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Zusammenfassung

Die Kategorie der kleinen Kategorien besitzt eine abgeschlossene Modellstruktur, genannt die
Thomason Modellstruktur, welche Quillen äquivalent zur Standard Modellstruktur auf der Kate-
gorie der topologischen Räume ist. Wir geben eine Einführung in die unterschiedlichen Konzepte,
die sowohl zum Verständnis, als auch zur Motivation der Definition der Thomason Modellstruk-
tur notwendig sind. Diese Konzepte beinhalten Kategorientheorie, klassische Homotopietheorie
auf topologischen Räumen, simpliziale Homotopietheorie auf simplizialen Mengen und abstrakte
Homotopietheorie auf Modellkategorien. Wir werden zeigen, dass es eine Modellstruktur auf der
Kategorie der kleinen, azyklischen Kategorien gibt, die Quillen äquivalent zur Thomason Mod-
ellstruktur ist. Beide Modellstrukturen besitzen die gleichen kofasernden Objekte. Wir werden
zeigen, das zu diesen insbesondere endlich Halbverbände, abzählbare Bäume, endliche Zickzacks
und Halbordnungen mit fünf oder weniger Elementen gehören.
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Abstract

There is a closed model structure on the category of small categories, called Thomason model
structure, that is Quillen equivalent to the standard model structure on the category of topolog-
ical spaces. We will give an introduction to the concepts necessary to understand the definition,
as well as the purpose of the Thomason model structure. These concepts include category the-
ory, classical homotopy theory on topological spaces, simplicial homotopy theory on simplicial
sets and abstract homotopy theory via the use of model categories. We will show, that there is
a model structure on the category of small acyclic categories, that is Quillen equivalent to the
Thomason model structure. Both of these model structures share the same cofibrant objects,
and we will show that these include finite semilattices, countable trees, finite zigzags and posets
with five or less elements.
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1

Introduction

Homotopy theory has been used for almost a century as an algebraic tool to study topological
spaces. The first implicit usage of homotopy goes back as far as 1806, when deformations of paths
were used to minimize or maximize certain integrals [Lag06], but it was not until 1934, that a
whole theory emerged and homotopy groups were formally introduced in [Hur35]. It took another
15 years until in 1949, CW-complexes were formally introduced by Whitehead in [Whi49]. They
are the first prototype of what is now called a cofibrant object in a model category, i. e. a space
which can be constructed by “gluing together simpler spaces”.

In 1950, Eilenberg and Zilber introduced simplicial sets (which back then were called complete
semi-simplicial complexes) in [EZ50] and in the following years, Kan developed a full-blown
homotopy theory for simplicial sets, which was further refined by the work of Quillen in the
1960s (as mentioned in the preface of [GJ99]).

In 1967, Quillen introduced the notion of amodel category [Qui67] which married the theory of
homotopy on cofibrant objects in the category of topological spaces to the theory of homotopy on
fibrant objects in the category of simplicial sets, making both settings special cases of homotopy
theory in a model category. Quillens work enables us to do homotopy in more abstract settings,
where objects are not necessarily “spaces”, and homotopies are not necessarily “deformations of
paths”.

In 1980, Thomason showed that there is a model structure on the category of small categories,
that is Quillen equivalent to the standard model structure on topological spaces [Tho80] (to
which we will refer to as the Thomason model structure), where Quillen equivalent means that
the homotopy theories are equivalent, i. e. two categories are homotopy equivalent if and only if
the associated topological spaces are homotopy equivalent.

In 2010, Raptis showed that there is a model structure on the category of posets, that is
Quillen equivalent to the Thomason model structure on the category of small categories [Rap10].

While there have been many successful attempts to lift the Thomason model structure to
other categories, e. g. the category of G-categories [Boh+15], the category of G-posets [MSZ16],
the category of strict n-categories [AM14] and the category of small n-fold categories [FP10],
very few publications have dealt with the internal structure of the Thomason model structure. In
2014, Meier and Ozornova identified a class of fibrant objects in the Thomason model structure
[MO15] and in 2016, May, Stephan and Zakharevich showed that every one-dimensional poset is
cofibrant, and gave an example of a poset that is not cofibrant [MSZ16]. To the knowledge of
the author, these are the only publications dealing with the internal structure of the Thomason
model structure.

In this thesis, we will show that one can lift the Thomason model structure to the category
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2 1. INTRODUCTION

of small acyclic categories, using methods similar to those used in [Rap10]. Furthermore, we will
identify various classes of cofibrant objects in the Thomason model structure: we will show that
every finite semilattice, every countable tree, every chain, every finite zigzag, and every poset
with five or less elements are cofibrant, and that every inclusion of a minimum into one of these
objects is a cofibration.

In Chapter 2.1, we will give a brief introduction to category theory and provide the tools
necessary to deal with model categories. In Chapter 2.2, we will give a short recapitulation of
classical homotopy theory on topological spaces, and show the importance of cofibrant objects
to give a motivation for the later chapters. In Chapter 2.3, we introduce simplicial sets and
simplicial homotopy theory, and compare it to the classical homotopy theory on topological
spaces. In Chapter 3.1, we introduce model categories, develop an abstract homotopy theory
and show how it generalizes results from classical and simplicial homotopy theory, as introduced
in the previous chapters. In Chapter 3.2 we introduce the Thomason model structure on the
category of small categories, and show that one can lift said model structure to the category
of small acyclic categories (Theorem 3.2.16). The results of this chapter have been previously
published by the author in [Bru15]. In Chapter 4.1 we show that every finite semilattice, every
countable tree, every chain and every finite zigzag are cofibrant in the Thomason model structure
(Theorem 4.1.5, 4.1.13, 4.1.8, and 4.1.11 respectively), and in Chapter 4.2 we show that every
poset with five or less elements is cofibrant (Theorem 4.2.13). The Chapters 4.1 and 4.2 are a
joint work with Christoph Pegel and have been published in [BP16].
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Applied Homotopy Theory

2.1 Introduction to Category Theory
Category theory starts with the observation that many properties of mathematical sys-
tems can be unified and simplified with diagrams and arrows.

– Saunders Mac Lane

There are many mathematical constructions that appear in a variety of contexts. For example,
given a Cartesian product A × B, A and B may be sets, vector spaces, topological spaces or
many other things, but it always means essentially the same thing.

Category theory provides the means to unify these constructions by forgetting the internal
structure of A and B, and giving a description using only arrows and diagrams. Moreover, Cate-
gory theory formalizes “switching” between different mathematical environments by introducing
functors and adjunctions, which are ubiquitary throughout mathematics.

2.1.1 Basic Definitions
To give a definition of a category, one will need to talk about the collection of all sets, topological
spaces, vector spaces, and so forth. This collection cannot be a set, though, since a set of all
sets cannot exit (cf. [Bor94a, Proposition 1.1.1]). These problems can be avoided by introducing
classes, which share some, but not all properties of sets given in ZF. We will not go into further
details here, since they do not matter in the context of this thesis, and consider classes as
“collections of objects which behave like sets”. We refer the interested reader to [Ber42]. A class
that is also a set will be called a small class, and a class that is not a set will be called proper
class.

Definition 2.1.1. A category C consists of a class of objects C(0) and a class of morphisms (also
called maps or arrows) C(1) together with:

(i) A source map s : C(1) → C(0).

(ii) A target map t : C(1) → C(0).

(iii) A composition

◦ :
{

(f, g) ∈ C(1) × C(1)
∣∣∣ t(f) = s(g)

}
→ C(1)

(f, g) 7→ g ◦ f ,

3



4 2. APPLIED HOMOTOPY THEORY

satisfying s(g ◦ f) = s(f) and t(g ◦ f) = t(g), and

(iv) for each x ∈ C(0) a morphism idx ∈ C(1), called identity , such that s(idx) = x = t(idx),

subject to the following axioms:

(i) Associativity: given f, g, h ∈ C(1) such that t(f) = s(g) and t(g) = s(h) the following
equality holds:

h ◦ (g ◦ f) = (h ◦ g) ◦ f
.

(ii) Unit Law: given f ∈ C(1), such that s(f) = x and t(f) = y, then

f ◦ idx = f = idy ◦f .

(iii) Local smallness: given any pair of objects x, y ∈ C(0), the subclass

C(x, y) :=
{
f ∈ C(1)

∣∣∣ s(f) = x and t(f) = y
}

is a set.

We will often write f ∈ C if it is clear whether f is a morphism or an object in C. We will
usually also omit the index of the identity idx, and call two morphisms f, g ∈ C composable
if t(f) = s(g). Furthermore, a category is called small if C(0) and C(1) are sets. A morphism
f ∈ C(x, y) will often be represented diagrammatically as f : x → y or x f−→ y, and we will
sometimes omit the composition from notation, i. e. given a second morphism g ∈ C, we will
write gf for the composition instead of g ◦ f .

Definition 2.1.2. Let C be a category, and f ∈ C a morphism. The map f is called monomor-
phism if given any pair of morphisms g1, g2 ∈ C, we have

f ◦ g1 = f ◦ g2 =⇒ g1 = g2,

and epimorphism if for every pair h1, h2 of morphisms in C, we have

h1 ◦ f = h2 ◦ f =⇒ h1 = h2.

In Set, monomorphisms are precisely injections, and epimorphisms are precisely surjections.
This is true in a lot of categories where objects are “sets with structure”, and morphisms are
given by “structure preserving maps”. There are, however, categories where objects are “sets with
structure”, and the classes of epi- or monomorphisms are larger than the classes of surjections
and injections. For example, let Haus be the category of Hausdorff spaces and continuous maps,
then epimorphisms are precisely those morphisms, that have dense image.

Definition 2.1.3. A covariant functor F from a category C to a category D consists of

(i) A mapping
C(0) → D(0),

associating to each object x ∈ C an object F (x) ∈ D, and

(ii) for each pair of objects x, y ∈ C a mapping

C(x, y)→ D(F (x), F (y)),

associating to each morphism f ∈ C a morphism F (f) ∈ D,
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subject to the following axioms:

(i) Given two composable morphisms f, g ∈ C, then

F (g ◦ f) = F (g) ◦ F (f),

and

(ii) for each object x ∈ C,
F (idx) = idF (x) .

A functor is called contravariant if given two composable morphisms f, g ∈ C, instead of F (g◦f) =
F (g) ◦ F (f), we have F (g ◦ f) = F (f) ◦ F (g).

Given a category C, and an object x ∈ C, there is a contravariant functor

C(−, x) : C → Set

y 7→ C(y, x)

f 7→ f∗

where

f∗ : C(t(f), x)→ C(s(f), x)

g 7→ g ◦ f

and a covariant functor

C(x,−) : C → Set

y 7→ C(x, y)

f 7→ f∗

where

f∗ : C(x, s(f))→ C(x, t(f))

g 7→ f ◦ g

which we will call the contravariant and covariant Hom-functor respectively.
Composition of functors is pointwise and the class of all small categories, together with the

class of all functors constitute the category of small categories, denoted by Cat. Other examples
include

(i) the category of small sets, denoted by Set, with object class small sets, and morphisms
given by set maps and

(ii) the category of topological spaces, denoted by Top, with objects given by topological spaces,
and continuous maps as morphisms.

However, categories do not necessarily contain a whole mathematical theory, but are also
quite often used as combinatorial objects, examples include:

(i) Given any poset (P,≤), we can associate a category P with object set P(0) = P , and given
any pair of objects x, y ∈ P , we say there is an arrow x→ y if and only if x ≤ y.
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(ii) Given any group G, we can associate a category G with set of objects being G(0) = {∗} and
the set of morphisms being G(1) = G, where composition is given by the group operation.

(iii) Given any directed graph G = (E, V ) with edges E and vertices V , one can associate the
free category F (G) with object set F (G)(0) = V , and morphisms being generated by the
set of edges E by adding identities and compositions.

We will use (i) and (iii) implicitly throughout this thesis. A poset will always be a category
P , satisfying that for each pair of objects x, y ∈ P , x 6= y we have #P (x, y) + #P (y, x) ≤ 1
and P (x, x) = 1, and when describing a category C diagrammatically, we will usually only draw
the directed graph G consisting objects and generating morphisms, and omit identities and
compositions, so that C = F (G).

Definition 2.1.4. Let C, D be categories, F : C → D a functor. We say F is full if for every
x, y ∈ C(0) the induced map C(x, y) → D(F (x), F (y)) is a surjection, faithful if the respective
map is an injection, and fully faithful if it is a bijection.

A subcategory S of a category C consists of subcollections S(0) of objects and S(1) of morphisms
of C, such that S itself is again a category, having the same identities and compositions. To each
subcategory we can associate a faithful functor which is injective on objects, which we will call
the associated embedding or inclusion.

A subcategory S ⊆ C is called full if given any pair of objects x, y ∈ S, we have S(x, y) =
C(x, y) (i. e. if the associated embedding is full) and wide if S(0) = C(0) (i. e. if C is small, the
associated embedding is a bijection on the classes of objects). Given the description of a poset
as a category, the category Pos of posets and orderpreserving morphism (i. e. functors) is a full
subcategory of Cat.

Similar to homotopies between continuous maps, there is a notion of morphisms between
functors, called natural transformations:

Definition 2.1.5. Let C, D be categories, and F,G : C → D be functors. A natural transforma-
tion ϕ : F ⇒ G is a function which assigns to each object x ∈ C a morphism ϕx = ϕ(x) : F (x)→
G(x) in D, such that for any morphism f ∈ C(x, y) the following diagram commutes:

x F (x) G(x)

y F (y) G(y)

f F (f)

ϕx

G(f)

ϕy

If every component ϕx of ϕ is invertible, we say ϕ is a natural equivalence.

When dealing with categories, most definitions and theorems require an object only to exist up
to isomorphisms. Hence the notion of isomorphisms between categories is usually to strong, since
we only require a bijection between isomorphism classes of objects for theorems and definitions
to be applicable in both categories. Which leads us to the notion of an equivalence between
categories.

Definition 2.1.6. Let C, D be categories, we say that C is equivalent to D, if there is a pair of
functors F : C � D :G, together with a pair of natural equivalences FG⇒ idD, idC ⇒ GF

Given two categories C,D, then Cat(C,D) is again a category, with objects being func-
tors C → D and morphisms given by natural transformations, where composition of natural
transformations is given pointwise. That is, given two natural transformations ϕ : F ⇒ G and



2.1. INTRODUCTION TO CATEGORY THEORY 7

ψ : G ⇒ E in Cat(C,D), we define ψ ◦ ϕ : F ⇒ E to be the natural transformation with com-
ponents (ψ ◦ ϕ)x = ψx ◦ ϕx for every x ∈ C. We call this category a functor category , and will
denote it by DC .

Definition 2.1.7. Let C, D, E be categories, F : C → D, G : E → D be functors. We define the
comma category F ↓ G to be the category with objects

F ↓G(0) :=
{

(x, e, f) : x ∈ C(0), e ∈ E(0), f ∈ DG(e)
F (x)

}
and morphisms

(F ↓ G)((x, e, f), (x′, e′, f ′)) :=

{(ϕ,ψ) : ϕ ∈ C(x, x′), ψ ∈ E(e, e′), G(ψ) ◦ f = f ′ ◦ F (ϕ)}
.

If G = idC , we simply write F ↓ C. Moreover, given the constant functor

x : ∗ → C
∗ 7→ x

id∗ 7→ idx ,

we call C ↓ x the slice category over x and x ↓ C the coslice category .

If we restrict to the subcategory of posets, some types of comma categories yield familiar
constructions. Let f : P → Q be a poset map, x ∈ Q, then

(i) Q ↓ x = Q≤x := {y ∈ P | y ≤ x}

(ii) x ↓ Q = Q≥x := {y ∈ P | y ≥ x}

(iii) f ↓ x = f−1(Q≤x)

(iv) x ↓ f = f−1(Q≥x)

Thus one may view comma categories as generalizations of posets of objects below and above
a certain element.

Another important concept in category theory is dualization, which in layman terms can
be described as “turning around all arrows”. Formally, we dualize by introducing the opposite
category.

Definition 2.1.8. Let C be a category, the opposite category Cop has the same objects as C, but
given any x, y ∈ C, we have Cop(x, y) = C(y, x). Given a morphism f ∈ C, we denote by fop the
associated morphisms in the opposite category. Now given a pair of composable morphisms fop,
gop, we define composition by gop ◦ fop := (g ◦ f)op.

Note that if a diagram in a category C commutes, it also commutes in Cop, and we call the
construction dual. Furthermore, a contravariant functor F : C → D induces a covariant functor
F : Cop → D and vice versa. This property is used in the definition of the Yoneda embedding:

Definition 2.1.9. Let C be a category. The Yoneda embedding YC of C is the functor

YC : C → SetC
op

x 7→ C(−, x)

f 7→ C(−, f)

where C(−, f) is the obvious natural equivalence C(−, s(f))⇒ C(−, t(f)).



8 2. APPLIED HOMOTOPY THEORY

Furthermore, given a category C, and a class of morphisms I ⊆ C, one can formally add
inverses to morphisms in I to obtain a new category. This procedure is called localization, and
will play an important role when introducing homotopy categories:

Definition 2.1.10. Let C be a category, and I be a class of maps in C. The localization of C is
a category LIC and a functor γ : C → LIC such that

(i) if f ∈ I, then γ(f) is an isomorphism, and

(ii) if D is a category, and F : C → D is a functor such that F (f) is an isomorphism for every
f ∈ I, then there is a unique functor δ : LIC → D such that δγ = F .

2.1.2 Adjunctions
Definition 2.1.11. Let C, D be categories. An adjunction from C to D is a triple (F,G, ϕ),
where F and G are functors

F : C � D :G,

and ϕ is a function which assigns to each pair of objects x ∈ C(0), y ∈ D(0) a bijection of sets

ϕ = ϕx,y : D(F (x), y)
∼=−→ C(x,G(y))

which is natural in x and y. That is, for any f ∈ D(y, y′), g ∈ C(x′, x), the following diagrams
commute:

D(F (x), y) C(x,G(y))

C(F (x), y′) D(x,G(y′))

f∗

ϕ

G(f)∗

ϕ

D(F (x), y) C(x,G(y))

C(F (x′), y) D(x′, G(y))

F (g)∗

ϕ

g∗

ϕ

We call F the left adjoint to G, and G the right adjoint to F .

Note that composition of left adjoints is again a left adjoint, and composition of right adjoints
is again a right adjoint. In particular, given two adjunction (F,G, ϕ) and (L,R, ψ), such that
F,L and G,R are composable, then LF is a left adjoint to GR (cf. [Mac98, p.103, Thm. 1]).
There is an equivalent definition of an adjunction, which is useful in some contexts:

Theorem 2.1.12. [Mac98, p.83] Given a pair of functors F : C � D :G, then F is left-adjoint
to G if and only if there are natural transformations η : idC ⇒ GF and ε : FG⇒ idD, such that
the composites

G
G(η)
===⇒ GFG

εG(−)
===⇒ G and F

ηF (−)
===⇒ FGF

F (ε)
==⇒ F

are identities. The transformations η and ε are called unit and counit, respectively.

Given F,G, η, ε as in the previous theorem, and f ∈ D(F (x), y), then ϕx,y(f) is given by

ϕx,y(f) : x
ηx−→ GF (x)

G(f)−−−→ G(y)

As usual, we will omit the indices from ϕ if the domain is either clear, or not relevant.

Proposition 2.1.13. [GZ67, p.7] Let G be a right adjoint, then G is fully faithful if and only if
the counit ε is invertible (that is, ε is a natural equivalence).

Definition 2.1.14. A full subcategory S ⊆ C is called reflective if the inclusion i : S ↪→ C has a
left adjoint, which we will call the reflection to i.
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2.1.3 Limits and Colimits
Limits and colimits are ubiquitary in category theory, and many familiar constructions are in
fact given by limits or colimits in the ambient category.

Definition 2.1.15. Let C, I be categories, a diagram of shape I is a functor X : I → C. We call
I the index category or shape of the diagram X.

Given a diagram X : I → C, we write Xi for the image X(i) of an object i ∈ I, and Xi→j for
the image of a morphism i → j in I. Moreover, when drawing a diagram, we will usually draw
the image of the diagram in the target category.

Definition 2.1.16. A cocone (q, ψ•) of a diagram X : I → C is an object q ∈ C together with a
family of morphisms ψi : Xi → q, such that for every f ∈ I(i, j), we have ψj ◦Xf = ψi

Definition 2.1.17. A colimit of a diagram X : I → C is a universal cocone. That is a cocone
(q, ψ•), satisfying that given any other cocone (n, ϕ•), there is a unique morphism u : q → n in
C, making the following diagram commutative for every morphism i

f−→ j in I:

Xi Xj

q

n

ϕi

ψi

Xf

ψj

ϕj
∃!u

.

We write
colim
I

X = q or colimX = q

to denote the object of the universal cocone, and usually omit the morphisms from notation.

Note that the colimit of a diagram is only defined up to isomorphisms. We will, however,
say the colimit of a diagram instead of a colimit, as it is common practice in literature. Conse-
quentially, when describing a colimit as the unique object satisfying a certain property, we mean
unique up to isomorphisms. The dual of a cocone is a cone, and a universal cone is a limit .
There are several limits and colimits that go by specific names. We will provide some of those
as examples, focusing on the ones that will be important later on.

Definition 2.1.18. Let X : ∅→ C be the empty diagram, then the colimit colimX =: ∅ is the
initial object in C, i. e. the unique object satisfying that given any object y ∈ C(0), there is exactly
one morphism i : ∅ → y.

Dually, the limit limX =: ∗ of X is called the terminal object . Satisfying that given any
object x ∈ C, there is exactly one morphism t : x→ ∗.

In Set, the initial object is the empty set, and the terminal object is the one-element set.
In VectK, the category of vector spaces over a field K with vector space homomorphisms as
morphisms, the initial and terminal objects are identical, given by the zero-dimensional vector
space.

Definition 2.1.19. Let 2 be the category with two objects 0, 1 ∈ 2, and no nonidentity mor-
phisms. Given a category C, the colimit of a diagram X : 2→ C is called coproduct , denoted by
colimX =: X0

∐
X1, whereas the limit is called product , denoted by limX =: X0 ×X1.
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As the notation suggests, products and coproducts are—in many cases—what one expects
them to be. That is, in Set products and coproducts are given by the Cartesian product and
disjoint union, respectively. In VectK they are given by the Cartesian product and the direct
sum. Note that we can use arbitrary sets as index category to produce arbitrary products and
coproducts, instead of binary.

Definition 2.1.20. Let C be a small category, X : I → C be the diagram

x y2

y1

f1

f2

.

The colimit of X is called the pushout of f1 along f2, often denoted by y1

∐
x y2.

Dually, let Y : J → C be the diagram

x1

x2 y

f1
f2

.

The limit of Y is called the pullback of f1 along f2, often denoted by x1 ×y x2.

Let Y1
f1←− X f2−→ Y2 be a diagram in Set. The pushout is given by

Y1

∐
X

Y2 = Y1

∐
Y2/∼

where ∼ is the equivalence relation generated by f1(x) ∼ f2(x) for every x ∈ C. If Y1 and Y2

are subsets of a larger ambient set, X is their intersection and f1 and f2 are inclusions (i. e.
injections), then the pushout is simply the union of the subsets. If X is the empty set (or initial
object in categories other than Set), the pushout is simply the coproduct.

On the other hand, given a diagram X1
f1−→ Y

f2←− X2 in Set, the pullback is the subset
X1 ×Y X2 ⊆ X1 ×X2, given by:

X1 ×Y X2 = {(x1, x2) ∈ X1 ×X2 | f(x1) = f(x2)} .

Definition 2.1.21. Let C be a category, and X : I → C be the diagram

x y
f

g
,

The colimit of X is called coequalizer , and the limit is called equalizer . Denoted by Coeq(f, g)
and Eq(f, g) respectively.

In Set, the equalizer of two maps f, g : X → Y is the subset

Eq(f, g) = {x ∈ X | f(x) = g(x)} ⊆ X,

whereas the coequalizer Coeq(f, g) is the set Y/∼, where ∼ is the equivalence relation generated
by f(x) ∼ g(x).



2.1. INTRODUCTION TO CATEGORY THEORY 11

In the category VectK, given a vector space V and a subspace U , the coequalizer of the
embedding and the zero map yields the quotient space V/U . The same holds in Top∗, the
category of pointed topological spaces and basepoint preserving continuous maps.

Note that limits and colimits do not necessarily exist. For example, let Fields be the category
of fields and field homomorphisms, and let K1,K2 be two fields. The definition of a universal co-
cone requires that the coproduct K1

∐
K2 comes with two field homomorphisms K1 → K1

∐
K2

and K2 → K1

∐
K2. However, homomorphisms between fields can only exist if both fields have

the same characteristic. So if K1 and K2 have different characteristic, a coproduct with those
properties cannot exist.

We call a category in which all small colimits (i. e. colimits over diagrams with small index cat-
egory) exist cocomplete, a category in which all small limits exist complete, and a category which
is complete and cocomplete bicomplete. The categories Cat, Set and Top are all bicomplete.

Definition 2.1.22. Let F : C → D be a functor, we say F preserves colimits, if given any
diagram X : I → C, we have

F (colim
I

X) ∼= colim
I

F (X)

and F preserves limits, if
F (lim

I
X) ∼= lim

I
F (X)

Preservation of limits and colimits is are important propertis of a functor, and there is a huge
class of functors partially satisfying these:

Theorem 2.1.23. Let (F,G) be an adjunction, then F preserves colimits, and G preserves
limits.

The second half of the theorem is [Bor94a], and the first half is simply the dual statement.

2.1.4 Filtered Colimits
There is a convenient class of index categories called filtered categories, which make the calculation
of colimits in Cat particularly easy. We will make use of these categories later.

Definition 2.1.24. A non-empty category C is called filtered if

(i) for every pair of objects x1, x2 in C there is an object y in C and morphisms fi : xi → y,
i = 1, 2.

(ii) for any pair of parallel morphisms f1, f2 : x → y there exists an object z and a morphism
h : y → z, such that hf1 = hf2.

In Cat, there is an explicit method to construct filtered colimits. At first, though, we need
to look at filtered colimits in Set:

Proposition 2.1.25. [Bor94a, Proposition 2.13.3] Let X : I → Set be a filtered diagram, then

colim
I

X = (C)

where the set C is given by
C =

∐
i∈I

Xi/∼,

and ∼ is defined as follows: given x ∈ Xi, x′ ∈ Xi′ , we have x ∼ x′ if there is an object j ∈ I,
together with maps f : Xi → Xj and g : Xi′ → Xj such that f(x) = g(x′).
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Lemma 2.1.26. Let D : I → Set be a filtered diagram, xi ∈ Di, and D(i→ j) : Di → Dj. Then
[xi] = [D(i→ j)(xi)] in colimI D.

Proof. Due to 2.1.24 (i), there exists a Dk, together with morphisms D(i → k) : Di → Dk and
D(j → k) : Dj → Dk. Moreover, by 2.1.24 (ii), since in general D(j → k)◦D(i→ j) 6= D(i→ k),
there is an object Dl, and a morphism D(k → l) : Dk → Dl such that

D(k → l) ◦D(j → k) ◦D(i→ j) = D(k → l) ◦D(i→ k)

thus
D(k → l) ◦D(j → k)(D(i→ j)(xi)) = D(k → l) ◦D(i→ k)(xi)

and thereforeD(i→ j)(xi) ∼ xi with respect to the equivalence relation from Proposition 2.1.25.

We can use the previous result to give a general construction of filtered colimits in Cat:

Proposition 2.1.27. [Bor94b, 5.2.2.f] Let D : I → Cat be a filtered diagram. There is an
explicit description of L = colimI D given as follows: L(0) = colimI D(i)(0) is just the colimit
in Set. Given a pair of objects L, L′ in L(0), the morphism set L(L,L′) is given by the colimit
colimI Di(Li, L

′
i) in Set, where L = [Li] and L′ = [L′i].

2.1.5 Coequalizers in Cat
Definition 2.1.28. Given a small category C, and an equivalence relation ∼ on the set of objects
of C. A ∼–composable sequence in C is a sequence (f0, . . . , fn) of morphisms in C, satisfying
t(fi) ∼ s(fi+1).

Definition 2.1.29. Let C be a small category. A generalized congruence on C is an ordered
pair of relations (∼o,∼m), where ∼o is an equivalence relation on C(0), and ∼m is an equiva-
lencerelation on the set of non-empty, ∼o–composable sequences in C, satisfying the following
properties:

(i) if x ∼o y, then (idx) ∼m (idy).

(ii) If (f0, . . . , fn) ∼m (h0, . . . , hm), then t(fn) ∼o t(hm) and s(f0) ∼o s(h0).

(iii) If s(h) = t(f), then (f, h) ∼m (h ◦ f).

(iv) If

(f0, . . . , fn) ∼m (f ′0, . . . , f
′
n′),

(h0, . . . , hm) ∼m (h′0, . . . , h
′
m′), and

t(fn) ∼o s(h0),

then

(f0, . . . , fn, h0, . . . , hm) ∼m (f ′0, . . . , f
′
n′ , h

′
0, . . . , h

′
m′).

Given a generalized congruence on a category C, we can define the quotient of the category
with respect to the congruence, thanks to the following proposition (cf. [Hau06, Proposition 1.6]):

Proposition 2.1.30. Let (∼o,∼m) be a generalized congruence on a category C, and F ⊆ (C ↓
Cat) be the full subcategory with objects being functors F : C → Cat, satisfying the following
properties:
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(i) for all objects x, y ∈ C, if x ∼o y, then F (x) = F (y), and

(ii) for all ∼o–composable sequences (f0, . . . , fn) and (h0, . . . , hm) if

(f0, . . . , fn) ∼m (h0, . . . , hm),

then

F (fn) ◦ · · · ◦ F (f0) = F (hm) ◦ · · · ◦ F (h0).

Then F has an initial object, which we denote by Q∼ : C → C/∼.

Definition 2.1.31. Given the functor Q∼ : C → C/∼ as above, we call C/∼ the quotient of C
with respect to ∼, and Q∼ the corresponding quotient functor .

There is an explicit construction for the quotient category C/∼, given in [BBP99]: the objects
of C/∼ are the equivalence classes of objects of C with respect to ∼o, whereas the morphisms
are given by equivalence classes of ∼o–composable sequences in C(1) with respect to ∼m. For
the sake of readability, we denote equivalence classes with respect to both relations by [−]. The
category C/∼ is given as follows:

(i) (C/∼)(0) =
{

[x]
∣∣x ∈ C(0)

}
(ii) (C/∼)(1) =

{
[(f0, . . . , fn)]

∣∣ fi ∈ C(1), [t(fi)] = [s(fi+1)]
}

(iii) id[x] = [idx]

(iv) s([(f0, . . . , fn)]) = [s(f0)] and t([(f0, . . . , fn)]) = [t(fn)]

(v) [(h0, . . . , hm)] ◦ [(f0, . . . , fn)] = [(f0, . . . , fn, h0, . . . , hm)]

A relation R on a small category C is a pair R = (Ro, Rm), where Ro is a relation on the set
of objects of C, and Rm is a relation on the set of finite, nonempty sequences of morphisms of C.
Given a relation R, there is a smallest generalized congruence (∼o,∼m), such that Ro ⊆ ∼o and
Rm ⊆ ∼m (cf. [Hau06]). We will call this congruence the principal congruence generated by R.

Proposition 2.1.32. Let C
F−−→−−→
G
D be functors between small categories, let ∼F=G be the relation

on D defined by F (x) ∼F=G G(x) and F (f) ∼F=G G(f) for all x ∈ C(0), f ∈ C(1). Let ∼ be the
principal congruence on D generated by ∼F=G. Then the quotient functor Q∼ : D → D/∼ is the
coequalizer of F and G.

The ability to calculate coequalizer in Cat allows us, in particular, to calculate pushouts due
to the following well-known lemma (e.g. [AHS90, Remark 11.31]):

Lemma 2.1.33. Let C be a category. If we have a diagram x
f←− w

g−→ y in C, and if x ιx−→

xq y ιy←− y is a coproduct and xq y h−→ q is the coequalizer of the diagram w
ιx◦f−−−→−−−→
ιy◦g

xq y, then

w y

x q

f

g

h◦ιy
h◦ιx

is a pushout square.
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2.1.6 Saturated Classes
Saturated classes play an important role in the construction of cofibrantly generated model struc-
tures, which will be introduced later. In fact, every relevant model structure we will encounter
in this thesis is cofibrantly generated.

Definition 2.1.34. Let C be a category. The arrow category Arr C is the category with objects
Arr C(0) = C(1), and morphisms given by commutative squares, i. e. given two arrows x1

f−→ y1

and x2
g−→ y2, a morphism in Arr C(f, g) is a tuple (x1

u−→ x2, y1
v−→ y2), such that the following

diagram commutes:
x1 x2

y1 y2

f

u

v

v

Note that the arrow category is just a comma category. That is, given a category C, then
Arr C ∼= C ↓ C.

Definition 2.1.35. Let C be a category x, y ∈ C(0), we say y is a retract of x if there are
morphisms y i−→ x, x p−→ y, such that p ◦ i = id, and we will call the map p the retraction of i.

Given a category C, and morphisms f, g ∈ C, we say g is a retract of f if g is a retract of f
in the arrow category Arr(C), i. e. if there are pairs of morphisms (i0, p0) and (i1, p1), such that
the following diagram commutes:

x2 x1 x2

y2 y1 y2

g

p0◦i0=id

i0

f

p0

g

i1

p1◦i1=id

p1

Definition 2.1.36. Let λ be an ordinal, considered as a category, and C be a cocomplete cate-
gory. A λ-sequence is a colimit-preserving functor X : λ→ C, often written as

X0 → X1 → · · · → Xβ → · · · .

Definition 2.1.37. Let C be a cocomplete category, λ an ordinal and X be a λ-sequence. If
I is a class of morphisms in C, such that every map Xβ → Xβ+1 is in I, we refer to the map
X0 → colimX as a transfinite composition of maps in I.

Definition 2.1.38. Let C be a category, and I ⊆ C(1) a class of morphisms. We say that I is a
saturated if it is closed under pushouts, retracts and transfinite composition.

Given a class of morphisms I, we call the intersection of all saturated classes containing I as
a subclass the saturation of I, or saturated class generated by I.

2.1.7 Locally Presentable Categories
A poset is called directed if every pair of elements has a common upper bound, and we call a
colimit over a diagram directed if the index category is a directed poset.
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Definition 2.1.39. An object x of a category C is called locally finitely presentable if the Hom
functor

hom(x,−) : C → Set

preserves directed colimits. A category C is called locally finitely presentable if it is cocomplete
and there is a set A ⊆ C(0) of locally finitely presentable objects such that every object of C is
a directed colimit of objects of A.

There is a useful theorem (cf. [AR94, Theorem 1.39]) that allows us to decide whether a
reflective subcategory of a locally presentable category is locally presentable:

Lemma 2.1.40. Let C be a locally finitely presentable category and A ⊆ C. If A is reflective and
the inclusion i : A → C preserves finitely directed colimits, then A is locally finitely presentable.

Sometimes it is easier to check whether a functor preserves filtered colimits instead of directed,
and the following lemma (cf. [AR94, p. 15]) allows us to do so:

Every poset that is filtered as a category, is directed, since condition (ii) from Definition 2.1.24
is satisfied trivially, and condition (i) is exactly the definition of directedness. Hence, any functor
that preserves filtered colimits, also preserves directed colimits. However, the converse holds as
well, as shown in [AR94, p. 15]:

Lemma 2.1.41. A functor F : C → D preserves filtered colimits if and only if it preserves di-
rected colimits.

The category Cat is finitely locally presentable, with the set of locally presentable objects
given by the one-element set {2}, where 2 is defined as in 2.1.19. Also, given a small category C,
the functor category SetC is finitely locally presentable. These results can be found in [Bor94b,
5.2.2.f] and [Bor94b, 5.2.2.b] respectively.

2.2 Homotopy Theory on Topological Spaces

Even though the ultimate goal of topology is to classify various classes of topological
spaces up to a homeomorphism, in algebraic topology, homotopy equivalence plays a
more important role than homeomorphism, essentially because the basic tools of alge-
braic topology (homology and homotopy groups) are invariant with respect to homotopy
equivalence, and do not distinguish topologically nonequivalent, but homotopic objects.

– Anatole Katok

In order to understand abstract homotopy theory, one should have a basic knowledge of
the concepts abstract homotopy generalizes. In this chapter we will give a brief recapitulation
of classical homotopy theory on topological spaces, focusing on the concepts we are going to
generalize in the later chapters. This means we will develop an intuition of what cell complexes
and cofibrations are in the classical sense, and why they play an important role in classical
homotopy theory.

This chapter is by no means an introduction to classical homotopy theory, but rather a
collection and reformulation of classical results and definitions the reader should be familiar with
in a more categorical, diagrammatical way.
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2.2.1 A Convenient Category of Topological Spaces

It is a well known fact, that the category of topological spaces features many pathological coun-
terexamples [SS70]. For that reason, there have been many attempts to replace the category of
topological spaces with a more convenient [Ste67] subcategory, excluding some of the patholog-
ical counterexamples one might not want to deal with. From now on, we will denote by Top
the category of compactly generated weakly Hausdorff spaces. There are, however, other equally
suited candidates.

2.2.2 Homotopies in Top

Definition 2.2.1. Let f, g : X → Y be maps in Top, and I = [0, 1] be the unit interval. We say
f is homotopic to g if in either of the following diagrams, the dashed arrow exists, making the
diagram commutative:

X

X × I Y

X

ι0

f

H

ι1

g

Y

X Y I

Y
g

f

h

π0

π1

.

The maps ι0, ι1 denote the respective injections at 0 and 1, and π0, π1 the respective evaluation
maps at 0 and 1. We call the map H a left homotopy and the map h a right homotopy from f
to g and write H : f ⇒ g and h : f ⇒ g, respectively.

In Top the notions of left and right homotopy are equivalent, that is given two maps f, g,
there exists a right homotopy H : f ⇒ g if and only if there exists a left homotopy h : f ⇒ g.
Hence it just justifiable to simply say there is a homotopy from f to g. We will see later, that
this is not necessarily true when dealing with homotopy theories in other categories. Moreover,
homotopy is closed under composition of maps. That is, given morphisms f0, f1 : X → Y and
g0, g1 : Y → Z, such that f0 is homotopic to f1, and g0 is homotopic to g1, then g0 ◦ f0 is
homotopic to g1 ◦ f1 (see e. g. [Str11, Ch. 4.1.4]). We will call a map f : X → Y a homotopy
equivalence if there is a map g : Y → X, such that f ◦g is homotopic to idY and g◦f is homotopic
to idX .

Given any pair of objects X,Y ∈ Top, homotopy induces an equivalence relation on the
morphism sets Top(X,Y ), and due to the previous paragraph, elementwise composition of the
respective equivalence classes is well defined. This leads us to the notion of the homotopy
category:

Definition 2.2.2. The classical homotopy category of Top is the category πTop, whose objects
are the same as in Top, and whose morphisms are homotopy classes of morphisms in Top.

Note that identities in πTop are given by the equivalence classes of identities in Top, hence
homotopy equivalent objects in Top are isomorphic in πTop.

An important class of morphisms when dealing with homotopy theory is the class of Hurewicz
cofibrations, which are given by the homotopy extension property:

Definition 2.2.3. Let i ∈ Top(A,X). We say that i has the homotopy extension property if for
any topological space Y , any f : X → Y , and any homotopy h : A→ Y I satisfying π0 ◦h = f ◦ i,
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there exists a homotopy h̃ : X → Y I , such that p0 ◦ h̃ = f and h̃ ◦ i = h.
That is, given the solid arrow diagram

A Y I

X Y

i

h

π0
h̃

f

the dashed arrow exists, and both triangles commute. The map i is also called Hurewicz cofibra-
tion. If additionally i(A) is closed in X, we say i is a closed cofibration.

There is a different formulation of the homotopy extension property, based on right homo-
topies:

Proposition 2.2.4. Let i ∈ Top(A,X). We say that i has the homotopy extension property
if for any topological space Y , any f̃ : X → Y , and any homotopy H : A × I → Y satisfying
H ◦ι0 = f̃ ◦ i, there exists a homotopy H̃ : X×I → Y , such that H̃ ◦ι0 = f and H̃ ◦(i× idI) = H.
That is, given the solid arrow diagram

A X

A× I X × I

Y

ι0

i

f̃
ι0

H

i×idI

H̃

,

the dashed arrow exists, making the diagram commutative.

Hurewicz cofibrations satisfy several useful properties with respect to homotopy theory, we
will give two of them as propositions:

Theorem 2.2.5. [Str11] Given the solid arrow diagram

A X

Y Z

f

i

γg

j

,

such that g ◦ i is homotopic to j ◦ f . If i is a Hurewicz cofibration, the dashed arrow γ exists,
making the diagram commutative, and there is a homotopy from g to γ.

and

Proposition 2.2.6. [Str11, Cor. 6.50] If in the pushout square

A B

C D

f

i

g

j

i is a Hurewicz cofibration, and f is a homotopy equivalence, then g is also a homotopy equiva-
lence.
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The class of Hurewicz cofibrations is closed under composition and every homeomorphism is a
Hurewicz cofibration, hence the class of Hurewicz cofibrations is also closed under composition
with arbitrary homeomorphisms. Moreover, the class of Hurewitz cofibrations is saturated, which
follows directly from [Col06, Thm 3.1]:

Theorem 2.2.7. The class of Hurewicz cofibrations is closed under retracts, pushouts and trans-
finite composition.

We will make use of this fact.

2.2.3 CW–Complexes
One of the most important tools for doing homotopy theory in Top are CW–complexes. Through-
out this chapter, we will discuss several useful properties supporting this statement.

Definition 2.2.8. Consider the diagram

J : N→ Top

n 7→ Xn

where N is the poset of all natural numbers, X0 is a discrete topological space, and Xn+1 is
constructed from Xn via a pushout ∐

∂Dn+1 Xn

∐
Dn+1 Xn+1

∐
i

αn

jn ,

where i denotes the boundary embedding, and jn is the image of the map n→ n+1 in N under J .
Not that the maps jn are injections, since the space Xn+1 is obtained from Xn by “glueing” the
interiors of the (n+ 1)-discs along the image of their boundary in Xn onto Xn. For that reason,
we say that Xn is obtained from Xn−1 by attaching n-cells. A CW–complex X is a topological
space obtained by taking the colimit X ∼= colimN J . We call the subset Xn ⊆ X the n-skeleton
of X, and we say that X has dimension n if Xn = Xn+k for all k in N.

The disks Dn are called (closed) n-cells of a complex X, and come with a characteristic map
χ : Dn → X defined by the diagram ∐

∂Dn Xn−1

∐
Dn Xn

Dn X

∐
i

αn−1

jn−1

χ

Note that every CW–complex X comes with a sequence

X0
j0
↪−→ X1

j1
↪−→ · · ·

jn
↪−→ Xn

jn+1

↪−−−→ . . . ,

of subspaces Xk and inclusions jk. We call this sequence the CW–structure of the space X. Since
two different sequences may yield (up to homeomorphism) the same space, the CW–structure of
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a CW–complex is not unique and one may choose different CW–structures for the same complex,
depending on the task at hand.

We also want a notion of morphisms between CW–complexes, i. e. maps that preserve the
CW–structure.

Definition 2.2.9. Given CW–complexes X, Y and maps fi : Xi → Yi, such that

X0 X1 · · · Xn · · ·

Y0 Y1 · · · Yn · · ·

f0 f1 fn

commutes, then the map f : X → Y induced by taking the colimit is called a cellular map.

The existence of a CW–structure allows us to prove theorems inductively. For example:

Theorem 2.2.10. [Str11] Let X be a CW–complex, Y ∈ Top and f : X → Y . The map f is
continuous if and only if f|Xn

is continuous for every n in N.

Given CW–complexes X, Y , and an inclusion i : X ↪→ Y , we call i an inclusion of CW–
complexes, and X a subcomplex of Y , if there are CW–structures on X and Y , such that i is a
cellular map.

An important feature of CW–complexes is that any inclusion of a subcomplex is a Hurewicz
cofibration:

Theorem 2.2.11. [Whi49, (J)] Let i : X → Y be an inclusion of CW–complexes, then i satisfies
the homotopy extension property.

Recall that a weak homotopy equivalence is a map f : X → Y that induces an isomorphism
on the homotopy groups, independently of the choice of a base point. That is, the induced map
f∗ : πn(X,x) → πn(Y, y) is an isomorphism of groups for n ≥ 1, and a bijection for n = 0 for
each choice of a basepoints x ∈ X and y ∈ Y , respectively. Whitehead proved in [Whi49] that
weak homotopy equivalences between CW–complexes are homotopy equivalences:

Theorem 2.2.12 (Whitehead Theorem). Let X,Y be CW–complexes, and f : X → Y a
weak homotopy equivalence. Then f is a homotopy equivalence.

2.2.4 Hurewicz Fibrations
The dual concept to Hurewicz cofibrations and the homotopy extension property are fibrations
and the homotopy lifting property. Since our research focuses on cofibrations and cofibrant
objects, we will keep this as brief as possible, and focus on the interplay between fibrations and
cofibrations.

Definition 2.2.13. Let p ∈ Top(E,B) and X ∈ Top, we say the map p has the homotopy
lifting property with respect to X if for any homotopy H : X × I → B, and any map f : X → E,
satisfying p◦f = H ◦ ι0, there is a homotopy H̃ : X×I → E, such that H̃ ◦ ι0 = f and p◦H̃ = H.
That is, given the solid arrow diagram

X

ι0

��

f // E

p

��
X × I H //

H̃

<<

B

,
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the dashed arrow exists and both triangles commute. If p has the homotopy lifting property with
respect to every space X, p is called a Hurewicz fibration.

A lot of the theory of cofibrations can be dualized, for example, the duals of Theorem 2.2.5
and Theorem 2.2.6 hold. That is, replacing the Hurewicz cofibrations with Hurewicz fibrations
and flipping all arrows (cf. [Str11]). However, as noted before the important results with respect
to this thesis are those dealing with the interplay between Hurewicz cofibrations and Hurewicz
fibrations. Most prominently the lifting and factorization properties:

Theorem 2.2.14. [Str11, Thm. 5.42] Every map f : X → Y has factorizations, making every
triangle in the following diagram commute:

X M

E Y

i
f

j

q

p

,

where i and j are Hurewicz cofibrations, p and q are Hurewicz fibrations and i and q are homotopy
equivalences.

Theorem 2.2.15 (Fundamental lifting property). [Str11, Thm. 5.64] Given the solid dia-
gram

A E

X B

i

g

p

f

such that i is a Hurewicz cofibration and p is a Hurewicz fibration. Then the dashed arrow exists
if either i is a homotopy equivalence, or p is a homotopy equivalence.

Later on, we will use both of this properties to define what a homotopy theory is in other
categories than Top. Generally, we say that a map i has the left lifting property with respect to
a class of morphisms M if for every p ∈ M, given the solid arrow diagram in Theorem 2.2.15,
the dashed arrow exists. Dually, a map p has the right lifting property with respect to a class
of morphisms M if for every i ∈ M, given the solid arrow diagram in Theorem 2.2.15, the
dashed arrow exists. We will call a Hurewicz cofibration or fibration trivial if it is also homotopy
equivalence.

Theorem 2.2.16. [Str11, Thm. 5.70]

(i) A map i : A→ X is a Hurewicz cofibration if and only if it has the left lifting property with
respect to all trivial Hurewicz fibrations.

(ii) A map p : E → B is a Hurewicz fibration if and only if it has the left lifting property with
respect to all trivial Hurewicz cofibrations.

(iii) A map i : A→ X is a trivial Hurewicz cofibration if and only if it has the left lifting property
with respect to all Hurewicz fibrations.

(iv) A map p : E → B is a trivial Hurewicz fibration if and only if it has the left lifting property
with respect to all Hurewicz cofibrations.

As a consequence of Theorem 2.2.16, we can define Hurewicz fibrations via their lifting properties
with respect to Hurewicz cofibrations, or vice versa. We will use this to define different notions
of fibrations and cofibrations in Top.



2.2. HOMOTOPY THEORY ON TOPOLOGICAL SPACES 21

2.2.5 Serre Fibrations and Cofibrations
There are different classes of fibrations and cofibrations, whose significance was first shown by
Serre in his thesis [Ser51]. The idea is, that since working with CW–complexes proved to be
useful, one does not need fibrations to satisfy the homotopy lifting property for all spaces, but
rather only for CW–complexes. Moreover, since every weak homotopy equivalence between CW–
complexes is a homotopy equivalence by the Whitehead Theorem (Thm. 2.2.12), we can work
with the larger class of weak homotopy equivalences, instead of just homotopy equivalences.

Definition 2.2.17. Let p : E → B be a morphism in Top. If p has the homotopy lifting property
with respect to every CW–complex, p is called a Serre fibration.

There is an equivalent definition of Serre fibration, which will be useful later on:

Theorem 2.2.18. [Hir15, Prop. 4.4] Let p : E → B be a morphism in Top, then p is Serre
fibration if and only if for every n ≥ 0, given any solid diagram

Dn E

Dn × I B

(id,ι0) p
θ ,

the map θ : Dn × I → E exists, making the diagram commutative.

Theorem 2.2.19. [Hov99, Cor. 2.4.14.] Let X be a topological space, then X → ∗ is a Serre
fibration.

We will call a Serre fibration that is also a weak homotopy equivalence a trivial Serre fibration,
and use Theorem 2.2.16 as the defining property for Serre cofibrations:

Definition 2.2.20. Let i : X → Y be a morphism in Top, then i is called Serre cofibration if
it has the left lifting property with respect to all trivial Serre fibration, and i is called a trivial
Serre cofibration if it has the left lifting property with respect to all Serre fibrations.

Serre fibrations, Serre cofibrations and weak homotopy equivalences enjoy many of the prop-
erties that hold for Hurewicz fibrations, Hurewicz cofibrations and homotopy equivalences. In
fact, one can take any theorem from this chapter and replace Hurewicz with Serre, and homotopy
with weak homotopy and it will still hold.

In particular, there is a different characterization of Serre cofibrations.

Theorem 2.2.21. Let I be the set of all boundary inclusions ∂Dn → Dn. The class of Serre
cofibrations is given by the saturation of I.

Note that a coproduct X
∐
Y is just the pushout of the diagram X ← ∅ → Y , hence every

cellular map between CW–complexes is a Serre cofibration by definition, and every CW–complex
is cofibrant. The class of cofibrant objects is larger than the class of CW–complexes, though:

Definition 2.2.22. A relative CW–complex is a pair (X,A) where X is built according to the
procedure of Def. 2.2.8 but starting with the “(-1)-skeleton” X−1 = A, where A is any topological
space (thus, X0 = A

∐
D, where D is a discrete space).

A generalized CW–complex X is a topological space obtained in a similar manner as a CW–
complex, but with the requirement on the dimension of the attached cells dropped. We can now
give a complete classification of Serre cofibrations and Serre cofibrant spaces:
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Theorem 2.2.23. [Str11, Thm. 15.60] A map i : X → A is a Serre cofibration if and only if it
is a retract of a generalized relative CW–complex.

Theorem 2.2.24. [Str11, Thm. 15.61] The Serre cofibrant spaces are precisely the retracts of
generalized CW–complexes, and are homotopy equivalent to CW–complexes.

Since every homotopy equivalence is also a weak equivalence, when localizing Top with
respect to the class of weak homotopy equivalences we obtain a category that is equivalent to the
homotopy category πTopcf , where Topcf is the full subcategory of Top, whose class of objects
given by the class Serre cofibrant spaces, i. e. retracts of generalized CW–complexes.

2.3 Simplicial Sets
Simplicial sets, an extension of the notion of simplicial complexes, have applications to
algebraic topology, where they provide a combinatorial model for the homotopy theory
of topological spaces.

– Emily Riehl

Simplicial sets—introduced by Gabriel and Zisman in [GZ67]—are a combinatorial variant of
CW–complexes. Instead of gluing together spheres along their boundaries to build a topological
space, simplicial sets are obtained by gluing together simplices along their boundaries. To every
simplicial set X, one can associate a CW–complex |X| and vice versa, given any topological
space Y , one can associate a simplicial set C(Y ). Simplicial sets will play an important role
when establishing a homotopy theory in Cat.

2.3.1 Simplicial Sets as Functors
We will introduce simplicial sets as a specific class of functors. While this definition is the
most natural and very useful for a variety of proofs, it is not very intuitive with respect to
the combinatorial structure. In particular, it is not quite obvious how this definition encodes
“triangles glued together along their boundaries”. We will explain this point of view once we have
introduced the geometric realization of a simplicial set.

Definition 2.3.1. Let ∆ be the following category:

(i) The objects of ∆ are the finite ordinals [n] := {0, 1, 2, ..., n}, n ∈ N.

(ii) The morphisms of ∆ are the non-decreasing maps between finite ordinals.

We call ∆ the simplicial category .

Remark 2.3.2. Note that the epimorphisms p : [m] → [n] in ∆ are simply the non-decreasing
surjections; such an epimorphism has a section, i.e. a morphism s : [n] → [m] such that p ◦ s =
id[n].

Definition 2.3.3. Consider the category ∆. We define the following non-decreasing maps:

(i) ∂in : [n− 1]→ [n] is the increasing injection which does not take the value i.

(ii) σin : [n+ 1]→ [n] is the increasing surjection, which takes the value i twice.

(iii) ιin : [0]→ [n] is the inclusion map, which takes the single element of [0] to i.
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We will call ∂in the ith coface map, σin the ith codegeneracy map, and ιin the ith vertex map.
Furthermore, we will omit the index from notation if domain and codomain do not matter.

Proposition 2.3.4. [GZ67, p.24] Considering the morphisms ∂in and σin, the following equations
hold:

∂jn+1∂
i
n = ∂in+1∂

j−1
n i < j

σjnσ
i
n+1 = σinσ

j+1
n+1 i ≤ j

σjn−1∂
i
n =


∂in−1σ

j−1
n−2

id[n−1]

∂i−1
n−1σ

j
n−2

i < j

i = j or i = j + 1

i > j + 1

(2.1)

Lemma 2.3.5. [GZ67, p.24] Every non-decreasing map f ∈ ∆([m], [n]) can be written in one
and only one way as

f = ∂isn ◦ ∂
is−1

n−1 ◦ · · · ∂
i1
n−t+1 ◦ σ

jt
m−t ◦ · · ·σ

j2
m−2 ◦ σ

j1
m−1 (2.2)

with n ≥ is > · · · i1 ≥ 0, 0 ≤ jt < · · · < j1 < m and n = m− t+ s. We call (2.2) the canonical
decomposition of f .

Example 2.3.6. The canonical decomposition of ιin is given by:

ιin = ∂nn ◦ ∂n−1
n−1 ◦ · · · ◦ ∂

i+1
i+1 ◦ ∂

i−1
i ◦ ∂i−2

i−1 ◦ · · · ◦ ∂
1
2 ◦ ∂0

1

Definition 2.3.7. Let Set be the category of small sets. A simplicial set is a functor X : ∆op →
Set.

It follows directly from the definition, that there is a category of simplicial sets, denoted by
sSet, namely the functor category Set∆op

.
Given a simplicial set X, we write Xn for the image of the object [n] under the functor X, and

call an element σ ∈ Xn a simplex of dimension n, or n-simplex , and Xn the set on n-simplices
of X. We will write τ ∈ X instead of τ ∈ Xn if the dimension does not matter. Furthermore
we write dni and snj instead of X(∂in) and X(σjn) and call the maps dni the face operators, and
the maps snj the degeneracy operators of X. We say that a simplex τ is a face of a simplex σ if
τ = di(σ) for some face operator di.

A 0-simplex is called a vertex of X, and given an n-simplex τ ∈ Xn we write τi for for the
image X(ιin)(τ) and say that τi is the ith vertex of τ . Note that this specifies an order on the
set of vertices of a simplex. In particular, we will visualize a 1-simplex σ as an arrow from d1

1(σ)
to d1

0(σ).

Remark 2.3.8. Let X, T be two simplicial sets. A morphism g : X → T is a natural transforma-
tion g : X ⇒ T , that is a sequence of maps gn : Xn → Tn in Set, satisfying

T d
n
i ◦ gn = gn−1 ◦ Xdni and T s

n
i ◦ gn = gn+1 ◦ Xsni ∀i, n,

where we use left-indices to illustrate to which simplicial set the respective face and degeneracy
operators belong.

Monomorphisms in sSet are precisely levelwise injections, i. e. a morphism f : X → Y is
a monomorphism if every fn : Xn → Yn is an injection. Likewise, epimorphisms are precisely
levelwise surjections.
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Remark 2.3.9. The maps di, si satisfy the following identities:

dni d
n+1
j = dnj−1d

n+1
i i < j

sn+1
i snj = sn+1

j+1 s
n
i i ≤ j

dni s
n−1
j =


sn−2
j−1 d

n−1
i

id

sn−2
j dn−1

i−1

i < j

i = j or i = j + 1

i > j + 1

(2.3)

Example 2.3.10. For each [n] ∈∆, the Yoneda embedding

Y∆ : ∆→ sSet

[n] 7→∆(−, [n])

yields a simplicial set

∆n := Y ([n]) = ∆(−, [n]).

We call this simplicial set the standard n-simplex.

We will denote the image of the face operators ∂ni under the Yoneda embedding Y∆ by
din = Y∆(∂in) = ∆(−, ∂in). Hence, for example, the map di1 : ∆0 → ∆1 is the embedding of the
single vertex of ∆1 at the ith vertex of ∆1

The standard 0-simplex ∆0 is a terminal object in sSet, whereas the initial object is the
unique simplicial set, that consists of the empty set ∅ in each degree. Furthermore, the category
sSet is bicomplete, so all small limits and colimits exits. The only limit construction we will
need are products:

Definition 2.3.11. Let X,Y be simplicial sets, the product X × Y is the simplicial set with
n-simplices given by

(X × Y )n = Xn × Yn
and face and degeneracy operators

di := (Xdi, Ydi)

and

si := (Xsi, Ysi).

Example 2.3.12. Let X,Y be simplicial sets. The function complex XY is the simplicial set given
by

(XY )n := sSet(X ×∆n, Y ) (2.4)

where the face and degeneracy operators are given by

dif = f ◦ (idX ×di)
sif = f ◦ (idX ×si)

Definition 2.3.13. Let X be a simplicial set, an n-simplex τ ∈ X is called degenerate if there
is m-simplex ν ∈ X and an epimorphism µ : [n]→ [m], such that τ = X(µ)(ν).

Proposition 2.3.14. [GZ67, p.26f] For each m-simplex x of X, there is an epimorphism
s : [m]→ [n] and a non-degenerate n-simplex y such that x = X(s)(y). Moreover, the pair (s, y)
is unique.
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2.3.2 Geometric Realization
The geometric realization is a functor |−| : sSet → Top, that associates to each simplicial set
X a corresponding CW–complex |X|. We will first define the n-dimensional topological standard
simplex associated to a finite ordinal [n], and then build the geometric realization of a simplicial
set by gluing together topological standard simplices.

Definition 2.3.15. The geometric realization is a covariant functor |−| : ∆→ Top is given as
follows:

(i) Let [n] ∈∆, define

|[n]| :=

{
(t0, · · · , tn) ⊆ Rn+1

∣∣∣∣∣
n∑
i=0

ti = 1 and ti > 0

}

(ii) Let f : [n]→ [m], define

|f | : |[n]| → |[m]| (2.5)
(t0, . . . , tn) 7→ (s0, . . . , sm) (2.6)

where

sj =
∑
f(i)=j

ti. (2.7)

We will call the image |[n]| the topological standard n-simplex .

We will denote the image of the coface and codegeneracy maps by Di
n :=

∣∣∂in∣∣ and Sin :=
∣∣σin∣∣

respectively.

Definition 2.3.16. The geometric realization is a covariant functor |−| : sSet → Top. On
objects it is defined as follows: given a simplicial set X, let

|X| :=

( ∞∐
n=0

Xn × |[n]|

)
/∼

where the sets Xn are given the discrete topology, and |X| is given the quotient topology with
respect to the relation (x, p) ∼ (y, q) if either

(i) (di(x), p) = (y,Di(q)) or

(ii) (si(x), p) = (y, Si(q)).

We will now give some intuition beyond these definitions, and justify why one should really
think about simplicial sets as combinatorial data on how to glue together simplices to obtain a
topological space. Given a simplicial set X, the space (

∐∞
n=0Xn × |[n]|) is the disjoint union of

topological standard n-simplices, associating a topological standard n-simplex to each n-simplex
in X. The relations (i) and (ii) of Definition 2.3.16 are “gluing instructions”, giving a recipe on
how to glue these simplices together.

We will discuss Relation (i) first: assume that X is a simplicial set. Let σ ∈ Xn, and
τ = di(σ). Relation (i) says, that we glue the (n− 1)-dimensional topological standard simplex
associated to τ onto the ith face of the n-dimensional standard simplex associated to σ, i. e. the
face that is opposite to the geometric realization of the vertex σi.
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Furthermore, given a degenerate n-simplex si(σ) ∈ Xn, then a pair (si(σ), p) is equivalent to
(σ, Si(p)) where Si : |[n]| → |[n− 1]| is a quotient map, mapping the n-dimensional topological
standard simplex to its ith face. Using Lemma 2.3.5, it is easy to see that given any degenerate
simplex σ, the pair (σ, p) will be equivalent to the pair (τ, |s| (p)), where (τ, s) is the unique pair
given by Proposition 2.3.14. Hence, degenerate simplices should be seen as auxiliary constructions
to glue non-degenerate n-simplices along their boundary to non-degenerate (n − k)-simplices,
k > 1.

Example 2.3.17. Consider the simplicial set X, where the non-degenerate simplices are given as
follows:

{x, y, z} ⊆ X0

{τx, τy, τz} ⊆X1

{σ1, σ2} ⊆ X2,

and the face maps with non-degenerate domain are given by

d1
0(τx) = y d1

0(τy) = x d1
0(τz) = x

d1
1(τx) = z d1

1(τy) = z d1
1(τz) = y

and

d2
0(σ1) = τz d2

0(σ2) = τz

d2
1(σ1) = τy d2

1(σ2) = τy

d2
2(σ1) = τx d2

2(σ2) = τx

We leave it up to the reader to convince himself, that these maps satisfy the identities in Re-
mark 2.3.9. Note that X satisfies that every face of a non-degenerate simplex is non-degenerate,
hence we can ignore degenerate simplices when dealing with geometric realization. The relevant
summands of the codroduct

∐∞
n=0Xn×|[n]| are three points, three topological 1-simplices, home-

omorphic to the unit interval [0, 1] ∼= D1, and two 2-simplices, homeomorphic to D2. The face
operators d1

i tell us to glue the three unit intervals in between two different points respectively,
forming a space homeomorphic to a triangle. The face operators d2

i tell us to glue the 2-simplices
along their boundaries onto this triangle. Hence the resulting space is homeomorphic to the
2-sphere S2, and it is easy to see that those gluing instruction provide a canonical CW-structure
for our space |X|.

Example 2.3.18. Consider the simplicial set X, where the non-degenerate simplices are given as
follows:

{x} ⊆ X0

{σ} ⊆ X2,

and the relevant face maps are given by

d0(σ) = s0(x)

d1(σ) = s0(x)

d2(σ) = s0(x)

The geometric realization |X| consists of two non-degenerate simplices, a 0-simplex and a 2-
simplex. The topological 2-simplex associated to σ is glued along its boundary to the 1-simplex
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associated to s0(x). Since s0(x) is degenerate, the associated topological space is equivalent to
the point associated to x. Hence the space |X| is obtained by gluing a standard 2-simplex along
its boundary to a point. This is exactly the standard procedure for obtaining a CW-structure of
a 2-sphere.

From the previous examples it should be obvious, that the geometric realization of a simplicial
set X admits a CW-structure, whenever X is locally finite. That is Xn is finite for all n in N.

We will often deliberately confuse a simplicial set with its geometric realization. In particular,
when drawing a picture of a simplicial set, we actually draw its geometric realization.

The geometric realization has a right adjoint, called the singular functor:

Definition 2.3.19. Given a topological space X, we define the singular complex C(X) to be
the simplicial set given by

C(X)n := Top(|∆n| , X)

with face and degeneracy operators being the obvious choice. The construction can be extended
to a functor C : Top → sSet, called the singular functor , as follows: given a map X

f−→ Y in
Top, the nth component of C(f) is given by

C(f)n : C(X)n → C(Y )n = Top(∆n, f)

Theorem 2.3.20. [GJ99, Prop. 2.2] The singular functor C : Top → sSet is right adjoint to
the geometric realization.

2.3.3 Skeleton and Coskeleton
Similarly to CW–complexes, one can define the n-skeleton of a simplicial set X. This allows us
to introduce the notion of dimension of a simplicial set, which coincides with the dimension of
its geometric realization.

Definition 2.3.21. Let ∆n ⊆∆ be the full subcategory of ∆ with object set

∆(0)
n =

{
[k] ∈∆(0)

∣∣∣ k ≤ n} .

Given a simplicial set X, we obtain the n-truncation of X by precomposition with the embedding
i : ∆n →∆. In particular, precomposition yields a functor

trn : sSet = Set∆ → Set∆n

X 7→ X ◦ i,

which we call the truncation functor .

The truncation functor has a left adjoint

Skn : Set∆n → sSet

and a right adjoint
coSkn : Set∆n → sSet

. We will call the image of a simplicial set X under the the composition Skn := Skn ◦ trn the
n-skeleton of X, and the image under the composition coSkn := coSkn ◦ trn the n-coskeleton of
X.
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Given a simplicial set X, one obtains the n-skeleton by discarding all k-simplices for k > n,
and then adding degeneracies. In particular, one may view the 1-skeleton of a simplicial set as
the free simplicial set on a directed graph, with vertices given by the vertices of the simplicial
set, and oriented edges given by 1-simplices, pointing towards the image of d1

0

The n-coskeleton of a simplicial set X is the smallest simplicial set coSknX with subset
trnX, satisfying that given any map ∂∆k → coSknX, where k > n, there exists a unique map
φ : ∆k → coSknX, making the following diagram commutative:

∂∆k coSknX

∆k

∃!φ .

We say a simplicial set X is n-coskeletal if X ∼= coSknX.

Definition 2.3.22. LetX be a simplicial set. We say thatX has dimension n if n is the smallest
integer satisfying X ∼= SkkX for all k ≥ n.

The dimension of a simplicial set X coincides with the dimension of its geometric realization
|X|. Assume that X has dimension n, then there a no non-degenerate simplices with dimension
k > n. Hence the geometric realization has at most dimension n. On the other hand, the set Xn

contains at least one non-degenerate simplex, since otherwise Skn−1X ∼= SknX. Hence |X| has
at least dimension n.

2.3.4 The Nerve and the Fundamental Category
There is an adjunction between the category of simplicial sets and the category of small categories,
given by the nerve of a category and the fundamental category of a simplicial set. We will use this
adjunction extensively when establishing a homotopy theory on the category of small categories.
People familiar with abstract simplicial complexes may notice that the nerve of a category is a
generalization of the order complex of a poset, whereas the fundamental category is somehow
inverse to the nerve, that is the fundamental category of the nerve of a category is isomorphic
to the original category. Or using the words from Chapter 2.1: the counit is an isomorphism.

Definition 2.3.23. Let C ∈ Cat. The nerve N(C) is a simplicial set given as follows:

(i) The set of vertices is given by the set of objects, i. e.

N(C)0 = C(0).

(ii) The set of n-simplices is given by n-tuples of composable morphisms, i. e.

N(C)n =
{

(f0, f1, . . . , fn−1)
∣∣∣ fk ∈ C(1) and s(fk) = t(fk−1)

}
.

(iii) The face operators dni are given by either removing the first or the last element if i =
0 or i = n, or by composing the ith element with its successor. I. e. given a simplex
(f0, . . . , fn−1) ∈ N(C), we have

dni (f0, . . . , fn−1) =


(f1, . . . , fn−1) if i = 0

(f0, . . . , fi ◦ fi−1, . . . , fn−1) if 0 < i < n

(f0, . . . , fn−2) if i = n

.
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(iv) The degeneracy operators sni are given by including an identity after the ith element. I. e.
given a simplex (f0, . . . , fn) ∈ N(C), we have

sni (f0, . . . , fn) = (f0, . . . , fi−1, ids(fi), fi, . . . , fn).

The nerve construction is functorial, since given a functor F : C → D, there is a canonical map

N(F ) : N(C)→ N(D)

(f0, . . . , fn) 7→ (F (f0), . . . , F (fn)).

It is easy to see, that N(F ) is a morphism in sSet and that given another functor G : D → E ,
we have

N(G) ◦N(F ) = N(G ◦ F )

Accordingly, we call the Functor N : Cat→ sSet the nerve functor .

Example 2.3.24. Let C ∈ Cat be the category

x y z.f

g◦f

g

The nerve of C is isomorphic to the standard 2-simplex, as indicated in Figure 2.3.24. In partic-

x

y

z

(f, g)(f) (g)

(g ◦ f)

Figure 2.1: Nerve of x f−→ y
g−→ z

ular, given [n] ∈ Cat, we have N([n]) = ∆n and |N([n])| ∼= |[n]|.

The nerve construction proved useful in a variety of contexts. For example, let G be a
group, and G the category with one object, and morphism set G. Then the geometric realization
|N(G)| yields the classifying space B(G). Accordingly, the composition |−| ◦ N is often called
the classifying space functor, and the geometric realization of the nerve the classifying space of
a category.

The nerve functor is a right adjoint, and thus commutes with limits. Its left adjoint is given
by the fundamental category functor, defined as follows:

Definition 2.3.25. Let X be a simplicial set. The fundamental category τ1(X) is a quotient
of the free category on the 1-truncation of X with respect to the equivalence relation on the
morphism set generated by

(i) g ◦ f ∼ h ⇐⇒ ∃σ ∈ X2 : d0(σ) = f and d2(σ) = g, and d1(σ) = h and

(ii) s0(x) ∼ idx ∀x ∈ X0.

Theorem 2.3.26. Cat is reflective in sSet
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Figure 2.2: The barycentric subdivision of ∆2

It should be obvious from the definition, that the nerve functor is injective on objects. More-
over, the counit ε : τ0N ⇒ idCat is an isomorphism, since given a category C the 1-trunctation
tr1NC is exactly the original category C, considered as a directed graph. When taking the fun-
damental category, the new compositions added in the procedure are equivalent to the old ones,
since given any pair of composable morphisms f, g, there is a 2-simplex (f, g) in NC, hence the
old compositions are identified with the new ones. Thus by Proposition 2.1.13, N is fully faithful
and N(Cat) a full subcategory in sSet.

2.3.5 Barycentric Subdivision
The barycentric subdivision is a functor Sd: sSet → sSet that maps each simplicial set to a
(topologically) homeomorphic one consisting of more simplices. On a standard n-simplex it acts
as the name suggest, adding a vertex at the barycenter of each k-simplex, and subdividing the
simplex accordingly, as shown in Figure 2.2 for the standard 2-simplex.

Similarly to the geometric realization, we will first give a subdivision of the standard n-
simplex, and the extend the construction to a functor on the whole category. Before giving the
actual definition, though, we need two more auxiliary constructions.

Definition 2.3.27. Let X be a simplicial set, we denote by P(X) the poset of non-degenerate
simplices, ordered by face relation. That is, given non-degenerate simplices σ, τ ∈ X, we say
σ ≤ τ if there is a composition of face operators f : Xdim τ → Xdimσ satisfying f(τ) = σ.

Definition 2.3.28. Let X be a simplicial set. The category of simplices is the comma category
(Y∆ ↓ X), where Y∆ is the Yoneda embedding. That is objects are maps ∆n → X, and
morphisms are given by commutative diagrams

∆n ∆k

X

f

,

where f is a morphism in ∆.

Given a simplicial set X, we can identify P(X) with a subcategory of (Y∆ ↓ X) by identifying
and object τ ∈ P(X) with a morphism φ : ∆dim(X) → X, satisfying φ(X) = τ . We will use this
implicitly in the following lemma:

Lemma 2.3.29. [Hov99, Lemma 3.1.3 and Lemma 3.1.4] Let X be a simplicial set, and either
I = PX or I = (Y∆ ↓ X). The colimit of the diagram I → sSet, taking ∆n → X to ∆n is X
itself.
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Definition 2.3.30. Let X be a simplicial set, and let Sd ∆n := NP(∆n). The barycentric
subdivision SdX is given by the colimit

colim
∆n→X

Sd ∆n,

indexed over the category of simplices of X.

Note that by Lemma 2.3.29, given a standard n-simplex ∆n, both definitions of Sd ∆n coin-
cide, which justifies our abuse of notation. Furthermore, there is a particularly simple description
of the barycentric subdivision of the standard n-simplex, given in [FP10]: the poset P∆n of non-
degenerate simplices is isomorphic to the poset of non-empty subsets of [n], via identification of
a simplex σ with its set of vertices. Thus a k-simplex σ ∈ Sd ∆n is a tuple (σ0, σ1, · · · , σk) of
non-empty subsets of [n], ordered by inclusion and σ is non-degenerate if all σi are distinct. A
non-degenerate m-simplex τ in Sd ∆n is a face of σ if and only if{

τ0, . . . , τm
}
⊆
{
σ0, σ1, · · · , σk

}
.

In Chapter 4 we will use the double subdivision of the the standard n-simplex extensively, thus it
makes sense to have a look at it as well: a k-simplex σ ∈ Sd2 ∆n is a sequence σ = (σ0, . . . , σq),
where each σi is a non-degenerate simplex of Sd ∆n. As before, σ is non-degenerate if all σi are
distinct, and a non-degenerate m-simplex τ is a face of σ if and only if

{τ0, . . . , τm} ⊆ {σ0, σ1, · · · , σk} .

In the following, given the barycentric subdivision of a standard n-simplex, we denote the vertices
of Sd ∆n by non-empty subsets of [n], and vertices of Sd2 ∆n by sets of subsets of [n] rather than
tuples of vertices of ∆n, since every vertex is non-degenerate and the order of the elements will
not matter. For example,

(Sd2 ∆2)0 = {{0} , {1} , {2} , {0, 1} , {1, 2} , {0, 2} , {0, 1, 2}} .

Theorem 2.3.31. Let X be a simplicial set, then τ1 Sd2X is a poset.

Proof. This follows from [LW69, Proposition 8.1] and [FL79, Lemma 3.2].

The barycentric subdivision functor has a right adjoint (cf. [Kan57]), called extension, given
by

Ex(X)n := sSet(Sd ∆n, X).

Even though the extension functor will play a crucial role in establishing a homotopy theory on
Cat, we will not need any of its specific properties, which is why we only give its definition.

2.3.6 Homotopy Theory for Simplicial Sets

A homotopy theory for the category of simplicial sets should be similar to the classical homo-
topy theory on topological spaces in the sense that if two simplicial maps are homotopic, there
geometric realizations should be homotopic in the classical sense. Unfortunately, there are some
complications which will occur with regard to homotopies in sSet.
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Definition 2.3.32. Let f, g : X → Y be simplicial maps, a simplicial homotopy H : f ⇒ g is a
map H : X ×∆1 → Y , making the following diagram commutative:

X ×∆0

X ×∆1 Y

X ×∆0

id×d0

f

H

id×d1

g

.

As opposed to Top, simplicial homotopy does not necessarily induce an equivalence relation
on the morphism set sSet(X,Y ). For example, consider the inclusions i0, i1 : ∆0 → ∆n, mapping
the single vertex of ∆0 to the zeroth and first vertex of ∆n respectively. There is a simplicial
homotopy H : i0 ⇒ i1, given by the inclusion ι : ∆1 → ∆n such that d0(ι(∆1)) = i0(∆0) and
d1(ι(∆1)) = i1(∆0). There is, however, no 1-simplex that could give a homotopy i1 ⇒ i0.

To remedy the situation, we need to identify a class of objects in sSet that is more suited to
do homotopy theory. This leads us to the notion of Kan fibrations and Kan complexes:

Definition 2.3.33. The kth horn Λnk is the simplicial subset of the standard n-simplex ∆n

obtained by removing the single n-simplex ιn ∈ ∆n, its kth face dk(ιn) and their respective
degeneracies.

Definition 2.3.34. Let p : X → Y be a morphism in sSet. We call p a Kan fibration if for each
n ≥ 1, 0 ≤ k ≤ n, for each solid diagram

Λnk X

∆n Y

i pθ

the map θ exists, making the diagram commutative, where i is the canonical inclusion. A
simplicial set X is called Kan complex if the canonical map X → [0] is a Kan fibration.

Note that given a map p : E → B in Top, we can reformulate the condition of Theorem 2.2.18
for p being a Serre fibration, using inclusions of horns and the geometric realization functor: that
is, p is a Serre fribration if for each n ≥ 1, 0 ≤ k ≤ n, for each solid diagram

|Λnk | E

|∆n| P

i p
θ

the map θ exists, making the diagram commutative, where i is the canonical inclusion. By
adjointness, all such diagrams may be identified with diagrams

Λnk C(X)

∆n C(Y )

i C(p)
θ .

Thus, p is a Serre fibration if and only if C(p) is a Kan fibration (cf. [GJ99, p. 11]). The benefits
of identifying Kan complexes should be obvious from the following theorem:
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Theorem 2.3.35. [Cur71, Cor. 1.16] Let X,Y be simplicial sets, such that Y is a Kan complex.
Then simplicial homotopy of maps induces an equivalence relation on sSet(X,Y ).

Aside from Kan fibrations, there is another class of maps that proved useful in homotopy
theory on simplicial sets. The saturated class generated by the set

{Λnk ↪→ ∆n | 0 ≤ k ≤ n, n > 0}

is called the class of anodyne extensions. Anodyne extensions are directly linked to Kan fibrations
via the following theorem:

Theorem 2.3.36. [GJ99, Cor. 4.3] A Kan fibration is a map which has the left lifting property
with respect to all anodyne extensions

We say that a map f : X → Y in sSet is a weak equivalence, precisely if its geometric
realization |f | is a weak equivalence in Top.

Proposition 2.3.37. [GJ99, Thm. 11.2] Suppose f : X → Y is a map in sSet. Then f is a
Kan fibration and a weak equivalence if and only if g has the right lifting property with respect
to all inclusions ∂∆n ↪→ ∆n

Given the set {∂∆n ↪→ ∆n |n ≥ 0}, its saturation is the class of all monomorphisms in sSet.
This is essentially [Hov99, Prop. 3.2.2], although he uses a very different language. If we call
a morphism a cofibration if it is a monomorphism, fibration if it is a Kan fibration, trivial
cofibration if it is a cofibration and a weak equivalence, and trivial fibration if it is a fibration
and a weak equivalence, then Theorem 2.2.14, Theorem 2.2.15 and Theorem 2.2.16 also hold in
sSet, after removing the word Hurewicz, respectively replacing homotopy equivalence with weak
equivalence.

These similarities were the motivation to introduce a general theory of fibrations, cofibrations
and weak equivalences for arbitrary categories, enabling us to do homotopy theory without caring
about the internal structure of the objects in the respective category.
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3

Abstract Homotopy Theory

3.1 Model categories
Model categories, first introduced by Quillen in [Qui67], form the foundation of homo-
topy theory.

– Mark Hovey

Model categories were introduced by Quillen to unify the theory of cofibrant objects in Top,
and the theory of fibrant objects in sSet. As seen in the previous chapters, once we had estab-
lished the notions of fibrations, cofibrations and weak equivalences in Top and sSet, many of the
results we established in Top carried over to sSet. A model structure on a category C consists
of collections of cofibrations, fibrations and weak equivalences subject to certain conditions that
ensure these classes satisfy the same properties as the notions in Top or sSet.

Definition 3.1.1. A model category is a categoryM together with three classes of morphisms:
a class of weak equivalences W , a class of fibrations F , and a class of cofibrations C, satisfying
the following properties:

M1 M is bicomplete.

M2 W satisfies the 2–out–of–3 property, that is given three morphisms f, g, f ◦g, if two of them
are in W , so is the third.

M3 The classes W , F and C are closed under retracts.

M4 We call a map a trivial fibration if it is a fibration and a weak equivalence, and a trivial
cofibration if it is a cofibration and a weak equivalence. Trivial cofibrations have the left
lifting property with respect to fibrations, and cofibrations have the left lifting property
with respect to trivial fibrations.

M5 Every morphism f inM has two functorial factorizations:

a) f = qi, where i is a cofibrations and q is a trivial fibration.
b) f = pj, where j s a trivial cofibration and j is a fibration.

As before, we call an object X cofibrant if the initial map ∅ → X is a cofibration, and fibrant
if the terminal map X → ∗ is a fibration. We say that classes of fibrations, cofibrations and weak
equivalences form a model structure on a categoryM.

35
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The original definition of a model category, as given in [Qui67], was strictly weaker than
Definition 3.1.1, and our definition is closer to what quillen called originally a closed model
category in [Qui67]. Since closed model categories are much more useful and common than
Quillen expected, people started to dropping the word “closed” from the definition, which is a
habbit we adopt here.

We have already seen a few model structures in the previous chapters. The classes of Hurewicz
fibrations and cofibrations, and homotopy equivalences form the Strøm model structure on Top,
and the classes of Serre fibrations and cofibrations together with the weak homotopy equivalences
form the Quillen model structure on Top.

In sSet, Kan fibrations, monomorphisms and weak equivalences form a model structure called
Kan or Quillen model structure. There are, however, model structures that are not as closely
related to traditional homotopy theory as those we have already seen.

Example 3.1.2. Let R be a ring, and ChR be the category of chain complexes of R-modules in
non-negative degree. The projective model structure on ChR is given as follows: let f : M → N
be a morphism in ChR, then f is a

(i) weak equivalence if the induced morphism on homologies is an isomorphism,

(ii) cofibration if it is a monomorphism with projective R–module as cokernel in every degree,
and a

(iii) fibration if it is an epimorphism in every degree k ≥ 1.

From now on, we will denote by Top and sSet the respective model categories carrying the
Quillen model structure, and denote by TopStrom the model category carrying the Strøm model
structure.

Definition 3.1.3. A model categoryM is called

(i) left proper if weak equivalences are preserved by pushouts along cofibrations,

(ii) right proper if weak equivalences are preserved by pullbacks along fibrations, and

(iii) proper if it is left and right proper.

There is a useful theorem that helps identifying left and right proper model categories:

Theorem 3.1.4. [Hir03, Cor. 13.1.3.] LetM be a model category:

(i) If every object ofM is cofibrant,M is left proper.

(ii) If every object ofM is fibrant,M is right proper.

(iii) If every object ofM is fibrant and cofibrant,M is proper.

The model structure on TopStrom is proper, since every object is fibrant and cofibrant. More-
over, sSet is left proper, since every object is cofibrant and Top is right proper, since every object
is fibrant (cf. Theorem 2.2.19). However, sSet and Top are even proper, even though there are
simplicial sets that are not fibrant, and topological spaces that are not cofibrant with respect to
the respective Quillen model structures. These results are shown in [Hir03, Thm. 13.1.13] and
[Hir03, Thm. 13.1.10.] respectively.
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3.1.1 Homotopy Theory in a Model Category
Given a model category M, we can define path and cylinder objects, that allow us to define
homotopies between morphisms in a similar manner to the procedure in Top and sSet:

Definition 3.1.5. LetM be a model category, x, y ∈M.

(i) A cylinder object for x is a factorization

xq x ι0qι1−−−→ Cyl(x)
p−→ x

of the fold map idxq idx : x q x → x such that ι0 q ι1 is a cofibration and p is a weak
equivalence.

(ii) A path object for y is a factorization

y
s−−−−−→ Path(y)

π0×π1−−−−→ y × y

of the diagonal map idy × idy : y → y × y such that s is a weak equivalence and π0 × π1 is
a fibration.

The factorizations from Definition 3.1.5 always exist, due to condition M5 of Definition 3.1.1.
In Top, given a space X, a cylinder object is the space X× [0, 1] whereas path object is given by
the space Top([0, 1], X), endowed with the compact open topology. This is true in both model
structures we have been looking at. In sSet, given a simplicial set X, a cylinder object is the
simplicial set X ×∆1, whereas a path object is given by the function complex X∆1

.
Using path and cylinder objects, we can define left- and right homotopy in a similar fashion

as before:

Definition 3.1.6. Let f, g : X → Y be maps in a model categoryM. We say f is left homotopic
to g if there is cylinder object Cyl(X), and map H : Cyl(X)→ Y , making the following diagram
commutative:

X

Cyl(X) Y

X

ι0

f

H

ι1

g

and we say that f is right homotopic to g if there is a path object Path(Y ), and a map h : X →
Path(Y ), making the following diagram commutative:

Y

X Path(Y )

Y
g

f

h

π0

π1

where ι0, ι1, π0, π1 are given as in Definition 3.1.5. We call the map H a left homotopy and the
map h a right homotopy from f to g and write H : f ⇒ g and h : f ⇒ g respectively.
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Although left and right homotopy have induced an equivalence relation on morphism sets
in Top, we have already seen in sSet, that this is not necessarily the case in other model
structures. There are, however, conditions that ensure that left and right homotopy induce
equivalence relations. Moreover, even though left and right homotopy do not necessarily agree,
they do so under certain conditions:

Theorem 3.1.7. [Hir03, Prop. 7.4.8] Let f, g : X → Y be two parallel morphisms in a model
categoryM.

(i) Assume that X is cofibrant. If there is a left homotopy H : f ⇒ g, then there is also a right
homotopy h : f ⇒ g with respect to any chosen path object.

(ii) Assume that Y is fibrant. If there is a right homotopy h : f ⇒ g, then there is also a left
homotopy H : f ⇒ g with respect to any chosen cylinder object.

Theorem 3.1.8. [Hir03, Prop. 7.4.9] Let X be a cofibrant object in a model category M, and
let Y ∈ M(0) be fibrant. Then the relations of left and right homotopy on M(X,Y ) coincide,
and are both equivalence relations.

Note that in sSet, every object is cofibrant, since given any simplicial set X, the initial map
∅ → X is a monomorphism, and thus a cofibration. Hence, Theorem 2.3.35 follows directly from
Theorem 3.1.8. Given the previous theorems, it makes sense to restrict attention to cofibrant-
fibrant objects, i. e. objects that are both, fibrant and cofibrant. This allows us to give a definition
of homotopy equivalence:

Definition 3.1.9. Given a map X f−→ Y between cofibrant-fibrant objects in a model category
M, we say that f is a homotopy equivalence if there is a map Y g−→ X, such that f ◦g is homotopic
to idY , and g ◦ f is homotopic to idX .

Using this notion of homotopy equivalence, we can give a generalized version of the Whitehead
Theorem:

Theorem 3.1.10 (Whitehead Theorem). [Hir03, Thm. 7.5.10] LetM be a model category,
f : X → Y be a map between cofibrant-fibrant objects. If f is a weak homotopy equivalence, it is
a homotopy equivalence.

Since in Top, every object is fibrant and CW–complexes are cofibrant, we can obtain the
classical Whitehead Theorem (cf. 2.2.12) as a corollary of Theorem 3.1.10. Moreover, we can
deduce that in sSet, every weak equivalence between Kan complexes is a homotopy equivalence.

3.1.2 The Homotopy Category
There are two notions of homotopy categories, and we will start of with the classical definition:

Definition 3.1.11. LetM be a model category. The classical homotopy category πMcf ofM
is the category whose objects are the cofibrant-fibrant objects ofM, whose maps are homotopy
classes of maps inM, and whose composition is induced by composition of maps inM.

Since in the Strøm model structure every object is cofibrant-fibrant, the classical homotopy
category with respect to to the Strøm model structure yields exactly the same category as in
Definition 2.2.2. Whereas in the Quillen model structure, we obtain the category πTopcf as
introduced at the end of Chapter 2.2.5.

There is another notion of a homotopy category, which yields a category equivalent to the
classical homotopy category:
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Definition 3.1.12. Let M be a model category, the localization LW (M) of M with respect
to the class of weak equivalences is called the homotopy category ofM, and will be denoted by
HoM.

There is an important observation about homotopic maps in the homotopy category:

Lemma 3.1.13. [Hir03, Lemma 3.8.4] Let M be a model category, C be an arbitrary category,
and δ : M→ C be a functor that takes weak equivalences inM to isomorphisms in C. If f, g are
morphisms inM such, that f is either left or right homotopic to g, then δ(f) = δ(g).

Thus, in particular, homotopy equivalences in the original model category become identities
in the homotopy category.

Theorem 3.1.14. [Hir03, Thm. 8.3.6] If M is a model category, then there is a construction
of the homotopy category γ : M → HoM such that if X,Y are cofibrant-fibrant objects in M,
M(γ(X), γ(y)) is the set of homotopy classes of maps inM(X,Y ).

We will not give this construction here, and refer the interested reader to the cited source.

Theorem 3.1.15. [Hir03, Thm. 8.3.9] If M is a model category, then the classical homotopy
ofM is equivalent to the homotopy category.

We have already seen an application of this theorem at the end of Chapter 2.2.5. The impor-
tant lesson here is that given a model structure on a category, on can obtain (up to equivalence
of categories) the classical homotopy category without any knowledge about homotopy, simply
by localizing with respect to the class of weak equivalences. There is another important theorem:

Theorem 3.1.16. [Hir03, Thm. 8.3.10] Let M be a model category, γ : M → HoM be the
associated functor to its homotopy category. Given a map f ∈ M, then f is a weak homotopy
equivalence if and only if γ(f) is an isomorphism.

So not only is the homotopy category completely determined by the class of weak equivalences,
but vice versa the class of weak equivalences of a model categoryM completely determined by
the structure of its homotopy category.

3.1.3 Equivalences of Model Categories
Definition 3.1.17. LetM,N be model categories,

F : M� N :G

be an adjunction. We call (F,G) a Quillen pair if F preserves cofibrations and trivial cofibrations,
and G preserves fibrations and trivial fibrations. We will call F a left Quillen functor and G a
right Quillen functor .

Thanks to the following theorem, it is enough to check two of the four conditions for an
adjunction to be a Quillen pair:

Proposition 3.1.18. [Hir03, Prop. 8.5.3] LetM,N be model categories,

F : M� N :G

be an adjunction. Then the following statements are equivalent:
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(i) The pair (F,G) is a Quillen pair.

(ii) The left adjoint F preserves cofibrations and trivial cofibrations.

(iii) The right adjoint G preserves fibrations and trivial fibrations.

(iv) The left adjoint F preserves cofibrations and the right adjoint G preserves fibrations.

(v) The left adjoint F preserves trivial cofibrations and the right adjoint G preserves trivial
fibrations.

Under certain conditions, Quillen functors also preserve weak equivalences

Proposition 3.1.19. [Hir03, Prop. 8.5.7] LetM,N be model categories,

F : M� N :G

be a Quillen pair, then:

(i) the left adjoint F preserves weak equivalences between cofibrant objects, and

(ii) the right adjoint G preserves weak equivalences between fibrant objects.

Since every Hurewicz fibration is also a Serre fibration, and every homotopy equivalence is
also a weak equivalence in Top, the adjunction id : TopStrom � Top : id is a Quillen pair by
Proposition 3.1.18 (iii).

Definition 3.1.20. Let M,N be model categories, F : M � N : G be a Quillen pair, then
(F,U) is a pair of Quillen equivalences if for every cofibrant object x ∈ M, every fibrant object
y ∈ N , and every map f : x → G(y) in M, the map f is a weak equivalence if and only if
the corresponding map φ−1(f) : F (x) → y is a weak equivalence, where φ is the isomorphism
corresponding to the adjunction (F,G, φ). We will call the functors F and G left and right
Quillen equivalence, respectively.

Theorem 3.1.21. [Hir03, Thm. 8.5.23] Let F : M� N :G be a Quillen equivalence, then there
is an induced equivalence of categories LF : HoM� HoN :RG.

Theorem 3.1.22. [Hov99, Thm. 3.6.7] The geometric realization and singular functor define a
Quillen equivalence.

By the previous theorem, Top and sSet have equivalent homotopy categories, thus the
Quillen model structures on Top and sSet yield “the same” homotopy theory. In particular,
we may view homotopy theory on simplicial sets as a reformulation of the classical homotopy
theory on topological spaces.

3.1.4 Cofibrantly Generated Model Categories
Cofibrantly generated model categories are a special class of model categories, where the classes of
fibrations and cofibrations are determined by two generating sets of morphisms I, J , respectively.
While they have the advantage, that one only needs to find those sets to show that a model
structure on a given category exists, they have the disadvantage that one generally does not
have an explicit description of fibrations and cofibrations. Furthermore, there is a useful theory
that, under certain conditions, allows us to “lift” the model structure on a cofibrantly generated
model category along an adjunction, making said adjunction a Quillen pair. We will use that
theory to find a model structure on the category of acyclic categories, and dedicate a part of this
thesis to the task of identifying cofibrant objects in said model category.
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Definition 3.1.23. Let I be a class of maps in a category C. A morphism f in C is

(i) I–injective if it has the right lifting property with respect to all morphisms in I. We denote
the class of I–injectives by I−inj.

(ii) I–projective if it has the left lifting property with respect to all morphisms in I. We denote
the class of I–projectives by I−proj.

(iii) an I–cofibration if it has the left lifting property with respect to every I–injective morphism.
We denote the class of I–cofibrations by I−cof.

(iv) an I–fibration if it has the right lifting property with respect to every I–projective mor-
phism. We denote the class of I–fibrations by I−fib.

We have already encountered some of these classes in the previous chapter. For example, let

I :=

{
Dn (id,ι0)−−−−→ Dn × I

∣∣∣∣n ≥ 0

}
⊆ Top(1),

then I−inj is the class of Serre fibrations, and I−proj is the class of trivial Serre cofibrations.
Moreover, let

J := {Λnk ↪→ ∆n |n > 0, 0 ≤ k ≤ n} ⊆ sSet(1),

then J−inj is exactly the class of Kan fibrations, and J−cof is exactly the class of anodyne
extensions.

Definition 3.1.24. Let I be a class of morphisms in a category with small colimits. A relative
I–cell complex is a transfinite composition of pushouts of elements of I. An object x ∈ C is an
I–cell complex if ∅ → x is a relative I–cell complex.

In Top, consider the set
I := {∂Dn → Dn |n ∈ N} ,

then an I–cell complex is a generalized CW–complex.

Lemma 3.1.25. [Hov99, Lemma 2.1.10] Let I be a class of morphisms in a category C with all
small colimits. Then I−cell ⊆ I−cof.

Definition 3.1.26. [Hir03] Let C be a cocomplete category, D ⊆ C. If κ is a cardinal, then an
object x ∈ C is κ–small relative to D if for every regular cardinal λ ≥ κ and every λ–sequence

X0 → X1 → · · · → Xβ → · · · (β < λ)

in C, such that Xβ → Xβ+1 is in D for every β with β + 1 < λ, the map of sets

colim
β<λ

C(x,Xβ)→ C(x, colim
β<λ

Xβ)

is an isomorphism. We say x is small relative to D if it is κ–small for some ordinal κ. And we
say x is small if it is small relative to C.

In Cat, every object is small and there is an easy way to find an ordinal κ such that the
conditions from the previous definition are satisfied (cf. [FPP08, Proposition 7.6]).

Proposition 3.1.27. Every category C ∈ Cat is κ–small, where

κ = |C(0)|+ |C(1)|+ |C(1)
s×t C(1)|.
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Definition 3.1.28. Let C be a cocomplete category, and I ⊆ C(1) be a set. An object is small
relative to I if it is small relative to the category of I–cell complexes and we say that I permits
the small object argument if the domains of elements of I are small relative to I.

Given a set of morphisms that permits the small object argument, a slightly stronger version
of Lemma 3.1.25 holds (cf. [Hir03, Lemma 10.5.23]).

Theorem 3.1.29. Let C be a cocomplete category and I be a set of morphisms that permits the
small object argument. Then the class of I–cofibrations equals the class of retracts of relative
I–cell complexes.

We have already seen, that I−cell complexes in Top are generalized CW–complexes, where
I is the set of boundary inclusions of n-spheres, hence we obtain Theorem 2.2.24 as a corollary
of Theorem 3.1.29

Definition 3.1.30. A cofibrantly generated model category is a model categoryM such that:

(i) There exists a set I ⊆ M(1), called the set of generating cofibrations, that permits the
small object argument and satisfies F ∩W = I−inj.

(ii) There exists a set J ⊆ M(1), called the set of generating trivial cofibrations, that permits
the small object argument and satisfies F = J−inj.

We have already seen two examples of cofibrantly generated model categories: the first one
is Top, where the sets of generating cofibrations and generating trivial cofibrations are given by

I := {∂Dn ↪→ Dn |n ≥ 0}

and

J := {|Λnk | ↪→ |∆n| |n > 0, 0 ≤ k ≤ n} ,

and the second one is sSet, where the sets of generating cofibrations and generating trivial
cofibrations are given by

I := {∂∆n ↪→ ∆n |n ≥ 0}

and

J := {Λnk ↪→ ∆n |n > 0, 0 ≤ k ≤ n} .

A model category M is called combinatorial if it is cofibrantly generated and locally pre-
sentable. The model categories sSet and Top are both combinatorial.

The following propositions, which were proved in [Hir03, Proposition 11.2.1] and [Hir03,
Proposition 10.5.16], respectively, should give some motivation why a cofibrantly generated model
category is defined the way it is.

Proposition 3.1.31. Let M be a cofibrantly generated model category with generating cofibra-
tions I and generating trivial cofibrations J . Then:

(i) The class of cofibrations ofM equals the class of retracts of relative I–cell complexes, which
equals the class of I–cofibrations.

(ii) The class of trivial fibrations ofM equals the class of I–injectives.
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(iii) The class of trivial cofibrations ofM equals the class of retracts of relative J–cell complexes,
which equals the class of J–cofibrations.

(iv) The class of fibrations ofM equals the class of J–injectives.

Proposition 3.1.32 (The small object argument). Let C be a small category and I ⊆ C(1).
Assume that I permits the small object argument. Then there is a functorial factorization of
every map in C into a relative I–cell complex followed by an I–injective.

Note that given a cofibrantly generated model category, by Proposition 3.1.31 the factoriza-
tions we obtain by applying the small object argument with respect to the sets I and J yield
exactly the factorizations required in M5 of Definition 3.1.1. Although we will not give a full
proof of the small object argument, we want to give a short sketch of how the factorization works
and fix some notation, which we will need in Chapter 3.2.2. Let C be a small category, and I ⊆ C
be a set that permits the small object argument. Given any morphism f : x→ y in C, we obtain
a factorization x→ E∞ → y where x→ E∞ is the transfinite composition of a λ–sequence

x = E0 → E1 → · · · → Eβ → Eβ+1 → · · · (β < λ),

where the Eβ are obtained by pushouts of coproducts of elements of I.
We will end the discussion of cofibrantly generated model categories by giving two theorems.
The first one gives criteria whether sets of morphisms I, J , together with a class of morphisms
W define a model structure on a category C. (cf. [Hir03, Prop. 11.3.1]). The second is commonly
known as Kan’s Lemma on Transfer and allows us to transport a model structure along an
adjunction (cf. [Hir03, Theorem 11.3.2]).

Proposition 3.1.33. Let C be a bicomplete category. Suppose W is a subcategory and that
I, J ⊆ C(1) are sets. Then C is a cofibrantly generated model category with generating cofibrations
I and generating trivial cofibrations J and subcategory of weak equivalences W if and only if the
following conditions hold:

(i) W satisfies the 2–out–of–3 property and is closed under retracts.

(ii) The domains of I are small relative to I–cell.

(iii) The domains of J are small relative to J–cell.

(iv) J−cell ⊆ W ∩ I−cof.

(v) I−inj ⊆ W ∩ J−inj.

(vi) W ∩ I−cof ⊆ J−cof or W ∩ J−inj ⊆ I−inj.

Proposition 3.1.34. Let M be a cofibrantly generated model category with generating cofibra-
tions I and generating trivial cofibrations J . Let N be a category that is closed under small limits
and colimits and let F : M � N :U be a pair of adjoint functors. If we let FI = {Fu|u ∈ I}
and FJ = {Fv|v ∈ J} and if

(i) FI and FJ permit the small object argument and

(ii) U takes relative FJ–cell complexes to weak equivalences

then there is a cofibrantly generated model category structure on N in which FI is a set of
generating cofibrations, FJ is a set of generating trivial cofibrations, and the weak equivalences
are the maps that U takes into weak equivalences inM. Furthermore, with respect to this model
structure, (F,U) is a Quillen equivalence.
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3.2 The Thomason Model Structure

The Thomason model structure on Cat is a cofibrantly generated model structure that is Quillen
equivalent to the model structure on sSet. Thomason first established this model structure in
[Tho80] by lifting the model structure on sSet along a certain adjunction. In 2010, Raptis
managed to establish a Quillen equivalent model structure on Pos in [Rap10].

We will give a brief overview of the Thomason model structure on Cat in the first section of
this chapter, and then establish a Quillen equivalent model structure on the category of small
acyclic categories, following ideas published in [Rap10].

3.2.1 On the Category of Small Categories

Theorem 3.2.1. [Tho80] There is a cofibrantly generated model structure on Cat, with gener-
ating cofibrations and generating trivial cofibrations given by the sets

I =
{
τ1 Sd2 ∂∆n → τ1 Sd2 ∆n

∣∣n ≥ 0
}

and

J =
{
τ1 Sd2 Λnk → τ1 Sd2 ∆n

∣∣n ≥ 1, 0 ≤ k ≤ n
}
,

respectively, such that a morphism is a weak equivalence if and only if Ex2Nf is a weak equiva-
lence in sSet.

We will call the resulting model structure on Cat the Thomason Model Structure. While in
the previous model structures we have encountered the classes of weak equivalences, cofibrations
and fibrations are well-known, in the case of the Thomason Model structure we have only partial
results:

Theorem 3.2.2. [Tho80, Prop. 2.4] Let f be a morphism in Cat. Then f is a weak equivalence
in the Thomason model structure if and only if Nf is a weak equivalence in sSet.

Theorem 3.2.3. [Tho80, Prop. 2.5] Let f be a morphism in Cat. Then f is a fibration in the
Thomason model structure if and only if Ex2Nf is a fibration in sSet.

Using Theorem 3.2.2, it is relatively easy to identify weak equivalences in the Thomason
model structure. However, even though Theorem 3.2.3 gives a necessary and sufficiant condition
for a morphism to be a fibration, it is generally hard to use, since given a category C, the
simplicial set Ex2NC has a much more complicated, internal structure than the simplicial set
NC. Partial results for identifying fibrant objects in Cat are given in [MO15]. We will identify
several classes of cofibrations and cofibrant objects in Chapter 4. For now, we only need one
necessary condition for a map to be a cofibration, using the notion of a Dwyer map:

Definition 3.2.4. Let C be a category, and i : A → C an embedding, i. e. a functor that is
faithful and injective on objects. We call i (as well as its image in C) a sieve if for every y ∈ i(A),
f ∈ C(x, y) implies x ∈ i(A) and f ∈ i(A). If i satisfies the dual condition, it is called a cosieve.

Definition 3.2.5. Let i : A → C be a sieve. We call i a Dwyer morphism if there is a decompo-
sition A f−→ C′ j−→ C of i, such that j is a cosieve in C and there is a retraction r : C′ → A together
with a natural transformation η : fr ⇒ idC′ such that ηf = idf .
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Note that the original definition of a Dwyer morphism by Thomason [Tho80] was stronger,
in the sense that r was supposed to be an adjoint to f . However, the class of Dwyer morphisms
as defined by Thomason is not closed under retracts and hence, in particular, not saturated. In
[Cis99], Cisinski introduced the notion of a pseudo Dwyer morphisms and showed that the class
of pseudo Dwyer morphisms is closed under retracts, and every retract of a Dwyer morphisms is
a pseudo Dwyer morphism. Since the properties of pseudo Dwyer morphisms turned out to be
more desireable than Thomasons notion of a Dwyer morphism, many authors dropped the word
“pseudo” and took Cisinskis notion as the definition of a Dwyer morphism, which is a habit we
will adopt here. The importance of Dwyer morphisms is due to the following theorems:

Theorem 3.2.6. [Rap10, Prop. 2.4 (b)] Let f be a monomorphism in sSet, then τ1 Sd2 f is a
Dwyer morphism.

Theorem 3.2.7. [Rap10, Prop. 2.4 (a)] Let I ⊆ Cat(1) be a class of Dwyer morphisms, then
its saturation is also a class of Dwyer morphisms.

By Theorem 3.2.6 the set I from Theorem 3.2.1 is a set of Dwyer morphisms, and by The-
orem 3.2.7, so is its saturation. Hence a cofibration in the Thomason model structure on Cat
is necessarily a Dwyer morphism. There is another result, giving us a necessary criterion for a
category to be cofibrant in the Thomason model structure:

Theorem 3.2.8. [Tho80, Prop. 5.7] Let C be a small category. If C is cofibrant in the Thomason
model structure, it is a poset.

3.2.2 On the Category of Small Acyclic Categories

An acyclic category is a category without inverses and non-identity endomorphisms. Acyclic
categories have been known under several names. They were called small categories without
loops, or scwols, by Haefliger in [BH99], and loop-free categories by Haucourt [Hau06] and
probably several others. In this thesis we adopt the terminology from [Koz08] and call them
acyclic categories. Aside from the categorical perspective, we can view acyclic categories as
generalized posets, allowing more than one morphism between any ordered pair of objects. We
will establish a model structure on the category of small acyclic categories, that is Quillen
equivalent to the Thomason model structure on Cat. The results of this chapter were previously
published as [Bru15].

We will start off with the definition of an acyclic category:

Definition 3.2.9. A category C is called acyclic if it has no inverses and no non-identity endo-
morphisms.

We denote by Ac the category of small acyclic categories, with morphisms the functors
between acyclic categories. It is obvious that Ac is a full subcategory of Cat. Hence there is a
fully faithful inclusion i : Ac→ Cat. The inclusion i has a left adjoint, called acyclic reflection,
which we construct as follows: given a category C ∈ Cat, define p(C) to be the acyclic category
with object set

p(C)(0) = C(0)/∼o

where ∼o is the equivalence relation generated by x ∼o y if C(x, y) 6= ∅ 6= C(y, x) and morphisms

p(C)(1) = C(1)/∼m
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where ∼m is generated by idx ∼m idy if x ∼o y, and f ∼m idx if f ∈ C(x, y) or f ∈ C(y, x) and
C(x, y) 6= ∅ 6= C(y, x).

Setting id[x] = [idx], it is easy to see that the composition inherited from C is well defined on
p(C), and hence p is well defined on objects. Given a functor F : C → D in Cat the components
induce well defined maps on p(C) via

p(F )([x]) = [p(F (x))] and p(F )([f ]) = [p(F (f))].

This construction yields a functor p : Cat→ Ac, which is left adjoint to the inclusion i. Hence
Ac is reflective in Cat, and we can calculate colimits in Ac by applying the acyclic reflection to
the respective colimits in Cat. That is:

Lemma 3.2.10. Given a diagram D : I → Ac, we have

p(colimI iD) ∼= (colimI D).

Proof. This follows directly from p being a right adjoint, and pi⇒ idAc being a natural isomor-
phism, since then

p(colimI iD) ∼= (colimI piD) ∼= (colimI D).

We will now establish a model structure on the category Ac. For that purpose, we will
show that the inclusion i : Ac → Cat preserves filtered colimits, and that pushouts of acyclic
categories along sieves are again acyclic categories. We will use these features to show that we
can lift the Thomason model structure on Cat along the adjunction p : Cat � Ac : i and obtain
a model structure on Ac.

Proposition 3.2.11. The inclusion i : Ac→ Cat preserves filtered colimits.

Proof. Let D : I → Cat be a filtered diagram such that Di is an acyclic category for every i in
I, and let C = colimI D. At first, we will prove that any endomorphism in C is necessarily the
identity, then we show that now there are antiparallel morphisms in C.
To prove that any endomorphism is an identity, assume that there is an x ∈ C, and an [f ] ∈
C(x, x), such that [f ] 6= id. Hence, there is a category Di, with objects xi, x′i ∈ Di, such that
f ∈ Di(xi, x

′
i) and xi, x

′
i ∈ x. From the description of filtered colimits in Cat, we know that

there is a category Dj and functors F : Di → Dj , G : Di → Dj such that F (xi) = G(x′i). Since
D is filtered, there is a category Dk and a functor H : Dj → Dk such that H ◦ F = H ◦ G.
But Dk is acyclic, and thus H ◦ F (f) = H ◦ G(f) = idH◦F (xi). By Prop. 2.1.27 this yields
[f ] = [idH◦F (xi)] = idx.
We will now show that there are no antiparallel morphisms in C. Therefore we assume that
there are objects x, y ∈ C, together with two morphisms [f ] : x → y and [h] : y → x. By the
construction of filtered colimits in Cat there are categories Di and Di′ such that f ∈ Di(xi, yi),
h ∈ Di′(yi′ , xi′) and [xi] = [xi′ ] = x as well as [yi] = [yi′ ] = y. We will use filteredness of I and
the construction of filtered colimits in Cat to construct the following diagram in five consecutive
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steps:

Di

Fy

��

Fx

%%
Djx

Hx

%%

Dl
M

%%
Dk

E
99

E′ %%

Dm
N // Dn

Djy

Hy

99

Dl′
M ′

99

Di′

Gx

FF

Gy

99

First, by Prop. 2.1.27, there are categories Djx and Djy , together with pairs of functors Fx : Di →
Djx , Gx : D′i → Djx and Fy : Di → Djy , Gy : D′i → Djy satisfying Fx(xi) = Gx(xi′) and Fy(yi) =
Gy(yi′). Using Def. 2.1.24 (i), there is a category Dk together with functors Hx : Djx → Dk,
Hy : Djy → Dk. In particular, we have

Hx ◦ Fx 6= Hy ◦ Fy : Di ⇒ Dk

and
Hx ◦Gx 6= Hy ◦Gy : Di′ ⇒ Dk.

Thus, by Def. 2.1.24 (ii), there are categories Dl and Dl′ , together with functors E : Dk → Dl

and E′ : Dk′ → Dl′ satisfying
E ◦Hx ◦ Fx = E ◦Hy ◦ Fy

and
E′ ◦Hx ◦Gx = E′ ◦Hy ◦Gy.

Again by Def. 2.1.24 (i), there is a category Dm and functors M : Dl → Dm, M ′ : Dl′ → Dm.
Yet again by Def. 2.1.24 (ii) there is a category Dn and a functor N : Dm → Dn satisfying

N ◦M ◦ E = N ◦M ′ ◦ E′.

Putting together the previous equations, we have

N ◦M ◦ E ◦Hx ◦ Fx(xi)

=N ◦M ′ ◦ E′ ◦Hy ◦Gy(xi′) =: xn

and

N ◦M ◦ E ◦Hx ◦ Fx(yi)

=N ◦M ′ ◦ E′ ◦Hy ◦Gy(yi′) =: yn.

Hence

N ◦M ◦ E ◦Hx ◦ Fx(f) ∈ Dn(xn, yn)

and

N ◦M ′ ◦ E′ ◦Hy ◦Gy(h) ∈ Dn(yn, xn),

which contradicts that Dn is an acyclic category. Thus, the subcategory of acyclic categories is
closed under taking filtered colimits, which yields in particular, that the inclusion i : Ac→ Cat
commutes with filtered colimits.
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Lemma 2.1.40 in conjunction with Lemma 2.1.41 yields immediately:

Corollary 3.2.12. The category Ac is locally finitely presentable.

The next step is to prove that pushouts of acyclic categories along sieves in Cat are again
acyclic categories. For that purpose we need a few preparational lemmas. The first of which can
be found in [FL79, Proposition 5.2], the second we will prove here.

Lemma 3.2.13. Given a pushout

A F //

i

��

C

j

��
B G // B qA C

(3.1)

where i : A → B is a sieve, then j is a fully faithful inclusion, i.e. bijective on objects and
morphisms.

Lemma 3.2.14. Given the pushout diagram (3.1), every element [x] ∈ B qA C satisfies either

(i) [x] = {x} and x ∈ B(0) \ i(A(0)), or

(ii) there is one and only one c ∈ C, such that [x] = [c].

Proof. Assumption (i) is obvious, since x has no preimage in A, it is only equivalent to itself.
On the other hand, if x is not in B(0) \ i(A(0)), it has a preimage in A, which has an image in C
and then (ii) follows directly from Lemma 3.2.13.

Proposition 3.2.15. Let B i←− A F−→ C be a diagram of acyclic categories, and assume that i is
a sieve. Then the pushout in Cat is again an acyclic category.

Proof. By Lemma 2.1.33, the pushout of the diagram B i←− A F−→ C is given by the coequalizer

Q of the diagram A
ιB◦i−−−−→−−−−→
ιC◦F

B q C. Where Q is the quotient of B q C by the principal general

congruence (∼o,∼m) generated by the relation ∼ιC◦i=ιD◦F . For the sake of convenience, we
will subsequently ignore the inclusions ιB and ιC from notation, and simply write f ∈ B for a
morphism f in the image ιB(B).
By Lemma 3.2.14, Q(0) ∼=

(
B(0) \ i

(
A(0)

))
q C(0). Hence a morphism f = [(f0, . . . , fn)] in Q

satisfies either

(i) f0, . . . , fn ∈ B \ i
(
A(0)

)
,

(ii) either fi ∈ i(A), or fi ∈ C for every i = 0, . . . , n, or

(iii) there is a 0 ≤ k ≤ n, such that:

fi ∈ i(A) or fi ∈ C for i < k

s(fk) ∈ C(0) qA(0) and t(fk) ∈ B(0)

fi ∈ B \ A(0) for i > k
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In case (i), (f0, . . . , fn) ∼m fn◦· · ·◦f0, since B\i
(
A(0)

)
embeds fully into Q. Thus, in particular,

[t(fn)] 6= [s(f0)] and Q([t(fn)], [s(f0)]) = ∅.
Considering case (ii), we claim that there is a composable sequence of morphisms (h0, . . . , hn)
in C, such that (f0, . . . , fn) ∼m (h0, . . . , hn). Note therefore, that given any ∼o–composable pair
of morphisms fi, fi+1 in B q C, satisfying condition (ii), we have t(fi) ∼o s(fi+1). Hence by
Lemma 3.2.14, there is a unique x ∈ C(0), such that x ∼o t(fi) ∼o s(fi+1). Moreover, since
fi, fi+1 have preimages in A, by Lemma 3.2.13 there are unique morphisms hi = F (i−1(fi))
and hi+1 = F (i−1(fi+1)), such that t(hi) ∼o x. Since t(hi+1) ∼o t(fi+1), and since x ∼o
t(hi) ∼o s(hi+1), and x is unique, hi and hi+1 are composable. Thus there is a composable
sequence (h0, . . . , hn) of morphisms in C, such that (f0, . . . , fn) ∼m (h0, . . . , hn). By definition
of a generalized congruence, (h0, . . . , hn) ∼m hn ◦ · · ·◦h0 =: h. Since h is a morphism in C, and C
embeds fully into Q by Lemma 3.2.13, it follows that s([h]) 6= t([h]). Furthermore, by the same
argument a morphism [(f ′0, . . . , f

′
n)] in Q(t([h]), s([h])) would yield a morphism h′ ∈ C(t(h), s(h)),

which contradicts C being acyclic.
In case (iii), if k = 0, (f0, . . . , fn) ∼m fn ◦ . . . ◦ f0 =: f , since fk has no preimage in A for every
k = 0, . . . , n, hence [fk] = {fk} and thus composition is well defined. Moreover, s(f) 6= t(f) by
construction. And Q(t(f), s(f)) = ∅ since i(A) is a sieve.
If k 6= 0, we can decompose [(f0, . . . , fn)] into [(fk, . . . , fn)] ◦ [(f0, . . . , fk−1)], apply the former
arguments to the individual morphisms and use the fact that s(f0) 6= t(fn) by construction.

Theorem 3.2.16. Consider the morphism sets

I =
{
τ1 Sd2 ∂∆n → τ1 Sd2 ∆n

∣∣n ≥ 0
}

and

J =
{
τ1 Sd2 Λnk → τ1 Sd2 ∆n

∣∣n > 0, 0 ≤ k ≤ n
}
.

in Cat and the adjunction p : Cat � Ac : i. Ac is a proper combinatorial cofibrantly generated
model category with generating cofibrations pI and generating trivial cofibrations pJ . Moreover,
the adjunction (p, i) is a Quillen equivalence.

Proof. Remember that the sets I and J are the generating cofibrations and generating trivial
cofibrations for the Thomason model structure on Cat. By [Tho80, Lemma 5.1], the domains
and codomains of I and J are posets, and by Proposition 3.1.27 κ–small for some finite ordinal
κ. Moreover, by 3.2.6 elements of I and J are Dwyer morphisms. Let f : x→ y be a morphism
in Ac. Since Cat is a cofibrantly generated model category, the small object argument yields

a factorization i(x)
j′−→ E′∞

q′−→ i(y) of i(f) in Cat. We know that κ is finite, that i preserves
filtered colimits (and by Lemma 2.1.41 also directed colimits) and pushouts along sieves, and
that coproducts can be expressed as λ–composable sequences. Thus applying the small object
argument to f in Ac with respect to to pI or pJ yields a factorization x j−→ E∞

q−→ y satisfying
i(j) ∼= j′, i(E∞) ∼= E′∞, and i(q) = q′. Hence, factorizations of morphisms between acyclic
categories in Cat are identical to the inclusions of the factorizations of the respective morphisms
in Ac. In particular, the sets pI and pJ permit the small object argument and satisfy condition
(i) of Proposition 3.1.34.

Furthermore, since Cat is a cofibrantly generated model category, it follows from Lemma 3.1.25
and Proposition 3.1.31 (iii), that every relative J–cell complex is a trivial cofibration in Cat.
Since analogously to the previous reasoning, i maps pJ–cell complexes to J–cell complexes in
Cat, condition (ii) of Proposition 3.1.34 is satisfied. Thus pI and pJ are generating cofibrations
and generating trivial cofibrations for a cofibrantly generated model structure on Ac, and the
adjunction (p, i) is a Quillen pair.
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The category Ac is left proper, because every cofibration is a Dwyer morphism, and pushouts
along Dwyer morphisms in Ac are the same as in Cat by Proposition 3.2.15. The category Ac
is right proper, because Cat is right proper and i is a right adjoint, thus preserves pullbacks.

To show that (p, i) is a Quillen equivalence, note that by Theorem 3.2.8, every cofibrant object
C in Cat is a poset, thus (in particular) an acyclic category. Hence the unit component ηC : C →
ip(C) is an isomorphism. Let φ : Ac(p(C),D) → Cat(C, i(D)) denote the natural isomorphism
associated to the Quillen pair (p, i). Given f : p(C)→ D in Ac, we have φ(f) = i(f) ◦ ηC . Since
W is closed under composition with isomorphisms, the map φ(f) is a weak equivalence if and
only if i(f) is, and by Proposition 3.1.34, the map i(f) is a weak equivalence if and only if f is.
Thus (p, i) is a Quillen equivalence.



4

Cofibrancy in the Thomason Model
Structure

We have already shown that the Thomason model structure can be lifted to a Quillen equivalent
model structure on Pos and Ac, respectively, and we have already seen that every cofibrant
object must be a poset. Since the model structures on Pos, Ac and Cat are cofibrantly generated
by the same classes of generating cofibrations and trivial cofibrations, and pushouts and colimits
along cofibrations yield the same objects in all of those, this implies that all three categories
feature the same class of cofibrant objects.

In [MSZ16, Proposition 6.5] it was proved, that every finite, one-dimensional poset is cofi-
brant, i. e. every poset that has a 1-dimensional nerve. In this chapter we identify various other
classes of cofibrant posets. In Section 4.1, we show that every finite semilattice, every countable
tree, every chain and every finite zigzag is cofibrant and in Section 4.2, we show that every poset
with five or less elements is cofibrant. Moreover, we prove that every inclusion of a minimum
into any of the cofibrant posets we identified is a cofibration.

In the following, when we talk about the Thomason model structure, we mean the Thomason
model structure on either Pos, Ac, or Cat. In particular, when we use the term category, we
refer to an object in any Thomason model structure.

The results of this chapter are joint work with Christoph Pegel, and were previously published
as [BP16]. Moreover, the general idea on how to prove Lemma 4.1.10, as well as the proofs of
Lemma 4.2.4 and Lemma 4.2.11 were provided by Viktoriya Ozornova.

We start this chapter by giving two preliminary results that we will use extensively:

Theorem 4.0.1. The category τ1 Sd ∆n is cofibrant, and every inclusion

ik : [0]→ τ1 Sd ∆n,
0 7→ {k}

is a cofibration.

Proof. This is found in the proof of [Cis99, Lemma 1].

Lemma 4.0.2. Let C be a category. If [0]→ C is a cofibration, C is cofibrant.

Proof. Since [0] lies in the image of τ1 Sd2, [0] is cofibrant, and since cofibrations are closed under
composition, ∅ → [0]→ C is a cofibration and thus, C is cofibrant.

51
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4.1 Trees, Zigzags, Chains and Semilattices
In this section, we proof that every countable tree, every finite zigzag, every chain and every
finite semilattice is cofibrant in the Thomason model structure.

4.1.1 Finite Semilattices
At first, we show that the semilattices constructed from a Boolean lattice by removing either the
top, or the bottom element are cofibrant (Lemma 4.1.3 and 4.1.4, respectively). In Theorem 4.1.5
we use the resulting semilattices to construct arbitrary, finite semilattices as retracts of those.
We start by giving some definitions:

Definition 4.1.1. Let C be a small category, A ⊆ C(0). We denote by C \A the full subcategory
of C with object set C(0) \A. In particular, if A = {x}, we simply write C \ x.

Definition 4.1.2. Let C be a small category. We denote by P(C) the category which is given
by the power set lattice of C(0).

In the following, we will denote the minimal element of P(C) by ∅, as opposed to ∅ to avoid
any confusion on whether we are talking about the minimal element of P(C), or the initial object
in the ambient category.

Lemma 4.1.3. The category P([n]) \ [n] is cofibrant and the inclusion [0]→ P([n]) \ [n] of the
minimum is a cofibration.

Proof. Let ξ : Pos → Cat be the functor which maps a poset P to the lattice of non-empty
chains in P , ordered by inclusion. Then ξ = τ1 SdN and ξ2 = τ1 Sd2N (cf. [Cis99]). Consider
the diagram

[0] ξ[0] [0]

P([n]) \ [n] ξ(P([n]) \ [n]) P([n]) \ [n]

i∅ ι∅ i∅

i p

,

where i∅ and ι∅ are the minima inclusions, and i and p are given as follows: let

A = {m1,m2, . . . ,mk} ∈ P([n]) \ [n]

, such that m1 ≤ m2 ≤ · · · ≤ mk. We set

i(A) = {{∅}, {m1}, {m1,m2}, . . . , {m1,m2, . . . ,mk}}

and given B ∈ P([n]) \ [n], we set p(B) =
⋃
B.

It is easy to see, that p◦i = id, hence i∅ is a retract of ι∅. If we apply ξ to the whole diagram,
we get that ξ(i∅) = ι∅ is a retract of ξ(ι∅), which is a cofibration since ξ(ι∅) = τ1 Sd2N(i∅)
and N(i∅) is a monomorphism in sSet. Hence i∅ is a cofibration and P([n]) \ [n] is cofibrant.

Lemma 4.1.4. The category P([n]) \∅ is cofibrant and the inclusions of the respective minima
are cofibrations.

Proof. Since P([n]) \∅ ∼= τ1 Sd ∆n, this follows from 4.0.1.

Theorem 4.1.5. Every finite semilattice is cofibrant.
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Proof. Let L be a finite join–semilattice. Define

i : L→ P(L) \∅,
x 7→ { y ∈ L | y ≤ x }

and

p : P(L) \∅→ L,

A 7→
∨
A,

where
∨
A denotes the join over all elements of A in L. Then p ◦ i = id, hence L is a retract of

P(L) \ ∅ and since P(L) \ ∅ is cofibrant by Lemma 4.1.4, so is L. Thus every join–semilattice
is cofibrant.

Let M be a finite meet–semilattice. Since Mop is a join–semilattice and P(M) = P(Mop) we
obtain a retract diagram

Mop P(M) \∅ Mopi p ,

where i and p are given as before. Dualizing every object we obtain a retract

M (P(M) \∅)op Miop pop .

But (P(M) \∅)op is isomorphic to P(M) \M , which is cofibrant by Lemma 4.1.3 and hence so
is M .

Corollary 4.1.6. Let S be a finite semilattice, and im : [0] → S an inclusion that maps the
single element of [0] to a local minimum m in S, then im is a cofibration.

Proof. Let L be a finite join–semilattice, m ∈ L be a local minimum. Define

im : [0]→ L,
0 7→ m

and

ιm : [0]→ P(L) \∅,
0 7→ {m} .

We obtain a diagram
[0] [0] [0]

L P(L) \∅ L

im ιm im

i pop

,

where i and p are given as in the proof of Theorem 4.1.5. It is easy to see that every square
commutes and since ιm is a cofibration by Theorem 4.0.1, so is im.

Now let M be a finite meet–semilattice, m ∈M be the minimal element. Define

im : [0]→M ,
0 7→ m
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as before, and

ι∅ : [0]→ P(M) \M ,
0 7→ ∅.

Consider the isomorphisms

(P(M) \∅)op ϕ−→ P(M) \M ψ−→ (P(M) \∅)op,

both of which are given by mapping a subset A ⊆ M to its complement. We obtain a retract
diagram

[0] [0] [0]

M (P(M) \∅)op P(M) \M (P(M) \∅)op M

im ι∅ im

iop ϕ ψ p

,

and since ι∅ is a cofibration by Lemma 4.1.3, so is im.

4.1.2 Chains
Definition 4.1.7. Let C be a category. We call C a chain if C is either isomorphic to a finite
ordinal [n], or to the natural numbers N.

Theorem 4.1.8. Every chain is cofibrant and the inclusion of the minimum is a cofibration.

Proof. Let C be a chain. If C is finite, then it is cofibrant by Theorem 4.1.5 and the inclusion
of the minimum is a cofibration by Corollary 4.1.6. Assume that C is isomorphic to N. We will
construct a sequence

X : N→ Cat,
i 7→ Xi,

(i→ i+ 1) 7→ Fi

such that X0 is cofibrant, colimNX ∼= C, and the map X0 → colimNX is a cofibration and the
inclusion of the minimum, which yields that colimNX is cofibrant. Let X0 = x0. Assume that

Xi = x0
f0−→ x1

f1−→ x2
f2−→ · · · fi−1−−−→ xi

and let D = x→ y. We construct Xi+1 from Xi via the pushout

[0] D

Xi Xi+1

h

f

Fi

,

where f and h are given by f(0) = x and h(0) = xi. Since f is a cofibration by Corollary 4.1.6,
so is Fi. Moreover, since the class of cofibrations is closed under transfinite composition, the map
X0 → colimNX is a cofibration and thus colimNX is cofibrant. Furthermore C is a universal
co-cone for X by construction and thus colimNX ∼= C.
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4.1.3 Finite Zigzags

We will prove that every finite zigzag is cofibrant by showing that a certain class of zigzags is
cofibrant (Lemma 4.1.10) and then glue together arbitrary finite zigzags from elements of this
class (Theorem 4.1.11). At first, we should give a definition of what we mean by a zigzag.

Definition 4.1.9. A zigzag is a category Z, which is generated by a (possibly infinite) directed
graph

· · · ↔ xi−1 ↔ xi ↔ xi+1 ↔ · · ·

where ↔ denotes either an arrow pointing to the left, or to the right.

Alternatively one might say a zigzag is a category generated by a total order

· · · → xi−2 → xi−1 → xi → xi+1 → xi+2 → · · ·

where some of the generating arrows are flipped:

· · · ← xi−2 → xi−1 ← xi ← xi+1 → xi+2 → · · ·

Lemma 4.1.10. Let Z be a finite zigzag with a global maximum, then Z is cofibrant and the
minimum inclusions are cofibrations.

Proof. The claim is trivial for zigzags with one or less elements. Hence let Z be a zigzag with n+2
elements and a global maximum. If Z is isomorphic to [n+ 1], Z is cofibrant by Theorem 4.1.5
and we are done. Otherwise, we can write Z as

Z = x0
f0−→ · · · fi−2−−−→ xi−1

fi−1−−−→ xi
fi←− · · · fn←− xn+1.

Assume without loss of generality that i > n/2. By Theorem 4.0.1, the inclusions

ιk : [0] ↪→ τ1 Sd ∆n,
0 7→ {k}

are cofibrations. We construct Z as a retract of τ1 Sd ∆n and the inclusions i0, in+1 : [0]→ Z of
the minima as retracts of ι0 and ιn, respectively. Define

i : Z → τ1 Sd ∆n,

xk 7→


{0, 1, . . . , k} if k < i

{0, 1, . . . , n} if k = i

{k − 1, k, . . . , n} if k > i

and

p : τ1 Sd ∆n → Z,

σ = {k1, k2, . . . , kp} 7→


x|σ|−1 if 0 ≤ k1, . . . , kp < i

xn+2−|σ| if i ≤ k1, . . . , kp ≤ n
xi else

.
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Then p ◦ i = id and we obtain a retract diagram

[0] [0] [0]

Z τ1 SdN [n] Z

ik ιl ik

i p

where k = l = 0 or k = n+ 1, l = n. Since ι0 and ιn are cofibrations, so are i0 and in+1. Hence
Z is cofibrant by Lemma 4.0.2.

Theorem 4.1.11. Every finite zigzag is cofibrant, and every inclusion of a minimum into a
zigzag is a cofibration.

Proof. Given a zigzag Zn, we prove the claim by induction over the number n of local minima.
If n = 1, Zn is a either a chain, hence cofibrant and the inclusion of the minimum is a cofibration
by Theorem 4.1.8, or can be obtained by gluing together two chains C1, C2 along their minima
via the pushout

[0] C1

C2 Zn

i

j

α

β

where i and j are the respective minimum inclusions. Since i and j are cofibrations by Theo-
rem 4.1.8, so are α and β and thus, in particular, the compositions α ◦ j or β ◦ i.

Now assume that for every n < N , a zigzag with n local minima is cofibrant, and every
inclusion of a minimum is a cofibration. Let ZN be a zigzag with N local minima. There is a
zigzag ZN−1 with N −1 local minima, and a zigzag Z with a global maximum, such that we can
construct ZN via a pushout

[0] ZN−1

Z ZN

i0

kN−1

ι

κ

,

where i0 and kN−1 are inclusions of local minima, hence cofibrations. Thus, so are ι and κ and
therefore also the compositions

∅ → Z κ−→ ZN ,

[0]
i0−→ Z κ−→ ZN ,

[0]
i1−→ Z κ−→ ZN ,

and

[0]
kj−→ ZN−1

κ−→ ZN , j = 1, . . . , N − 1,

where i1 is the other minimum inclusion of Z, and kj are the minimum inclusions of ZN−1.

Remark 4.1.12. Since the map ι from the previous proof is a cofibration, we can construct some
infinite cofibrant zigzags with a countable number of objects via transfinite composition, similar
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to the methods used in proof of Lemma 4.1.10. There are, however, zigzags where this will not
work.

Assume that Z is a countable infinite zigzag, with a finite number N of local maxima. If

Z = · · ·� xi−1 → xi ← xi+1 ← · · · ,

such that there are no more local extrema to the right of xi, then Z is not constructable as a
pushout along a cofibration using the methods from the previous proof.

4.1.4 Posets Generated by Directed Trees

By a directed tree, we mean a directed graph which is also a rooted tree, satisfying that every
edge points away from the root. There is a natural poset structure on the set of vertices: given
two vertices x, y, we say that x ≤ y if and only if the unique path from the root to y passes
through x. We call the resulting poset the poset generated by the tree.

Note that there is a natural grading on the resulting poset structure, where the rank of an
element x is given by the length of the minimal chain including x and the root. We will now
show, that any such poset is cofibrant in the Thomason model structure, and that the inclusion
of the root is a cofibration:

Theorem 4.1.13. Every countable poset generated by a directed tree is cofibrant, and the inclu-
sion of the root is a cofibration.

Proof. Let T be a countable poset generated by a directed tree, and rk : T → N the associated
rank function. We define a sequence

X : N→ Cat,
i 7→ Xi,

(i→ i+ 1) 7→ Fi,

such that X0 is cofibrant, colimNX ∼= T and the map X0 → colimNX is cofibrant and the
inclusion of the root, which yields that T is cofibrant. For that purpose, let X0 be the category
with a single object r, and no non–identity morphisms. Assume that Xi is a subposet of T
that contains all elements with rank lower or equal to i. If the rank of T is lower than i, we
set Xi+1 = Xi. Otherwise we construct Xi+1 from Xi as follows: Let J ⊆ T be the set of all
elements with rank i. Given j ∈ J , we define

Kj := { t ∈ T | rk(t) = i+ 1 and t ≥ j } ,

i. e. the set of all rank i+ 1 elements that are smaller than j. Let D = x→ y. We obtain Xi+1

via the pushout

∐
j∈J

( ∐
k∈Kj

[0]

) ∐
j∈J

( ∐
k∈Kj

D

)

Xi Xi+1

h

∐
j∈J

 ∐
k∈Kj

f



Fi
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where the maps f and h are given by

f : [0]→ D,
0 7→ x,

and

h :
∐
j∈J

 ∐
k∈Kj

[0]

→ Xi

(0k)j 7→ j.

Since f is a cofibration, so is
∐
j∈J

(∐
k∈Kj

f
)
and hence Fi. Thus the transfinite composition

X0 → colimNX—which is also the inclusion of the root—is a cofibration. Hence by Lemma 4.0.2,
colimNX is cofibrant. Furthermore T is a universal co-cone for X by construction, which finishes
the proof.

4.2 Cofibrant Objects with a Fixed Number of Elements

In this section, we proof that every poset with five or less elements is cofibrant and that their
respective inclusions of minima are cofibrations. Most of those posets are already covered by
previous theorems, so there are only a handful of posets which we have to construct by hand.
Before starting with the proofs, we need a small lemma which we use throughout this section.

Lemma 4.2.1. Let Q be a poset, A ⊆ Q a subset and i : A → [n] an injective map of sets. Let
furthermore

m : N(
∐
a∈A

[0])→ ∆n

0a 7→ i(a)

be a map in sSet. If there is a retract h :
∐
a∈A[0] → Q of τ1 Sd2m satisfying h(0a) = a, then

the poset P obtained by the pushout ∐
a∈A

[0] [0]

Q P

h
α

is cofibrant, and the inclusion α is a cofibration.

Proof. Since m is a monomorphism, τ1 Sd2m is a cofibration and thus, so is h. Hence α is a
cofibration and by Lemma 4.0.2, P is cofibrant.

4.2.1 Posets with Four or Less Elements

Theorem 4.2.2. Every poset with three or less elements is cofibrant, and every inclusion of a
local minimum into one of those posets is a cofibration.
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Proof. Every connected poset with three or less elements is a semilattice, hence cofibrant by
Theorem 4.1.5 and the inclusions are cofibrations by the Corollary 4.1.6. Furthermore, since
coproducts of cofibrant objects are cofibrant, every poset with three or less elements is cofibrant.

Theorem 4.2.3. Every poset with four elements is cofibrant, and the respective inclusions of
minima are cofibrations.

Proof. Every poset with four elements that is a coproduct of cofibrant posets is cofibrant, hence
every disconnected poset with four or less elements is cofibrant by Theorem 4.2.2. Up to iso-
morphism, there are ten connected posets with four elements. Eight of those are semilattices,
hence cofibrant by Theorem 4.1.5, and their respective inclusions of minima are cofibrant by
Corollary 4.1.6.

The only two posets that are not semilattices are

P1 =

y1 y2

x1 x2

and P2 =

y1 y2

x1 x2

.

Let

D =

y

x

and E =

a

b1 b2

.

We construct P1 from D and E via the pushout

[0] D

E P1

ιb1

ιx

α

β

,

where ιb1 and ιx are given by ιb1(0) = b1 and ιx(0) = x respectively. Since ιb1 and ιx are
cofibrations by Theorem 4.2.2, so are α and β and hence—in particular—the compositions with
the respective inclusions of minima into D and E and every inclusion of a minimum into P1 can
be written as such a composition.

Regarding P2, consider the pushout

τ1 Sd2 ∂∆1 [0]

τ1 Sd2 ∆1 P2

h α ,

where h is the usual boundary inclusion. Since h is a cofibration, so is α. Hence by Lemma 4.0.2,
P2 is cofibrant. Note that α is one of the inclusion 0 7→ xk, and since P2 is symmetric, the other
inclusion has to be a cofibration as well.

4.2.2 Posets with Five Elements
In this section, we will show that every poset with five or less elements is cofibrant, and that
every inclusion of a minimum into one of those is a cofibration. As before, we only have to
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consider posets that are connected. According to the Chapel Hill Poset Atlas1, there are up
to isomorphism 44 connected posets with five elements. 25 of those are semilattices. Of the
remaining 19, nine can be constructed via simple pushouts in a similar fashion to P1 in the
previous proof, i. e. by gluing a category with two elements and a single non-identity morphism
between those two to a cofibrant poset with four elements. Of the remaining ten, one is τ1 Sd2 ∆1.
To see that the inclusion of {{0, 1}} is a cofibration, we have to construct it by gluing two copies
of the poset E from the previous section together at one of their respective local minima.

There are nine posets left that have to be considered separately. Those are

P1 =

y1 y2

x1 x2 x3

, P2 =

y1 y2

x1 x2 x3

,

P3 =

z

y1 y2

x1 x2

, P4 =

z1 z2

y1 y2

x

,

P5 =

z1 z2

y

x1 x2

, P6 =

y1 y2 y3

x1 x2

,

P7 =

z

y1 y2

x1 x2

, P8 =

z1 z2

y1 y2

x

,

and P9 =

z

y1 y2

x1 x2

.

Lemma 4.2.4. The poset P1 is cofibrant, and every inclusion of a minimum into P1 is a cofi-
bration

Proof. Let

P̃ =

y1 y2

x2a
x1 x3 x2b

,

1http://www.unc.edu/~rap/Posets/index.html

http://www.unc.edu/~rap/Posets/index.html
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and

h : τ1 Sd2 ∂∆1 → P̃ ,
{{0}} 7→ x2a

,
{{1}} 7→ x2b

.

Then P1 is given by the pushout diagram

τ1 Sd2 ∂∆1 [0]

P̃ P1

h ix2
,

where ix2(0) = x2. We have to show that h is a cofibration. For that purpose, let

m : ∂∆1 → ∆2,
0 7→ 0,
1 7→ 2

in sSet. Since m is a monomorphism, τ1 Sd2m is a cofibration. We will construct h as a retract
of τ1 Sd2m. Consider the embedding of P̃ into τ1 Sd2 ∆2 given as follows:

x2a
x2b

x3

x1

y2

y1

.

Folding this along the axis between x1 and x2b
, we obtain

x2a
x2b

x3

x1

y2

y1

.
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From here, it is easy to see that we can obtain h as a retract of τ1 Sd2m as indicated in the
diagram above. Hence ix2 is a cofibration and by symmetry, so is ix3 : [0] → P1, given by
ix3

(0) = x3. Thus by Lemma 4.0.2, P1 is cofibrant.
To show that the inclusion

ix1
: [0]→ P1,

0 7→ x1

is a cofibration, we need to construct P1 differently. Consider the poset Q given by

Q =

y1 y2

x1 x2

,

and let

f : τ1 Sd2 ∂∆1 → Q,
{{0}} 7→ y1,
{{1}} 7→ y2.

Taking the pushout

τ1 Sd2 ∂∆1 Q

τ1 Sd2 ∆1 P̃

h

f

α ,

where h is the usual boundary inclusion, we obtain the poset P̃ given by

P̃ =

z1 z2

y1 y2 y3

x2 x1

The map ιx1
: [0] → Q, given by ιx1

(0) = x1 is a cofibration by Theorem 4.2.3, and since h is a
cofibration, so is α and in particular the composition α ◦ ιx1 . We will construct ix1 as a retract
of α ◦ ιx1 . For that purpose, let

i : P1 → P̃

x1 7→ x1, x3 7→ y2,
x2 7→ x2, yk 7→ zk

and

p : P̃ → P1

x1 7→ x1, y1 7→ y1, z1 7→ y1,
x2 7→ x2, y2 7→ x3, z2 7→ y2,

y3 7→ y2.

It is easy to see that p ◦ i = id and that this gives ix1 as a retract of α ◦ ιx1 .



4.2. COFIBRANT OBJECTS WITH A FIXED NUMBER OF ELEMENTS 63

Lemma 4.2.5. The poset P2 is cofibrant, and every inclusion of a minimum into P2 is a cofi-
bration.

Proof. Let

m : ∂∆1 → ∆1,
0 7→ 0,
1 7→ 1

in sSet. Since m is a monomorphism, τ1 Sd2m is a cofibration. Let Q be the poset

b1 b2

a1 a2

.

Consider the pushout diagram
τ1 Sd2 ∂∆1 Q

τ1 Sd2 ∆1 P̃

τ1 Sd2m

ib

α

β

,

where ib is given by ib({{k}}) = bk. The poset P̃ is given by

P̃ =

y1

z1

x1 x2 x3

z2

y2

and the map α by

α : Q→ P̃ ,
a1 7→ x1,
a2 7→ x3,
bk 7→ yk

Since τ1 Sd2m is a cofibration, so is α and in particular the compositions α ◦ ιak , where

ιak : [0]→ Q,
0 7→ ak

for k = 1, 3. Let

ixk
: [0]→ P2,

0 7→ xk,
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where k = 1, 2, 3. We will construct ix1 as a retract of ιb1 via the retract diagram

[0] [0] [0]

P2 P̃ P2

ix1
ιb1 ixk

i p

,

where i and p are given as

i : P2 → P̃ ,
xk 7→ xk,
yk 7→ yk,

and

p : P̃ → P2,
xk 7→ xk,
yk 7→ yk,
zk 7→ yk.

It is easy to see that p ◦ i = id. Hence ix1 is a cofibration and by symmetry, so are ix2 and ix3 .

Lemma 4.2.6. The poset P3 is cofibrant, and every inclusion of a minimum into P3 is a cofi-
bration.

Proof. We will give two constructions of P3. One for each of the inclusions of x1 and x2 respec-
tively. Let

P̃1 =

z y2

y1 x2 x1b

x1a

and P̃2 =

z

x2a y1 x1

y2 x2b

.

Similar to the proof of P1 being cofibrant, we construct cofibrant maps

hk : τ1 Sd2 ∆1 → P̃k,
{{0}} 7→ xka ,
{{1}} 7→ xkb

as retracts of an inclusion τ1 Sd2m : τ1 Sd2 ∂∆1 → τ1 Sd2 ∆2, and then obtain P3 via pushouts

τ1 Sd2 ∂∆1 [0]

P̃k P3

hk

f

α

β

.
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Let

m : ∂∆1 → ∆2,
0 7→ 0,
1 7→ 2.

We obtain h1 as a retract of τ1 Sd2m as indicated in the diagram below

x1a
x1b

x2

y1
y2z

,

and h2 as a retract of τ1 Sd2m as follows:

x2a
x2b

x1

y2

y1

z

.

Note that we skipped the step where we apply the folding from the proof of Theorem 4.2.4. Since
m is a monomorphism in sSet, τ1 Sd2m is a cofibration and thus, so is hk for k = 1, 2.

Lemma 4.2.7. The poset P4 is cofibrant, and every inclusion of a minimum into P4 is a cofi-
bration.

Proof. Again, we have to construct P4 twice, once to show that the inclusion

ix : [0]→ P4,
0 7→ x

is a cofibration, and once to show that

iy2 : [0]→ P4,
0 7→ y2
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is a cofibration.
We will start with ix. Let D = x→ y, and Q be the poset given by

Q =

z2

y1 y2

z1

.

We obtain P4 via the pushout

[0] D

Q P4

ιy1

ιy

α

β

,

where ιy(0) = y and ιy1(0) = y1. Since ιy1 is a cofibration by Theorem 4.2.3, so is α and hence
in particular the composition ix = α ◦ ιx where ιx : [0]→ D is given by ιx(0) = x.

To show that iy2 is a cofibration, let P̃ be the poset

P̃ =

z1 z2

y2a y1 y2b

x

.

We will use the same procedure as before, i. e. construct the two–point embedding

h : τ1 Sd2 ∆1 → P̃ ,
{{0}} 7→ y2a

,
{{1}} 7→ y2b

as a retract of a two–point embedding into the folded τ1 Sd2 ∆2 as indicated by the following
diagram:

y2a
y2b

x

y1
z1 z2

.

Then apply Lemma 4.2.1 to glue P̃ together at y2a and y2b
.

Lemma 4.2.8. The poset P5 is cofibrant, and every inclusion of a minimum into P5 is a cofi-
bration.
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Proof. Let

Q1 =

z1 z2

ya

and Q2 =

yb

x1 x2

and

ιxk
: [0]→ Q2,

0 7→ xk

for k = 1, 2. Then we can construct P5 via the pushout

[0] Q2

Q1 P5

ιyb

ιya α ,

where ιya and ιyb are given by ιya(0) = ya and ιyb(0) = yb. Since ιya is a cofibration by Corol-
lary 4.1.6, so is α and thus in particular the compositions α ◦ ixk

for k = 1, 2. By Lemma 4.0.2,
P5 is cofibrant and the minima inclusions are cofibrations.

Lemma 4.2.9. The poset P6 is cofibrant, and every inclusion of a minimum into P6 is a cofi-
bration

Proof. Let Q be the poset

Q =

y1b

x2

y2

x1 x3

y1a
y1c

,

and let h :
∐3
i=1[0]→ Q be the inclusion with image {y1a

, y1b
, y1c
}. We obtain h as a retract of

m : N(

3∐
i=1

)[0]→ τ1 Sd2 ∆2,

0k 7→ {{k}}
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as indicated by the following diagram:

y1a
y1b

y1c

x2

x1 x3

x2

We can construct P6 via the pushout

∐3
i=1[0] [0]

Q P6

h α .

Hence by Lemma 4.2.1, P6 is cofibrant and the inclusion of y1 into P6 is a cofibration and by
symmetry, so is the inclusion of y2.

Theorem 4.2.10. The poset P7 is cofibrant, and every inclusion of a minimum into P7 is a
cofibration.

Proof. Let Q be the poset

Q =

c1

b1

a1 c2 a2

b2

c3

.

We will obtain a cofibrant embedding

ix1 : [0]→ P7,
0 7→ x1
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as a retract of the inclusion

ιa1 : [0]→ Q,
0 7→ a1,

and ιa1 as a pushout of a retract of the boundary inclusion τ1 Sd2 ∂∆2 → τ1 Sd2 ∆2. We will
start with the embedding of the folded boundary into the folded τ1 Sd2 ∆2:

{{0, 1, 2}}

{{0, 1}}

Folding again at the axis between {{0, 1}} and {{0, 1, 2}} as indicated in the diagram above, we
obtain

.

We will denote the resulting inclusion by m : B → S. We obtain the poset Q by taking the
pushout

B [0]

S Q

m ιa1
,

and since m is a cofibration, so is ιa1 . Let

i : P7 → Q,
xk 7→ ak,
yk 7→ bk,
z 7→ c2

and

p : Q→ P7,
ak 7→ xk, c1 7→ y1,
bk 7→ yk, c2 7→ z,

c3 7→ y2.
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Then p ◦ i = id and the diagram

[0] [0] [0]

P7 Q P7

ix1
ιa1 ix1

i p

commutes. Thus, ix1
is a cofibration and by symmetry, so is ix2

: [0]→ P7, given by ix2
(0) = x2.

Applying Lemma 4.0.2 yields that P7 is cofibrant.

Lemma 4.2.11. The poset P8 is cofibrant, and the inclusion of the minimum into P8 is a
cofibration.

Proof. Let Q and R be the posets given by

Q =

z1 z2

y1 y2 y3

x

and R =

y1 y2

x

and let

h : R→ Q,
y1 7→ y1,
y2 7→ y3,
x 7→ x.

Consider the embedding m : ∆1 → ∆2 that maps ∆1 to the 1-simplex between 0 and 1. We
obtain h as a retract of τ1 Sd2m as indicated by the following diagram (where we skipped the
usual folding and the image of τ1 Sd2m is located at the bottom of the diagram):

xy1 y3

y2
z1 z2

.

Now let D = x→ y, and

f : R→ D,
yk 7→ y,
x 7→ x.
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We obtain P8 via the pushout

R D

Q P8

h

f

α .

Since m is a monomorphism in sSet, τ1 Sd2m is a cofibration and hence, so is h. Thus α is a
cofibration, and since the inclusion ιx : [0] → D given by ιx(0) = x is a cofibration, so is the
composition ix = α ◦ ιx, which is the inclusion of the minimum into P8. Hence by Lemma 4.0.2,
P8 is cofibrant.

Theorem 4.2.12. The poset P9 is cofibrant, and every inclusion of a minimum is a cofibration

Proof. Let

P̃ =

z

y1 y2

x1a
x2 x1b

and

h : τ1 Sd2 ∂∆1 → P̃ ,
{{0}} 7→ x1a ,
{{1}} 7→ x1b

.

Then P9 is given by the pushout diagram

τ1 Sd2 ∂∆1 [0]

P̃ P9

h ix1
,

where ix1
is the inclusion given by ix1

(0) = x1. Let furthermore

h : ∂∆1 → ∆2,
0 7→ 0,
1 7→ 1

in sSet. We obtain h as a retract of τ1 Sd2m as indicated by the following diagram:

x1a
x1b

x2

y1 y2

z

.

Hence h is a cofibration and thus, so is ix1
(and by symmetry, so is ix2

: [0] → P9, given by
ix2

(0) = x2). So by Lemma 4.0.2, P9 is cofibrant.
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Combining all of our previous results, we have proved the following theorem:

Theorem 4.2.13. Every poset with five or less elements is cofibrant, and the respective inclu-
sions of minima are cofibrations.



Appendix A

Appendix

The posets on the following pages are mostly computer generated with the data pulled from
Chapel Hill Poset Atlas. We denote the posets by their generating graphs. That means that
we will only use anonymous nodes, instead of named objects and will only draw the minimal
generating set of arrows, i. e. those arrows, that are indecomposable.

Moreover, when arranging the objects, we put our focus on avoiding crossing arrows.

A.1 Posets with Four or Less Elements
There is exactly one poset with one element, and one connected poset with two.

There are three connected posets with three elements, and all three are semilattices:

.

There are ten connected posets with four elements, eight of those are semilattices, namely:

.

and the remaining two are the posets P1 and P2 from Theorem 4.2.3:

.

A.2 Posets with Five Elements
There are 44 connected posets with five elements, 25 of those are semilattices and listed below:

73
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.

Of the remaining 19, nine can be constructed by gluing the connected poset with two elements
along its minimum to a cofibrant poset with four elements. Those are

.

Of the remaining ten, one is τ1 Sd2 ∆1:

.

The remaining nine are the posets P1 to P9 from Section 4.2.2.
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.
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closed model category, 36
cocomplete, 11
cocone, 9
codegeneracy map, 23
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directed, 14
complete, 11
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coproduct, 9
coslice category, 7
counit, 8
CW–complex, 18

characteristic map, 18
dimension, 18
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n-skeleton, 18

cylinder object, 37

degeneracy operators, 23
diagram, 9

shape, 9
directed, 14
Dwyer morphism, 44
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equivalent, 6
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face operators, 23
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function complex, 24
functor

contravariant, 5
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Top, 16
homotopy equivalence, 38
homotopy extension property, 16, 17
homotopy lifting property, 19
Hurewicz cofibration, 17
Hurewicz fibration, 20
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index category, 9
initial object, 9

Kan complex, 32
Kan fibration, 32
Kan model structure, 36

λ-sequence, 14
left lifting property, 20
left Quillen functor, 39
limit, 9
localization, 8

model category, 35
combinatorial, 42
left proper, 36
proper, 36
right proper, 36

model structure, 35
monomorphism, 4

n-truncation, 27
natural equivalence, 6
natural transformation, 6
nerve functor, 29
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path object, 37
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projective model structure, 36

pullback, 10
pushout, 10

Quillen equivalence, 40
Quillen model structure
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Quillen pair, 39
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relative I–cell complex, 41
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right Quillen functor, 39

saturated class, 14
generated by a set, 14
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section, 22
Serre cofibration, 21
Serre fibration, 21
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simplicial set, 23

barycentric subdivision, 31
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n-simplex, 23
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product, 24
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degenerate, 24
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singular complex, 27
singular functor, 27
slice category, 7
small, 41
small object argument, 42
small relative to D, 41
Strøm model structure, 36
subcategory, 6
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reflective, 8
wide, 6

subcomplex, 19

terminal object, 9
Thomason Model Structure, 44
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