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Abbreviations: PV, photovoltaic; SDM, Single Diode Model; 
DDM, Double Diode Model; TDM, Three Diode Model; EA, 
Evolutionary Algorithm; RMSE, Root Mean Square Error; ANN, 
artificial neutral network; EA, evolutionary algorithm; MAE, mean 
absolute error; RAE, relative absolute error; MOOP, multi objective 
optimization problem; SSE, sum of squared error; GA, genetic 
algorithm; RGA, real coded genetic algorithm; IFSDE, improved 
free search differential evolution; PSO, particle swarm optimization; 
AFSA, artificial fish swarm algorithm; ABC, artificial bee colony; 
ABSO, artificial bee swarm optimization algorithm; HMCR, harmony 
memory considering rate; PAR, pitch adjustment rate; GGHS, 
grouping-based global harmony search; TLBO, teaching learning 
based optimization; GOTLBO, generalized oppositional teaching 
learning based algorithm

Introduction
The rapid combustion of fossil fuels for energy generation 

could led to serious environmental issues such as accumulation of 
greenhouse gases in the atmosphere, acid rain, depletion of the ozone 
layers and climate change globally.1−5 The solar photovoltaic (PV) has 
shown the great potential for the replacement fossil fuels to meet the 
energy demand in many countries globally especially in the area of 
distributed electric power generation.

The theoretical modeling and computer simulation of PV systems 
are essential to understand the output characteristics, efficiency and 
performance and to analyze the system with the variation of solar 
insolation, temperature.3−6 The Single diode (SD), double diode (DD) 
and triple diode (TD) equivalent circuit models have been discussed 
in many literatures to understand the non-linear current-voltage (I-V) 
and power-voltage (P-V) characteristics of the PV system. The most 
commonly used PV model is the SDM model due to simplicity and 
reasonable accuracy. However, at lower irradiance levels and varied 
temperatures, the accuracy of the SDM deteriorates closely to the 
open circuit voltage (VOC).4−5 This model is represented by parameters 
of the generated photocurrent (IPV) connected in parallel to the diode, 
saturation current flow through the diode (ID), series resistance (RS), 

shunt resistance (RSH), and ideality factor (a).2−6 The addition of 
an extra diode to the SDM is known as the Double Diode Model 
(DDM) which is capable to improve the accuracy of the PV system 
and the extra diode accounts for the recombination current losses at 
the depletion region. The DDM is represented by seven parameters 
namely as; reverse saturation currents of two diodes (I01 and I02), 
diode ideality factors: diffusion (a1) and recombination (a2), IPV, RS, 
RSH.3,5,7 A third diode is added to the DDM known as TDM which 
represents the critical non-idealities of solar cells for the occurrence of 
leakage current at the grain boundary and surface of solar cells.7−8 The 
accurate estimation of the PV parameters using the model is required 
in order to simulate the behaviour and evaluate the performance of 
the PV system both standard test conditions (STC) and real measured 
conditions with the variation of temperature and irradiation.3−8 
Estimating PV parameters can cause decisions to be made wrongly in 
terms of sizing of the power converters and instability in controllers.10

The modelling parameters of the PV could be extracted from 
datasheet information given by PV manufacturers at STC and from 
the measured data.7 However, the conventional methods for estimating 
parameters of all solar cell is classified as Analytical method and 
Numerical method.11 When using the analytical method, several key 
points information’s of the I-V curve is required such as open circuit 
voltage (Voc), short-circuit current (Isc), voltage and current values at 
maximum Power Point (MPP), and the axial intersection slopes of 
the I-V curve.13 This method offers simple and faster computation of 
the PV parameters.2 The accuracy of this method relies mainly on the 
chosen points on the I-V curve, wrongfully selection of these points 
can give the result with significant errors.13 The numerical method 
is based upon the simulated I-V curve fitting onto the experimental 
curve using iterative algorithm. This method is computationally 
expensive since the process of fitting all points on the I-V curve is 
relatively large.13−14 The accuracy of this method depends on the value 
of the initial extracted parameters, cost function and fitting algorithm. 
The limitations of the conventional parameter extraction method are 
the loss of its ability to give accurate output values when the model 
parameters increase.13,15 The detailed discussion of the analytical 
and the numerical methods can be found in references.3,11,14,16,17 The 
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Abstract

In recent years, significant amount of research has been done on the Evolutionary Algorithms 
(EA) to accurately estimate the parameters of the solar PV module. The equivalent electrical 
circuit model and the accuracy of the model parameters of the PV system are essential to 
understand the output characteristics, efficiency, and performance and to analyse the system 
with the variation of temperature and irradiation. This review article initially introduces 
the single diode, double diode and triple diode electrical equivalent circuit models of the 
PV and compares their advantages and disadvantages. Moreover this study will review 
the different EAs such as bio-inspired based, swarming based, chemistry/physics based 
and hybridization based algorithms to extract the model parameters of the PV system. 
Hybridized EAs provide better accuracy but exhibit slow convergence speed. Some EAs 
has the advantage of faster computational time and convergence speed compared to others. 
Much emphasis is given on the search range and control parameters setting of the algorithms 
since they ultimately control the performance of EAs. 
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Artificial Neutral Network (ANN) is a method to estimate the PV 
parameters using only temperature and insolation readings. Accuracy 
of this method deteriorates when other environmental conditions such 
as shading occurs.18 A recent research suggests that the Evolutionary 
Algorithm (EA) approach would give better accuracy and reliability to 
estimate the PV parameters .17−24 The drawbacks of adopting analytical 
and numerical methods can be resolved using the stochasticity nature 
of EA which estimates optimal PV parameter values by minimizing 
the predefined objective function.12,15 The nomenclature review 
of EA was presented in literature,16 where the authors outlined the 
different types of EA. Furthermore, litereature3 reviewed the objective 
functions, types of electrical models, search ranges of parameters and 
types of data used for EAs and their hybrid forms. This paper presents 
more objective function such as search ranges, the different settings 
of EAs control parameters, the statistical analysis of the PV (which is 
not given in References 3,17). This paper also highlights the various 
improvements and contributions by different technical literature for 
the SDM, DDM and TDM.

PV Model
It is essential to develop a mathematical model that represents 

accurately the I–V and P-V behaviour of the PV module.13 Several 
electrical equivalent circuit models of the PV have been discussed in 
literatures to understand the non-linear I-V and P-V characteristics but 
in practice the more commonly used models are the SDM and DDM.15

Single diode model (SDM)

The equivalent circuit of a PV cell consists of a current source 
in parallel with a single diode and two resistances: shunt and series 
resistance as shown in Figure 1.

Figure 1 Single diode equivalent circuit model of the PV.

The SDM model is capable to define the entire I-V and P-V curve 
of a cell, module or array as a continuous function for a given set 
of operating conditions. The output current of the PV cell can be 
calculated using the equation;2−9
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Double diode model

The Double Diode Model (DDM) as shown in Figure 2 could give 
better I-V & P-V accuracy over SDM for low level irradiation.3,5,7 The 
model is known as seven parameters model and the seven parameters 
are : I01 represents the first diode reverse saturation currents, I02 the 
second diode reverse saturation current, a1 and a2 the two diode 
ideality factors, IPV, RS, and RSH.16 The output current of the DDM can 
be expressed as3,4,14,15
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Figure 2 Double diode equivalent circuit model of the PV.

T Varshney et al.,22 proposed a simplified DDM considering both 
diode reverse saturation currents to be same (i.e I0 = I01 = I02) which 
will reduce the model parameters from seven to four (i.e IPV, I0, RS, and 
RSH). The ideality factor a1 and a2 are set to unity and greater than 1.2 
respectively based on Shockley’s diffusion theory. Ultimately it will 
improve the accuracy and reduce the computational speed. Mahmoud 
et al.7 agrees with the assumptions made by Varshney et al.,22 for 
both reverse saturation currents and diode ideality factor. However, 
Sarkar25 and Ishaque et al.,4 proposed the first diode ideality factor a1 
to equals 1 and the second diode ideality factor a2 equals 2 based on 
the approximation of Shockley-Read-Hall, to reduce the number of 
unknown PV cell parameters. Nishioka et al.,26 agrees with setting the 
value of a1 to unity and a2 to equals 2 according to workings of Sarkar25 
and Ishaque et al.4 However, Nishioka et al.,26 modified the series 
resistance (RS) into three resistances: RS1 connected to the first diode, 
RS2 connected to the second diode and Rsub represents the microscopic 
resistive inhomogeneity at the diode recombination junction.

Three diode model

The Three Diode Model (TDM) was first proposed by Nishioka 
et al.,26 to account for the current leakage through the peripheries of 
a small sized solar cell. The parameter of this circuit is increased to 8 
variable parameters and one fixed parameter. The variable parameters 
are : r for recombination ratio, J01, J02, J0P are the first diode, second 
diode and third diode recombination current parameters respectively, 
RP represents series resistance connected to the third diode, RS1, RS2, 
RSH. The parameter of Rsub is set as a fixed parameter.26 The TDM is 
depicted in Figure 3 and the output current can be defined by25
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Figure 3 Triple diode equivalent circuit model of the PV.

The attempt of simplifying the TDM was proposed by Sarkar25 
by estimating the parameters similarly to the SDM and DDM. The 
proposed parameters were IPV, RS, RSH, I01, I02, n1, n2, with the addition 
of n3 – ideality factor of the third diode and I03 – reverse saturation 
current of third diode. The modified TDM as proposed by Jolson 
Singh K et al.,18 is said to having eight variable parameters of RP, 
RS1, RS2, RSH, J0P, J01, J02, r and having Rsub as a fixed parameter. The 
series resistance of this model is varied in accordance to the given 
equation ( )0 *  1S SR R KI= + of which the current value I depends 
on the contrast of the load current. Azab17 developed a modified TDM 
by improving upon the SDM, adding two more diodes to be modelled 
as simple piecewise linear. The three diodes use voltage controlled 
resistors that operate on both on and off states.

Formulated PV parameters optimization 
problem

The process of estimating parameters of PV models from measured 

I-V data and manufacturer’s datasheet is defined as “Parameter 
estimation problems of PV models”.3 However, when implementing 
the optimization algorithms subclass of Evolutionary Algorithms 
(EAs) to estimate PV parameters, the formulated problem is known as 
“Parameter optimisation problems of PV models”.2,3 The procedure of 
implementing various EAs to accurately solve the given optimisation 
problems of PV models is based on fulfilling the three criteria’s of 
defining the solution of the chosen model (i.e SDM, DDM, TDM 
expressed in section 3.1.), Specifying the search range due to the 
stochasticity nature of EAs (detailed in sections 3.2.) and Setting a 
predefined objective function as detailed in section 3.3.28 The main 
reason of using EAs, is to estimate optimal parameters of PV models, 
whereby the estimated parameter values from EAs are simulated. The 
difference between the experimental data curve and the calculated 
data curve is minimized using the objective function.29 

Solution for PV parameters extraction

The SDM, DDM and TDM are all expressed in Eqs. (1)-(3) as 
non-transcendental implicit equations of which has no expressible 
analytical solution for the current and voltage variable. In order to 
simplify the computational complexity and develop an explicit 
solution for the electrical models, the method of exchanging the 
calculated current parameter from the right hand side of Eqs. (1)-(3) 
with the experimental current data is adopted.30 The newly re-written 
Eqs. (4)-(6) are known as the error function of the SDM, DDM and 
TDM. The derived error functions are given as the difference between 
the extracted and the experimentally measured current value.29 
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For DDM,
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For TDM,
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From the Eqs. (4)-(6), x represents a vector solution 
for each parameter extraction problem, whereby for the 

[ ]0 PV S SHSDMx I R R I a= , for the [ ]01 1 02 2 PV S SHDDMx I R R I a I a=  

and for the [ ]01 1 02 2 03 3 .PV S SHTDMx I R R I a I a I a=  The given solutions 

of Eqs. (4)-(6) are used by many authors of EAs for PV parameter 

estimation of the SDM, DDM and TDM.2,11,13,15,16,29,30 However, the 
solution presented by Khanna et al.,8 for the TDM is different because 
it accounts for 10 parameters as discussed form section 2 previously. 
The error function for the proposed TDM by Khanna et al.,8 is given 
in Eq (7).

For TDM- Khanna et al.8
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The following section defines the search ranges for the five 
parameters of the SDM and in some literatures the search range for 
the DDM.

Search bound range for PV parameters

When implementing Evolutionary Algorithms (EAs) to Eqs (4)-(6), 
it is important to define the search range of each individual parameter 
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of PV models. The ranges are defined for the upper and lower bound 
search space to estimate accurately the desired PV parameter.31 Based 
on the PV cell technology, authors of different technical literature have 
adopted various assumptions to set the upper and lower bound search 
range. The most commonly used I-V experimental data is obtained 
from the PV cell technology of a 57 mm diameter silicon solar cell 
(R.T.C France) implemented by Easwarakhanthan et al.32 When using 
the R.T.C France experimental data, the decision variables for the 
SDM and DDM are given in the ranges below.
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Results using this search range were implemented.6,28,30,33−37 
However, Hachana et al.,38 presented similar search range for IPV and 
RSH as the previous authors for the 57 mm diameter silicon solar cell 
(R.T.C France), but proposed a broader search range for the series 
resistance (RS), diode currents (I0, I01, I02) and diode ideality factors (a, 
a1, a2) as given below:
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Unlike Hachana et al.,38 Ma J.,11 defined and presented a much 
narrower search range for the 57 mm diameter silicon solar cell 
(R.T.C France) for the SDM and DDM as follows:
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Gong et al.,34 and Chen et al.,30 defined the search range for a 57 
mm diameter silicon solar module (R.T.C France) as follows:
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Hachana et al.,38 presented the variable search range for SDM and 
DDM Photowatt PWP 201 PV module as follows:
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Ma J11 proposed the search ranges for extracting both the SDM and 
DDM parameters narrower for the Photowatt PWP 201PV module 
which is made up of 36 polycrystalline silicon cells as follows:
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Muhsen et al.,2 assumed the SDM parameters search area for 
the KC120-1 multicrystalline 120 (Wp) PV module to be within the 
ranges as follows:
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Kashif et al.,13 proposed the parameter search range for six different 
PV technologies of thin film (ST36 and ST40), monocrystalline 
(SQ150PC and SM55) and multi-crystalline (S115 and S75). However 
the data obtained for these PV technologies were both synthetic and 
experimental data. The parameter search range for the synthetic data 
was set at a broader range given as follows:
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In the case of considering the experimental data obtained from 
the six different technologies, the search range is set by using the 
datasheet information to calculate the lower bound values. The lower 
bound values are determined using the following expressions:
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Where at STC ISC is the short circuit current, VMP voltage value 
at maximum power, IMP current value at maximum power, KV and Ki 
are temperature coefficient of voltage and current respectively. Eqs 
(8)-(10) are expressed at STC and as such, the series resistance equals 
zero. These established relationships helps setting the parameters 
search range as follows:
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Alam et al.,29 defined the parameters search range for thin film 
(ST40), monocrystalline (SM55), multi-crystalline (KC200GT) and 
SM40_14A2 PV technologies similarly to Muhsen et al.,2 using the 
assumptions of Eqs (8)-(10) at STC. The decision variable range is 
expressed as follows:
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Cong et al.,39 and Wei40 replaced the STC conditions for Eqs(8)-
(10) for a commercial silicon solar cell at temperatures 24oC to 
summarize the estimated parameters for the SDM. These estimated 
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parameters of SDM were used for setting the parameters search range 
as follows:

a)	 IPV search range is set from ±1% to ±5% of the ISC value.

b)	 I0, I01, I02 search range is set from 0 to ±10% the ISC value.

c)	 RS search range is set from ±1% to ±5% of the measured slope 
parameter when voltage tends to VOC.

d)	 RSH search range is set from ±1% to ±5% of the measured slope 
parameter when current tends to ISC.

e)	 a, a1, a2 search range is set from ±0.5 to ±2.0. 

Ishaque et al.,31 defined the search range of RS, RSH and a for mono-
crystalline (SM55), multi-crystalline (S75) and thin film (ST40) PV 
technologies. Parameters of IPV and I0 are calculated from the estimated 
parameters of RS, RSH and a. The search ranges is set as follows:

     
( ) [ ] ( ) [ ],0.11  , 100,  3000  , 1,  2 .S SHR R a  ∈ Ω ∈ Ω ∈

Qin et al.42 presented similarly the search range as in the workings 
of Ishaque et al.,31 for the SDM for the three parameters of RS, RSH 
and a for a solar array field testing data. The search range was set as 
follows:

	
( ) [ ] ( ) [ ],0 20  ,   10,  200  , 0,  2 .S SHR R a∈ Ω ∈ Ω ∈  

Ma et al.11,42 defined the parameters search range based on 
assumptions made from different technical literature. The PV module 
technologies in consideration are 57 mm diameter silicon solar cell 
(R.T.C France), Photowatt PWP 201 and KC200GT PV module. 
For SDM and DDM parameters the I0, I01 and I02 are assumed to be 
less than 50µA . photocurrent is assumed slightly larger than the ISC 
at STC. Series resistance is set to be less than 0.5 Ω . The ranges 
of shunt resistance RSH and diode ideality factor a are given as 

[ ] ( )5,  170  ,SHR ∈ Ω   [ ] ( )0,  0.5  ,SR ∈ Ω  [ ]1,  2 ,a∈  [ ]2 1,  2 .a ∈  
[ ]2 1,  2 .a ∈  Similarly to the workings of Ishaque et al.,31 Ismail et 

al.,43 defined the search range for estimating three parameters of RS, 
RSH and a. The PV module technologies implemented were thin film 
(ST 40), multi-crystalline (Kyocera KC200GT) and monocrystalline 
(HIT-215). Parameter ranges are defined as follows:

( ) [ ] ( ) [ ],0.011.2  , 50,  1000  , 1,  2 .S SHR R a∈ Ω ∈ Ω ∈  
Ishaque et al.,44 defined the search range for both the synthetic 

and experimental data for the multi-crystalline (KG200GT) PV 
technology. The decision search range variables for the SDM and 
DDM are set as follows:
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Muhsen et al.,45 proposed a broader search space similarly to the 

Muhsen et al.,2 for the 120 Wp multicrystalline KC120-1 PV module. 
The parameter search space for the SDM and DDM are given as 
follows:
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S SH
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I e e A I e e A
R R
a a a

∈ ∈ − −
∈ − − ∈ − −
∈ Ω ∈ Ω

∈ ∈ ∈
Han et al.,46 proposed for the polycrystalline TSM-250PC05A PV 

module the search range much narrower for the SDM and DDM. The 

defined ranges are bounded as follows:
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Hultmann et al.,47 set the search range for a PV system having 160 

PV cells connected in series. The SDM search range is set as follows:

[ ] ( ) [ ] ( )
[ ] ( ) [ ] ( ) [ ]00,  1.5  ,                  0,  1 6  , 

1,  2 .
0,  0.5  ,                  0,  100  ,               

PV

S SH

I A I e A
a

R R
∈ ∈ −

∈
∈ Ω ∈ Ω

Dizqah et al.,48 detailed the search range for the SDM similarly 
to Ishaque et al.,31 by setting the decision variable search range for 
RS, RSH and a. The three PV technologies used were polycrystalline 
KC200GT (Kyocera), thin film ST40 (SHELL) and monocrystalline 
E20/333 (Sunpower). Decision variable for KC200GT (Kyocera) is 
set as follows:

	      

( ) [ ] ( )
[ ]

,0.0011  ,  50,  1100  , 

1,  2 .
S SHR R

a

∈ Ω ∈ Ω

∈

  

Unlike Ismail et al.,43 and Alam et al.,30 as discussed previously, 
Dizqah et al.,48 set the parameter range narrower. The setting of the 
thin film ST40 (SHELL) search range as compared to Ishaque et al.,31 
and Kashif et al.,13 is considerable similar for the diode ideality factor 
and series resistance. However, the shunt resistance is noticeable set 
within a smaller range. The decision variables are given as follows:

	

( ) [ ] ( )
[ ]

,0.0011  ,  50,  550  ,

1,  2 .
S SHR R

a
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The search range for the monocrystalline E20/333 (Sunpower) PV 
module is given as follows:

	

( ) [ ] ( )
[ ]
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S SHR R

a

∈ Ω ∈ Ω

∈
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Jiang et al.,49 proposed the parameter search range for both the 
SDM PV solar cells and PV modules. A multicrystalline solar cell 
search range that is used for simulating experimental I-V data at 
different varied irradiance is defined as follows:
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The search range for the 57 mm diameter silicon solar cell (R.T.C 
France)32 and a (78 x 24) mm multicrystalline solar cell is defined as 
follows:49
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A much wider search range is set especially for the shunt resistance 
RS and diode ideality factor a parameters is set for silicon solar module 
(R.T.C France)32 as follows:49
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The search range proposed by Jiang et al.,49 was given for a 
commercial silicon PV module (SL80CE36M) having 72 solar 
cells connected in series to implement for varied temperature and 
irradiance. The decision variable search range is set as follows: 
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Objective function

Objective function is usually introduced to effectively evaluate 
the performance of an implemented EA method.15 During the process 
of implementing EA, the defined objective function is minimized 
in respect to the given search range.28 Among numerous published 
papers, the commonly used objective function is the Root Mean 
Square Error (RMSE)2,11,13,15,28−30,32−38,40,44−47,49−56. The RMSE is 
formulated to evaluate the deviation of the extracted parameter values 
from the experimental data.2 The objective function defined as RMSE 
is represented by Eq. (11)

		
( )2

1

1 , , 
N

i
RMSE J V I x

N =

= ∑  		          (11)

Where V and I are the voltage and current experimental values 
respectively; x is the vector that represents the PV model parameters 
that are optimized by the proposed EA.2,11,13 Ideally the value of the 
RMSE is desired to be zero, because a smaller RMSE implies minimal 
deviation of the computed and experimental data.11

The objective function sometimes referred to as the fitness function 
was proposed differently by Khanna et al.,8 as Mean Absolute Error 
(MAE). During the process of optimization, MAE is given as the 
measure of error and ideally desired to be zero value. MAE is defined 
by:

	     

 1
N

calculated experimentali
I I

MAE
N

−== ∑  		          (12)

Where, N represents the number of experimental points, Icalculated 
is the current calculated using the estimated parameters and 
Iexperimental represents the experimental current values.8 Awadallah et 
al.,12 formulated the objective function as Relative Absolute Error 
(RAE). The RAE was chosen in by these authors because it requires 
no mathematical derivation, no testing and cover a wide range of 
operating conditions. RAE is represented as follows:
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1

 
 Ci Ti

Tii

X X
RAE

X=

−
=∑  		          (13)

Where the ith targeted and computed index is given as XTi and 
XCi respectively. Ishaque et al.,31 and Sudhakar et al.,59 expressed the 
objective function (J) in terms of maximum power of PV module with 
respect to voltage in Eq(14).

 		  m( , I )mp p

mp
V

mp

IdIJ
dV V

= + 		           (14)

Where Vmp and Imp represents the voltage and current at MPP. Cong 
et al.,39 Wei et al.,40 and Ulaganathan et al.,60 proposed the objective 
function for extracting the vector parameters x for the SDM as follows:

		   ( ) ( )2
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H x I I
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(15)

Where N is given as the data points, Ic and Im are the calculated 
and measured current respectively. Ismail et al.,43 expressed the 
objective function for the experimental and calculated data as the 
average absolute error. The absolute error is calculated at different 
temperatures, irradiance and voltage. The average absolute error is 
given by:

	
( ) ( )( )
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 , , , /      

p

ave j j j j j
j

Error abs I curve I V G T DV p
=

= −∑  (16)

Where, p is given as the number of data points,

Ij is the experimental current or current obtained from manufacturer 
datasheet, Ij(Vj, Gj, Tj, DV) is the current at the specific irradiance Gj, 
voltage Vj, temperature Tj and at decision variable vector DV. Patel 
et al.,61 expressed the objective function similarly to Eq(16) at only 
the specified voltage Vk and vector variables. Eq(17) expresses the 
objective function at the total number of voltage points (p) as follows:
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	          (17)

Patel et al.,61 proposed the objective function for the SDM similarly 
to the workings of Ismail et al.,42 for estimating three parameters of 
IPV, I0 and a at the specific voltage. The formulated objective function 
is given in Eq(18), taking into account the RS and RSH variables are 
fixed.
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 	          (18)

Dizqah et al.,48 introduces the phenomena of multi objective 
optimization problem (MOOP) by combining the conflicting objectives 
at STC and NOCT to formulate the objective function. The STC and 
NOCT objectives are given in Eq(19) and Eq(20) respectively:
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The combined MOOP of both STC and NOCT objectives to 
formulate the objective function is given as follows:

   
( ) ( ) ( ){ }1 1 1 2 2 2, , , pv pv pv pv pv pvJ v i w J v i w J v iθ θ= +  			 

						              (21)

El-Naggar et al.,62 Al Rashidi et al.,63 Louzazni et al.,64 and Al 
Rashidi et al.,65 formulated the objective unction by summing up the 
individual absolute errors (IAEs) of a set number of experimental 
measurements. The objective function is given as follows:
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Where VLi, ILi, N represents the experimental voltage, current 
and the number of experimental points respectively. Dkhichi et al.,66 
expressed the objective function as Sum of Squared Error (SSE) and 
is expressed as follows:
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Where θ  represents the vector variables of parameters, ε  
accounts for the error between the experimental current PVmes iI −  and 
calculated current, N is the number of experimental measured points. 
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Wang et al.,67 expressed the objective function for the SDM and DDM 
as follows:

 		       ( )arg min Jθ θ=
 		           

(24) 

Where ( )J θ  is represented in Eq(25) for the SDM and Eq(26) 
for the DDM.
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Hasanien68 proposed the objective function as power error. The 
formulated objective function minimizes the error between the 
maximum experimental power (Pmax,e) to the MPP maximum power 
output for the PV module (Pmax,m). The given objective function is 
written as follows;
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Qin et al.,41 presented the objective function for a single sampled 
point as follows
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Where I* is given as the estimated load current and Id as the 
measured load current. The objective function implemented for 
estimating the N number of sample data points for the SDM parameter 
vectors is given as follows
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This section has detailed the formulated the solution for deriving 
parameters of the PV model for the SDM, DDM and TDM. The search 
ranges of PV parameters has also been reviewed and compared for the 
different PV cells and modules technologies. The defined objective 
functions has been detailed and expressed mathematically as 
reviewed form different technical literatures. In the next section, EAs 
are classified and reviewed based on different author’s achievements 
and contributions.

A review on PV parameter estimation using 
Evolutionary Algorithm (EA)

The use of optimization algorithm for parameter estimation for 
PV cells and modules are attracting more attention, as the process 
of optimizing PV parameter values is achieved by minimizing the 
error between points of the simulated I-V curves and experimental 
I-V data. Computational process of EAs are achieved iteratively and 
inspired by different global optimization techniques.15−16 As compared 
to analytical and numerical methods, EA has shown better estimated 
parameters of PV in terms of computational efficiency, precision and 
accurate extraction of parameters8,17. The flow process of estimating 
PV parameters for EAs from the initialization to achieving the optimal 
parameters can be seen in Figure 4.12

Figure 4 Flow diagram of PV parameter optimization.

The term Evolutionary Algorithms (EAs) have been used in 
several different terminologies.69 EAs are known and sometimes 
classified to be bio-inspired based, swarm intelligence based, physics 
and chemistry based. Some authors have combined EAs with other 
EAs or numerical algorithms to form hybrid EAs.70

This section reviews the different EAs implemented for the 
estimation of PV parameters in correspondence to their search range 
and objective function discussed in the previous sections 3.2 and 3.3. 

Bio-inspired based EAs for PV parameter estimation

The most popularly used EAs for PV parameter estimations 
are bio-inspired based and have been adopted by several technical 
literatures as reviewed below. Zagrouba et al.,71 developed through 
the Matlab environment Genetic Algorithm (GA) to implement for 
the multi-crystalline silicon solar cell and the 50Wp PV module. The 
local minima solution for the estimation of the SDM cell parameters 
were reached after five generations and for the PV module, seven 
generations. Emphasis was laid on the mutation control parameter to 
be set between the ranges of 1% to 20% in order to avoid the local 
global convergence of PV parameters. Similarly to the workings of 
Zagrouba et al.,71 Ismail et al.,43 programmed GA using the Matlab 
environment and also implemented GA for the SDM and DDM 
using the Matlab optimization toolbox. Parameter estimated were 
series resistance RS, shunt resistance RSH and diode ideality factor 
a. Results obtained showed an unbiased comparison between the 
two approaches, but rather gave a common argument on the SDM 
as having the most accurate results for both models. Jervase et al.,73 
also used the GA Matlab optimization toolbox by setting different 
control parameters as compared to the workings of Ismail et al.,43 All 
seven parameters of the DDM IPV, RS, RSH, I01, a1, I02, and a2 where 
extracted with minimal cost function. Patel et al.,61 implemented GA 
for extracting the SDM parameters of I0, IPV, and a. The GA control 
operators used was an elimination method for selection operator, 
random point crossover for crossover operator and single bit-flipping 
for mutation operator. PV technologies of silicon solar cell, plastic 
solar cell and polycrystalline solar cell were optimized using the 
objective function of Eq (17). Parameters of RS and RSH were obtained 
through the method of linear regression. Zhang et al.,73 presented the 
conventional variant of GA that represents parameters as string of 
bits (0,1) for estimating the SDM parameters of series resistance RS 
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and diode ideality factor a. The proposed parameters to be estimated 
are encoded as 10 bits variable individually. GA algorithm optimized 
parameters for the Solarex MSX-60, BP380, BP3175 and Kyocera 
KC200GT PV modules. Ulaganathan et al.,59 identified the limitation 
of using the conventional GA as having difficulties in representing 
the real value of variables because of the finite length of its bit 
string and proposed the GA algorithm that represents the decision 
variable parameters as having floating numbers. This GA is known 
as Real Coded Genetic Algorithm (RGA). The objective function is 
evaluated by using Eq (15) and the SDM parameters of IPV, I0, RS, RSH 
and a are represented as float point numbers. PV parameter results 
obtained showed better accuracy and faster computational when 
compared to results obtained from the conventional GA. Dizqah et 
al.,48 proposed a non-conventional GA Matlab code for estimating 
the three parameters of RS, RSH and a for the SDM at both STC and 
NOCT. The variant of GA used disruptive selection to guarantee the 
reach of parameters to global optimum and also adds the advantage of 
parameter computational time not been dependent on parameter size. 
The need for improving GA has been proposed by different literatures 
by considering GA as a hybrid solution to numerical techniques to 
help improve its accuracy. Lingyun et al.,74 modified GA into a new 
variant known as Adaptive Genetic Algorithm (AGA) whereby the 
crossover probability and mutation probability adjust adaptively. The 
numerical technique known as Nonlinear Least Square method (LS) 
is introduced as an LS operator that when applied to AGA, it operates 
as a GA mutation operator. Hybridization of AGA with the LS 
operator is known as GA-LS and was implemented with the objective 
function of Eq (11) to the 57mm diameter silicon solar cell (R.T.C 
France). Results obtained from GA-LS for the SDM when compared 
to the results of AGA gave minimal errors between the calculated 
and experimental I-V data. Maherchandani et al.,75 proposed the 
hybridization solution by combining GA to Nelder-Mead algorithm 
known as GA-NM. For the SDM parameters GA was implemented to 
perform the search of global optimal parameters and NM to perform 
the local parameter search from the new parameter solution obtained 
from GA. furthermore, the need to improve upon the accuracy 
of parameters extracted by GA was proposed by Ishaque et al.44 
Differential Evolution (DE) was the bio-inspired EA implemented 
due to the similarity of its operators to GA. unlike GA that utilizes the 
crossover operator in the search space of parameters; the algorithm 
of DE relies and utilizes its mutation operator for both the selection 
and search mechanism. The comparison of results obtained when both 
the synthetic and experimental data of the commercial PV module 
(KC200GT) were evaluated by the objective function of Eq. (11), 
showed minimal errors for DE algorithm as compared to GA from 
the Matlab optimization toolbox. Tamrakar34 also implemented DE 
similarly to the workings of Ishaque et al.,44 but with different control 
parameters settings for the 57mm diameter silicon solar cell (R.T.C 
France). Results obtained were evaluated using the objective function 
of Eq. (13) for the SDM, DDM and when compared to GA and 
Particle Swarm Optimization (PSO) gave the most minimal errors. 
Ishaque et al.,31 highlighted the major problem of using conventional 
DE as convergence of parameters to local minimal prematurely and 
proposed the use a penalty function. The modified DE known as P-DE 
(penalty based differential evolution) was implemented to estimate 
the SDM three parameters of RS, RSH and a. the objective function of 
Eq(14) is used evaluate the experimental data obtained from the mono-
crystalline (SM55), multi-crystalline (S75) and thin film (ST40) PV 
modules. Ishaque et al.,13 implemented the variant of P-DE because 
of its potential in evaluating parameters accurately at a given feasible 

region with constrained boundaries. The RMSE objective function 
was implemented to estimate all seven parameters of the DDM using 
the experimental data of six different PV technologies of; multi-
crystalline (S75 and S115), mono-crystalline (SM55 and SQ150PC) 
and thin film (ST36 and ST40). Chellaswamy et al.,76 identified the 
difficulties of setting the values of the control parameters of the 
conventional DE and proposed the variant of DE known as Adaptive 
Differential Evolution A-DE or Differential Evolution Technique 
(DET). The A-DE improves upon the conventional DE by changing 
the control parameters of crossover rates, mutation and population 
adaptively in accordance to the fitness values.

Jiang et al.,49 modified the variant of DE known as Adaptive DEs 
(A-DE) that adjust the control parameters dynamically throughout 
the iteration process. The modification was to automatically and 
not adaptively adjust the settings of the control parameters of A-DE 
during the optimization process in accordance to the fitness values. 
This new variant of DE is known as Improved Adaptive Differential 
Evolution (IADE) with having dynamic control parameters that 
is selected through exponential functions and objective function 
expressed as RMSE. Gong et al.,34 improved upon IADE by proposing 
the crossover rate repairing technique whereby the binomial 
crossover rate is repaired by using the average number of mutant 
components and the ranking based selection technique is adopted 
for the mutation operator, whereby the vector population is ranked 
in descending order form the best to the worst. This variant of DE is 
known as Improved Adaptive Differential Evolution with crossover 
rate repairing technique and ranking based mutation operator Rcr 
– IADE. The ranking based selection technique improves upon the 
computational complexity of extracting optimal parameters of the 
SDM and DDM for both the PV technologies of 57mm diameter 
silicon solar cell/module (R.T.C France) and Photowatt-PWP 201. 
Muhsen et al.,45 proposed the hybridization of the conventional DE 
to with the electromagnetism-like (EM) algorithm that operates based 
on the concept of attraction and repulsion. This hybridized algorithm 
is known as Differential Algorithm with Integrated Mutation per 
iteration DEIM. The purpose of this combination is to improve upon 
the mutation process per iteration of algorithm by combining the 
mutation operator of the conventional DE with the mutation process 
of EM algorithm. Results obtained by simulating the synthetic data 
of the multi-crystalline 120Wp PV module with DEIM, showed 
faster convergence speed to extracting optimal PV parameters. 
Muhsen et al.,77 hybridized EM with the conventional variant of DE 
known as DEAM. The computational process of DEAM is same for 
DEIM. Hultmann et al.,47 proposed the hybridization of Free Search 
algorithm (FS) with the conventional DE and with Opposition 
Based Learning (OBL) known as FSDE. The value of the RMSE 
objective function obtained from FSDE showed minimal error when 
compared to other EAs algorithms. The FSDE pool of solutions is 
updated based on the updated Gaussian noise solution. Improvement 
made on the FSDE was for the pool of solutions to be updated by 
the best solution similarly as in DE. The improved FSDE is known 
as Improved Free Search Differential Evolution (IFSDE). Simulation 
of FSDE and IFSDE was implemented using the experimental data 
from the 160 Photovoltaic cells connected in series PV module. 
Hasanien68 proposed the Shuffled Frog Leaping Algorithm (SFLA) 
that is developed based on the concept of observing and mimicking 
the behaviour of frogs when in search of local rich food source. The 
solution of SFLA can be affected by the number of frogs (P), iteration 
number before shuffling each memeplex (n), set value for the fitness 
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tolerance and number of memeplexes (m). The optimal performance 
of SFLA for estimating optimal parameters of the SDM was obtained 
using the experimental data from the KC200GT and MSX-60 PV 
modules. Alam et al.,29 proposed Flower Pollination Algorithm (FPA) 
for estimating optimal parameters for the SDM and DDM. The FPA 
operates based on four rules where rule 1 searches for the global 
pollination of flower, rule 2 searches for the local pollination, rule 3 
represents the flower constancy and rule 4 switches the probability 
between the local and global searches. The optimal parameter values 
obtained from the SDM and DDM when compared to other EAs gave 
minimal RMSE values. Babu et al.,58 further confirms the competence 
of FPA for estimating optimal parameters of PV technologies. The 
authors implemented FPA to the 57 mm diameter silicon solar cell/
module (R.T.C France) similarly to the workings of Alam et al.,29 for 
just the SDM. The algorithm of FPA ids faster convergences speed 
and higher accuracy for estimating PV models parameters. This 
section has reviewed bio-inspired EAs that have been implemented 
for estimating parameters of different PV technologies. Table 1 
outlines and compares each bio-inspired EA. 

The next section focuses more on swarming based EAs. In order 
to compare the accuracy of bio-inspired EAs, certain similarities such 
as the type of PV technology, the type of model at which the EA was 
implemented with, and the objective function used for algorithm 
evaluation are taken into consideration. The first comparison analysed 
is based on the algorithms which made use of the experimental data 
from the 57 mm diameter silicon solar cell and module (R.T.C France).

Swarm intelligence based EAs for PV parameter 
estimation

Similarly to bio-inspired EAs, swarming based EAs are modelled 
to mimic the swarming behaviour of birds, cats, bees and fish. 
Swarming based EAs have shown great potential in estimating PV 
parameters of the SDM, DDM and TDM. Qin et al.,41 presented the 
use of conventional Particle Swarm Optimization (PSO) due to the 
use of its social interaction among unsophisticated particles to find the 
global optimal parameters of the SDM. The PSO when evaluated with 
the objective function of Eq. (31) is used to estimate the parameters of 
RS, RSH and a. Wei et al.,40 identified the limited potential of convention 
PSO proposed by Qin et al.41, as not having the proper mechanism of 
balancing exploration between the local and global search of particles. 
The solution proposed was to introduce the chaotic search strategy to 
the conventional PSO, whereby particles will be non-repeatable and 
the particle inertia is decreased linearly. The given algorithm of 
Chaotic Based PSO is known as CPSO and evaluated with the 
objective function of Eq. (17) is seen to have improved upon the 
convergence of global optimal parameters of PV and appropriate local 
convergence. The experimental data of the 57 mm diameter silicon 
solar cell (33ºC) and module (45ºC) (R.T.C France) is verified with 
the CPSO. Cong et al.,39 confirms the accuracy and ability of CPSO as 
proposed by Wei et al.,40 The CPSO control parameters, search range 
of parameters and objective function were set the same to estimate the 
SDM parameters of commercial silicon solar cell at 24°C. Ma et al.,51 
proposed the variant of PSO that is combined with parallel global 
optimizer known as Parallel Particle Swarm Optimization (PPSO). 
During the implementation of the RMSE objective function, the 
particles of PSO are evaluated through parallel operations thereby 
utilizing more computation units and enabling PV parameters to 
converge to global optimal parameters. Results obtained for the SDM 
shows that, PV parameter estimation using the PPSO can significantly 

accelerate computational speed. Ma et al.11 confirms the accelerated 
computational speed of PPSO as proposed by Ma et al.,51 for estimating 
the PV parameters for both the SDM and DDM. Hamid et al.,52 
presented the varying of particle inertia weight and particle 
acceleration coefficient over the search ranges of particles. The given 
algorithm is known as PSO with varying inertia weight and 
acceleration coefficient (PSO-TVIWAC). Unlike CPSO proposed by 
Qin et al.,41 that decreases the particle inertia linearly, PSO-TVIWAC 
inertia weight is linearly varied to improve upon the global 
convergence of particles. The introduced accelerated coefficients help 
to control particles towards the global and local search space. Khanna 
et al.,9 presented PSO for the DDM and TDM. This variant of PSO 
concentrated more on the particle inertia weight to obtain a balance 
between the exploration and exploitation. It proposed the value of 1 to 
be assigned as the initial value of the particle inertia, and be decreased 
linearly to the value of 0. Results obtained after the implementation of 
the MAE objective function with the experimental I-V data obtained 
from a large area industrial silicon solar cell, showed the TDM 
outperformed the DDM in estimating PV parameters. Saravanan et 
al.,53 proposed the hybridization of GA with PSO, thereby combining 
the strengths of both algorithms. The four combined operators of 
selection, crossover, mutation and enhancement are implemented for 
the KL070 PV module. Comparison of GA-PSO to GA shows minimal 
computational time and` better accuracy. Ma et al.,42 presented Cuckoo 
Search (CS) algorithm to outperform CPSO, GA and PSO. The CS is 
inspired by the breeding behaviour of certain species of cuckoos to 
detect the most successful pattern of parameters within the constrained 
defined search range. The lévy flight is initialized to aid global 
convergence of PV parameters. Results obtained for the SDM and 
ISDM, using the experimental data from the 57mm diameter silicon 
solar cell (R.T.C France) and the KC200GT module shows that CS 
outperformed CPSO. Jovanovic et al.,78 identified the disadvantage of 
CS as not incorporating local search to improve and increase the 
speed of convergence when the constrained search is close to global or 
local minima but solely depend on lévy flight to generate new 
parameter solutions. The authors proposed the hybridization of 
Nelder–Mead Simplex (NM) with CS known as CS-NM in other to 
improve upon the localized search of PV cells parameters. Han et al.,46 
presented the use of Artificial Fish Swarm Algorithm (AFSA) for the 
SDM. The AFSA is inspired by the search behaviour of fishes when 
they head towards food, the fish swarming behaviour to avoid 
overcrowding that enhances stability to convergence, and following 
behaviour among fishes that improves upon the speed to convergence. 
In as much as results obtained from AFSA shows high efficiency for 
PV parameter estimations, the authors observed the gathering of some 
fishes in local optima which in turn slows down the convergence 
speed and proposed the addition of mutation operator (MO) to AFSA 
(MAFSA). This MO alters the artificial fish positions which in turns 
adjust the swarms and increase the speed of convergence. Oliva et 
al.,79 presented the Artificial Bee Colony (ABC) algorithm for the 
SDM and DDM. ABC is inspired by the seeking of quality food 
source of honey bees. The three types of bees used were the employed 
bees, onlooker bees and scout bees. The three operational criteria for 
ABC is sending the employed bees, selecting the food source by using 
the onlooker bees and determining the global solution by scout bees. 
RMSE evaluation of ABC algorithm demonstrated higher accuracy in 
estimating PV parameters using the experimental data of the 57 mm 
diameter silicon solar cell (R.T.C France) and when compared to other 
EAs. Wang et al.67 confirmed the potential and competence of Artificial 
Bee Colony (ABC) for the estimation of PV parameters. The three 
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bees of employed bees, onlooker bees and scout bees were 
implemented for the iterative process of ABC. These bees had the 
advantage of amending their search position using their different 
trajectories. The authors proposed ABC to improve upon the balance 
between exploitation and exploration similarly to Khanna et al.,9 by 
proposing the best-so-far method. The implementation of ABC using 
the experimental data from the 57 mm diameter silicon solar cell 
(R.T.C France) when evaluated with Eq. (24) outperformed DE and 
PSO. Askarzadeh et al.,55 presented Artificial Bee Swarm Optimization 
Algorithm (ABSO) for extracting PV parameters for the SDM and 
DDM. ABSO employs only the onlookers and scout bees for local and 
global optima parameter search unlike in the case of Wang et al.,67 that 
employ three types of bees. The trade-off between balancing 
exploration which is the generation of new candidate solutions, to 
exploitation which is the concentration of algorithm search on the 
current good candidate solution, are defined by decreasing the linear 
function of global and local search. Chen et al.,31 proposed a novel 
hybrid algorithm based on a new three stage eagle strategy known as 
EHA-NMS is based on the hybridization of NMS and ABC. The novel 
algorithm focuses more on balancing exploitation with exploration 
thereby cascading the algorithm into the three stages of coarse 
exploration, coarse exploitation and fine exploitation. The stage of 
coarse exploration is initialized by ABC algorithm that is capable of 
global optimization but slowly convergence due to large computation. 
Second stage of coarse exploitation adopts multiple NMS and stage 
three uses a single adaptive NMS. Results obtained using the RMSE 
objective function and the experimental data from the 57mm diameter 
silicon solar cell (R.T.C France) and the photowatt-PWP 201 PV 
modules shows better convergence, reliability and accuracy of 
estimating PV parameters. Louzazni et al.,64 presented the use of 
Firefly Algorithm (FA) for estimating parameters of the SDM. The FA 
is bound by the three rules of attractiveness among fireflies used to 
generate random sets of parameter solutions, the degrees of 
attractiveness among fireflies which computes the random trajectory 
among fireflies and the brightest firefly that updates the optimal set of 
parameter solutions. FA is implemented using the experimental I-V 
data from the 57 mm diameter silicon solar cell (R.T.C France) with 
IAE objective function. Results simulated for the SDM showed 
greater accuracy and convergence speed. Guo et al.,56 proposed the 
Cat Swarm Optimization (CSO) for estimating the SDM and DDM 
PV parameters. The CSO is inspired by the swarming behaviour of 
cats. The search strategies of CSO are based on seeking mode, which 
represents exploration search process and tracking mode, which 
represents exploitation search process. The applied CSO to estimating 
PV parameters for the 57 mm diameter silicon solar cell (R.T.C 
France) provided better performance for consistency and convergence 
to global optimal parameters. Rajasekar et al.,81 presented Bacterial 
Foraging Algorithm (BFA) for estimating the SDM parameters of RS, 
RSH and a. The operators of BFA for the optimization process are 
chemotaxis, reproduction, swarming, elimination and dispersion. 
Results obtained from the PV modules of SM55, Shell ST40 and Shell 
S36 shows higher accuracy, consistency in solution but convergence 
slowly. Awadallah et al.,81 proposed that having a guided run of 
parameter solutions gives more minimal error as compared to random 
run. The algorithm presented the hybridization of PSO with Bacterial 
Foraging (BF) algorithm (PSO-guided BF). The PSO guides the 
direction of bacterium run which eventually enhances the search 
characteristics of BF to obtain global best parameter solutions. PSO-
guided BF was implemented using the I-V data from the crystalline 
silicon LDK C1D2-140P PV module and objective function of RAE. 

The simulated results when compared to the given measured I-V data 
shows the most minimal error when compared to PSO and conventional 
BF. The next section details EAs inspired by physical and chemical 
processes for estimating PV parameters.

Chemistry and physics based EAs for PV parameter 
estimation

All EAs algorithms are not bio-inspired and swarming based but 
mimics certain physical or chemical laws for estimating PV parameters. 
El Naggar et al.,62 and Al Rashidi et al.,63 proposed Simulated Annealing 
(SA) that is developed to mimic the gradual physical cooling process 
of a high quality crystal for estimating the SDM PV parameters. The 
SA identifies solutions that converge to local minimal to correspond 
to defect crystals and global optima solutions as perfect crystals. 
Experimental data obtained from the 57 mm diameter silicon solar 
cell (33ºC) and module (45ºC) (R.T.C France) was evaluated using the 
IAE objective function at irradiance of 1000W/m2. Accuracy analysis 
for SA showed the least RMSE and MAE value when compared to 
other algorithms. Dkhichi et al.,66 enhanced upon SA for estimating PV 
parameters by combining it to Levenberg – Marquardt (LM) method. 
The LM method has the combined but complementary features 
of steepest descent which has low sensitivity to initial values and 
Gauss-Newton that aids faster convergence. The hybridized method 
known as LM-SA relies upon the continuous adjustment settings of 
LM damping factor per iteration of SA. This method presented good 
accuracy for the SDM when evaluated using experimental I-V data 
of the 57 mm diameter silicon solar cell (33ºC) (R.T.C France) and 
Sum of Squared Error (SSE) objective function. Further analysis of 
LM-SA shows large computational memory of 2050 iterations to 
converge to global optimal solution. Askarzadeh et al.,28 presented 
the algorithm of Harmony Search (HS) that is developed based on 
how musicians continuously try to find the perfect state of harmony 
pitches. The HS performance to global optimal solution is affected 
by the parameters of Harmony Memory Considering Rate (HMCR), 
bandwidth of generation (bw) and Pitch Adjustment Rate (PAR). The 
authors improved upon HS by proposing Grouping-based Global 
Harmony Search (GGHS) and Innovative Global Harmony Search 
(IGHS). The GGHS considered using worst harmonies to attain global 
optimal parameter solutions and employed the probabilistic selection 
criterion of tournament selection and roulette wheel. However, the 
IGHS considered a predefined number of best harmonies and applied 
the probabilistic approach of roulette wheel. The next category of 
EAs cannot be categorised based of swarming behaviour, physics or 
chemical process and bio-based, but fulfils the characteristics of EAs.

Other EAs for PV parameter estimation

There are some EAs that are not based on the previously discussed 
sections of bio-inspired, swarming, physical and chemical based. These 
algorithms are in accordance to the EAs characteristics of selection, 
reproduction and recombination. Askarzadeh et al.,37 proposed Bird 
Mating Optimizer (BMO) that is developed based on four distinct 
search pattern mating strategies of four types of bird species. The four 
types of birds have the breeding process of monogamy, polygamy, 
polyandry and promiscuity. The advantage of using BMO is based on 
the assumption that a search space with different pattern maintains 
diversity and avoids premature convergence of parameters to local 
minimal. Estimated parameters results achieved for the SDM and 
DDM while using the experimental data from the 57 mm diameter 
silicon solar cell and module (R.T.C France), showed minimal 
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RMSE values as compared to SA, HS, GGHS, IGHS and ABSO. 
Askarzadeh et al.,55 identified the drawbacks of BMO as proposed 
in the workings of Askarzadeh et al.,36 The authors identified that 
BMO has numerous adjustable parameters and numerous types 
of birds. The simplified solution known as Simplified Bird Mating 
Optimizer (SBMO) is developed based on three bird species with 
the mating process of self breeding, one male and one female, one 
male and two females. The accuracy of SBMO is evaluated using 
the experimental data from the amorphous silicon PV module with 
160 cells connected in series. Estimated PV parameters at different 
irradiance (1004.63 W/m2, 1014.46 W/m2, 1007.21 W/m2, 204.53 
W/m2 and 203.22 W/m2) and temperature (25.01oC, 40.01oC, 55oC, 
25oC and 35oC) respectively showed minimal RMSE values. Yuan 
et al.,35 proposed a novel biologically inspired algorithm known as 
Chaotic Asexual Reproduction Optimization (CARO). In the CARO, 
the asexual reproduction by which a parent produces offspring is the 
technique that balances exploration and exploitation. The chaotic 
sequence is introduced similarly to the workings of Wei et al.,40 to 
limit parameters from converging to local optimal. The performance 
of CARO is evaluated using the RMSE objective function and the 
experimental data from the 57 mm diameter silicon solar cell (33ºC) 
and module (45oC) (R.T.C France) at irradiance of 1000W/m2. CARO 
is seen to outperform CPSO and SA by giving the most minimal 
RMSE value. Patel et al.,60 presented the use of Teaching Learning 
Based Optimization (TLBO) for estimating PV parameters. The 
concept of TLBO is modelled based on the interaction and learning 
process between the teacher and learner in a classroom environment. 
TLBO has the advantage of having fewer control parameters that 
enables faster computational time process of the algorithm. The 
experimental data from four PV modules and cells, when evaluated 
with the objective function defined from Eq. (17) gave estimated PV 
parameters for the SDM. Chen et al.,57 presented a novel algorithm 
known as Generalized Oppositional Teaching Learning Based 
Algorithm (GOTLBO). The new algorithm combines the Generalized 
Opposition Based Learning (GOBL) to the conventional TLBO. 
The GOTLBO employs the advantage of GOBL jumping parameter 
to enhance the convergence speed of TLBO. To verify the accuracy 
and competence of GOTLBO, the experimental data from the 57mm 
diameter silicon solar cell (33ºC) (R.T.C France) at irradiance of 
1000W/m2 is evaluated using the RMSE objective function. Results 
obtained for the SDM and DDM, shows that the GOTLBO is 
outperforms GA, CPSO, SA, IGHS, ABSO and Rcr-IJADE as having 
the least RMSE value. 

Conclusion
The accurate estimation of PV parameters is an essential part to 

improve the efficiency of the PV system. In this paper, the different PV 
models have been described in details with the various assumptions. 
Furthermore, this study has reviewed the different EAs and discussed 
how to solve and optimise the PV parameters using EAs. The outline 
of different search ranges set for different PV technologies as well as 
their objective function are also presented. The influence of the control 
parameters setting and the effect of those for different algorithms 
have been analysed. Hybridized algorithm method have better 
accuracy in estimating PV parameters but are limited due to their slow 
computational speed. Algorithms with more search mechanisms such 
as in BMO are seen to converge more to global optimal solutions, and 
the opposite case applies to algorithms with insufficient search ranges 
operators. The fewer the control parameter of an algorithm has the 
less computational time. 
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