its environment cannot be modeled well (Beetz andBelker, 2000). In our

approach, the actions are essentially black boxes. In practice, this is often the case for

real-world mobile platforms, but it also holds for humans, as explained in Section 1.1.

Based on introspection, humans simply find it impossible to describe the primitive mo-

tor commands (i.e. muscle activations) involved in riding abicycle or walking, let alone

prove its optimality! However, the lack of analytic models does not keep use from ac-

quiring models from experience. By learning action models,our system is also flexible

enough to acquire action models for changing actions, or actions for which no model

can be acquired through analysis.

5.6.4 Redundancy resolution

Redundancy resolution, briefly discussed in Section 5.4, has been well studied in the context

of robot arm control. Arm poses are said to be redundant if there are many arm configurations

that can achieve the same task, as depicted in Figure 5.7. Allthese configurations are called

motion or null space, and finding the best configuration is called null-space optimization,

which is equivalent to redundancy resolution. Hooper (1994) proposes to use direct search

methods to find the configuration with the best fault tolerance in motion space. Nakanishi et al.

(2005) give an overview and experimental evaluation of various other null-space optimization

techniques. All these approaches are analytical, which hasthe disadvantages described in

Section 5.6.3.
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5.6.5 Motion planning and execution

Generating collision-free paths from an initial to a final robot configuration is also known as

robot motion generation. A common distinction between algorithms that generate such paths

is:

Global approaches. These approaches determine a path to the goal off-line before execu-

tion, based on a global snap-shot of the world. Because a global view of the world is

known, global constraints such as obstacles are taken into account, and ending up in

a local minimum is avoided. The problem such global algorithms solve is called the

basic motion planning problem. On-line, the predeterminedpath is executed to actu-

ally achieve the goal configuration. Therefore, the environment may not change during

execution, as this could invalidate the predetermined path.

Local approaches. To adapt to local changes, local approaches use sensory information to

direct there motion on-line during execution. This enablesthe avoidance of obstacles.

Due to their local perspective, these approaches can get stuck into local minima, such

as a dead-end in a corridor.

Hybrid approaches. By combining both local and global approaches, hybrid methods get

the best of both worlds. Examples are the system described byZhang and Knoll (1995),

the Elastic Strips framework (Brock and Khatib, 1999), or the planning system and ex-

ecution system of GOFER (Choi and Latombe, 1991).

Brock and Khatib (1999) give an overview and examples of all three approaches. The meth-

ods presented in this chapter are a global approach, as the planning is performed off-line,

before plan execution. This means that failures in action execution, for instance due to un-

foreseen or dynamic obstacles require replanning. The sameholds for all global approaches,

of which (Bouguerra and Karlsson, 2005; Cambon et al., 2004)are examples discussed in the

previous section. we will now present two hybrid approaches, and discuss their relation to

subgoal refinement.

Zhang and Knoll (1995) propose a hybrid approach, based on globally computing a se-

quence of subgoals, and then traversing these subgoals whilst avoiding local obstacles on-line.

Subgoals are collision-free positions, and lines connecting subgoals should not intersect any

obstacles. The first step in this approach is therefore to determine a sequence of subgoals

that connects the initial state and final goal, using tangentgraphs for mobile robots, and C-

Nets for robot arms. The resulting subgoals are then refined with several heuristics, and con-

nected by non-uniform-B-splines, which ensure fluent motion when traversing the subgoals.
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Avoiding dynamic obstacles based on on-line sensor data is done by activating multiple fuzzy

controllers, some of which aim at approaching the next subgoal, whereas others avoid local

obstacles. Since subgoals need not be traversed perfectly,a fuzzy measure is used to determine

when a subgoal was passed.

In the Elastic Strip Framework (ESF) proposed by Brock and Khatib (1999), a set of

spheres, determined heuristically, defines the local free space around a configuration of a

robot. Along a trajectory determined with a global motion planning algorithm, a sequence of

configurations is chosen, which together are called the elastic strip. The unification of the local

free spaces around these configurations is called theelastic tunnel. Obstacles exert external

repulsive forces represented by potential fields on the elastic strip, causing it to stretch. As this

stretching does not affect the topology of the strip, the global constraints of the motion plan are

satisfied, and local minima are avoided. Choi and Latombe (1991) describe the planning and

execution system of the mobile robot GOFER, which can be considered a predecessor of the

Elastic Strip framework. Here,channelsare rectangular areas which the robot should traverse

in order to reach the goal. Within these rectangles, the robot is free to move, for instance to

avoid obstacles.

The quotes “The elastic tunnel can be imagined as a tunnel of free space within which

the trajectory can be modified without colliding with obstacles.” and “The idea of gener-

ating subgoals is to use them for globally guiding the robot motion and still leaving some

freedom for the plan executor to react to uncertainties.” from (Brock and Khatib, 1999) and

(Zhang and Knoll, 1995) respectively, show the conceptual similarity of the elastic tunnelor

subgoalswith free action parameters. However, there are several important differences as

well:

Optimization between subgoals vs. optimization of subgoal s themselves. In

hybrid approaches, the freedombetweenthe subgoals is more important than the

freedomat the subgoal itself. It is the path that matters, not so much the subgoal it leads

to. Note that this implies that hybrid approaches are not incompatible with subgoal

refinement, and they might complement each other well.

Freedom to react vs. freedom to optimize. Also, the freedom in hybrid approaches is

exploited to react to unforeseen changes encountered during plan execution, whereas

subgoal refinement does so to optimize the expected performance of the plan before-

hand. At first, it might seem futile to optimize subgoals if the path to these refined sub-

goals cannot be achieved anyway due to unforeseen obstacles. However, the rationale

behind subgoal refinement is that it is worth to spend some computational resources on

computing the optimal subgoal, because if no obstacles are encountered and the world

89



Chapter 5 Task Context: Action Sequences

unfolds as predicted, this will lead to an improved performance. This optimism in the

face of ignorance is rational, and can also be found in (Zhangand Knoll, 1995) and

(Brock and Khatib, 1999), where paths are initially chosen to be smooth, so that at least

an unhindered traversal of subgoals will lead to fluent execution.

Trajectory planning vs. symbolic planning. Whereas motion planning and execution

algorithms focus on collision-free paths, our methods dealwith the more general prob-

lem of mapping symbolic plans to executable action sequence. Declarative plans allow

for higher levels of abstraction than standard motion planning techniques, which fa-

cilitates the design of abstract actions and common-sense constraints. Of course, in

an operational system, geometric constraints must be take into account when mapping

symbols to configurations, as is done in (Cambon et al., 2004). These is essentially the

same difference as discussed in 5.6.3.

5.6.6 Smooth motion as an emergent property

Most similar to our work, from the point of view of smoothnessas an emergent property of

optimality requirements with redundant subgoals, is the approach of Kollar and Roy (2006).

In this work, a simulated robot maps its environment with range measurements by traversing a

set of way-points. Reinforcement learns a policy that minimizes the error in the resulting map.

As a side-effect, smooth transitions at way-points arise. This approach has not been tested on

real robots.

5.6.7 Smooth motion as an explicit goal

Many behavior based approaches also achieve smooth motion by a weighted mixing of the

motor commands of several actions (Jaeger and Christaller,1998; Saffiotti et al., 1993). In

these approaches, there are no discrete transitions between actions, so they are also not visible

in the execution. In computer graphics, the analogous approach is calledmotion blending, and

is also a wide-spread method to generate natural and fluent transitions between actions, which

is essential for lifelike animation of characters. Perlin (1995) presents visually impressive

results. More recent results are described by Shapiro et al.(2003) and Kovar and Gleicher

(2003). Since there are no discrete transitions between actions, they are also not visible in

the execution. In all these blending approaches, achievingoptimal behavior is not an explicit

goal; it is left to chance, not objective performance measures.

Hoffmann and Düffert (2004) propose a very different technique for generating smooth

transitions between skills for the AIBO quadruped robots. The periodic nature of robot gaits
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allows them to be meaningfully represented in the frequencydomain. Interpolating in this

domain yields smooth transitions between walking skills. Since the actions we use are not

periodic, these methods do not apply.

5.6.8 Elvis the dog

On a more light-hearted note, we are happy to report that someevidence (if interpreted cor-

rectly) shows that dogs are capable of performing subgoal refinement. Figure 5.18(a) shows

Elvis the Dog in a typical pose. Elvis and his master, Professor Tim Pennings of Hope Col-

lege (Michigan, USA), regularly go to the beach, where Elvisenjoys fetching tennis balls from

the water, as depicted in Figure 5.18(a). Elvis achieves this by first running along the beach

(action 1), and then swimming to the ball (action 2). Becauserunning is much faster than

swimming, the optimal policy is not to go to the ball in a straight line, but rather run parallel to

the beach for a certain distance, and then swim to the ball, asin Figure 5.18(b). Which distance

this should be is a standard optimization problem, often found in college tests. Interestingly

enough, Elvis seems to be solving this problem, as he choosesthe mathematical optimal dis-

tance in varying scenarios. By measuring Elvis’ running andswimming speed, Tim Pennings

could plot the optimal distance as in Figure 5.18(c), taken from (Pennings, 2003). The dis-

tances that Elvis actually chooses (the dots in the graph represent individual fetch episodes)

match this optimal line quite closely.

(a) Elvis the dog. (b) The optimization problem. (c) Empirical data.

Figure 5.18. Elvis the dog solves the ‘beach optimization problem’. Images used with per-
mission.

Why is this subgoal refinement? Because Elvis is choosing theintermediate goal (i.e. the

point where he enters the water) such that the overall execution of the action sequence is

optimized. The scenario is very similar to the example in Figure 5.1, where performing the

first action suboptimally leads to a better overall performance.
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Gallego and Perruchet (2006) challenge the notion that Elvis is performing global optimiza-

tion, and give a much simpler local optimization strategy that solves the optimization problem

with the same result: go into the water as soon as the relativespeed of the ball to my own

position is lower than my swimming speed. However, according to Pennings (2007), further

yet to be published experiments demonstrate that this can also not be the whole story, and the

debate continues.

5.7 Conclusion

Durative actions provide a conceptual abstraction that is reasoned about either by the designer

during action selection design, or, if the abstraction is explicitly coded into the controller,

by the action selection system itself. Action abstractionspartially achieve their abstraction

by not taking into account all action parameters. Although these free action parameters are

not relevant to the action on an abstract level, they often are relevant to the performance of

executing the plan.

As robots are becoming more dextrous, and their actions moreexpressive, abstraction will

become more important for keeping action selection and planning tractable. This also means

the gap between an action’s abstraction and its execution will widen, and more free action

parameters arise. Suboptimal performance and jagged motion is an unavoidable consequence

of leaving these free action parameters unconsidered.

In this chapter, we introduce subgoal refinement. Subgoal refinement not only contemplates

free action parameters, but exploits them by optimizing them with respect to the expected over-

all performance, thereby turning the curse of free action parameters into a blessing. Subgoal

refinement is realized as an extension to the standard partial order causal link planner VHPOP,

which uses the Planning Domain Description Language to specify abstract actions, goals and

states. We show how free action parameters are extracted, and optimized analytically or with

genetic algorithms, with respect to expected performance computed by action models.

Without subgoal refinement, the transitions between actions are abrupt. In general, these

motion patterns are so characteristic for robots that people trying to imitate robotic behavior

will do so by making abrupt movements between actions. It is interesting to see that requir-

ing optimal performance can implicitly yield smooth transitions in robotics and nature, even

though smoothness in itself is not an explicit goal in eitherdomain.

We believe this is an important contribution towards bridging the gap between robot action

execution on the one hand, and planning systems and deliberative components in general on

the other. Subgoal refinement combines abstract human-specified knowledge with learned
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predictive knowledge.

The results reported in this chapter have been published in:(Stulp et al., 2007;

Stulp and Beetz, 2006; Stulp et al., 2006b; Stulp and Beetz, 2005b,c,a, 2008c). Summaries

of these publications are given in Appendix D.
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“Before we learn how to run, we must first learn how to walk.”

English proverb

In order to adapt to new environments and acquire new skills autonomously, robots must be

able to learn. Learning generates new knowledge from experience through experimentation,

observation and generalization. In practice, learning hardly starts from scratch, and knowl-

edge about previously learned skills is transfered to novelskills, as Vilalta and Drissi (2002)

describe: “Learning is not an isolated task that starts fromscratch every time a new problem

domain appears.”. Thrun and Mitchell (1993) call thislife-long learning. Principle IV from

Section 1.1 also adheres to this view, as it poses that existing action can be tailored to novel

task contexts.

Let us again take an example from soccer. For both humans and robots, approaching a ball

is very similar to navigating without considering the ball.Both involve going from some pose

to another pose on the field as in Figure 6.1, and both should beimplemented to execute as

efficiently and fast as possible. However, there are also slight differences between the objective

functions for these two tasks. When approaching the ball it is important to not bump into it

before achieving the desired pose, as depicted in Figure 6.1(b).

This scenario can be described well in terms of the actionsapproachBall and

goToPose. The required action for this task isapproachBall, which is very similar to the

goToPose action. However, sincegoToPose is not aware of the ball, it often collides with

the ball before achieving the desired pose. In fact, in Section 4.2.2, we determined empirically

that this action causes a collision more than half the time. To solve this problem, one could

write a new action, e.g.approachBall. It would probably be very similar togoToPose,

but take the ball into account. Instead of designingapproachBall from scratch, it would

be better if the robot reused the similargoToPose, and adapt it to the current context. For

instance, althoughgoToPose fails at ball approach more than half the time, it alsosucceeds

at doing so quite often. In these cases, it can be reused without change.
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(a) Both robots achieve the desired state with
goToPose.

(b) When approaching the ball, one of the
robots bumps into the ball before achieving the
desired state withgoToPose.

Figure 6.1. Similarities and differences between standardnavigation and ball approach.

The key to reuse is therefore being able to predict when the action will fail, and when it

will succeed. When it is predicted to succeed, the action is executed as is. If the action will

fail, another action should be executed beforehand, such that the robot ends up in a state from

which the actionwill succeed. This intermediate state between the actions is a new subgoal.

This approach is therefore called subgoal assertion.

In Figure 6.2, the action variant context is highlighted within the system overview.

Figure 6.2. Condition refinement and subgoal assertion within the system overview.

In the next section, we introduce the computational model ofsubgoal assertion. The actual

implementation of subgoal assertion is presented in Section 6.2. As we shall see, there is an in-

teresting relation between subgoal assertion and subgoal refinement. An empirical evaluation
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of subgoal assertion is provided in Section 6.3. We concludewith a summary in Section 6.5

6.1 Computational Model

Figure 6.3(a) depicts two possible initial states of a robotin blue, and a goal state in white. In

both cases, a singlegoToPose action suffices to bring the robot from the initial state to the

goal state. The general case is depicted as a transition fromthe precondition to the effects of

an action beneath the scenario. Since the effects satisfy the goal, the action can achieve the

goal. The two points in the precondition represent the two states depicted in the field.

Figure 6.3(b) is basically a repetition of the same scenario, but this time the goal is that the

robot is at the same position, in possession of the ball. In general, this means that the new

goal of approaching the ball is a subset of the former goal of simply navigating there. When

executinggoToPose, the robot to the left succeeds at approaching the ball, but the robot to

the right does not, as it bumps into the ball beforehand. In general, this is the case because the

effects ofgoToPose no longer satisfies the refined goal, as is depicted below the scenario.

(a) Both initial states satisfy the precondition,
so executinggoToPose leads to successful
completion in both cases.

(b) Since the goal has changed, not all states
in the effects satisfy the goal. Therefore, ex-
ecutinggoToPose does not lead to the goal
for all states in the precondition.

Figure 6.3. Computational model of condition refinement.

The effects ofgoToPose can now be partitioned into a subset which does satisfy the

new refined goal, and a subset which does not. These are represented with blue (S) and

red (F) respectively. Analogously, the preconditions are partitioned into a subsetSuccess

which leads to a final state which is in the subset of the effects that satisfy the refined goal,

and a subsetFail for which this is not the case. Because the effects, and consequently,
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preconditions of an action are refined for a new task, this is known ascondition refinement.

In Section 4.2.2 we demonstrated that the refined precondition (theSuccess subset) can be

learned from observed experience.

Once the refined precondition of a novel goal is known, it is easy to determine if a particular

initial state will lead to a successful execution or not. If it does, the action is executed as is.

For instance, the robot to the left can simply execute thegoToPose action, as it is in the

refined precondition. The robot to the right however is not. This robot now needs a novel

action, e.g.approachBall, that enables it to go from any of the states in theFail to the

refined goal. Or does it? Instead, thegoToPose action is used again, to take the robot from

theFail subset to theSuccess subset. Once this is done, agoToPose action thatwill

succeed at approaching the ball is executed.

Figure 6.4. Computational model of subgoal assertion

Summarizing: if an action is predicted to succeed in a novel context, execute it as is. if it

is predicted to fail, assert a subgoal from which the actionwill succeed, and execute an extra

action to achieve this subgoal.

One issue remains open. In the running example there are infinitely many subgoals from

which approaching the ball will succeed. Any state from theSuccess subset could be cho-

sen, but which one is the best? Fortunately, this problem wasalready posed and solved in

Chapter 5. Choosing the best subgoal from many is done using subgoal refinement, as is

explained in Section 6.2.

The pseudo-code for the complete system described in this article is listed in Algorithm 4,

an extension of Algorithm 1 in the previous section. Subgoalassertion is applied just after the
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actions have been instantiated, but before subgoal refinement. Note that subgoal refinement

and assertion only modify existing action sequences. They do not interfere with the planning

or instantiation process. This means that they are compatible with other planning systems.

input : abs_goal, (represented in PDDL)
beliefState, (belief state with state variables)
action_lib (library with PDDL representations, actions, and action models)

output : exe_action_seq (an optimized sequences of executable actions)

abs_state = readFromFile (beliefState.scenario_name) // ‘Anchoring’1

abs_plan = makePlan (abs_state, abs_goal, action_lib) // Section5.22

exe_action_seq = instantiateAction (abs_plan, belief_state, action_lib) // Section5.33

exe_action_seq = assertSubgoals (exe_action_seq,belief_state, action_lib) // Section 6.24

exe_action_seq = refineSubgoals (exe_action_seq, action_lib) // Section 5.45

returnexe_action_seq;6

Algorithm 4: Overview of subgoal assertion and subgoal refinement.

6.2 Subgoal Assertion

Subgoal assertion takes a sequence of actions, and returns the same sequencewith asserted

subgoal that are needed to assure successful execution, as listed in Algorithm 5. The main

loop goes through all actions, and leavesgoToPose actions untouched.approachBall

has no implementation itself, and is replaced bygoToPose actions. Only onegoToPose is

needed if it is predicted to succeed at approaching the ball.This is the case if the initial state

is in theSuccess subset in Figure 6.3(b).

Determining these subsets manually is a difficult task, due to complex interactions between

the dynamics and shape of the robot, as well as the specific characteristics of the action.

Therefore, these subsets are learned with a decision tree, as described in Section 4.2.2.

If a success is predicted, onegoToPose is executed as is, with the same parameters as

theapproachBall action. If it is predicted to fail, a subgoal is asserted (exe_params2),

and inserted between twogoToPose actions. The action parametersexe_params2 initially

receive default ranges. All parameters inexe_params2 are free, and are optimized with

subgoal refinement. This immediately follows subgoal assertion, as listed in Algorithm 4.

This ensures that the values forexe_params2 minimize the predicted execution duration,

and that the transition between the twogoToPose actions is smooth.

One issue remains open. The intermediate goal between the actions must lie within the

Success subset in Figure 6.3, which for the ball approach task is any position in the green

area to the left in Figure 4.8. This requirement puts constraints on the values ofexe_params2.

It must be ensured that the optimization process in subgoal refinement only considers states
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input : exe_actions (a sequence of (partially) instantiated actions)
output : exe_actions2 (a sequence of (partially) instantiated actions with asserted subgoals)

exe_actions2 = {};1

foreach exe_action in exe_actions do2

switch exe_action.name do3

case ‘goToPose’4

exe_actions2.add (exe_action) // Subgoal assertion never needed for this action5

end6

case ‘approachBall’7

// Get the parameters related to the ‘from’ and ‘to’ states.
// Uses the same indexing scheme as in lines 6-8 of Algorithm 3..
exe_params0 = exe_action.getParameters (0);8

exe_params1 = exe_action.getParameters (1);9

if goToPose.approachBallSuccess(exe_params0, exe_params1) then10

// goToPose will do the job, subgoal assertion not needed
exe_actions2.add (new goToPose(exe_params0, exe_params1);11

else12

// exe_params2 is set to the default ranges of the action parameters ofgoToPose.
// Same as in lines 10-11 of Algorithm 3.
exe_params2 = ...;13

exe_actions2.add (new goToPose(exe_params0, exe_params2);14

exe_actions2.add (new goToPose(exe_params2, exe_params1);15

end16

end17

...18

end19

end20

returnexe_actions2;21

Algorithm 5: Subgoal assertion algorithm. Implementation of line 4 of Algorithm 4.
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from theSuccess subset of the refined precondition of the secondgoToPose action. There-

fore, the action model for this action is modified so that it returns an INVALID flag for these

states. This approach has been chosen as it requires little modification of the optimization

module. Chromosomes that lead to an invalid value simply receive a low fitness.

goToPose.executionDurationApproachBall (x,y,φ,v,xg ,yg,φg,vg) {1

if goToPose.approachBallSuccess (x,y,φ,v,xg ,yg,φg,vg) then2

returngoToPose.executionDuration (x,y,φ,v,xg,yg,φg,vg);3

else4

returnINVALID;5

end6

}7

Algorithm 6: ModifiedgoToPose action model for approaching the ball.

Analogously to Figure 5.8, the predicted execution durations of the two actions, as well as

their summation are depicted in Figure 6.5. Invalid values are not rendered. The second graph

depicts the function described in Algorithm 6. Note that dueto removal of invalid values, the

shape of the functions on the ground plane in the last two graphs corresponds to Figure 4.8

and 6.6.

Figure 6.5. Search space for subgoal refinement in subgoal assertion.

Subgoal assertion was implemented whilst the implementation of the genetic algorithm was

still underway, so the optimization has instead been done byrandom sampling. A thousand

states are randomly sampled from the success set of the refined condition, and the predicted

execution duration for bothgoToPose actions is computed and added. The subgoal with the

minimal execution duration is then chosen to the intermediate subgoal. As subgoal refinement

is applied, the transitions at this subgoal is usually smooth.

In Figure 6.6, three instances of the problem are depicted. Since the robot to the left is in

the area in which no collision is predicted, it simply executesgoToPose, without asserting a

subgoal. The model predicts that the other two robots will collide with the ball when executing
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Figure 6.6. Subgoal assertion in the approach ball task

goToPose, and a subgoal is asserted. The subgoals, determined by subgoal refinement, are

depicted as well.

The entire process of condition refinement, subgoal assertion and subgoal refinement is en-

capsulated in a new abstract action, for instanceapproachBall. This process of encapsulat-

ing several action into one is known as “chunking” in architectures such as SOAR (Laird et al.,

1986) or ACT-R (Servan-Schreiber and Anderson, 1990). Notethat there is no executable ac-

tion approachBall, as the executablegoToPose is reused for this novel abstract action.

Creating a novelabstractaction is necessary however, as the preconditions and effects of

approachBall are refined as compared to those ofgoToPose.

6.3 Empirical Evaluation

To evaluate automatic subgoal assertion a hundred random ball approaches are executed in

simulation, once with assertion, and once without. The results are summarized in Table 6.1.

Before assertion, the results are, as is to be expected, verysimilar to the results reported

in Table 4.4. A collision is again correctly predicted approximately half the time: 52% of

these hundred episodes. Subgoal assertion is applied in these cases, and is almost always

successful: 50% of all episodes is transfered from having a collision to a successful ball

approach. Only 2% of the episodes still have a collision, despite subgoal assertion. Because

no subgoal assertion is applied whenSuccess is predicted, there is no change in the lower

prediction row. Consciously choosing not to apply subgoal assertion and not applying it are

equivalent.

Subgoal assertion is applied unnecessarily in 10% of episodes. In this case, both episodes
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Observed Total
Fail Success Predicted

Predicted Fail 2% (=52%-50%) 60% (=10%+50%)→ 62%
Success 1% 37% → 38%

↓ ↓
Total Observed 3% 97%

Table 6.1. Subgoal assertion results

with and without subgoal assertion are successful. However, the execution with subgoal asser-

tion and consequent subgoal refinement is a significant 8% slower than executing only the one

goToPose action. The performance loss in these cases seems an acceptable cost compared

to the pay-off of the dramatic increase in the number of successful task completions.

Summarizing: if subgoal assertion is not necessary, it is usually not applied. Half of the

time, a subgoal is introduced, which raises successful taskcompletion from 47 to 97%. Infre-

quently, subgoals are introduced inappropriately, which leads to a small loss of performance

in terms of execution duration.

Condition refinement has not been implemented or evaluated on the real robots. Instead, a

failure model, similar to the one in Figure 4.8 was designed by manually tuning the parameters

of the model to a more cautious one. As subgoal refinement almost always chooses a subgoal

somewhere on the border between the green and blue area in Figure 4.8, we wrote a heuristic

that does the same. ThisapproachBall action, although manually specified but still based

on the learned model and subgoal refinement, is used for the real robots.

6.4 Related Work

6.4.1 Transformational planning

Sussman was the first to realize thatbugsin plans do not just lead to failure, but are actu-

ally an opportunity to construct more robust and improved plans (Sussman, 1973). Although

this research was done in the highly abstract symbolic blocks world domain, this idea is still

fundamental to transformational planning.

In the XFRMLearn framework proposed by Beetz and Belker (2000), human-specified

declarative knowledge is elegantly combined with robot-learned knowledge. Navigation plans

are optimized with respect to execution time by analyzing, transforming and testing structured

reactive controllers (SRCs) (Beetz, 1999). Designers firstspecify rules for analyzing and
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transforming these plans, and the robot then learns from experience when these rules should

be applied. A substantial improvement in execution time of up to 44% is achieved. The anal-

ysis phase has many similarities with condition refinement,and transformation phase with

subgoal assertion. One difference with XFRMLearn is that inour work, the analysis phase is

learned instead of human-specified. Another difference is that XFRMLearn improves exist-

ing plans, whereas condition refinement learns how to adapt to changing action requirements,

such as refined goals.

6.4.2 Learning preconditions, effects and action failures

Methods for learning preconditions, such as the method presented in this chapter, are summa-

rized well by the following quote by Shen (1994): “The problem of learning the preconditions

for an action model can be viewed as a problem of concept learning in which the learner is

given instances of action success or failure, and induces a concept describing the conditions

which apply in successful instances.”.

In most of the research on learning preconditions, the concept that is being induced is

symbolic. Furthermore, the examples consist only of symbols that are not grounded in the

real world. The precondition is then learned from these examples, for instance through

Inductive Logic Programming (Benson, 1995) or more specialized methods of logic infer-

ence (Shahaf and Amir, 2006). However, neither symbolic examples nor a symbolic precon-

dition suffices to encapsulate the complex conditions that arise from the robot dynamics and

its action parameterizations.

Schmill et al. (2000) present a system in which non-symbolicplanning operators are learned

from interaction of the robot with the real world. The experiences of the robot are first parti-

tioned into qualitatively different outcome classes, through a clustering approach. The learned

operators are very similar to previously hand-coded operators. Once these classes are known,

the robot learns to map sensory features to these classes with a decision tree, similar to our

approach. This approach aims at learning to predict what therobot will perceive after execut-

ing an action from scratch, whereas condition refinement aims at refining an already existing

symbolic preconditions based on changing goals.

Buck and Riedmiller (2000) propose a method for learning thesuccess rate of passing action

in the context of ROBOCUP simulation league. Here a neural network is trained with 8000

examples in which a pass is attempted, along with the successor failure of the pass. This

information is used to manually code action selection rulessuch as “Only attempt a pass if

it is expected to succeed with>70%”. This is also a good example of integrating human-

specified and learned knowledge in a controller.

104



Section 6.4 Related Work

In (Fox et al., 2006b), an extension of the work in (Fox et al.,2006a), robots use learned

action models to determine when an action is failing. The action model is learned by first

mapping raw sensor data to observations by feature detection and classification techniques,

then mapping observations to evidence items with Kohonen networks, and evidence items to

states with state splitting (Fox et al., 2006a). This approach is used to learn a model of a

robot that takes panoramic images by turning on the spot and halting at fixed intervals to take

pictures.

With this Hidden Markov Model of the action, 50 training runsare generated. At each

time-step, the log likelihood of the sequence of states is computed, given the learned model.

This yields 50 monotonously decreasing traces through time/likelihood space. The range of

all these traces is defined to be normal behavior. During testing, failures are induced such as

blocking the robot, or disconnecting communication. In three out of four error types this leads

to traces that fall outside the range of the normal behavior,and an error is correctly recognized.

The emphasis in this work is not on predicting the failure of an action in advance, but rather

recognizing when an action that is being executed is in the process of failing, as the following

quote from (Fox et al., 2006b) demonstrates: “Planners reason with abstracted models of the

behaviors they use to construct plans. When plans are turnedinto the instructions that drive an

executive, the real behaviors interacting with the unpredictable uncertainties of the environ-

ment can lead to failure.” Therefore, cannot be used for condition refinement, but rather for

execution monitoring.

6.4.3 Inductive transfer

The transfer of knowledge from one learning task to the next has been well studied within the

context of connectionist networks (Pratt and Jennings, 1996). Here, it is termed “learning to

learn”, or “inductive transfer” (Großmann, 2001). Two wellknown examples of this approach

are Explanation Based Neural Networks (EBNN) (Thrun and Mitchell, 1993) and Multi Task

Learning (MTL) (Caruana, 1997).

In EBNN (Thrun and Mitchell, 1993), a neural networks learnsthe mappingfi from input

to target values in the training set. In addition, EBNN also learns a mapping to the slopes

(tangents) offi at the examples in the training set. These slopes provides information on

how changes of the input features affect the network’s output, and can therefore guide the

generalization of the training examples. This second slopenetwork represents a model of

the domain, and is used as an inductive bias for learning novel tasks, with the same network

structure. This substantially reduces the number of neededtraining examples for novel tasks.

Multi Task Learning (MTL) is based on a different type of knowledge transfer. Suppose
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a mapping from four inputs to three different tasks must be learned from examples. One

approach would be to train three neural networks, one for each task. With this approach,

each of the three networks must learn the mapping to the output from scratch. Similarities

between tasks can therefore not be exploited. Caruana (1997) proposes MTL, in which only

one network, in this case with three outputs, is learned, as depicted in Figure 6.7. In this

network, representations that are common to all tasks are learned in the input to hidden layer

mapping, and task specific representations in the hidden to output layer. Because all training

examples are used to learn the common representation, learning is significantly faster than

when using a single network for each task. Empirical resultshave verified this (Caruana,

1997).

A similarity with the approach in this chapter is the differentiation between common task

knowledge, and specific task knowledge. ThegoToPose action can be considered as the

common knowledge needed to complete both the navigation andball approach tasks. The

learned model (condition refinement) and subgoal assertionare the specific knowledge needed

to adapt thegoToPose action to the novel ball approach task.

Figure 6.7. A multi task learning (MTL) network. Adapted from (Silver and Mercer, 1998).

Both EBNN and MTL use multi-layer perceptrons as representation, and the transfer of

knowledge is based on this representation. Furthermore, the learning performance and ease of

transfer depend on the topology of the network, which is human-specified. Because MTL and

EBNN depend on these a priori design decisions, they are onlyof limited use for autonomous

learning (Großmann, 2001). For instance, they could not be applied to the task presented

in this chapter, as it is not learned using a neural network. On the other hand, condition

refinement and subgoal assertion, although their scope is limited to novel tasks with refined

goals, could be used for tasks learned with neural networks.
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6.5 Conclusion

In this chapter, we present condition refinement, which adapts preconditions to novel goals.

These preconditions are learned with decision trees from observed experience, and are there-

fore grounded in the real world. Predicted failures are resolved by asserting new subgoals,

from which execution is predicted to succeed. In an interesting interplay between condition

refinement and subgoal refinement, the best intermediate subgoal is chosen. We demonstrate

how thegoToPose action is reused to successfully approach the ball in the simulated soccer

domain.

Condition refinement is a good example of combining common sense knowledge, which is

provided by humans through the symbolic preconditions, with knowledge that the robots learn

themselves. Also, condition refinement and subgoal assertion are important contributions to

bridging the gap between symbolic planning, and plan execution on robots.

The results reported in this chapter have been published in:(Stulp and Beetz, 2006, 2005c,

2008c). Summaries of these publications are given in Appendix D.
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“Wat heb je nou liever? Één goed 11-tal of 11 goede 1-tallen?”

Johan Cruijff

As robotic systems are becoming more dextrous and sophisticated, they are capable of ex-

ecuting more complex tasks. Many of these more complex application tasks require two or

more robots to cooperate in order to solve the task. A key aspect of these systems is that mul-

tiple robots share the same workspace, and can therefore notabstract away from the actions

of other robots. The problem is how to tailor your actions in the context of actions of others.

Humans are very good at performing joint actions

Figure 7.1. Two humans implicitly

coordinating the assem-

bly of a PIONEER I robot.

in shared workspaces. Consider two people assem-

bling a bookcase (or a robot, as in Figure 7.1). With

apparent ease, actions areanticipated and coordi-

nated: one person holds a shelf while the other screws

it in place, and so forth. A key aspect of this coop-

eration is that it is executed with little or no commu-

nication. Humans achieve this by inferring the inten-

tions of others. Once the beliefs and desires of the co-

operating party are known, we simply imagine what

we would do in that situation. Dennett (1987) calls

this the Intentional Stance. If ısee you grab a screw-

driver, ıcan assume that you intend to screw the shelf

in place; there is no need for you to tell me. By integrating your intentions into my own be-

liefs, ıcan also anticipate that my holding the shelf will ease our task, thereby coming closer to

our joint desire of assembling the bookcase. Implicit coordination is used by humans in many

domains: almost all team sports, construction of bookcasesand others, and also in traffic.

In contrast, coordination in multi-agent and multi-robot systems is usually achieved

by extensive communication of utilities. This is calledexplicit coordination. Previous
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work on cooperation seems to have focussed almost exclusively on this form of coordina-

tion (Botelho and Alami, 1999; Chaimowicz et al., 2002; Diasand Stentz, 2001; Parker, 1998;

Werger and Matarić, 2000). It has also been used in the ROBOCUP mid-size league to allocate

roles to the different players (Castelpietra et al., 2000; Spaan and Groen, 2002). However,

implicit coordination has some important advantages over explicit coordination, related to:

Complexity. To enable utility communication, protocols and arbitration mechanisms must

be adopted between communicating entities , which adds complexities and can degrade

the system. It is generally argued that communication can add unacceptable delays in

information gathering and should be kept minimal (Tews and Wyeth, 2000).

Safety. Because implicit coordination dispenses of the need for communication, there are

many multi-robot domains that could benefit from this approach. Rescue robotics and

autonomous vehicles operating in traffic are examples of domains in which robust com-

munication is not guaranteed, but where correct coordination and action anticipation is

a matter of life and death. When it comes to saving humans or avoiding accidents, it is

better to trust what you perceive, than what others tell you:seeing is believing.

Human-robot interaction. Another recent research focus in which implicit coordina-

tion plays an important role is human-robot interaction, for instance in assem-

bly (Zhang et al., 1999; Knoll and Glöckner, 2001), space exploration (Fong et al.,

2005) or rescue robotics (Nourbakhsh et al., 2005). Our research group has a long-

term project for human-robot interaction in intelligent rooms (Buss et al., 2007; Rusu,

2006). The room and robot are equipped with cameras, laser range finders and RFID

tags, which provide robots with accurate information aboutwhat is going on in the

room. When a robot and a human perform a joint action in their shared workspace, e.g.

setting the table in the kitchen, or seam welding in outer space, it cannot be expected of

humans to continuously communicate their intentions. Instead, the robot must be able

to anticipate a human’s intentions, based on predictive models of human behavior. We

consider anticipation to be essential for natural interaction between robots and humans.

Mixed teams. In robotic soccer, there is an increasing incentive to play in mixed teams.

Since robots in a mixed team usually have very different communication software and

hardware, communication is often problematic. A solution would be to unify the soft-

ware of the different robots of a potential mixed team. This would require substantial

rewriting of at least one of the team’s software. In our opinion this is undesirable. Why

should an autonomous mobile robot have to commit to any kind of sensor processing
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or control paradigm to be able to cooperate with another teammate, if both are pro-

grammed to interact in the same problem domain? Professional soccer players certainly

do not need to take a language course before being able to playsoccer in a new country.

Implicit coordination could solve the communication problem for robots in mixed teams

by eliminating communication altogether.

A necessity for implicit coordination is being able to predict the outcome of the actions of

others, by taking their perspective. As we saw in Section 3.2.1, it is hypothesized that the basis

of social interaction and imitation in humans is also formedby forward models (Wolpert et al.,

2003), as there are many similarities between the motor loopand the social interaction loop. It

may be that the same computational mechanisms which developed for sensorimotor prediction

have adapted for other cognitive functions. As we shall see,in implicit coordination, action

models also enable robots to predict the performance of other robots.

In this chapter, we apply implicit coordination to a typicalcoordination task from robotic

soccer: regaining ball possession. Regaining ball possession is a goal for the team as a whole,

but only one of the field players is needed to achieve it. The advantage of having only one

player approach the ball is obvious: there is less interference between the robots, and it also

allows the other robots to execute other important tasks, such as strategic repositioning or man

marking. Of course, the robots must agree upon which robot will approach the ball. The in-

tuitive underlying locker-room agreement (Stone and Veloso, 1999) is that only the robot who

is quickest to the ball should approach it. In Figure 7.2, implicit coordination is highlighted

within the overall system overview.

The next section presents the computational model of explicit and implicit coordination, and

Section 7.2 demonstrates how this model is applied to the ball interception task. In Section 7.3

we discuss some issues related to applying implicit coordination to heterogeneous teams. In

the empirical evaluation in Section 7.4, we present three experiments, partially conducted

with the Neuroinformatics Group at University of Ulm. We conclude with related work and a

summary in Sections 7.5 and 7.6 respectively.

7.1 Computational Model

In Figure 7.3, the computational model of explicit coordination is depicted. Vail and Veloso

(2003) informally describe a similar methodology. Througha certain communication channel,

the robot receives the utilities of other robots with respect to the task and possible actions at

hand. The Joint Utility model then determines what the best action is, given the utilities of all

robots.
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Figure 7.2. Implicit coordination within the system overview

Figure 7.3. Computational model of explicit coordination,in which the utilities of other robots
are communicated. This is the standard approach in robotics.

Implicit coordination, depicted in Figure 7.4, is a variation of explicit coordination, in which

the utilities of others are not communicated, but computed by the robot itself. It does so by

taking the perspective of others based on the states of others, and utility prediction models.

Figure 7.4. Computational model of implicit coordination without communication, in which
utilities are computed from perceived states using action models. Humans use this
approach to coordinate.

7.2 Applying Implicit Coordination

Here, the concepts used in Figure 7.3 and Figure 7.4 are explained using examples from the

ball interception task, more or less from back to front.
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My action. This is the action that the robot decides to execute. It should be coordinated with

the actions of other robots. When regaining ball possession, this means that only one

robot should approach the ball. This avoids interference between robots, and enables

the robots that are not approaching the ball to perform othertasks, such as man marking

or other offensive positioning.

Utilities. In the ball interception task, the utility is approach time.The faster a robot can

approach the ball, the higher the utility. This utility can therefore be computed by deter-

mining the execution duration of theapproachBall action, given the current belief

state. This time in its turn is acquired by calling the learned action model for execution

duration of theapproachBall action, given the state of the robot and the ball. How

this model is acquired has been extensively discussed in Chapter 4.

Joint utility model. The joint utility model formalizes the intuitive rule that only one robot

should approach the ball. It computes the best action a robotcan execute, given its own

utility for this action, as well as the utilities of other robots. So, for the ball interception

task, the joint utility model returnsapproachBall if a robot predicted to be the fastest

to approach the ball, and another action otherwise. For thistask, the joint utility model

therefore needs to know the expected time it will take to approach the ball for all robots.

Note that in this computational model, the joint utility model selects an action. For

integration in plan-based control, the joint utility modelcould instead return a symbolic

goal. The planner then determines an action sequence to achieve this goal.

Of course, all soccer teams have implemented this strategy in some way, to avoid all

robots continuously pursuing the ball. The contribution ofthe approach presented here is

not to implement the concept of having only one robot going there. It rather shows how

exploiting action models to reason about the outcome of the actions of others enables

robots to become more independent of communication for coordination.

Communication. In explicit coordination, robots compute only their own utility locally. It

then sends its utility to the other robots, and receives the utilities of the other robots,

over some communication channel. In auction based approaches (Gerkey and Matarić,

2003), the utilities are sent to a single arbitrator, which communicates roles or actions

back to the robots.

Perspective-taker. In implicit coordination, each robot computes the utility of all robots

locally, without communicating the utilities. The perspective-taker enables each robot

to make this prediction with respect to the current task and belief state. To do this, the
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robot swaps its own state with that of another robot in the belief state, and computes

the utility. This “perspective-taking” (Trafton et al., 2005) is performed for all other

robots, until the utilities for all robots are known. To compute the utility of others, the

perspective taker computes the execution of theapproachBall action for each robot.

To do so, it needs to know the state andapproachBall action model of each robot.

States of others. As we saw, the robot needs to know the state of another robot tobe able

to take its perspective. In the belief state of the soccer robots, states are represented by

a pose: the position and orientation of the robot. The statesof others are determined

through the state estimation module.

7.2.1 Utility communication vs. shared belief

The most difficult aspect of implicit coordination is estimating the states of others. Especially

for robots with a limited field of view, such as ours, this is problematic. Therefore, we resorted

to the communication of beliefs as a complement of state estimation, to acquire a shared and

coherent representation, as depicted in Figure 7.5.

Figure 7.5. Computational model of implicit coordination with shared belief (SB).

This computational model might seem contrary to our communication-free paradigm, but

there is an important difference between communicatingutilities and communicatingbeliefs,

which we shall explain in this section. Of course, implicit coordination without communi-

cation is the ideal situation, which we cannot achieve due tolimitations in sensors and state

estimation. Still, implicit coordination with state communication is preferable over explicit

coordination for the following reasons:

• Since explicit coordination is only possible if you know theutilities of others, delays

or failures in utility communications often cause completecoordination failure. With

implicit coordination, the robot can still rely on it’s own sensors and state estimation

to deduce the utilities of others. Coordination might then not be perfect, due to sensor

limitations, but at least it does not collapse completely. One of the experiments in the
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experimental evaluation verifies this (Q6 in Section 7.4.2). In a sense, combining the

two methods exploits the best of both worlds.

• Improvements in sensor technology and state estimation methods will allow robots to

autonomously acquire a increasingly complete and accurateestimation of the states of

others. In ROBOCUP for instance, almost all mid-size teams have resorted to omni-

directional vision to achieve exactly that. So, beliefs needed to infer the utilities of oth-

ers are becoming more complete and accurate, independent ofcommunication. More

accurate state estimation essentially replaces communication. Teams that have omni-

directional vision could probably abandon communication altogether when using im-

plicit coordination. This is certainly not the case for explicit coordination, which always

fully relies on communication.

• To enable human-robot cooperation, robots will at some point have to rely on state es-

timation only, as humans cannot be expected to communicate their state. For instance,

Patterson et al. (2003) propose an approach that learns high-level human navigation pat-

terns in urban environments from low-level sensors autonomously. Implicit coordination

with shared belief is an intermediate step to this ideal situation.

Summarizing, the robots use communication as a backup system if they cannot recognize

the intentions of others, rather than as the backbone of their coordination. Improvements in

sensor and state estimation will therefore allow implicit coordination to depend less and less

on belief communication. This is necessary to simplify communication schemes, increase

coordination robustness, and enable human-robot cooperation. This work proposes a step in

this direction.

7.3 Implicit Coordination in Heterogeneous Teams

Due to scientific as well as pragmatic reasons, there is a growing interest in the robotics field

to join the efforts of different labs to form mixed teams of autonomous mobile robots. For

many tasks, a group of heterogeneous robots with diverse capabilities and strengths is likely

to perform better than one system that tries to encapsulate them all. Also, for many groups,

the increasing cost of acquiring and maintaining autonomous mobile robots keeps them from

forming a mixed team themselves.

Therefore, the AGILO ROBOCUPPERShave formed a mixed team with the ULM SPAR-

ROWS (Utz et al., 2004; Kraetzschmar et al., 2004). The sensor suites of the ULM SPARROWS
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consist of infrared based near range finders and a directed camera. The available actuators are

a differential drive, a pneumatic kicking device and a pan unit to rotate the camera horizontally

(180o). One of the robots is depicted in Figure 1.5(c). As almost all robots in this league, the

robots are custom built research platforms with unique sensors, actuators, and software archi-

tectures. Therefore, forming a heterogeneous cooperativeteam presents an exciting challenge.

In the next sections, we discuss the enhancements needed to enable implicit coordination in

heterogeneous teams.

7.3.1 Action models

When applying these models on-line in a game situation, the robots must know which player

has which hardware platform to apply the correct model. To doso, each robot must have all

models learned for all robots on the field, as well as a mappingfrom player number to temporal

prediction model. This is implemented off-line.

Learning action models, in this case model trees that predict ball approach time, is no dif-

ferent for the ULM SPARROWSthan it is for the AGILO ROBOCUPPERS. Note that the action

the ULM SPARROWS use to approach the ball is slightly different, as no orientation can be

specified. Therefore, this action is calledgoToPosition. It took 40 minutes to gather the

data for this model, and the accuracy of the learned model tree was already listed in Table 4.3.

7.3.2 Sharing belief in heterogeneous teams

To share beliefs, the teams must agree upon structures that encapsulate the information they

want to exchange, and the communication framework over which this information is sent.

The information in the belief state contains the dynamic pose of the robot itself, as well as

the positions of observed objects, such as the ball, teammates and opponents. Each belief state

message is accurately time-stamped, so that delays in communication can be registered.

The team communication uses a message-based, type safe high-level communications pro-

tocol (Utz et al., 2004). It is transfered by IP-multicast, as such a protocol keeps the commu-

nicated data easily accessible and prevents subtle programming errors that are hard to trace

through different teams. As the communication in a team of autonomous mobile robots uses

some kind of wireless LAN, that is notoriously unstable, a connection-less message based

protocol is mandatory. With this approach, network breakdowns and latencies do not block

the sending robot. IP-multicast is also used to save bandwidth, since this way each message

has only to be broadcasted once, instead ofm times forn clients.

The implementation uses the notify multicast module (NMC) of the Middleware for Robots
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(M IRO) (Utz et al., 2002). MIRO provides generalized CORBA based sensor and actuator

interfaces for various robot platforms as well as higher level frameworks for robotic applica-

tions. Additionally to the method-call oriented interfaces, MIRO also uses the event driven,

message-based communications paradigm utilizing the CORBA Notification Service. This

standardized specification of a publisher/subscriber protocol is part of various CORBA imple-

mentations (Schmidt et al., 1997). Isik (2005) describes exactly how MIRO is ported to the

AGILO robots.

Communicating the IDL-specified belief state discussed in at 10Hz with all teammates

uses, on average, less than 10% of the available bandwidth ofa standard 802.11b WLAN

(11 MBit/s) (Utz et al., 2004). This should be available, even on heavily loaded networks,

such as those in ROBOCUP tournaments.

7.4 Empirical Evaluation

To evaluate the performance of applying implicit coordination in ball interception task, several

experiments are conducted, first with three AGILO robots, and later with one AGILO and one

ULM SPARROWSrobot.

7.4.1 Experimental design

Three experiments are conducted, in a dynamic, static and simulated environment. The ques-

tions we will answer with these experiments are: Q1) Do the robots agree upon who should

approach the ball? Q2) Do the robots choose the quickest one?Q3) Are temporal predic-

tion models necessary, or would a more simple value such as distance not suffice? Q4) How

robust is implicit coordination against errors in state estimation? Q5) When does implicit co-

ordination fail? Q6) How do communication quality and stateestimation accuracy influence

coordination?

Dynamic environment experiment

This experiment is conducted with three AGILO robots, and in the heterogeneous team with

one AGILO robot and one ULM SPARROWSrobot. In the experiments, the robots continuously

navigated to randomly generated positions on the field. Oncea robot reached its destination,

the next random position is generated. These poses are generated such that interference be-

tween the robots is excluded, as depicted in Figure 7.6(a). For about half an hour (18 000
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examples), the robots perform their random navigation routines. Each robot records the state

estimation results locally every 100ms.

(a) Random navigation without interference. (b) Log-files collected in the dynamic experiment.

Figure 7.6. The dynamic experiment. The same experiment is also conducted with three
AGILO robots.

Figure 7.6(b) displays which information is gathered in each log file in the experiment

with three AGILO robots. Apart from recording the temporal prediction for each robot, the

robots also record who they think should approach the ball atthat time, without ever actually

approaching the ball. This allows much data to be recorded. Before the experiment, the robots

synchronize their clocks. The times stamps can therefore beused to merge the three distributed

files for further evaluation after the experiment.

Static environment experiment

In the previous experiment, it is impossible to measure if the temporal predictions are actually

correct, and if potential inaccuracies caused the robots’ estimate of who is quickest to be

incorrect. Even if robots always agree on the same robot, this is of little use if the robot is

not indeed the fastest. Therefore a second experiment is conducted. During this experiment,

the goal to approach is fixed. First, the robots navigate to random positions and wait there.

They are then synchronously requested to record the same data as in the first experiment, but

only for the current static state, as shown in Figure 7.7(a).Then, one after the other, the

robots are requested to drive to the goal position, and the actual approach duration is recorded,

see Figure 7.7(b). The log-files so acquired are almost identical to the ones in the dynamic

experiment. The only difference is that they also contain the actual observed time for the
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robot. This static environment is less realistic, but allows the predicted time to be compared

with the actually measured time for each robot.

(a) Step 1) Navigate to a random posi-
tion, wait there. Record predictions.

(b) Step 2) Take turns
approaching the ball and
record observed result.

(c) Log-files collected in the
static experiment.

Figure 7.7. The static experiment. The same experiment is also conducted with three AGILO

robots.

While executing this experiment, we realized a method to acquire the same data off-line.

The two log-files are identical to the log-files gathered whenlearning the prediction model,

as they also contain the current state, the goal state, and the real approach time. So, off-

line, two samples from both temporal prediction log-files are chosen randomly, and added the

predicted approach time for both robots. In order to do this,one sample of each pair had to be

transformed, so that the goal positions of both samples coincide. This data is the same as we

would have acquired during the experiment. In a sense, it is even more realistic, as the robot

is moving in almost all samples, whereas it would have been static if the experiment had been

conducted on-line.

Simulated experiment

Here, the experimental set-up is identical to the dynamic experiment. The simulator presented

in Section B.2 in Appendix B allows us to vary two variables that most strongly influence the

success of implicit coordination. The first is communication quality. At random times, and for

random durations, communication is switched off in both directions. By controlling the length

of the intervals, we can vary between perfect (100%) and no (0%) communication. The second

is the field of view of the robot. We can set the view angle of therobot’s forward facing camera

between 0 (blind) and 360 (omni-directional vision) degrees. The other robot and the ball are

only perceived when in the field of view. Gaussian noise with astandard deviation of 9, 25

and 22 cm is added to the robot’s estimates of the position of itself, the teammate and the ball

119



Chapter 7 Task Context: Multiple Robots

respectively. These correspond to the errors we have observed on the real robots (Stulp et al.,

2004a). Since the dynamics of the ULM SPARROWS needed for simulation are not known,

this experiment is only conducted with three AGILO ROBOCUPPERS.

Figure 7.8. In the simulated experiment, the field of view andcommunication quality can
be controlled. The experiment itself is identical to the dynamic experiment in
Figure 7.6.

7.4.2 Q & A

Using the results of these experiments, we shall now answer the questions presented at the

start of this section.

Q1) Do the robots agree upon who should approach the ball?

To answer this question, we simply determined how often all robots agreed on which robot

should approach the ball. The results are listed in 7.1, in the row labeled “Chose the same

robot?”. Given the accurate estimates the robots have of each other’s states, and the accurate

predicted times that arise from this, it should not be surprising that the robots have almost

perfect agreement (99% for agilo, 96% for the mixed team) on who should approach the ball.

Action Model Distance
Agilo Mixed Agilo Mixed

Chose the same robot? 99% Q1 96% 99% Q3 95%
Chose the quickest robot? 96% Q2 92% 81% Q3 68%

Table 7.1. Accuracy of implicit coordination with shared belief
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Q2) Do the robots choose the quickest one?

Agreeing about who should go to the ball is of little use if thechosen robot is not actually the

quickest. Therefore, we would also like to know if the chosenrobot is actually the quickest

one to approach the ball. Of course, this could only be determined in the static experiment, in

which the actual times it took each robot to approach the ballare recorded. A robot’s decision

to coordinate is deemed correct, if the robot that is the quickest was indeed predicted to be the

quickest. In the experiment with three agilo robots, the robots are correct 96% of the time, and

in the mixed team 92%, as listed in Table 7.1.

Q3) Are temporal prediction models necessary, or would a mor e simple value

such as distance not suffice?

Using distance as a rough estimate of the approach time, as done in (Murray and Stolzenburg,

2005), would save us the trouble of learning action models. Although time is certainly strongly

correlated with distance, using distance alone leads to significantly more incorrect coordina-

tions. The last column in Table 7.1 shows this. Agreement is still very good (99%/95%),

but the robot that is really the quickest is chosen only 81%/68% of the time. So, when using

distance, the robots are still very sure about who should approach it, but they are also wrong

about it much more often.

Q4) How robust is implicit coordination against errors in st ate estimation?

As we saw, almost perfect coordination is achieved in the dynamic experiment. This is not

so surprising, as the robots have very accurate estimates ofeach other’s states. To analyze

how noise in the estimates of the other robot’s states influences coordination, we took the

original log files of the three AGILO robots, and added Gaussian noise of varying degrees to

the estimates that robots have of each other’s pose ([xt,yt,φt]). The predicted times are then

computed off-line, based on these simulated log files.

The results are shown in Figure 7.9. The x-axis shows the standard deviation of the Gaussian

noise added to the data. So the first column, in which there is no added noise, represents the

results of the dynamic experiment with the three AGILO ROBOCUPPERS, which had been

listed in Table 7.1. The y-axis shows the percentage of examples in which 0,1,2 or 3 robots

intend to approach the ball. Of course, ‘1’ means that coordination succeeded. This graph is

only generated for the initial experiment with three AGILO ROBOCUPPERS

We can clearly see that coordination deteriorates when robots do not know each other’s

states so well. If you have a robotic (soccer) team, and know the standard deviation between
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the robot estimations of each other’s positions, the graph gives an indication of how well

implicit coordination would work in this team.
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Figure 7.9. Influence of simulated state estimation errors on implicit coordination.

Q5) When does implicit coordination fail?

In the log files of both the homogeneous and heterogeneous teams, we labeled all examples

in which exactly one robot decided to approach the ball withSuccess, and others with

Fail. A decision tree is then trained to predict this value. The learned trees are represented

graphically in Figure 7.10. For both prediction models the main rule is that if the difference

in predicted times between two robots is small, coordination is likely to fail, and if it is large,

it is likely to succeed. This is intuitive, because if the difference between the times is large,

it is less likely that adding errors to them inverts which time is the smallest. Note that in

between these two limits, there is a ’gray’ area, in which some other rules are learned. They

only accounted for a small number of example, so for clarity,we do not discuss them here.

Humans also recognize when coordination might fail. For example, in sports like soccer or

volleyball, it is sometimes not completely clear who shouldgo for the ball. Humans solve this

problem by making a brief exclamation such as “Mine!”, or “Leave it!”. So in these cases,

humans resort to explicit coordination and communicate their intentions. Not only do humans

have utility models of each other to coordinate implicitly,they are also aware when confusion
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Figure 7.10. Representation of the decision trees that predict coordination success.

might arise. The learned decision tree essentially provides the robots with similar awareness,

as they predict when implicit coordination failure is likely. So, they can be used to determine

when robots should resort to other methods of coordination.For instance, soccer robots could

have a simple locker-room agreement that when coordinationfailure is predicted, the robot

with the higher player number should approach the ball (excluding the goalie).

Figure 7.11. Example of implicit coordination with failureprediction. Solid green lines repre-
sent that only one robot would approach the ball at this position. Dashed red lines
show when coordination is predicted to likely fail. The robots must all approach
the ball from the right.

In Figure 7.11, we present an illustration of how such failure prediction can be used in

practice. It is easiest to understand this image if one imagines that the robots are standing still

123



Chapter 7 Task Context: Multiple Robots

at the drawn positions, and the ball is rolling slowly from left to right. At every 5cm of the

ball’s trajectory, the robots determine who should approach the ball at that time, using implicit

coordination. After ball interception, their goal is to dribble it in this direction. The robot that

is chosen to intercept it is connected to the current ball’s position by a solid green line. When

the decision tree predicts that coordination might fail, the robots between which confusion

might arise are both connected to the ball’s position by a reddashed line. Note that this image

was generated in simulation, not with the real robots.

Q6) How do communication quality and state estimation accur acy influence

coordination?

The results of the simulation experiment, which show how theperformance of different coor-

dination strategies depends on the quality of communication and the field of view, are depicted

in Figure 7.12. Communication quality is the percentage of packets that arrive, and field of

view is in degrees. The z-axis depicts coordination success, which is the percentage that only

one robot intends to approach the ball. The computational models of the different forms of

coordination are repeated below these graphs.

Since explicit coordination is based completely on communication, it is not surprising that

it perfectly correlates with the quality of the communication, but is independent of the size

of the field of view. No communications means no coordination, and perfect communication

means perfect coordination. For implicit coordination without communication, the relation is

converse. If a robot is able to estimate the states of others better, it is able to coordinate better.

The third graph shows implicit coordination with belief state exchange (as used on our real

robots). If the robot has another in its field of view, it determines the other’s state through state

estimation, otherwise it uses communication (if possible)to exchange beliefs. These states are

then used to predict the utilities of others, independent ifthey are perceived or communicated.

This graphs clearly verify the hypothesis from Section 7.2.1 that implicit coordination with

belief exchange achieves better performance with communication loss than explicit coordina-

tion alone. Instead of complete coordination failure in case of communication loss, there is a

graceful decay, because a second system based on state estimation can still be used to estimate

the utilities of others. In Section 7.2.1, we also hypothesized that improvements in sensors

and state estimation would allow robots to acquire more accurate and complete belief states,

and rely less on communication for coordination. The arrow in the third graph in Figure 7.12

represents this trend.
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Figure 7.12. Results of the simulation experiment, which show how the performance of co-
ordination strategies depends on the quality of communication and the field of
view.

7.5 Related Work

7.5.1 Explicit and implicit coordination

Previous research on cooperation focusses almost exclusively on explicit coordina-

tion (Gerkey and Matarić, 2003). On the other hand, work on implicit coordination usually

assumes that all agents have access to a central and global representation of the world, which

is enabled by simulation, as in (Sen et al., 1994), or global perception, as in the ROBOCUP

small-size league (Tews and Wyeth, 2000; Veloso et al., 1999). In all this work, teammates

are not reasoned about explicitly, but are considered to be mere environment entities, that

influence behavior in similar ways to obstacles or opponents.

Stone and Veloso (1999) deal with the issue of low band-widthcommunication in the simu-

lation league withlocker-room agreements, in which players agree on assigning identification

labels to certain formations. During the game, only these labels, instead of complete forma-

tions, must be communicated.
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Murray and Stolzenburg (2005) combine implicit and explicit coordination to achieve ball

approach coordination in the simulation league. First, each robot determines the distance of

each teammate to the ball. Based on this, each agent decides if it will approach the ball or not.

Coordination is still explicit, because the agent who decides to approach the ball first must

‘lock’ a shared resource, which prevents other robots from chasing after it. The use of this

global resource requires communication.

Most similar to our work that of Vail and Veloso (2003), in which robots in the legged-

league also coordinate through implicit coordination withcommunicated states. Communi-

cation is essential, and assumed to be flawless. It is not investigated how communication

loss influences coordination. The utility measure is a sum ofheuristic functions, which are

represented as potential fields. Our utility models are grounded in observed experience and

have a well-defined meaning. As the heuristic functions haveno clear semantics, customizing

these functions to individual robots is difficult. However,this customization is essential for

achieving efficient coordination in a heterogeneous team with robots with different dynamics

and capabilities.

Buck et al. (2002b) describe a method in which robots are alsocoordinated by predicting

approach times locally. The motivation behind this work is that a framework for communicat-

ing state was already available, and using implicit coordination with action models was simply

easier to implement than novel utility communication and arbitration modules. The research

in this chapters extends this work by making a comparison of explicit and implicit coordina-

tion, learning models of when coordination fails, and enabling coordination in heterogeneous

teams.

7.5.2 Action recognition and imitation

Implicit coordination requires an agent to be able to recognize the intention of an agent. In

our work, the intention to perform an action is directly derived from the utility of performing

this action in the current situation. In humans, intentionsare not only determined based on

utilities of actions, but also on the current behavior of others. The first determines likely future

actions based on affordances, whereas the latter determines actions that are in the process of

being executed.

This requires the actions of other humans to be recognized atan abstract level. An example

is (Patterson et al., 2003), in which high-level human navigation patterns in urban environ-

ments are learned from low-level sensors autonomously1. Once human actions are recognized

1A manual approach to this solving problem is presented in (Auster, 1987).
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at an abstract and/or goal-oriented level, they can be reproduced or imitated by the robot that

witnessed it, despite possible differences in the bodies ofboth. Dearden and Demiris (2005)

for instance, have their robot learn to recognize human handclapping, and imitate it with its

gripper. Other work where abstract actions are recognized and then reproduced or imitated by

robots includes (Mayer et al., 2003; Lopes and Santos-Victor, 2005; Erlhagen et al., 2006).

The most sophisticated and complex application of action recognition is human-robot co-

operation, as proposed in (Zhang et al., 1999; Fong et al., 2005; Nourbakhsh et al., 2005).

In (Zhang et al., 1999) a human and a robot cooperate and coordinate their actions to per-

form joint assembly tasks, being the construction of toys from “Baufix” construction kit parts.

The interesting aspect of this work is that the robot partially estimates the state and intention

of the human through vision-based state estimation, but also elicits disambiguating statements

from the human through a natural language interface. A transcription of an example dialogue

between the human and robot is given in (Knoll and Glöckner, 2001). This multi-modal ap-

proach essentially combines implicit coordination (basedon its state estimation) and explicit

coordination (based on communication of natural language). Foster et al. (2006) describe a

more recent version of this system.

As the number of actions in robotic soccer is limited, and there are little ambiguities between

them, we have chosen not to focus on action recognition, but rather on the simpler task of

determining intended actions based on utility prediction.

7.5.3 Heterogeneous teams

The idea of cross team cooperation has some tradition withinthe ROBOCUP leagues. In the

simulation league, the source code of many teams is published on the Internet allowing new

participants to base their new team on previous participants of simulation league tournaments.

The most similar mixed team cooperation effort was the Azzurra Robot Team, a mid-size

team from various Italian universities. They also used a (proprietary) publisher/subscriber

communication protocol, utilizing UDP. This team used explicit coordination (i.e. with utility

communication) to assign roles among the field players (Castelpietra et al., 2000). Unfortu-

nately the Italian national team was dissolved after the ROBOCUP tournaments in 2000.

One of the most successful mixed teams in ROBOCUP is the GermanTeam, which partici-

pates in the legged-league (Röfer, 2002). The GermanTeam isa cooperation of five universities

participating with one team and one code repository. The exchange and integration of soft-

ware is enabled by a standardized hardware platform, as wellas a modular software design.

The challenge we face is to integrate different hardware systems and software architectures,

for which integration has never been a primary goal. A bottom-up design, such as the Ger-
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manTeam has, would require complete rewrites of all systems, so instead we chose a software

package that extends each individual software architecture.

Many ROBOCUP teams acquire coherent and complete beliefs by communicating and shar-

ing their belief states. The use of shared representations was probably one of the key reasons

for the success of the Freiburg mid-size team (Dietel et al.,2002).

7.6 Conclusion

Whereas humans coordinate with little or no communication,robots usually rely on extensive

communication of utilities or intentions. In this chapter,we present a framework that enables

robots to reason about the utilities of others in a ball interception task, and coordinate their

global behavior by making only local decisions, based on theaction models and states of

the other robots. Unfortunately, the state estimation is not reliable enough to accurately and

robustly determine the states of others, so it is necessary to communicate belief states. We

motivate why state communication is preferable over utility communication. The robustness

of implicit coordination is demonstrated in both a homogeneous and heterogeneous team of

soccer robots.

We show that action models outperform more simple performance measures such as dis-

tance, and that action models can be learned for robots of other teams. Due to the redundancy

in using both state communication and estimation, implicitcoordination is more robust against

network failures, which we evaluate experimentally. Theseaspects must be taken into account

when transferring multi-agent research to multi-robot teams, and is a contribution to both

fields.

The results reported in this chapter have been published in:(Stulp et al., 2006a;

Stulp and Beetz, 2006; Isik et al., 2006; Utz et al., 2004; Stulp and Beetz, 2005c). Summaries

of these publications are given in Appendix D.
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8.1 Future Work

In Chapter 4, we demonstrated how the robots learn accurate action models for actions with

up to 8 parameters. We expect that for a higher number of dimensions, (partially) specify-

ing feature spaces manually and using tree-based inductionmight not yield accurate models

anymore. How can more accurate models be learned, especially for high-dimensional feature

spaces?

Gather data on-line. In this dissertation, data for training the models was acquired by ex-

ecuting actions with parameterizations sampled uniformlyfrom all possible parameter

values in an off-line phase. An alternative is to gather dataon-line during the execution

of real-world tasks. This measure will likely have a very positive impact on the accu-

racy of the learned models. First of all, since data gathering is then not done off-line, but

parallel to actual robot deployment, more training data is acquired. More importantly

though, the training data contains action parameterizations that are not generated ran-

domly, but rather arise during actual operation. In general, it is to be expected that future

experiences will be similar to past experiences. Therefore, the training set (experiences

from past actions) will be from the same probability distribution as the ‘test set’ (future

experience from yet to be executed actions). In a sense, the stationarity assumption is

fulfilled with respect to future unseen actions. The stationarity assumption is necessary

to guarantee that the learned model is probably approximately correct with respect to

unseen examples (Russell and Norvig, 2003).

In the service robotics domain, Kirsch and Beetz (2007) demonstrate empirically that

training models with data gathered on-line improves the action model accuracy during

operation. We could image that robots operating in a varietyof real world environments

could first be provided with default general action models learned from uniformly dis-

tributed examples. When the robot is put into operation, it starts gathering data itself,
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and retrains the action models with this data. It is to be expected that the models so ob-

tained will be tailored to the context the robot is acting in,and therefore more accurate

in than the general default action model.

Other learning algorithms. To deal with high-dimensional spaces, we will use other

learning algorithms, which explicitly address the curse ofdimensionality, in both classi-

fication (Cristianini and Shawe-Taylor, 2000) and regression (Vijayakumar et al., 2005).

The latter method, which is based on Locally Weighted Regression (LWL), will be espe-

cially useful for on-line learning with large state spaces.LWL is a lazylearning method,

which means that all experiences are explicitly stored in a database. This is done in real

time from the continuous stream of training data. Queries are answered by construct-

ing a local model from data similar to the query. In the nearest neighbor approach for

instance, the value of the data point closest to the query is returned. LWL uses a more

complex model, by interpolating between data by performinglocally weighted regres-

sion. Often, robots with many degrees of freedom will only encounter a small subspace

of all possible configurations during execution. Lazy learning exploits this by storing

only data that is actually acquired during execution. Analogously, local models are only

constructed using the actually observed data, assuming that the stationarity assumption

holds.

Apart from learning more accurate models, future work also includes the acquisition of

different types of action models. What different types of action models can robots learn? And

what novel application might action models have?

Learning and optimizing other performance measures. In this dissertation, execu-

tion duration was used as the performance measure. Action models could also be learned

for energy consumption, for instance. By combining different action models, robots are

able to optimize multi-criteria performance measures. By specifying objective functions

that consist of the combinations of both energy consumptionand execution duration,

they can both be optimized. By weighting individual performance functions differently,

the function to be optimized can be customized to specific scenarios. For instance, in

mid-size league robotic soccer, with its short constant operation time 15 minute, speed

is far more important then energy consumption. In service robotics it is the other way

around.

Learning effects at the action parameter level. We have also done some preliminary

work on learning the effects of an action on a parameter level. For instance, even if

an action’s parameters include the target locationxg, yg, it is not likely that the robot
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will reach this location perfectly. By comparing the true final location with the target

parameters, the Pioneer robots are able to learn the accuracy and robustness of an action.

This could enable the robot to make well-informed decisionson how to parameterize an

action. For instance, the learned models showed that a high target translational velocity

causes the robot to reach the target less precisely. If a target needs to be reached with

high precision, the robot could choose to select a lower translational velocity.

Adapting to changing actions. In this dissertation, we have assumed that durative ac-

tions are ‘innate’ and do not change over time. Learning models on-line during task

execution would not only lead to more accurate models, but also enables the robot to

update the action models when an action has changed.

8.2 Final Summary

To adapt to novel environments and tasks, agents must be ableto learn. Learning means

experimenting, observing the results of experimentation,and generalizing over that which

was observed. Forward models, which predict the outcome of motor commands, are good

examples of knowledge that humans learn from experience, and use to adapt to novel contexts.

The concept of a forward model can be extended to action models, which predict the outcome

of durative actions. We show how robots can acquire such action models.

On the other hand, domain knowledge formalization as well asabstraction and reasoning

capabilities are currently not yet at a stage that enables robots to robustly acquire declarative

common-sense knowledge autonomously. Therefore, it is common that such knowledge on

what to do in the first place is specified by human controller designers. The key idea in this

dissertation is to merge this human specification with learned action models, as they comple-

ment each other well.

To do so, we develop a framework in which action models are integrated in a controller,

partially specified by human designers. The action models enable the robot to autonomously

answer questions that designers find difficult to answer themselves, even for their own actions.

We realize several applications of action models, with an emphasis on answering questions that

arise when applying existing actions to novel task contexts:

• Subgoal refinement optimizes action sequences with partially specified subgoals, by

extracting free action parameters, and optimizing them with respect to the expected

performance, predicted with action models. The resulting motion is more efficient and

fluent.
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• Condition refinement and subgoal assertion, in which preconditions are refined by learn-

ing when executing an existing action will succeed at achieving novel goals. Failure pre-

diction is resolved by introducing intermediate goals, which are optimized with subgoal

refinement.

• Implicit coordination enables robots to coordinate their actions by reasoning about the

utilities of others, using action models and knowledge about the states of others. Coor-

dination that relies on state estimation and communicationis more robust than relying

on communication of utilities alone.

We demonstrate that enabling robots to refine and improve their actions and plansthem-

selvesnot only alleviates the designer’s task, but also improves the robot’s performance, au-

tonomy, adaptivity and robustness. Robots can only do so if they learn to predict the outcome

of their actions from experience, as we do ourselves.
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A.1 Action: goToPose

This is a navigation action that takes the robot to a target position with a target orientation

and speed, and returns the desired translation and rotational velocity. It is implemented by

computing an intermediate position behind the goal pose, where behind is defined in terms of

the orientation at the desired pose. This intermediate position (IP) behind the desired pose is

then approached. As the robot closes in on the IP, the IP approaches the final goal pose, thus

luring the robot towards the desired position. Since the robot initially approaches the goal pose

from behind, it is has the correct orientation one the goal pose is reached. Behnke and Rojas

(2001) outline a very similar method. Some example episodesof this action were visualized

in Figure 4.2.

This navigation action was used on the AGILO robots previously with the Pioneer 1 con-

trollers. With different parameterizations, it could alsobe used for the AGILO robots with the

ROBOTEQ controllers, as well as the simulated B21.

A.2 Action: goToPosition

The ULM SPARROWSrobot is from a different research group altogether. Therefore, we have

no knowledge of how thegoToPosition of this robot was implemented. The interesting

aspect of learning and applying action models is that the implementation of the action need not

be known, because the models are learned from observed behavior, not an analysis of the inner

workings of the robot. However, it is necessary that action parameters are known, as the robot

must known with which variables the action model should be learned and called. These are the

same as for thegoToPose actions, with the exception that the target orientation cannot be

set. It also returns a motor command that contains desired translation and rotational velocity,

though this knowledge is also irrelevant for learning or applying action models.
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A.3 Action: reach (B21)

The exact implementation of this action was also not known. It had been previously developed,

and integrated in the B21 model in the Player module of the Player/Stage framework. For this

reason, the exact representation of the motor command is notknown. Again, the signature of

the action was known, and listed in Table 2.1. The x,y,z coordinates specify the 3-D location

of end of the arm relative to the robot body, and the ax,ay,az the angles of the gripper relative

to the arm.

Again, the action parameters are all that is needed to acquire an action model. The same

holds for humans. Although we have several inverse models (actions) to reach for objects, we

are not aware that there are several of them, and find it difficult to explain exactly how we

perform this action (Haruno et al., 2001). We simply do. Notethat this does not keep us from

learning forward models (action models) for these actions (Flanagan et al., 2003).

A.4 Action: reach (POWERCUBE)

In the POWERCUBE domain, the state is represented in joint space with the angles and angular

velocities at both jointsa andb: θa, θ̇a, θb, θ̇b. Thereach action on the POWERCUBE takes

the arm from one state to the next using a ramp velocity-profile. The ramp has three phases:

acceleration, cruise speed, de-acceleration. Each joint accelerates with a constant acceleration

value, reaches the desired cruise speed and stays there until it begins the de-acceleration phase,

which is done also with constant acceleration. The trajectories of both joints are synchronized

so they begin exactly at the same time, and have the same length. This allows us to control

the combined speed of the end-effector of the arm at desired states, by decomposing this

speed and direction into the appropriate velocity for each joint. A PID controller sends power

commands to the joints to allows fine control of the action. This is the only action that has not

been programmed in C++, but in Python.
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and Tools

In this appendix, the hardware of the AGILO ROBOCUPPERSwill be introduces, along with

some of the tools used in controller development.

B.1 AGILO ROBOCUPPERS hardware

The AGILO team is realized using inexpensive, off-the-shelf, easilyextendible hardware com-

ponents and a standard C++ software environment. The team consists of four customized

ActivMedia PIONEER I robots (ActivMedia Robotics, 1998) (1); one of which is depicted in

figure B.1. The robot has a controller-board (2) and differential drive (3). For ball handling,

the robot has a passive ball guide rail (4) and a spring-basedkicking device (5). The only

sensor apart from the odometry is a fixed, forward-facing color CCD Firewire camera with a

lens opening angle of 90o (6). All computation is done on a standard 900 MHz laptop with

Linux operating system (7). The robot uses a Wireless LAN device (8) for communication

with teammates (Stulp et al., 2004b).

During the research, we upgraded the controller boards fromthe original board delivered

with the PIONEER I robot to the ROBOTEQ AX2550 board (Roboteq Inc., 2004). Models

have been learned for both robots. When discussing these robots we shall normally refer to the

version with the novel ROBOTEQ board, and explicitly mention when the original PIONEER I

board was used.

B.2 Simulator

Robot simulation in general is a powerful tool for the development of autonomous robot con-

trol systems because it allows for fast and cheap predictionand makes experiments control-

135



Chapter B AGILO ROBOCUPPERS: Hardware and Tools

Figure B.1. The hardware components of the AGILO soccer robots.

lable and repeatable. The first step in developing or adapting skills for our robots is made in

the MRose simulator (Buck et al., 2002a). The main features of the MRose simulator shows

its focus on learning and designing controllers:

Accurate dynamics. The skills designed in the simulator can only be used on the real

robots if the dynamics of the simulated robots is similar enough to that of the real robots.

Therefore, the dynamics have been learned using neural networks, from experience ob-

served on the real robots (Buck et al., 2002a).

Fast. To learn actions and action models, sufficient experience needs to be available. To

quickly gather sufficient data, it is essential that simulation is an order of magnitude

faster than the real world time. The learned dynamics facilitate this, as well as simu-

lating the robots in only two dimensions. These features enable the simulator to run at

100x real-time.

No state estimation. Sensors and state estimation are not part of the simulator. The inac-

curacy and uncertainty that arise from sensing and state estimation are simulated.

We have equipped the physics engine of the MRose simulator with a new Graphical User

Interface, written in Qt (Trolltech, 2005). This GUI allowsthe controller to visualize internal

parameterizations in the field, as shown in Figure B.2. Here,the blue circle is the intermedi-

ate goal, and the yellow circle the final goal. Circle radius indicates the desired translational

velocity. Such information is very useful for debugging. The slider below allows the sim-

ulation acceleration to be set. It can be set from 0.1x (slow motion), over 1.0x (to monitor
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Figure B.2. The Qt simulator GUI.

real-time behavior) to 100x (to gather data) real-time. Thefield display can be turned off to

have the simulated world to run at top speed. The simulator can also be started without the

GUI, allowing many examples to be gathered in little time

B.3 Evaluation with Ground Truth

Evaluating dynamic robotic multi-agent systems as in robotic soccer is difficult for several

reasons. Since these systems are dynamic, it is difficult to capture the state of the world at a

certain time or at certain time intervals without interfering with the course of events. How to

accurately measure the position of a robot, if it is traveling at 2m/s? Robotic platforms usually

suffer from noisy sensors and hidden state. A robot’s beliefs about the world are therefore

incomplete, uncertain and inaccurate. How to determine where a robotreally was, if you only

have its belief state to judge by? Multi-agent systems also require that several subsystems

are evaluated at the same time, as well as the interactions between them. Furthermore, for the

experiments presented later, it is important that the variables are controllable and reproducible.

For these reasons, we have used our ground truth system (Stulp et al., 2004a). This vision-

based system can automatically provideground truthabout the state of the world in dynamic

robotic multi-agent systems. It is very similar to the global view cameras use in the ROBOCUP

small-sized league. It consists of one or more cameras mounted above the field looking down-

ward. Each robot has a distinctive top-marker that is easy todetect by these cameras. Since

the cameras are static, and can locate the markers precisely, this yields very accurate data on
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the location and orientation of each robot on the field.

The ground truth system consists of two cameras with an opening angle of 90◦, at a height of

approximately 3m above the field. The cameras are facing downward, and together they cover

the whole training field, which is 6.4m x 10.4m. The robots canbe distinguished from one an-

other using color markers, exactly as in done in the ROBOCUP small-size league (F180 Laws,

2004). Each camera grabs images at a rate of 15Hz. The first image in Figure B.3 shows an

example of such an image. The images are then segmented by color using the look-up tables

generated during color calibration, as the center image of Figure B.3 shows. The acquired

blobs are then filtered according to size and shape. With the configuration of blob groups, the

position, orientation, team and player number of each robotcan be determined.

(a) Original image. (b) Relevant blobs. (c) Monitor view.

Figure B.3. Intermediate steps in ground truth image processing..

This information is logged in a log-file, together with the belief states of the other robots. It

can also be communicated to the robots themselves, as well asthe program uses to monitor and

display the state of the world, as can be seen in the last imageFigure B.3. In this example, there

are two robots, whose self-localization is displayed in blue. Their actual position, determined

by the ground truth system, is displayed as a white line, the start of which indicates the robot’s

center. The orange ball is where robot 3 beliefs the ball to be, and the ground truth position is

displayed in red. This graphical display allows us to make quick on-line inferences: “Robot 3

is localized very well, and has localized the ball reasonably. Robot 1 is not localized that well,

but good enough for performing useful behavior.”

To determine the accuracy of robot localization by the ground truth system, we placed a

robot with marker on fifteen different positions on the field.We measured the actual position

by hand (groundground truth, so to speak), and compared it to the pose estimated by the

system. For the localization of the robots we have an accuracy of 0.3 to 5.2 cm and for its

orientation 1 to 2.3◦. Apart from the accuracy, another important issue is whether a marker is
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detected at all. Three experiments, described in (Stulp et al., 2004a), were conducted to deter-

mine the robustness of marker detection. In a static environment, the number of false positives

is only 0.1%, and the number of false negatives is 1%, averaged over all eight markers. This

last value is 2.5% in dynamic environments.

2.3.1 Providing robots with the global state

Having access to the global game state also allows a thoroughevaluation of the action selection

module, independent of the inaccuracies and uncertaintiesthat arise from the state estimation

performed locally on the robot.

In our system, the first step in developing or adapting control routines is made in the MRose

simulator (Buck et al., 2002a). This simulator has an accurate learned model of the robot dy-

namics, and can simulate multiple robots on one field in parallel, using the same controller the

robots use in the real world. Even though this simulator has good models of the environment,

the low-level routines do not map to the real controller perfectly. Testing of the controller

on the real robot is necessary to fine-tune the low-level routines. Without ground truth, this

is difficult, as the robot’s imperfect state estimation makes is difficult to see the effects of

changes to the low-level controllers, because unexpected behavior might arise due to false

self-localization.

To make this process easier we have enabled functionality toprovide the robots with

the global state, as computed by the ground truth cameras. This is exactly the same as in

ROBOCUP small-size league. Using this set-up, we can test the robots’ control routines, with-

out depending on state estimation.
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C. Tree-based Induction

C.1 Decision Trees

A decision tree is a flow-chart-like tree structure, in whichinternal nodes denote a test on

an attribute, a branch represents an outcome of the test, andthe leaf nodes represent class

labels or class distributions. The famous decision tree example by Russell and Norvig (2003)

from the textbook “Artificial Intelligence: A Modern Approach” is depicted in Figure C.1. An

example set of attributes can be classified by traversing thetree, choosing branches based on

the attributes in the example and the test in the nodes, untila leaf is reached. The class in

this leaf is the classification for this set of attributes. Inthe example, the waiting for a table

is decided on evaluating the attributesPatrons?, WaitEstimate?, etc, until one of the

decision leavesYes or No is reached.

Decision trees can be learned from a set of examples, which consist of specific values as-

signed to the attributes, along with the value of the target class. The decision tree is induced

by a process known as recursive partitioning. At the start, all the training examples are at the

root. A certain attribute is then chosen, and the examples are partitioned inton sets, one for

each of then values the attribute can take. In each set, all examples havethe same value for

the chosen attribute. This partitioning continues recursively on the set in each node, until all

or most examples at each node have the same target value.

The first issue in decision tree induction is which attributeto use to partition a set of exam-

ples. The ideal attribute would separate the examples intopure sets in which each example

has the same target class. Because such an ideal attribute isoften not available, animpurity

measureis defined, which expresses the impurity as a real value. The decision trees algorithm

we use (Witten and Frank, 2005), implements the C4.5 algorithm (Quinlan, 1993), which uses

the entropyI as an impurity measure. The entropy of a setS with target classy which can

take the valuesy1, . . . , yk is:
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Figure C.1. A decision tree for deciding whether to wait for atable. Adapted
from (Russell and Norvig, 2003).

I(S) =
c

∑

i=1

− pi

|S| log2
pi

|S| (C.1)

In this equation,pi is the number of occurrences ofyi in S. Given this formula, the entropy

gain is defined as the entropy of the original set minus the remaining entropy after splitting

the set based on some attributeA:

gain(S, A) = I(S) −
∑

v∈values(A)

|Sv|
|S| I(Sv) (C.2)

Here,Sv is the subset ofS in which the value of attributeA is v in all examples. In the

algorithm used, the attribute used to split a set is the one with the largest gain.

The second issue is when to stop splitting. If splitting continues until all leaf sets are pure,

the decision tree will not likely generalize to unseen casesdue to overfitting. One solution to

this problem is stop splitting once the impurity of a leaf lies below a certain threshold. Another

solution is to generate a very large tree, and prune branchesthat reflect noise or outliers. In

this approach, a subset of the training examples is used to generate a very large decision tree,

e.g. with pure sets at the leaves. Then, the remaining training data is used to prune the tree.

Two leaf nodes are merged if the prediction error on the validation set is less with the resulting

142



Section C.2 Regression and Model Trees

smaller tree than it was with the bigger tree (Quinlan, 1993).

For more information on decision trees, please see (Quinlan, 1993) or (Russell and Norvig,

2003). The WEKA implementation of the C4.5 algorithms we useis described

in (Witten and Frank, 2005).

C.2 Regression and Model Trees

Regression trees may be considered as a variant of decision trees, designed to approximate

real-valued functions instead of being used for classification tasks. Instead of a nominal value

in each leaf, regression trees have a value which is the mean of the data examples in the

partition. This representation requires a different splitting criterion. The algorithm chooses

the split that partitions the data into two parts such that itminimizes the sum of the variance

in the separate parts.

Model trees take it one step further, as their leaves repre-

Figure C.2. Model trees.

sent line segments, representing the data in a partition (Quinlan,

1992). These line segments are acquired by performing standard

multivariate linear regression on the examples in the partition.

The impurity measure used to grow and prune model trees is:

I(S) =
∑

i:si∈S

(yi − g(xi))
2 (C.3)

In which xi are the attribute values the in examplesi, yi the

corresponding observed target value, andg is the value predicted

by the line function. In principleg could be a more complex

model, such as neural networks, but in practice this approach is

seldom used (Belker, 2004).

C.3 Optimization of Model Trees

This section will describe an analytical procedure to find the minimum of a model tree, or

sums of several model trees.

One way to determine the minimum of a model tree experimentally is to sample along

all the dimensions (the variables with which it is called) inthe model tree, and determine

which combination of samples returns the lowest value. Of course, this minimum is only an

approximation of the actual minimum. The higher the sampling rate, the higher its accuracy.
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Furthermore, sampling has a complexity ofO(nd), in whichn is the number of samples per

dimension, andd the number of dimensions.

Our novel analytical method exploits the fact that a model tree is a set of rules, each a

bounded hyperplane. Determining the minimum of a bounded hyperplane is very easy: sim-

ply determine the values at the bounds, and take the minimum.Our approach is based on

determining the minimum of each hyperplane, and then takingthe minimum of all these val-

ues. This approach isO(kd), in whichk is the number of hyperplanes, which is equivalent to

the number of rules, or leaves in the model tree.

Figure C.3 shows a simple example for a one-dimensional search space, and three one-

dimensional hyperplanes. In one-dimension, bounded hyperplanes are simply line segments.

Figure C.3. Determining the minimum of a model tree. Insteadof sampling along the x-axis,
it is more efficient to determine the minimum of each line segment, and take the
minimum of these minima.

3.3.1 Optimization of single model trees

In this section we will explain how this idea has been implemented. Below is fictional model

tree, kept simple for reasons of clarity. Its format is the same as the resultbuffer in the WEKA

program (Witten and Frank, 2005).

dist <= 1.52 :

| dist <= 0.59 : 1.39*dist + 0.68*angle + 0.09

| dist > 0.59 :

| | angle <= 0.62 : 1.35*dist + 0.22*angle + 0.13

| | angle > 0.62 : - 0.01*dist + 0.80*angle + 1.15

dist > 1.52 : 1.32*dist + 0.51*angle + 0.15

The first step is to convert the decision tree into a set of rules:

R1: (dist <= 1.52) & (dist <= 0.59) : 1.39*dist + 0.68*angle + 0.09

R2: (dist <= 1.52) & (dist > 0.59) & (angle <= 0.62) : 1.35*dist + 0.22*angle + 0.13

R3: (dist <= 1.52) & (dist > 0.59) & (angle > 0.62) : -0.01*dist + 0.80*angle + 1.15

R4: (dist > 1.52) : 1.32*dist + 0.51*angle + 0.15
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Then, the minimum for each rule (hyperplane) is determined.We will use R3 as an example.

First, we need to know the minimum and maximum values of all variables (e.g.0 < dist < 3,

angle0 < angle < PI). In R3, the following ranges are valid.

R3: dist=[0.59..1.52], angle=[0.62..PI]

We determine the minimum of R3 by taking the extreme values inthese ranges. The smallest

value in the range is used if the variable is added, and the highest value if it is subtracted. This

procedure is extremely fast, so there is little computationfor each rule. For R3 the result is:

R3: -0.01*[0.59..1.52] + 0.80*[0.62..PI] + 1.15

=> -0.01*1.52 + 0.80*0.62 + 1.15 = 1.63

So, the minimum value R3 can reach is 1.63. For all the rules, these values are.

R1: 1.39*[0.00-0.59]+0.68*[0.00- PI]+0.09 => 1.39*0.00+0.68*0.00+0.09 = 0.09

R2: 1.35*[0.59-1.52]+0.22*[0.00-0.62]+0.13 => 1.35*0.59+0.22*0.00+0.13 = 0.93

R3: -0.01*[0.59-1.52]+0.80*[0.62- PI]+1.15 => -0.01*1.52+0.80*0.62+1.15 = 1.63

R4: 1.32*[1.52-3.00]+0.51*[0.00- PI]+0.15 => 1.32*1.52+0.51*0.00+0.15 = 2.16

The last step is to simply take the minimum of the rule minima (0.09, 0.93, 1.63, 2.16),

which is 0.09. From R1, it can be read that this minimum is achieved with dist=0.00 and

angle=0.00.

3.3.2 Processing bound variables

Often, some of the variables with which the model tree is called are already bound. For

instance, the value of ‘angle’ might be 0.7. The procedure above does not change at all, since

it operates on variable ranges, and the range ofangle is simply defined to be [0.7,0.7]. As an

added benefit, this knowledge makes computation faster, because we can eliminate all rules in

which this value does not hold. In our simple example, angle=0.7 does not hold in R2.

R1: (dist <= 1.52) & (dist <= 0.59) : 1.39*dist + 0.68*angle + 0.09

R3: (dist <= 1.52) & (dist > 0.59) & (angle > 0.62) : -0.01*dist + 0.80*angle + 1.15

R4: (dist > 1.52) : 1.32*dist + 0.51*angle + 0.15

Then, as before, determine the ranges, choose the appropriate extreme value from this range,

and voilá. Note that the angle has no real range, as it was set.

R1: 1.39*[0.00-0.59]+0.68*[0.70,0.70]+0.09 => 1.39*0.00+0.68*0.70+0.09 = 0.57

R3: -0.01*[0.59-1.52]+0.80*[0.70,0.70]+1.15 => -0.01*1.52+0.80*0.70+1.15 = 1.69

R4: 1.32*[1.52-3.00]+0.51*[0.70,0.70]+0.15 => 1.32*1.52+0.51*0.70+0.15 = 2.50

So, the minimum this model tree can have with an angle of 0.70 is 0.57, with dist=0.00.
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Figure C.4. Merging model trees

3.3.3 Optimization of summations of model trees

In Section 5.4 on subgoal refinement, we saw that the minimum of the sum of two temporal

prediction models of two consecutive actions was determined. This means that we need to

determine the minimum of the sum of two model trees. This is done by first merging the

two model trees into one, and then determining the minimum ofthe one model tree with the

methods described above. The intuition behind this approach is shown in Figure C.4.

Instead of merging the model trees directly, they are first converted into sets of rules. These

rulesets are then merged. Here is an example of two model trees, and their corresponding

rulesets.

ModelTree 1 RuleSet 1

a<=1 :

| b<=3 : 3*a+2*b+1 (lm1) (a<=1) & (b<=3) : 3*a+2*b+1

| b>3 : 4*a+5*b+6 (lm2) <=> (a<=1) & (b>3) : 4*a+5*b+6

a>1 : 3*a+4*b+1 (lm3) (a>1) : 3*a+4*b+1

ModelTree 2 RuleSet 2

b<=2 : 1*a+1*b+1 (lm4) (b<=2) : 1*a+1*b+1

b>2 :

| a<=2 : 1*a+3*b+2 (lm5) <=> (b>2) & (a<=2) : 1*a+3*b+2

| a>2 : 1*a+2*b+3 (lm6) (b>2) & (a>2) : 1*a+2*b+3

Merging these two sets is done by first merging each rule of RuleSet1 with those of Rule-

Set2. The two lists of conditions are simply appended, and the linear models (lm) are summed.
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This yields the following set of rules:

RuleSet12 = RuleSet1 + RuleSet2

(a<=1) & (b<=3) : lm1

(b<=2) : lm4 (a<=1) & (b<=3) & (b<=2) : lm1+lm4

(b>2) & (a<=2) : lm5 => (a<=1) & (b<=3) & (b>2) & (a<=2) : lm1+lm5

(b>2) & (a>2) : lm6 (a<=1) & (b<=3) & (b>2) & (a>2) : lm1+lm6

(a<=1) & (b>3) : lm2

(b<=2) : lm4 (a<=1) & (b>3) & (b<=2) : lm2+lm4

(b>2) & (a<=2) : lm5 => (a<=1) & (b>3) & (b>2) & (a<=2) : lm2+lm5

(b>2) & (a>2) : lm6 (a<=1) & (b>3) & (b>2) & (a>2) : lm2+lm6

(a>1) : lm3

(b<=2) : lm4 (a>1) & (b<=2) : lm3+lm4

(b>2) & (a<=2) : lm5 => (a>1) & (b>2) & (a<=2) : lm3+lm5

(b>2) & (a>2) : lm6 (a>1) & (b>2) & (a>2) : lm3+lm6

As can be seen, some of the lists of conditions contain contradictory conditions. For in-

stance, in lm1+lm6, the conditions(a<=1) and(a>2) could never hold at the same time.

Therefore, any new rule with such contradictions is removed(in this case lm1+lm6, lm2+lm4,

lm2+lm6). This yields the six rules below. Summing the two linear models is easily done.

(a<=1) & (b<=2) : lm1+lm4 = 4*a+3*b+2

(a<=1) & (2<b<=3) : lm1+lm5 = 4*a+5*b+3

(a<=1) & (b>3) : lm2+lm5 = 5*a+8*b+8

(a>1) & (b<=2) : lm3+lm4 = 4*a+5*b+2

(1<a<=2) & (b>2) : lm3+lm5 = 4*a+7*b+3

(a>2) & (b>2) : lm3+lm6 = 4*a+6*b+4

This procedure has been visualized in Figure C.5

Figure C.5. Example of two merged model trees

The minimum of this rule set can then be determined with the methods described in Sec-

tion 3.3.1. A downside of merging two rulesets is that the resulting rule set will have many

147



Chapter C Tree-based Induction

more rules. The worst case scenario is that merging two rulesets withr1 andr2 number of

rules yield a rule set withr1 ∗ r2 rules. This happens for instance when the two rulesets have

conditions on different variables. If conditions on variables are contradictory, rules can be

eliminated, and the rule set contains< r1 ∗ r2 rules.

We have merged many temporal prediction models in the soccerdomain, and the merged

rulesets contain on average0.4 ∗ r1 ∗ r2 rules. The number of rules in the learned models

trees is typically between 20 and 100, so merged rulesets contain between about 150 and 4000

rules. Note that determining the minimum of 4000 rules is usually much more efficient than

optimizing in the variable space, especially for higher dimensions, as their complexities are

O(k) andO(nd) respectively.

3.3.4 Non-mergeable model trees

Unfortunately, there are some cases in which it is not possible to optimize model trees in

combination with subgoal refinement. This is related to the different search spaces in subgoal

refinement and action model learning. The search space of themodel tree is in the space

of derived features it is called with (e.g.dist, angle_to, etc), whereas the search space of

subgoal refinement uses direct variables (e.g.x,y,φ, etc.). Wemustuse the direct variable for

subgoal refinement, as actions share a frame of reference. For instance, in the soccer example

in Figure 5.8 the performance of both actions depends on the shared angle of approach, which

is theφg parameter in the first action, andφ in the second. This means we cannot optimize the

actions separately, as this might lead to different values of φg andφ respectively. Therefore,

the search space of subgoal refinement must be expressed in terms of direct variables, some

of which might be shared by different action models.

This is itself is not a problem. For instance, the graphs in Figure 5.8 and Figure 5.9 both

have linear and planar models in each partition, which enables the analytical optimization

described in Section C.3. This is because the direct variable that is depicted on thex-axis (φ

at the intermediate subgoal) is theφg parameter in the first action, andφ in the second. These

two variables are used to compute theangle_at feature in the first model, and theangle_to

feature in the second model. That the mappings fromφg to angle_at in the first action andφ

to angle_at is linear can be read from the formula in Table 4.1. So, the surfaces in Figure 5.9

arise from varyingangle_at andangle_to in the two models. Because these features have a

linear mapping toφ at the intermediate goal, the resulting surfaces are planes, which enables

an analytical optimization.

However, when the mapping from a direct variable to a derivedfeature is surjective, or

bijective but non-linear, the models in each partition might not be planar when plotted against
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the direct variable. In these cases, the assumption that theminimum of the partition must lie

at one of its corners will not hold, and our analytical optimization method is not applicable.
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D. Summaries of Publications

We will now briefly present which systems, methods and results presented in this dissertation

were published in which journals and conferences. The papers from 2004 are mostly on the

enabling technologies. In 2005, the papers contain preliminary work and overviews. The

final system and results described in this dissertation are presented in the papers from 2006

onwards.

(Beetz et al., 2004) Beetz, M., Schmitt, T., Hanek, R., Buck, S., Stulp, F., Schröter, D.,

and Radig, B. (2004). The AGILO robot soccer team experience-based learning and

probabilistic reasoning in autonomous robot control.Autonomous Robots, 17(1):55–77.

An extensive journal article on the hardware, state estimation, and previous action se-

lection module of the AGILO ROBOCUPPERS. (Section 1.2.1)

(Utz et al., 2004) Utz, H., Stulp, F., and Mühlenfeld, A. (2004). Sharing belief in teams of

heterogeneous robots. In Nardi, D., Riedmiller, M., and Sammut, C., editors,RoboCup-

2004: The Eighth RoboCup Competitions and Conferences. Springer Verlag.

Description of belief state exchange requirements, and theimplementation of the

CORBA-based communication module. Joint publication withthe University of Ulm,

Germany, and University of Graz, Austria. (Section 7.3.2)

(Stulp et al., 2004b) Stulp, F., Kirsch, A., Gedikli, S., and Beetz, M. (2004b). AGILO

ROBOCUPPERS2004. In ROBOCUP International Symposium 2004, Lisbon.

Team Description Paper of the AGILO ROBOCUPPERSat the ROBOCUP Competitions

in Lisbon, Portugal. (Section 1.2.1)

(Stulp et al., 2004a) Stulp, F., Gedikli, S., and Beetz, M. (2004a). Evaluating multi-agent

robotic systems using ground truth. InProceedings of the Workshop on Methods and

Technology for Empirical Evaluation of Multi-agent Systems and Multi-robot Teams

(MTEE).
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Implementation ground truth system. The hardware (ceilingcameras) and software

(computer vision algorithms) are explained, and its accuracy evaluated. (Section B.3)

(Stulp and Beetz, 2005b) Stulp, F. and Beetz, M. (2005b). Optimized execution of action

chains using learned performance models of abstract actions. In Proceedings of the

Nineteenth International Joint Conference on Artificial Intelligence (IJCAI).

Introduction of the computational model of subgoal refinement. First evaluation results

in the simulated soccer domain. (Chapter 5)

(Stulp and Beetz, 2005c) Stulp, F. and Beetz, M. (2005c). Tailoring action parameteri-

zations to their task contexts. IJCAI Workshop “Agents in Real-Time and Dynamic

Environments”.

An description of all applications of action models within one coherent system overview.

(Overview of dissertation)

(Stulp and Beetz, 2005a) Stulp, F. and Beetz, M. (2005a). Optimized execution of action

chains through subgoal refinement. ICAPS Workshop “Plan Execution: A Reality

Check”.

A brief overview of subgoal refinement from a planning perspective. (Chapter 5)

(Stulp and Beetz, 2006) Stulp, F. and Beetz, M. (2006). Action awareness – enabling

agents to optimize, transform, and coordinate plans. InProceedings of the Fifth Inter-

national Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS).

A brief overview of subgoal refinement and implicit coordination. (Overview of disser-

tation)

(Stulp et al., 2006a) Stulp, F., Isik, M., and Beetz, M. (2006a). Implicit coordination in

robotic teams using learned prediction models. InProceedings of the IEEE Interna-

tional Conference on Robotics and Automation (ICRA).

Extensive evaluation of implicit coordination within the homogeneous AGILO

ROBOCUPPERSteam . (Chapter 7)

(Isik et al., 2006) Isik, M., Stulp, F., Mayer, G., and Utz, H. (2006). Coordination with-

out negotiation in teams of heterogeneous robots. InProceedings of theROBOCUP

Symposium.

Integrates and extends the results of (Utz et al., 2004) and (Stulp et al., 2006a) by eval-

uating implicit coordination in heterogeneous teams. (Chapter 7)
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(Stulp et al., 2006b) Stulp, F., Pflüger, M., and Beetz, M. (2006b). Feature space gen-

eration using equation discovery. InProceedings of the 29th German Conference on

Artificial Intelligence (KI).

Implementation and evaluation of the directed equation discovery system for generating

appropriate feature spaces. (Section 4.1.1)

(Stulp et al., 2007) Stulp, F., Koska, W., Maldonado, A., and Beetz, M. (2007). Seamless

execution of action sequences. InAccepted for the IEEE International Conference on

Robotics and Automation (ICRA).

Subgoal refinement integrated in the PDDL planner VHPOP. First results on real soccer

robots. Further evaluation in the service robotics and arm control domain. (Section 5.2)

(Stulp and Beetz, 2008c) Stulp, F. and Beetz, M. (2008). Refining the execution of ab-

stract actions with learned action modelsAccepted for the Journal of Artificial Intelli-

gence Research (JAIR). To appear.

Detailed description of subgoal refinement and assertion, describing the relations be-

tween them. Psuedo-code listings. Includes the most recentempirical evaluations as

described in this dissertation.

(Stulp and Beetz, 2008b) Stulp, F. and Beetz, M. (2008). Learning Predictive Knowl-

edge to Optimize Robot Motor ControlSubmitted to the International Conference on

Cognitive Systems (CogSys 2008). Under review.

Detailed analysis of the relationship between declarative, procedural and predictive

knowledge. Integration of subgoal assertion in subgoal refinement.

(Stulp and Beetz, 2008a) Stulp, F. and Beetz, M. (2008). Combining Declarative, Proce-

dural and Predictive Knowledge to Generate and Execute Robot Plans Efficiently and

Robustly Submitted to the Special Issue of Robotics and Autonomous Systems on Se-

mantic Knowledge in Robotics. Under review.

Detailed analysis of the relationship between declarative, procedural and predictive

knowledge. Overview of related work on the interactions between these different types

of knowledge, and how one can be learned from the other.

(Wimmer et al., 2006) Wimmer, M., Stulp, F., Tschechne, S., and Radig, B. (2006). Learn-

ing robust objective functions for model fitting in image understanding applications. In

Chantler, M. J., Trucco, E., and Fisher, R. B., editors,Proceedings of the17th British
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Machine Vision Conference (BMVC), volume 3, pages 1159 – 1168, Edinburgh, Great

Britain.

(Wimmer et al., 2008) Wimmer, M., Stulp, F., Pietzsch, S., and Radig, B. (2008). Learn-

ing Local Objective Functions for Robust Face Model Fitting. Accepted for the IEEE

Transactions on Pattern Analysis and Machine Intelligence(PAMI). To appear.

In a parallel line of research, these two papers investigatethe automatic selection of

features in the context of learning objective functions in model-based fitting applica-

tions, also with tree-based induction. It is complementaryto the work presented in

(Stulp et al., 2006b), in which features are generated. The application domain is face

and mimic recognition. The methods described in these papers have not been applied

to action model learning as presented in this dissertation,but nevertheless give a good

example of how model trees can be used to learn performance models and select infor-

mative features.
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