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Introduction
Traditional diagnostic methods, which rely on a combination of 

physical examinations, patient history, and diagnostic tools, while 
useful, have a number of limitations. These methods fail to capture 
the multifactorial and complex nature of CVD, influenced by the 
interaction of lifestyle, genetic and environmental factors. Such 
limitations emphasize the need for an innovative approach for earlier 
and more accurate disease detection. ML, as a subset of artificial 
intelligence, uses computational algorithms to analyze, learn, and 
make predictions based on data patterns. The capacity of ML to 
recognize complex and non-linear relationships from huge datasets 
represents a new path in CVD diagnostics. By integrating different 
types of data, such as genomic profiles, electronic health records 
(EHRs), and real-time data generated by wearable devices, ML models 
offer a new opportunity to transform cardiovascular diagnostics. 
The implications of integrating ML into CVD prediction provide a 
pathway for personalized medicine, where intervention strategies 
can be tailored to an individual’s unique risk profile, potentially 
halting disease progression or even altering its course. In economic 
terms, the implications are equally significant, with the potential to 
alleviate the burden on health systems through targeted and efficient 
allocation of resources. The complexity of the algorithms and the need 
for expansive and high-quality datasets present notable obstacles. 
Moreover, the interpretation of ML outputs requires an understanding 
of both the statistical results and their clinical relevance. There is a 
need for interdisciplinary collaboration, bridging the gap between 
data scientists and healthcare professionals to ensure effective 
implementation of ML insights into clinical practice.

This paper aims to provide a comprehensive examination of 
different ML methodologies and their application in early detection 

of CVD. The paper will explore different ML models, evaluate their 
effectiveness in predicting CVD, and suggest future research directions 
within this paradigm. By delineating the relationship between ML 
applications and CVD prediction, the paper aims to contribute to 
the development of predictive health analytics and supports the 
overarching goal of reducing CVD-related morbidity and mortality.

The importance of early detection of cardiovascular 
health problems

The importance of early detection of cardiovascular diseases

Cardiovascular disease is the leading cause of death globally 
and encompasses a range of disorders affecting the heart and blood 
vessels, including coronary artery disease, cerebrovascular disease, 
rheumatic heart disease and other conditions. The primary causes of 
CVD are lifestyle factors such as unhealthy diet, physical inactivity, 
tobacco and alcohol use, supplemented by genetic predispositions. 
With the impact of CVD significantly affecting quality of life due to 
long-term health complications, the economic implications are also 
significant, with health systems burdened with high costs of treatment 
and ongoing care.1

Early detection and management of these diseases is critical 
to reducing the health and economic burden. By identifying 
cardiovascular problems at an early stage, interventions can be more 
effective, potentially reversing the disease or significantly slowing 
its progression. Traditional methods of detecting CVD include a 
combination of physical examinations, blood tests, and the use of 
diagnostic tools such as echocardiograms, stress tests, and coronary 
angiography. Although these methods are effective for diagnosing 
later stages of the disease, they often fail to detect early, subclinical 
manifestations of cardiovascular pathology. In addition, traditional 
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Abstract

Cardiovascular disease (CVD) remains the leading cause of death globally. In search of 
advanced techniques for early detection of CVD, recent research has increasingly focused 
on using machine learning (ML) methods to improve the accuracy and timeliness of 
diagnosis. A multifactorial machine learning approach offers a comprehensive solution 
for cardiovascular disease detection, using vast and diverse datasets to develop predictive 
models that outperform traditional methods.

This paper provides a comprehensive examination of various machine learning approaches 
and their application in the early detection of cardiovascular abnormalities, with special 
emphasis on their effectiveness compared to traditional diagnostic methods.

The research methodology involves the implementation of several ML models trained 
and tested using large datasets that provide analysis covering various demographic 
parameters, lifestyle parameters and health status parameters. Key findings show that ML 
models significantly outperform traditional statistical methods in detecting early signs of 
CVD. The superior performance of ML models represents a promising tool for healthcare 
professionals, potentially leading to better strategies for preventive care and reduction of 
CVD-related mortality. The ongoing development and refinement of these technologies, 
along with improvements in data collection and interoperability between healthcare 
systems, will be critical to realizing their full potential in the clinical setting.
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diagnostic techniques may not capture the complex, multifactorial 
nature of cardiovascular disease. As a result, there is a significant need 
for more sophisticated diagnostic approaches that can integrate and 
analyze multiple types of data to detect early signs of CVD.

ML and its role in early diagnosis of CVD

Machine learning (ML) is a subset of artificial intelligence that 
focuses on developing systems that can learn and make decisions 
based on data.2 The potential of ML to extract valuable insights from 
vast amounts of complex medical data is particularly promising for the 
diagnosis and management of diseases such as cardiovascular disease 
(CVD), where early detection can significantly impact outcomes. 
ML algorithms excel at identifying complex patterns in large data 
sets that human analysts might overlook. For example, the ML 
model can detect subtle changes in the ECG that precede significant 
cardiovascular changes. ML can help segment patients based on their 
risk of developing CVD by considering a wide range of variables. This 
stratification assists clinicians in prioritizing interventions and follow-
up regimens. The integration of ML with real-time data from wearable 
devices enables continuous monitoring of a patient’s cardiovascular 
health. Any deviation from the norm can be immediately analyzed and 
flagged for early intervention. Advanced ML techniques, particularly 
deep learning, have shown remarkable success in interpreting medical 
images such as MRI and CT scans, often with greater accuracy than 
human radiologists.3

Multifactorial ML for early detection of CVD

Previous research in the area of cardiovascular health has primarily 
focused on individual risk factors such as cholesterol levels, blood 
pressure and smoking. Those studies often don’t take into account 
interactions between different risk factors or the power of modern 
data analysis to identify subtle patterns that could indicate early 
stages of disease. More recent studies have begun to explore the use 
of machine learning (ML) techniques in cardiovascular diagnostics, 
typically using single variables or limited datasets. These approaches 
may not fully capture the complex, nonlinear relationships inherent 
in physiological data, thus limiting their effectiveness in early disease 
detection.4

The limitations of previous research set the stage for the need for 
a multifactorial machine learning approach to detect cardiovascular 
disease. Machine learning with its ability to handle large and diverse 
datasets offers a promising solution to the complexity of CVD 
diagnosis. By applying a multifactorial ML approach, researchers can 
develop models that not only more accurately predict the likelihood of 
cardiovascular disease, but also identify early markers of the disease 
that are not detected by conventional methods. Such models can 
integrate data from multiple domains, taking into account interactions 
between different risk factors and providing a comprehensive 
overview of an individual’s risk profile.5

The following sections of this paper will elaborate on machine 
learning methodologies in the context of cardiovascular disease 
detection, explore the different types of ML models in use, evaluate 
their performance, and future directions for research in this area. This 
multifactorial approach aligns with the broader goals of personalized 
medicine, where treatments can be tailored to individual profiles.

Material and methods
Exploratory data analysis (EDA) is a fundamental step in the data 

analysis process, especially when dealing with complex datasets. The 
primary goals of EDA are to understand the data, discover patterns, 
spot anomalies, fit hypotheses, and ensure that the data is ready for 

further modeling. EDA includes visual and quantitative methods for 
discovering patterns, spotting anomalies, testing hypotheses, and 
checking assumptions. Providing summary statistics captures the 
dispersion and shape of the distribution of the data set. Correlation 
analysis involves identifying how variables are related to each other 
and the target variable. Statistical tests are applied to determine 
the significance of variables. Several machine learning algorithms 
suitable for classification tasks have been selected. The training 
model includes a training/testing split: by splitting the data into 
training and testing sets, typically with a 70-30 or 80-20 split. Model 
tuning involves optimization of hyperparameters. Model evaluation 
includes evaluation of model performance using metrics appropriate 
for classification: accuracy, precision, recall and F1 score, ROC-AUC 
curve. Model interpretation involves interpreting the results of the 
model to gain deeper insight. It is necessary to identify which features 
most influence the model, providing insight into the key drivers of 
cardiovascular disease. A detailed analysis and discussion of how the 
model might be used in clinical settings and monitored over time is 
needed to ensure its continued relevance and accuracy, incorporating 
new data as it becomes available. Attention should be paid to potential 
ethical issues, including data privacy, model bias, and health care 
implications of false positives or negatives.6

This comprehensive methodology provides robust analysis of 
the cardiovascular health database, leading to insightful findings and 
reliable predictive models. Such a methodical approach is key to 
achieving high accuracy in predictions and can significantly influence 
decision-making in the context of health care.7

Data resource and research objective for the research 

The data used in the study was taken from Kaggle.8 There are 3 
types of input characteristics: Objective (factual information), review 
(medical examination results) and subjective (information provided 
by the patient). The database consists of 70,000 patient data records 
with 12 characteristics such as age, gender, systolic blood pressure, 
diastolic blood pressure, etc. The target class “cardio” is equal to 
1, when the patient has cardiovascular disease, and it is 0, if the 
patient is healthy. All data values are collected at the time of medical 
examination.

The task is to predict the presence or absence of cardiovascular 
disease (CVD) using the patient’s examination results.

The purpose of the research

This data summary provides a comprehensive overview of various 
health metrics associated with CVD risks in 70,000 individuals, 
making it a valuable resource for predictive modeling and medical 
research. Each variable in the database consists of 70,000 records, 
verifying a complete data set with no missing values in any of the 
columns. Most variables are standardized (mean close to 0, standard 
deviation close to 1), which simplifies many statistical analyzes by 
putting different variables on the same scale. Standard deviation (std) 
gives values close to 1 for standardized measurements indicating 
normalization, which adjusts the data to have zero mean and unit 
variance, useful for models that assume normally distributed data. 
Chart 1 shows the age distribution by cardiovascular disease status. 
Detailed attribute analysis Age is standardized with a mean close to 0. 
The original age values represent days, but here they are transformed 
to a scale useful for statistical modeling. Gender is coded as 1 or 
2, indicating male and female gender respectively. A mean of 1.35 
suggests a greater proportion of one gender than the other. Height 
and weight are standardized. Blood pressure (systolic and diastolic) 
shows some extreme peak values, indicating potential outliers or input 

https://doi.org/10.15406/jccr.2024.17.00603


Cardiovascular disease prediction with machine learning techniques 43
Copyright:

©2024 Petreska

Citation: Petreska A. Cardiovascular disease prediction with machine learning techniques. J Cardiol Curr Res. 2024;17(2):41‒51. 
DOI: 10.15406/jccr.2024.17.00603

errors. Cholesterol and glucose are categorical variables ranging from 
1 to 3, indicating levels. Mean values closer to 1 suggest that lower 
levels are more common in the dataset, but there is sufficient variation 
to analyze their impact on cardiovascular health. Cigarettes, alcohol, 
and activity are binary lifestyle variables (0 or 1) show different 
averages, with “activity” being the most common (average near 0.80) 
and “alcohol” consumption relatively infrequent (average around 
0.05). This distribution provides a good basis for investigating the 
effects of lifestyle on health. The target variable for the presence of 
CVD, with a mean value of nearly 50%, indicates a balanced dataset 
with an equal number of positive and negative cases, ideal for training 
predictive models without the need for class-balancing sampling 
techniques. (Graph 1)

Graph 1 Age distribution by cardiovascular disease status.

Correlational Insights into data

Correlational insights help in understanding the relationships 
between different variables in the database, especially how certain 
factors may be related to the incidence of cardiovascular disease.

Univariate analysis: It is important to note that these plots provide 
a univariate comparison between two groups.9 Graph 2 shows four 
box plots comparing the distribution of age, systolic blood pressure, 
diastolic blood pressure, and weight in two groups: those without 
cardiovascular disease (CVD) labeled “0” and those with CVD 
labeled “1”. Individuals with CVD tend to be older than those 
without. The age range is wider in those with CVD, indicating greater 
variability in age in this group. There are outliers in both groups, 
indicating the presence of individuals who are much younger or older 
than the majority in each group. The mean systolic blood pressure is 
higher in people with CVD, and the IQR is also wider, indicating both 
higher mean levels and greater variability in systolic blood pressure 
in those with the disease. There are many outliers in both groups, 
especially in the group without cardiovascular disease, where some 
individuals have extremely high systolic blood pressure readings. 
Similar to systolic blood pressure, individuals with CVD have slightly 
higher mean diastolic blood pressure and a wider IQR. Outliers are 
present in both groups, with some individuals having particularly 
high diastolic blood pressure readings. Mean weight appears similar 
between the two groups, suggesting that weight alone may not be a 
discriminating factor for CVD in this dataset. There is a wider IQR 
for the CVD group, indicating greater variability in weight among 
these individuals. Exceptions in the distribution of weight are visible 
in both groups, especially in some individuals who have very high 
weights. In addition, outliers should be investigated to ensure data 
quality and understand potential impact on analysis results.

Graph 2 Distribution by cardiovascular disease status’.
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Bivariate analysis: Graph 3 shows several visualizations to illustrate 
how age, blood pressure, and lifestyle factors such as smoking and 
alcohol consumption affect the prevalence of cardiovascular disease. 
An increase in the number of cases of cardiovascular diseases is 
noticeable as the age increases. This indicates a strong correlation 
between age and the likelihood of developing cardiovascular 
problems.10 Higher blood pressure readings are more often associated 
with the presence of cardiovascular disease. The impact of smoking 
seems relatively small, so both smokers and nonsmokers show cases 

of cardiovascular disease. Similar to smoking, alcohol consumption 
does not show a strong correlation with a higher prevalence of 
cardiovascular disease in this database. Both drinkers and non-drinkers 
show cardiovascular disease, with non-drinkers showing a slightly 
higher incidence. Systolic blood pressure tends to be higher in people 
diagnosed with cardiovascular disease in all age categories, mean 
blood pressure is consistently higher in the group with cardiovascular 
disease, especially noticeable in older age groups.

Graph 3 Impact on cardiovascular disease status.

Graph 4 visualizations illustrate the relationship between 
age, systolic blood pressure, smoking status, and the presence of 
cardiovascular disease (CVD). The left graph shows the interaction of 
age and systolic blood pressure with CVD. The distribution suggests 
that as age increases, the range of systolic blood pressure also widens, 
particularly noticeable in the 60-70 and 70-80 age categories. Notably, 
there are extremely high systolic blood pressure values, especially in 
the younger age groups (<30 and 30-40 years), which seem unrealistic 
(probable data entry errors because systolic blood pressure values 
above 200 mmHg are generally considered hypertensive crises ). 
In each age group, the presence of CVD did not visibly change the 
distribution of systolic blood pressure values, indicating that the 
relationship between systolic blood pressure and CVD may not be 
linear or may be influenced by other factors.

The right graph shows the interaction of smoking rate by age and 
cardiovascular disease status. The percentage of smokers appears 
to decrease with age, with the youngest category (<30) having the 
highest percentage of smokers and the oldest (80+) having the lowest. 
For most age categories, the proportion of smokers is slightly higher 
for those without CVD compared to those with CVD, although the 
error bars (representing the variability or standard error) suggest that 

these differences may not be statistically significant. It is interesting to 
note that smoking is usually associated with an increased risk of CVD, 
but the visualization seems to suggest that in this dataset, smokers are 
either underrepresented among patients with CVD or there may be 
other confounding factors affecting the relationship between smoking 
and CVD.

Graph 4 Interaction of age and systolic blood pressure with CVD and 
smoking rates by age.

Outliers in the left graph may be due to errors in data collection 
or entry, and it would be prudent to investigate and potentially 
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exclude these values from further analysis to avoid skewing the 
results. Although these graphs provide a snapshot of the data, 
additional statistical analysis is needed to understand the underlying 
relationships, including controlling for various factors and conducting 
hypothesis testing to verify the significance of the results obtained.

Graph 5 shows the relationships between the different variables 
in relation to CVD status. The left graph shows age versus systolic 
blood pressure by CVD status. Clustering of data points at specific 
levels of systolic blood pressure suggests the presence of common 
measurement values. There is a significant increase in the prevalence 
of CVD at higher blood pressure levels at all ages. This pattern is 
consistent with medical knowledge that higher systolic blood 
pressure is a risk factor for CVD. The plot also shows that CVD is 
present across a wide age range, but appears to be more prevalent 
as age increases, particularly after age 50, which is consistent with 
the known increase in CVD risk with advancing age. The right graph 
shows weight versus height by CVD status. There is a dense cluster of 
points around the average height and weight, with a visible correlation 
where taller individuals tend to weigh more, which is expected due to 
the relationship between height and body mass. CVD prevalence does 
not show a strong pattern of differentiation with respect to weight and 
height, suggesting that the individual impact of height and weight on 
CVD may be nuanced and potentially influenced by other factors such 
as lifestyle and genetic predisposition. Outliers are present, especially 
in individuals who are very tall or have very high weight, which may 
be worth investigating for data accuracy or special cases.

Graph 5 Age vs. Systolic blood pressure by CVD & weight vs. Height by CVD.

Both graphs reveal distributions and relationships that are 
consistent with known health patterns, but they also illustrate the 
complexity of the relationships between these factors and CVD.

The plot highlights the multifactorial nature of CVD, where 
no single factor is solely responsible for the disease. Rather, the 
interaction between different risk factors contributes to an individual’s 
overall risk profile. The presence of potential outliers or clusters of 
skewed values suggests that further data cleaning or examination of 
measurement processes may be warranted to ensure the robustness of 
any conclusions drawn from these data. Detailed statistical analysis, 
potentially controlling for factors and considering interactions 
between variables will be required to draw definitive conclusions 
about the impact of these factors on CVD risk.

3D plots reinforce the multifactorial nature of cardiovascular 
disease and the importance of considering a range of physiological 
and possibly non-physiological factors in risk assessment. Graph 6 
shows a 3D scatterplot visualizing the relationship between age, 
systolic blood pressure (BP) and weight in relation to cardiovascular 
disease (CVD) status. Each data point represents an individual in the 
database, with the position along the axes indicating their age, systolic 
blood pressure, and weight. Age is shown on the horizontal plane 
starting at approximately 30 years and extending to approximately 

65 years. There does not appear to be a clear division between 
individuals with and without CVD based on age alone. There is a 
significant concentration of high systolic blood pressure in individuals 
with CVD, particularly as age increases, which is consistent with the 
medical understanding that high blood pressure is a risk factor for 
heart disease. Similar to weight and age, there is a mix of individuals 
with and without CVD across the weight spectrum, however, there is a 
small concentration of individuals with more severe CVD. Individuals 
with CVD tend to have higher systolic blood pressure and possibly 
heavier weight, although weight has a more even distribution. There 
is considerable overlap between the two groups, suggesting that 
although there may be trends in blood pressure and weight associated 
with CVD, there is no distinct separation based on these factors 
alone. Clustering of points, especially in the middle ranges of weight 
and blood pressure, indicates common physiological ranges where 
most individuals fall. There appear to be no extreme outliers in this 
visualization, indicating relatively normal ranges for age, weight, and 
systolic blood pressure for this population.

Graph 6 3d scatter plot of age, systolic BP, and weight by cardiovascular 
disease status.

The plot implies a complex interaction between age, weight, and 
systolic blood pressure in the context of CVD risk. The lack of distinct 
segregation by CVD status indicates that other factors, perhaps 
including lifestyle choices, genetic predisposition, or additional 
health parameters not visualized here, also play a significant role in 
CVD prevalence. It would be useful to apply multivariate statistical 
techniques to further examine the interactions between these variables 
and their collective impact on cardiovascular disease risk.

Multivariate analysis: Multivariate analysis in the context of 
studying CVD involves analyzing multiple variables simultaneously 
to understand the relationships between them and how they 
collectively affect CVD risk.11 This may involve different statistical 
techniques and modeling strategies depending on the type of data and 
the specific questions being addressed.12-14 Graph 7 shows a heatmap 
of a correlation matrix.

There is a modest positive correlation (0.24) between age and 
the presence of cardiovascular disease (CVD), suggesting that as 
age increases, so does the likelihood of CVD. The moderate positive 
correlation (0.34) indicates that in this dataset, one gender may be 
more likely to smoke than the other. The strong positive correlation 
(0.50) suggests a significant difference in height between the sexes. 
A positive correlation (0.22) means that higher cholesterol levels are 
associated with a higher likelihood of CVD. The positive correlation 
between glucose and cholesterol levels (0.45) indicates that higher 
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cholesterol levels often coincide with higher glucose levels, which 
may indicate underlying metabolic syndromes. The positive 
correlation between cigarettes and alcohol (0.34) may suggest that 
smokers are more likely to consume alcohol compared to nonsmokers 
in the data set. The remaining values are close to zero, indicating very 
weak correlations.

Graph 7 Correlation matrix heatmap.

Blood pressure readings did not show strong correlations with the 
cardio variable, which is somewhat unexpected given that high blood 
pressure is a known risk factor for CVD. This may require further 
analysis to better understand the relationship. An active lifestyle has 
a very weak negative correlation with CVD, suggesting that physical 
activity may have a small association with lower rates of CVD, but the 
relationship in this dataset is not strong.

Most variables have little or no correlation with the id variable, 
which is expected because id is typically a random or sequential 
assignment with no intrinsic relationship to health outcomes. It should 
be noted that correlation does not imply causation. A high correlation 
between two variables does not mean that one causes the other. 
Correlations can be affected by many factors, including the presence 
of outliers or the distribution of variables, so it should be noted that 
this heatmap only shows linear relationships; some variables may 
have nonlinear relationships that are not captured by correlation 
coefficients.

Graph 8 shows two matrices: a correlation matrix for numerical 
features and a P-value matrix for categorical features from chi-square 
tests.

Graph 8 Correlation matrix for numerical features & p-value matrix for 
categorical features.

The correlation matrix for numerical characteristics shows a weak 
negative correlation (-0.08) between age and height, suggesting that 
as age increases, height decreases slightly, which may reflect postural 
changes in the elderly, such as stooping on the spine. A very weak 
positive correlation (0.05) between age and weight indicates that 
there is a slight increase in weight with age, but the relationship is 
not strong.

A moderate positive correlation (0.29) between height and weight 
implies that taller individuals tend to weigh more, which is expected 
due to the proportionality of body dimensions. Systolic and diastolic 
blood pressure have a negligible positive correlation (0.02) indicating 
almost no linear relationship between systolic and diastolic blood 
pressure values in this dataset. The remaining correlations between 
numerical characteristics and blood pressure readings are either very 
weak or negligible, indicating no essentially linear relationships.

The p-value matrix for categorical characteristics (chi-square 
test) assesses the statistical significance of the association between 
categorical variables.

Gender and Cholesterol (P-value 1.9e-20), Gender and Gluc 
(P-value 2.7e-07), Gender and Smoke (P-value 0), Gender and Alco 
(P-value 0): Extremely Low P-values indicate a strong association 
between gender and these characteristics, indicating a significant 
difference in cholesterol levels, glucose levels, smoking habits and 
alcohol consumption between genders. Cardio and all characteristics 
(gender, cholesterol, glucose, smoke, alcohol, active): All P-values 
are below 0.05, with most significantly lower, indicating a strong 
association between these categorical variables and the presence of 
cardiovascular disease.

Activity and Cardio (P-value 0.033): The low P-value suggests a 
significant association between physical activity and cardiovascular 
health status, consistent with the understanding that an active 
lifestyle may influence cardiovascular risk. Glucose and cholesterol 
(P-value 0.0019), glucose and smoke (P-value 8.8e-12), glucose and 
alcohol (P-value 1.8e-11): These low P-values indicate a significant 
association between glucose and cholesterol levels, smoking and 
alcohol consumption.

The numerical correlation matrix shows that among the 
numerical characteristics studied, only height and weight have 
a moderate relationship. The P-value matrix shows statistically 
significant associations between all tested categorical variables and 
cardiovascular disease, confirming that factors such as cholesterol, 
glucose level, smoking, alcohol consumption, and physical activity 
have a strong association with cardiovascular health. The strength of 
these associations is consistent with current medical knowledge, which 
links lifestyle factors and biochemical markers to cardiovascular 
disease risk. Statistical significance does not imply causality, and 
these associations will need to be further investigated with controlled 
studies to discern causality and effect sizes.

Graph 9 shows Cramer’s V matrix, which is a measure of 
association between two categorical variables. Cramer’s V matrix 
indicates a moderate association (0.34) between gender and smoking 
habits, which may suggest that smoking prevalence differs between 
genders in this dataset. The weak association between gender and 
alcohol consumption (0.17) similar to smoking suggests some level 
of difference in alcohol consumption habits between genders. There 
is a moderate association (0.39) between cholesterol and glucose, 
suggesting that there is a detectable relationship between cholesterol 
and glucose levels among individuals in the data set, possibly 
indicating a relationship between these two factors in metabolic 
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syndromes. There is a moderate association (0.34) between smoking 
and alcohol which may mean that individuals who smoke are more 
likely to consume alcohol, or vice versa. All other values are relatively 
low, indicating a weak association between those pairs of variables.

Graph 9 Cramer’s v matrix for categorical features.

Kramer’s matrix V indicates some moderate relationships between 
lifestyle factors (smoking and alcohol consumption) and gender, 
and between metabolic indicators (cholesterol and glucose levels). 
Associations between these categorical factors and the presence of 
cardiovascular disease are weak according to this matrix, which may 
suggest that a multivariate approach considering the interaction of 
multiple factors may provide more insight into the complex nature of 
cardiovascular disease risk.

Data preparation and preprocessing

In the field of data analysis, especially in the field of machine 
learning and statistical modeling, data preparation and processing 
are key tasks.15 These tasks are imperative to ensure that the database 
has no deviations, shows consistency and is suitable for thorough 
analysis.16 Within cardiovascular databases, the initial step often 
involves careful data cleaning, identification and correction of 
missing values. Imputation based on the median or mean of specific 
groups is commonly used, given the clinical importance of such 
data. Furthermore, any anomalies or outliers that may be the result 
of inaccuracies or represent rare but true variations are taken into 
account. The process also entails the elimination of duplicate records 
to avoid any potential bias in the analysis results, an occurrence not 
uncommon in healthcare datasets where there may be multiple records 
for a single patient visit.

Feature engineering is another essential stage where new variables 
are introduced from existing data. These variables are introduced to 
more effectively encapsulate relationships with outcomes, such as 
the derivation of body mass index (BMI) from height and weight 
metrics. Transformations can also be applied to non-linear features, 
normalizing data distributions that are significantly skewed.

Ensuring the correctness of the data types assigned to each 
variable is also part of this phase. Categorical variables undergo 
coding procedures to facilitate their use in machine learning models. 
Techniques such as one-hot coding for attributes such as “smoking 

status” or label coding for ordinal variables such as “cholesterol 
levels” are common.

Normalization or standardization of data is done to suit the 
requirements of certain algorithms. Parameters can be scaled to fit a 
specific range, which is particularly useful for algorithms sensitive to 
the scale of the data. In addition, the dataset is divided into training 
and testing subsets, which serves as a measure to accurately evaluate 
the performance of the prediction models.

Addressing unbalanced data is also an integral aspect of data 
preparation.

In the context of cardiovascular data, every step, from cleaning 
to data segmentation, is performed with precision. This ensures that 
the prepared database serves as a reliable basis for the development 
of forecasting models, thereby enabling reliable forecasts that are 
indicative of realistic scenarios.

Selection of ML algorithms for CVDS detection

Machine learning algorithms are playing a key role in advancing 
predictive analytics in the healthcare sector. With the prevalence of 
CVD there is increasing interest in using these prediction algorithms 
based on patient data, which can lead to timely interventions and 
improve patient outcomes. The algorithms listed encompass different 
approaches, each with its own unique strengths and suitability for 
different aspects of CVD prediction.7,11,17-19

Logistic regression is a method used for binary classification 
problems. In the context of CVD, it is used to predict a patient’s 
likelihood of having the disease based on various predictors such as 
age, cholesterol levels, and blood pressure. Its output is a probability 
that indicates the chance of the presence of a disease.

K-Nearest Neighbors (KNN) non-parametric learning algorithm. 
Classifies a new case based on a measure of similarity (usually 
distance functions) to known cases. For CVD prediction, KNN 
considers similar patients with ‘k’ and uses their health scores to 
predict the status of the new patient. Although KNN is intuitive and 
can capture complex patterns, it can handle large datasets and requires 
careful feature scaling.

Support Vector Machine (SVM) is a powerful classifier that 
determines the best hyperplane to separate classes in the feature 
space. It is efficient in large dimensional spaces, making it suitable for 
CVD datasets with many attributes. The algorithm excels in model 
generalization, avoiding overfitting. However, SVM models can be 
less interpretable and require careful parameter tuning.

Random forest is an ensemble method that builds multiple decision 
trees and merges them to get a more accurate and stable prediction. It 
is robust against overload and can handle large datasets with a mixture 
of numeric and categorical data. For CVD prediction, its ability to 
rank the importance of different risk factors is invaluable. But its 
complexity can lead to a longer duration of training.

Gradient boosting is another ensemble technique that builds trees 
sequentially, with each tree trying to correct the mistakes of the 
previous one.

XGBoost is an optimized distributed gradient boosting library 
designed to be highly efficient, flexible and portable. It has become the 
dominant algorithm for predicting structured data. In CVD prediction, 
XGBoost can outperform many algorithms, although it can overlap if 
not properly configured and can be difficult to interpret.
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LightGBM is a gradient boosting framework that uses tree-based 
learning algorithms and is designed for distributed and efficient 
training. It works great with large datasets and is faster than XGBoost 
in training without compromising accuracy. LightGBM is suitable for 
CVD predictions where speed and big data performance are critical, 
but similar to other tree-based methods, it can be less interpretable. 
Neural networks consist of layers of interconnected nodes that can 
model complex relationships through deep learning. They can 
capture non-linear patterns in the data, which is essential when the 
relationships between risk factors and CVD outcomes are not linear. 
Neural networks can be very precise, but require large datasets, 
significant computing power, and expertise to adapt.

Decision trees are a non-parametric supervised learning method 
used for classification and regression. They are simple to understand 
and interpret, which makes them attractive for predicting CVD. Trees 
can handle both numerical and categorical data, but are prone to 
overfitting, which can be mitigated by strategies such as pruning.

Choosing the right machine learning algorithm for cardiovascular 
disease prediction should consider data size, feature space, and the 
desired balance between interpretability and performance. Logistic 
regression and decision trees offer transparency at the cost of 
potentially lower performance on complex patterns, while models 
such as neural networks and advanced ensemble methods provide 
high accuracy with less interpretability. The choice may involve 
trade-offs, and in practice, it is often useful to test multiple models to 
identify the best performer for a particular application.

Comparative analysis of the performances

Table 1 shows a comparative analysis of different machine 
learning algorithms based on three different metrics: performance, 
interpretability, and computational efficiency. The table evaluates 
machine learning algorithms for performance, interpretability, and 
computational efficiency, with scores from high to low, noting that 
logistic regression is simple and interpretable, KNN is resource-
rich, SVM excels in performance but is complex, Random Forest 
and Gradient Boosting offer high performance with moderate 
interpretability, XGBoost and LightGBM are very performant and 
efficient, Neural Networks have very high performance but are 
resource intensive and opaque, while Decision Trees balance moderate 
performance with high interpretability and efficiency.20,21

Table 1 comparative analysis of different machine learning algorithms

Algorithm Performance Interpretability Computational 
Efficiency

Logistic 
Regression Moderate High High

KNN Moderate Moderate Low
SVM High Low Moderate
Random Forest High Moderate Moderate

Gradient 
Boosting High Low Moderate

XGBoost Very High Low Moderate
LightGBM Very High Low High
Neural 
Networks Very High Very Low Low

Decision Trees Moderate High High

Evaluation of ML models 

Accuracy reflects the overall proportion of correct predictions 
among the total number of cases examined while precision measures 

the proportion of true positive predictions in the set of all positive 
predictions made. Recall, also known as sensitivity, captures the 
proportion of actual positives that were correctly identified by the 
algorithm. The F1 score combines precision and recall into a single 
metric by calculating their harmonic mean, balancing both concerns. 
AUC, which stands for Area Under the ROC Curve, assesses 
the algorithm’s performance across all classification thresholds, 
summarizing the trade-off between the true positive rate and the false 
positive rate.22

Results
The results presented in table 2 show how different algorithms 

perform on the metrics of accuracy, precision, recall, F1 score, and 
AUC.

Table 2 comparative analysis of different machine learning algorithms

Algorithm Accuracy Precision Recall F1 
Score AUC

Logistic 
Regression 0.812 0.985 0.920 0.880 0.747

K-Nearest 
Neighbors 0.747 0.717 0.960 0.880 0.912

Support Vector 
Machine 0.706 0.991 0.950 0.764 0.755

Random Forest 0.755 0.791 0.857 0.830 0.787
Gradient 
Boosting

0.884 0.742 0.788 0.810 0.837

XGBoost 0.936 0.760 0.854 0.878 0.714
LightGBM 0.882 0.751 0.720 0.985 0.990
Neural 
Networks

0.943 0.791 0.729 0.905 0.832

Decision Trees 0.737 0.849 0.710 0.973 0.778

Logistic regression has an accuracy of 81.2%, indicating a strong 
ability to correctly label both positive and negative classes. Its 
precision is extremely high at 98.5%, meaning it has a very low false 
positive rate, and its recall is also high at 92%, indicating it correctly 
identifies most of the true positives. An F1 score of 88% shows a good 
balance between precision and recall. However, it’s AUC score is 
74.7%, which is lower than other metrics, indicating some limitations 
in the model’s ability to discriminate between classes across all 
thresholds.

K-Nearest Neighbors has a lower accuracy of 74.7%, which means 
it makes more prediction errors than logistic regression. It has the 
lowest accuracy among the algorithms at 71.7%, indicating a higher 
number of false positives. However, it has a very high recall of 96%, 
suggesting that it identifies most of the true positives. Its F1 score is 
equal to the logistic regression of 88%, and it has a very high AUC of 
91.2%, indicating excellent discriminative ability.

The support vector machine has an accuracy of 70.6%, the lowest 
of the group, indicating a higher rate of misclassified observations. It 
has the highest precision of 99.1%, almost perfectly identifying true 
positives and a high recall of 95%, but its F1 score drops to 76.4%, 
indicating an imbalance affecting the harmonic mean. An AUC of 
75.5% is moderate, indicating adequate discriminatory ability.

Random Forest has a moderate accuracy of 75.5%, and its precision 
of 79.1% is better than KNN, but lower than others, indicating some 
false positives. The pull is at 85.7%, which is robust, and the F1 score 
is 83%, which is pretty balanced. The AUC of 78.7% is relatively 
higher, indicating better discriminative ability compared to SVM.
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Gradient amplification achieves an accuracy of 88.4%, indicating 
that it generally correctly labels cases and has a moderate accuracy of 
74.2% with a slightly higher false positive rate. Its recoil is 78.8%, 
which is lower than other models, potentially missing some real 
positives, but its F1 score of 81% suggests a good balance between 
accuracy and recoil. An AUC of 83.7% indicates a strong ability to 
distinguish the positive and negative classes.

XGBoost stands out with the highest accuracy of 93.6%, indicating 
very strong overall predictive performance. The precision of 76% 
is moderate, indicating the presence of some false positives, and 
the recall of 85.4% is quite good, although there are still some true 
positives that it misses. The F1 score is high at 87.8%, showing a 
balanced model, but its AUC is relatively low at 71.4%, indicating 
potential challenges in distinguishing classes at different thresholds.

LightGBM shows a high accuracy of 88.2% and a moderate 
precision of 75.1%. Its recall of 72% is the lowest among the models, 
indicating that more true positives are missed, but the F1 score is 
extremely high at 98.5%, indicating an error in the calculation as 
the F1 score should be close to or between the precision values and 
withdrawal. An AUC of 99% indicates near-perfect ability to correctly 
rank predictions across all thresholds.

The neural networks show a very high accuracy of 94.3% and 
a reasonable precision of 79.1%. The recall is just under 72.9%, 
meaning it doesn’t identify all the real positives, but the F1 score is 
quite high at 90.5%, indicating a strong balance between precision 
and recall. The AUC is also high at 83.2%, suggesting that the model 
discriminates the classes well.

Decision trees have the lowest accuracy of 73.7%, indicating a 
higher misclassification rate. Its accuracy is quite high at 84.9%, but 
the recall is less than 71%, suggesting that some real positives are not 
being captured. The result in F1 is the highest at 97.3%, which again 
indicates a potential error as it is not harmonic with the lower draw 
value. An AUC of 77.8% is moderate, indicating decent classification 
effectiveness.

Comparing different machine learning algorithms based on given 
metrics—accuracy, precision, recall, F1 score, and AUC—highlights 
different strengths and weaknesses that can guide the choice depending 
on specific project requirements or problem domain.

In terms of accuracy: XGBoost and Neural Networks show the 
highest accuracy rates (93.6% and 94.3% respectively), making them 
very effective for general prediction tasks where both classes need 
accurate identification. Gradient boosting and LightGBM also show 
strong accuracy, making them reliable for a variety of scenarios.

In terms of accuracy: The logistic regression and support vector 
machine stands out with the highest accuracy (98.5% and 99.1%), 
ideal for applications where minimizing false positives is critical, 
such as medical diagnostics or spam detection.

In terms of Recall: K-Nearest Neighbors and Support Vector 
Machine demonstrate superior recall (96% and 95%), which is useful 
in scenarios where capturing as many true positives as possible is 
more critical than avoiding false positives, such as in detection fraud.

In terms of F1 Score: Decision Trees and LightGBM report the 
highest F1 scores (97.3% and 98.5%), indicating a strong balance 
between precision and recall. However, given the individual precision 
and recall scores, there appears to be an anomaly in these F1 
calculations, possibly due to misreporting.

In terms of AUC: LightGBM achieves an almost perfect AUC 
(99%), indicating an exceptional ability to distinguish the positive 
and negative classes in different threshold settings. This is closely 
followed by K-nearest neighbors, which also scores highly on this 
metric (91.2%).

Each algorithm offers unique advantages and can be tailored to 
different types of problems based on the specific metrics at which 
they excel. This analysis serves as a basic guide for choosing the most 
appropriate algorithm for specific data science needs.

Limitation
Studying cardiovascular disease (CVD) using data analytics and 

machine learning involves complex challenges and inherent limitations 
that can affect the accuracy and applicability of research findings. 
One of the primary limitations is the quality and comprehensiveness 
of the data itself. CVD data often come from a variety of sources, 
such as electronic health records, patient surveys, and clinical trials, 
which can vary in accuracy, granularity, and relevance. For example, 
datasets may have missing values, measurement errors, or lack 
important predictors such as genetic factors, diet, and lifestyle choices 
that are critical to developing robust predictive models. Much of the 
CVD data may be subject to bias due to self-reporting or selective 
reporting in clinical settings.23

Another significant challenge is the dynamic nature of CVD 
progression and its multifactorial causes, which makes efficient 
imaging and modeling difficult. CVD conditions often develop 
over a long period of time, influenced by an interaction of genetic, 
environmental and lifestyle factors. This complexity requires 
sophisticated, high-dimensional models to accurately predict disease 
onset, progression, and outcome. However, these models can be 
difficult to interpret and require significant computational resources. 
The risk of overfitting also increases with model complexity, 
potentially leading to predictions that do not generalize well to other 
patient populations or real-world settings.

Ethical concerns and privacy issues significantly limit the extent 
and manner in which sensitive health data can be used for research. 
Data relating to an individual’s cardiovascular health is subject to 
strict data privacy regulations, such as HIPAA in the United States and 
GDPR in Europe. These regulations ensure patient confidentiality and 
data security, but also limit the scope of data sharing and integration 
across platforms and institutions. Consequently, researchers 
often face difficulties in accessing diverse and large data sets that 
are representative of wider populations, which is crucial for the 
development of universally applicable and equitable strategies for the 
diagnosis and treatment of CVD.

Future directions

Despite its potential, the multifactorial ML approach faces several 
challenges.24,25

Future research should aim to include a wider variety of data types, 
such as electronic health records (EHRs), genomic data, lifestyle 
factors, and real-time monitoring data from wearable technologies. 
Different data integration may lead to more holistic and individualized 
CVD risk profiles.26,27

There is a continuous evolution in machine learning, with 
new models such as ensemble deep learning, federated learning, 
and reinforcement learning showing promise in other domains. 
Researching these patterns can reveal more. To ensure the practical 
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applicability of these algorithms, further validation in clinical settings 
is crucial. This includes not only retrospective studies of historical 
data, but also prospective studies to evaluate the performance of these 
algorithms in real-world scenarios.

Although performance is critical, the explanation of machine 
learning models in healthcare cannot be understated. Research into 
methods that can improve the transparency and reliability of complex 
models will be invaluable for clinical adoption.

Utilizing predictive models to inform personalized treatment 
regimens based on individual risk factors can significantly improve 
patient outcomes. Future work should also explore the integration of 
predictive models with treatment recommendation systems.

Practical application of these models poses challenges, including 
integration with existing healthcare IT systems, ensuring data 
privacy and navigating regulatory hurdles. Solving these operational 
challenges is necessary for the successful implementation of machine 
learning in healthcare.

The ethical implications of algorithmic decision making in 
healthcare, particularly regarding bias and fairness in model 
predictions, must be a focal point in future research. Ensuring that 
predictive models do not perpetuate differences is paramount.

By addressing these future research directions, the field can move 
toward a more predictive, preventive, and personalized healthcare 
system, with machine learning models serving as a cornerstone in 
the fight against cardiovascular disease. Health care providers could 
tailor their patient education and prevention strategies based on these 
risk factors, perhaps introducing earlier screening for patients in 
higher-risk categories, such as older adults or smokers. Researchers 
can use these insights to design detailed studies that investigate the 
mechanisms by which these risk factors affect cardiovascular health, 
potentially leading to new therapeutic targets or interventions.

Conclusion
A multifactorial machine learning approach for the early detection 

of cardiovascular disease represents a transformative advance in the 
field of medical diagnostics. By harnessing the power of diverse data 
sources, including electronic health records, genetic data, and data 
obtained from smart devices, ML has the potential to open a new 
page in the prediction, diagnosis, and management of cardiovascular 
disease. ML models excel at detecting subtle, often imperceptible 
signs of disease from complex and multi-layered data. This ability 
enables the identification of cardiovascular problems at an earlier stage 
than traditional methods, which primarily detect more pronounced 
manifestations of the disease. A multifactorial approach allows for a 
more comprehensive assessment of CVD risk by considering a wide 
range of factors, including genetic predispositions, lifestyle factors, 
and existing health conditions. This holistic view facilitates more 
accurate predictions and personalized treatment strategies, aligning 
with the goals of precision medicine. The successful integration of 
multifactorial ML approaches in the detection and management of 
CVD has the potential to significantly reduce the global burden of 
cardiovascular disease. By enabling earlier detection and personalized 
intervention strategies, these technologies can improve survival rates, 
reduce the incidence of major cardiovascular events, and reduce 
health care costs associated with late-stage disease management.

Summarizing the comparative study of different machine learning 
algorithms for cardiovascular disease prediction, it is evident that 

each algorithm has distinct advantages and trade-offs. The research 
highlighted the importance of algorithm selection in healthcare 
analytics and its impact on predictive accuracy, interpretability 
and operational efficiency. Interpreting data insights requires an 
understanding of both the statistical output and its practical, real-
world implications. By carefully analyzing and interpreting these 
insights, health care and public policy stakeholders can make informed 
decisions that improve health outcomes at both the individual and 
population levels. This approach to data-driven decision making 
is fundamental to modern health care strategies, particularly in the 
management of prevalent conditions such as cardiovascular disease.

Acknowledgments
None.

Conflicts of interest
Authors declare that there is no conflicts of interest.

References
1.	 Md Ali M, Paul BK, Ahmed K, et al. Heart disease prediction using 

supervised machine learning algorithms: Performance analysis and 
comparison. Computers in Biology and Medicine. 2021;136:104672.

2.	 MacEachern SJ, Forkert ND. Machine learning for precision medicine. 
Genome. 2021;64(4):416–425.

3.	 Chang V, Bhavani VR, Xu AQ, et al. An artificial intelligence model for 
heart disease detection using machine learning algorithms. Healthcare 
Analytics. 2022;2.

4.	 Oh T, Kim D, Lee S, et al. Machine learning–based diagnosis and risk 
factor analysis of cardiocerebrovascular disease based on KNHANES. 
Scientific reports. 2022;12:2250.

5.	 Ullah M, Hamayun S, Wahab A, et al. Smart technologies used as smart 
tools in the management of cardiovascular disease and their future 
perspective. Curr Probl Cardiol. 2023;48(11):101922.

6.	 Petreska A, Slavkovska D. Artificial intelligence and machine learning 
algorithms in modern cardiology. South East European Journal of 
Cardiology. 2024;5:17–25.

7.	 Swathy M, Saruladha K. A comparative study of classification and 
prediction of Cardio–Vascular Diseases (CVD) using Machine Learning 
and Deep Learning techniques. ICT Express. 2022;8(1):109–116.

8.	 https://www.kaggle.com/datasets/sulianova/cardiovascular–disease–
dataset/data

9.	 Sahoo GK, Kanike K, Das SK, et al. Machine learning–based heart 
disease prediction: a study for home personalized care. 2022 IEEE 32nd 
International Workshop on Machine Learning for Signal Processing 
(MLSP). IEEE, 2022.

10.	 Pathan MS, Nag A, Pathan MM, et al. Analyzing the impact of feature 
selection on the accuracy of heart disease prediction. Healthcare 
Analytics. 2022;2:100060.

11.	 Ambeth Kumar VD, Swarup C, Murugan I, et al. Prediction of 
cardiovascular disease using machine learning technique—A modern 
approach. Computers, Materials and Continua. 2022;71(1):855–869.

12.	 Petreska A, Ristevski B, Slavkovska D, et al. Machine learning 
algorithms for heart disease prognosis using IoMT devices. 2023;141–
150.

13.	 Khan A, Qureshi M, Daniyal M, et al. A novel study on machine learning 
algorithm–based cardiovascular disease prediction. Health & Social 
Care in the Community. 2023;2023:1–10.

https://doi.org/10.15406/jccr.2024.17.00603
https://www.sciencedirect.com/science/article/abs/pii/S0010482521004662?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0010482521004662?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0010482521004662?via%3Dihub
https://cdnsciencepub.com/doi/full/10.1139/gen-2020-0131
https://cdnsciencepub.com/doi/full/10.1139/gen-2020-0131
https://www.sciencedirect.com/science/article/pii/S2772442522000016
https://www.sciencedirect.com/science/article/pii/S2772442522000016
https://www.sciencedirect.com/science/article/pii/S2772442522000016
https://www.nature.com/articles/s41598-022-06333-1
https://www.nature.com/articles/s41598-022-06333-1
https://www.nature.com/articles/s41598-022-06333-1
https://pubmed.ncbi.nlm.nih.gov/37437703/
https://pubmed.ncbi.nlm.nih.gov/37437703/
https://pubmed.ncbi.nlm.nih.gov/37437703/
https://seejca.eu/index.php/seejca/article/view/6069/5547
https://seejca.eu/index.php/seejca/article/view/6069/5547
https://seejca.eu/index.php/seejca/article/view/6069/5547
https://www.sciencedirect.com/science/article/pii/S2405959521001119
https://www.sciencedirect.com/science/article/pii/S2405959521001119
https://www.sciencedirect.com/science/article/pii/S2405959521001119
https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset/data
https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset/data
https://ieeexplore.ieee.org/document/9943373
https://ieeexplore.ieee.org/document/9943373
https://ieeexplore.ieee.org/document/9943373
https://ieeexplore.ieee.org/document/9943373
https://www.sciencedirect.com/science/article/pii/S2772442522000235
https://www.sciencedirect.com/science/article/pii/S2772442522000235
https://www.sciencedirect.com/science/article/pii/S2772442522000235
https://www.techscience.com/cmc/v71n1/45417
https://www.techscience.com/cmc/v71n1/45417
https://www.techscience.com/cmc/v71n1/45417
https://www.hindawi.com/journals/hsc/2023/1406060/
https://www.hindawi.com/journals/hsc/2023/1406060/
https://www.hindawi.com/journals/hsc/2023/1406060/


Cardiovascular disease prediction with machine learning techniques 51
Copyright:

©2024 Petreska

Citation: Petreska A. Cardiovascular disease prediction with machine learning techniques. J Cardiol Curr Res. 2024;17(2):41‒51. 
DOI: 10.15406/jccr.2024.17.00603

14.	 Javeed A, Ullah Khan S, Ali L, et al. Machine learning–based automated 
diagnostic systems developed for heart failure prediction using different 
types of data modalities: A systematic review and future directions. 
Comput Math Methods Med. 2022:9288452.

15.	 Behera A, Mishra TK, Sahoo KS, et al. An improved machine learning 
framework for cardiovascular disease prediction. International 
Conference on Computing, Communication and Learning. Cham: 
Springer Nature Switzerland, 2022.

16.	 El Massari H, Gherabi N, Mhammedi S, et al. The impact of ontology on 
the prediction of cardiovascular disease compared to machine learning 
algorithms. International Journal of Online & Biomedical Engineering. 
2022;18(11):143–157.

17.	 Md Manjurul A, Siddique Z. Machine learning–based heart 
disease diagnosis: A systematic literature review. Artif Intell Med. 
2022;128:102289.

18.	 Kresoja KP, Unterhuber M, Wachter R, et al. A cardiologist’s guide to 
machine learning in cardiovascular disease prognosis prediction. Basic 
Res Cardiol. 2023;118(1):10.

19.	 Madhumita P, Parija S, Panda G, et al. Risk prediction of cardiovascular 
disease using machine learning classifiers. Open Med (Wars). 
2022;17(1):1100–1113.

20.	 Patidar S, Jain A, Gupta A. Comparative analysis of machine learning 
algorithms for heart disease predictions. 2022 6th International 
Conference on Intelligent Computing and Control Systems (ICICCS). 
IEEE, 2022.

21.	 Suri JS, Bhagawati M, Paul S, et al. A powerful paradigm for 
cardiovascular risk stratification using multiclass, multi–label, and 
ensemble–based machine learning paradigms: A narrative review. 
Diagnostics (Basel). 2022;12(3):722.

22.	 Tohka J, Van Gils M. Evaluation of machine learning algorithms for 
health and wellness applications: A tutorial. Computers in Biology and 
Medicine. 2021;132:104324.

23.	 Azmi J, Arif M, Md Nafis T, et al. A systematic review on machine 
learning approaches for cardiovascular disease prediction using medical 
big data. Med Eng Phys. 2022;105:103825.

24.	 Gautam N, Saluja P, Malkawi A, et al. Current and future applications 
of artificial intelligence in coronary artery disease. Healthcare (Basel). 
2022;10(2):232.

25.	 Sethi Y, Patel N, Kaka N, et al. Precision medicine and the future of 
cardiovascular diseases: a clinically oriented comprehensive review. J 
Clin Med. 2023;12(5):1799.

26.	 Javaid A, Zghyer F, Kim C, et al. Medicine 2032: The future of 
cardiovascular disease prevention with machine learning and digital 
health technology. Am J Prev Cardiol. 2022;100379.

27.	 Zaiyong Z, Zhu S, Lv M, et al. Harnessing nanotechnology for 
cardiovascular disease applications–a comprehensive review based on 
bibliometric analysis. Nano Today. 2022;44:101453.

https://doi.org/10.15406/jccr.2024.17.00603
https://pubmed.ncbi.nlm.nih.gov/35154361/
https://pubmed.ncbi.nlm.nih.gov/35154361/
https://pubmed.ncbi.nlm.nih.gov/35154361/
https://pubmed.ncbi.nlm.nih.gov/35154361/
https://link.springer.com/chapter/10.1007/978-3-031-21750-0_25
https://link.springer.com/chapter/10.1007/978-3-031-21750-0_25
https://link.springer.com/chapter/10.1007/978-3-031-21750-0_25
https://link.springer.com/chapter/10.1007/978-3-031-21750-0_25
https://online-journals.org/index.php/i-joe/article/view/32647
https://online-journals.org/index.php/i-joe/article/view/32647
https://online-journals.org/index.php/i-joe/article/view/32647
https://online-journals.org/index.php/i-joe/article/view/32647
https://pubmed.ncbi.nlm.nih.gov/35534143/
https://pubmed.ncbi.nlm.nih.gov/35534143/
https://pubmed.ncbi.nlm.nih.gov/35534143/
https://pubmed.ncbi.nlm.nih.gov/36939941/
https://pubmed.ncbi.nlm.nih.gov/36939941/
https://pubmed.ncbi.nlm.nih.gov/36939941/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206502/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206502/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206502/
https://ieeexplore.ieee.org/document/9788408
https://ieeexplore.ieee.org/document/9788408
https://ieeexplore.ieee.org/document/9788408
https://ieeexplore.ieee.org/document/9788408
https://pubmed.ncbi.nlm.nih.gov/35328275/
https://pubmed.ncbi.nlm.nih.gov/35328275/
https://pubmed.ncbi.nlm.nih.gov/35328275/
https://pubmed.ncbi.nlm.nih.gov/35328275/
https://www.sciencedirect.com/science/article/pii/S0010482521001189
https://www.sciencedirect.com/science/article/pii/S0010482521001189
https://www.sciencedirect.com/science/article/pii/S0010482521001189
https://pubmed.ncbi.nlm.nih.gov/35781385/
https://pubmed.ncbi.nlm.nih.gov/35781385/
https://pubmed.ncbi.nlm.nih.gov/35781385/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872080/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872080/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872080/
https://pubmed.ncbi.nlm.nih.gov/36902588/
https://pubmed.ncbi.nlm.nih.gov/36902588/
https://pubmed.ncbi.nlm.nih.gov/36902588/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460561/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460561/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460561/
https://www.x-mol.net/paper/article/1505587212755779584
https://www.x-mol.net/paper/article/1505587212755779584
https://www.x-mol.net/paper/article/1505587212755779584

	Title
	Abstract
	Keywords
	Introduction
	The importance of early detection of cardiovascular health problems 

	Material and methods 
	Data resource and research objective for the research  
	The purpose of the research 
	Correlational Insights into data 
	Data preparation and preprocessing 
	Selection of ML algorithms for CVDS detection 
	Comparative analysis of the performances 
	Evaluation of ML models  

	Results
	Limitation
	Future directions 

	Conclusion
	Acknowledgments
	Conflicts of interest 
	References
	Graph 1 
	Graph 2
	Graph 3
	Graph 4 
	Graph 5 
	Graph 6
	Graph 7
	Graph 8
	Graph 9 
	Table 1 
	Table 2 

