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Abbreviations: AoA, angle of attack; BET, blade element 
theory; BEMT, blade element momentum theory; CFD, computational 
fluid dynamics; LSB, large separation bubbles; MRF, multiple 
reference frame

Introduction
In recent decades, the aviation industry has witnessed remarkable 

advancements, particularly with the emergence of drones, these new 
vehicles have rapidly gained prominence due to their versatility. 
As the demand for drone technology continues to grow, there is 
an inherent need to overcome technological challenges and drive 
innovation. The goal of this project is to provide new insights and 
analyze possible paths of evolution of small rotors, which can 
contribute to reduce power consumption and enhance performance 
capabilities such as range or autonomy. Large scale rotors, used in 
helicopters, have larger efficiencies than small scale rotors as pointed 
out by R. Cagnato,1 these inefficiencies are mainly related with the 
size of the rotors and its implication in their Reynolds flight regime 

5(  , 5.10 )Low Reynolds Re < ,2 which implies bad aerodynamic 
efficiency. Consequently, it is important to analyze all the parameters 
related to rotor performance and try to enhance it. Among all the 
geometrical parameters defining rotor’s geometry, this project focuses 
on two: twist distribution and platform shape by means of chord 
distribution.

Improving the efficiency through geometrical optimization has 
historically been a matter of significant interest. There are multiple 
studies analyzing all the implications of geometry modification in 
rotor’s efficiency for large scale rotors. In fact, there are even theoretical 
optimal configurations with hyperbolic chord and twist distributions 
for hovering, as noted by Joanne L. Walsh,3 who also showed the 
benefits of tapered blades and negative twist not only for hovering 
but also for forward flight regime. However, the number of studies 
about small scale rotors is not that large. Moreover, the operation at 
low Reynolds has significant implications in the performance, which 
may affect to the final optimal geometries implying that general ideas 
of large scall rotors do not apply to small rotors. At low Reynolds, 
where viscous effects are dominant, it occurs complex phenomena 
that leads to low aerodynamic efficiency. Separation of the flow 
followed by reattachment leading to the formation of large separation 
bubbles, which are linked to poor lift/drag ratio. Those problems 

were pointed out by F. Bohorquez,4 who analyzed the effect of 

several geometrical parameters for rotors operating at 4( 6.10 )Re 
. Bohorquez provides interesting conclusions about chord and twist, 
by performing test and creating hybrid models between theoretical 
approaches and computational fluid dynamics (CFD). He pointed out 
the benefits obtained by larger chords platforms opposite to optimal 
large-scale rotors, for which low chord produces low solidity being it 
beneficial. Bigger chords enhance aerodynamic efficiency, it implies 
larger Reynolds regime and lower thickness ratio of airfoils, which 
enhances performance at low Reynolds. Moreover, he remarked 
improvements due to negative twist and benefits of taper near the tip 
of the blade. Additionally, other researchers such as J. Winslow et al.,5 
studied the performance of these rotors. Among its conclusions, they 
remark the differences with large scale rotors due to a bigger impact 
of profile loses, which diminishes the effectiveness of twist and chord 
modifications that aimed to reduce inflow loses by creating a more 
uniform distribution. Despite the improvement was not as large as 
it can be for larger scale rotors, they concluded that negative twist 
is necessary for enhancing aerodynamic performance. Moreover, 
like Bohorquez, They conclude that larger chords enhanced the 
performance and taper blades showed negligible benefits except for 
large reductions near the tips. Other scholars like J. Wiebe6 performed 
optimizations using theoretical models, characterizing the airfoils 
properties with simpler tools such as XFOIL software. He remarked 
the limitations of theoretical models. Moreover, he approached the 
optimization using MATLAB toolbox and implementing interesting 
distributions defined by spline curves for both chord and twist. 
However, the performance of small-scale rotos is not only carried 
out by theoretical models but in fact, for a proper comprehension 
more complex tools are required like: CFD or even experimental 
test. Kodchaniphaphong et al.,8 carried out CFD simulations that 
were compared against experimental test of small-scale rotors in both 
regimes: hovering and forward flight, showing good predictions. R. 
Cagnato and C. Vasconcelos,1,7 also used CFD for characterizing 
and analyzing more complex phenomena of the rotor’s performance, 
using different approaches for the same type of simulations, Multiple 
reference frame (MRF) and Sliding mesh.

Supported by the ideas of the current state of the art, this project 
pursuits the estimation of rotor performance and possible chord 
and twist distributions for improving it in hover and forward flight 
using MATLAB version R2022b,9 blade element momentum theory 
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Abstract

Novel aircraft configuration, such as drones, have emerged during the last decades. This 
project aims to offer insights into drone development, enhancing its efficiency by means 
of rotor optimization utilizing well-established theoretical models based on blade element 
momentum theory for estimating thrust generation and power requirements at hover and 
forward flight. The impact on performance of chord and airfoils pitch angle, particularly 
focusing on the twist, which is how pitch changes along the blade, is analyzed, followed 
by optimizations of multiple chord and twist distributions at different flight conditions. 
Additionally, Computational fluid dynamics tools are employed to simulate resulting rotor 
geometries and to the baseline. Simulations and model predict power reductions of 3% 
to 17%, with negative twist rates and increased platform as main characteristics of most 
efficient geometries.
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(BEMT) and airfoils properties estimated by software for preliminary 
designs tasks like XFOIL 6.99.10 Concluding with CFD simulations 
with Fluent by Ansys version 2021 R2.11 

Theoretical concepts, MATLAB models and 
optimization

Next section contains the theoretical background required for the 
models as well as the assumptions and hypothesis assumed.

Low Reynolds regime and aerodynamic properties

As emphasized, the rotors of drones operate in a different Reynolds 
regime compared to large-scale rotors. This has implications for 
the model, not only because the aerodynamic efficiency is severely 
affected, as noted in,4 but also because it affects the typical assumptions 
made in blade theory.

At high Reynolds regimes, lift (Cl) and drag coefficients (Cd) 
barely depend on Reynolds number. Moreover, the behaviour with the 
angle of attack (AoA) is approximately linear for lift and quadratic 
for drag. However, due to the greater impact of viscosity and the 
presence of phenomena such as large separation bubbles (LSB), these 
assumptions cannot be kept at low Reynolds. Multiple studies have 
analyzed this regime and the performance of airfoils under these 
conditions,12 trying to understand the behaviour of airfoils.

It is crucial to estimate the aerodynamic properties of the airfoils 
(NACA 0012) (lift and drag coefficients, Cl, Cd) for the rotor models. 
As stated in14 XFOIL is an interesting tool due to its simplicity, time 
cost and fairly good results. Figure 1 shows a comparative against 
experimental data.

Figure 1 Comparison between XFOIL NACA 0012 data and experimental 

data from13 for 46 10Re = ⋅

(a) Lift coefficient (Cl) versus angle of attack (AoA) (b) Drag coefficient (Cd) 
versus AoA

XFOIL, which uses Ne theoretical transition approach, is useful for 
low Reynolds computations as demonstrated by its developer M. Drela 
in.15 In terms of error, as pointed out in,6 it is optimistic predicting lift 
coefficient and stall point. Bohorquez3 discouraged using traditional 
thick airfoils for small rotors. However, blade airfoil section effect 
is not the goal of the project. NACA 0012 was chosen because it is 
one of the most studied airfoils, the amount of data available at low 
Reynolds was bigger and if required, fabrication would be easier due 
to its symmetry.

Theoretical background

Rotors performance models are based on Blade Element 
Momentum Theory (BEMT) adapted at each flight regime. This 
theory is a combination of two others: Momentum theory and Blade 
Element Theory (BET).

Momentum theory

Momentum theory assumes that a stream-tube, Figure 2, appears 
in the rotor vicinity. This 1-D theory uses conservation laws of: mass, 
momentum, and energy in the control volumes, above and below the 
rotor disk. All the hypothesis required for this theory are found in the 
book written by Leishmann.16

Figure 2 Scheme of the stream-tube with control volume definitions and 
lateral pressure distribution for Von Misses hypothesis.

After performing the mass, momentum and energy balances, it 
is obtained the next relationships with relate the thrust (T), induced 
power ( )

i
P and induced speed ( )

i
v with: the mass flow (m), the rotor 

area ( )RA , defined with the rotor radius (R), the pressures above and 
below the rotor ( )1 2, p p , the density ( )ρ and the entrance and exit 

speeds ( )0 , v w .
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This approach was adapted for forward flight by Glauert.16 Again, 

assuming the stream-tube, Figure 3. Two control volumes are defined, 
and the balances are computed in the normal direction to the disk area 
of the rotor. This theory works for medium and high advance speeds. 
Full explanation can be found in detail.16

Figure 3 Stream-tube scheme for forward flight.

New terms appear in the equations from the balances: the rotor 
inclination angle ( )rα and the advance speed of the vehicle ( )V∞ .
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Blade element theory (BET)

Momentum theory does not consider any aspect related with 
rotor geometry except for the radius. The estimations are based on 
conservation laws and not on aerodynamic principles neglecting 
viscosity, hence drag forces and parasite power cannot be computed. 
BET computes rotors forces, torque (Q) and power, induced and 
parasite ( )0,  iP P , based on 2-D theory using the aerodynamic forces 
at each blade section and integrating along the blade. Only some 3-D 
effects can be implemented by modifications of the theory.

Figure 4, shows the velocities over the blade section, radial ( )RU

, which is neglected, tangential ( )TU and perpendicular ( )PU as well 

as the differential forces ( ),z xdF dF  and the aerodynamic terms lift, 

drag and moment (L,D,M). Additionally, it appears the geometrical 
pitch ( )θ , the angle of attack ( )α and the inflow angle ( )φ as well 

as the non-dimensional radius ( )/r y R= . By composition of those 
forces, the expressions that integrated along the blade provide the 
final computation are reached.

Figure 4 Blade Element theory model, forces, and velocities at the blade 
section.16

, tan P
P T

T

UU U rR a
U

α θ φ φ
 

= = Ω = − → =  
 

               (3)

Lift and drag are computed using the dynamic pressure ( )21 / 2 Uρ

, the chord distribution (c) and the airfoil properties: lift and drag 
coefficient (Cl,Cd).

2 21 1,
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,   z x

dL U Clcdy dD U Ccdy

dF dLcos dDsin dF dLsin dDcos

ρ ρ

φ φ φ φ

= =

= − = +
                (4)

Finally, differential expressions of thrust, torque and power are 
obtained using the number of blades (b) and the rotational speed (Ω).

, , Z x xdT bdF dQ bdF rR dP bdF rR= = = Ω                               (5)

Frequently, these final expressions are non-diomensionalized 
using the rotor area ( )rA , the tip speed ( )RΩ  and new parameters, the 

solidity ( ) ( )( )/bc Rσ π= and the inflow parameter
 ( )( )/PU Rλ = Ω .
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(6)

Similarly to momentum theory, BET can be applied in forward 
flight. The main difference is the velocity field and the forces, Figure 
5. At forward flight, velocity field is not axisymmetric, the magnitudes 
must be averaged in a revolution because they depend on the azimuth 
position (ψ). 

Figure 5 Blade Element theory scheme for forward flight, forces, and 
velocities at the blade section.

Whereas the expressions of lift and drag forces do not change from 
equation 4, tangential and perpendicular speeds do, as well as the final 
forces. Moreover, the axial force ( )xF of the previous scheme, which 
is denominated as dragging force, is split in two (Y,H). Apart from 
that, functions ( ), t hF F are implemented for quantifying losses at the 
tip and hub, more information about them is available in.16
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                (7)

Frequently, the theory is simplified assuming small angles, 
tangential speed much bigger than perpendicular speed and high 

Reynolds simplifications ( ),  Cl CL Cl Cdαα≈  , which should not 
be applied for small scale rotors.

Blade element and momentum theory  

As subjected, BET considers geometrical blade parameters for 
computing the total power of the rotor. However, the induced speed or 
the inflow (λ) required for the computation must be provided whereas 
the momentum theory estimates it using the thrust. The momentum 
theory applied in differential form,16 (annular sections), combined 
with BET creates the final approach used for the computations, the 
blade element and momentum theory (BEMT), using the equality 
of the expressions of thrust coefficient (CT) provided by BET and 
differential momentum theory.

2 24
2

16 16 8
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r

Cl Cl Cl r
F F

α

α α α

σ λθ λ

σ σ σ θλ

 = − = 
 

= − + +
                                (8)

Previous expression is obtained assuming the simplified form 
of BET and the differential momentum theory. Moreover, it takes 
into the account tip and hub 3-D losses with the functions ( ), t hF F , 

proposed by Prandtl and Lieshmann. More details about the functions 
can be found in.16 Besides that, the inflow can be expressed with the 
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full BET, without linearization, as it is done in.6 However, during the 
validation, it was observed that for low Reynolds were drag can be 
high and NACA 0012 can generate even negative lift with positive 
angles, Figure 1, imaginary terms would appear making impossible to 
converge the solutions. To solvent that issue and still consider the non-
linearity and the dependence with the Reynolds number, lift curves 
were approached with linear segments, Figure 6.

Figure 6 Lift coefficient curve and linear approximation

(a) Cl versusα for 5Re 10= ; (b) Cl versusα for 5Re 1.8 10= ⋅ .

Equation 5 is applied modifying the pitch angle using the database 
with the slopes and the initial angles of each segment ( )0, Cl Clα
depending on the Reynolds at each section.

20
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Additionally, because of the tip and hub losses, the equation 5 
is coupled. Hence, the problem must be solved using an iterative 
procedure as it is described in.1 Apart from that, the model can 
compute the required pilot input to provide a specific thrust or just 
to compute the thrust generated for a fixed configuration. The pilot 
input is typically the collective pitch ( )0θ but it was also considered 
the rotational speed (Ω), which is used for drones. The computation 
is performed using a numerical solution by Newton-Raphson with 
MATLAB fsolve function.

Glauert related the inflow at forward flight and hover16 so it was 
obtained an average inflow ( )0λ from a biquadratic equation. Using 

the advance parameters ( ),x yµ µ and the thrust coefficient (CT) and 
the induces inflow

( )( )/i iv Rλ = Ω .
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For large scale rotors, if ( 0.1)xµ > , it is observed some linear 
behavior in the inflow distribution. In16 linear models are gathered. 
Among all, it was adopted the Pitt & Petters approach, which uses the 
skew wake angle ( )( )( atan /x z iχ µ µ λ= +  

( )0
151 tan ,   0
23 2x x yk cos kysin k kπ χλ λ ψ ψ  = + + → = = 

 
       (11)

However, contrary to hover condition, in which the force balance 
is just compensating the weight and the thrust coefficient is easily 
estimated, at forward flight the force balance gains complexity. 
Moreover, the inclination angle of the rotor is unknown. Since the 
force balance is not determined due to the number of initial unknowns 
and equations, it would be needed an iterative process for determining 

initial value of (H) or to provide some inputs for reducing the number 
of unknowns. The drone inclination angle ( )rα , the velocity ( )V∞

and the flight trajectory ( ) 0hhorizontal γ =  are inputs as well as the 
weight of the vehicle (W). The inclination is related to the advance 
speed as in Figure 7, using the data in,17 which also provides the model 
for estimating the equivalent area ( )eqvA and the vehicle drag (D).

Figure 7 Quadratic approximation of data from17 for forward flight speed

( )fV and drone inclination angle ( )rα .
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= → =                             (12)

Figure 8 shows the force balance over each of the rotor of the 
drone, a quad-rotor configuration is considered. Steady horizontal 
flight is assumed, non-linear dynamics or control strategies are not 
considered, pitch moment equations are balanced by providing the 
same thrust, since the drone configuration has symmetrical arm 
lengths. As done in hovering, the rotational speed is the pilot input 
and is computed for ensuring the required thrust.

Figure 8 Rotor force balanced in forward flight scheme created using balance.
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Finally, total power demands can be integrated using the differential 
power expression in equation 7. Additionally, in16 it is proposed and 
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estimation of the split terms: induced power ( )iP , parasite power ( )0P
. Vehicle drag power ( )parP must be added. As stated in,16 for profile 
drag computations, it can be quantified the effect of the reverse flow 
that appear in some azimuth positions [ ] [ ]( ),2  & 0, xr sinψ π π µ ψ∈ ∈

. For that reason, it was used the coefficient revC , which is 1 or -1 
depending on if the flow.

( )
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2 13

0 0

3
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Validation

Hover validation

Hover validation was done using data from experimental test,17 
Figure 9. Rmin is the first blade section.

Figure 9 Comparison between model estimations and experimental data 
from18 

(a) Thrust (N) versus rotational speed ( )Ω  rpm.

i. b=2

ii. R=0.1775, Rmin=0.0845R.

iii. Ω=1000-4500rpm.

iv. c=0.0225, straight blade.

v. Linear twist θ_0=11 deg, Δθ=-10.833 deg

vi. Airfoil NACA 0018.

Forward flight validation

Data from17 is used for forward flight model. Since no information 
about the chord distribution or twist was provided in the document, 
the data from a T18 rotor was used. Twist and chord distributions of 
the rotor are available in.19 Figure 10 shows the results.

i. Mass=2.13 kg

ii. R=0.12m, Rmin=0.1R

Power is underestimated for low velocities, however, as stated 
during the theoretical explanation, the model can only apply to cases 
in which ( 0.1)xµ > . Consequently, speed of 10 m/s was set as the 
minimum speed for optimizations.

Optimization

Among the available optimization methods, PatternSearch was 

chosen because it can handle robustly smooth and non-smooth 
problems with all kinds of boundary conditions20 chapter 1.

Figure 10 Comparison between forward flight model Power (W) estimations 
versus forward flight speed (Vf(m/s)) and experimental data from.16

Total rotor power was set as the objective function. Moreover, 
four chord and twist distributions were defined. They were combined 
resulting in 11 optimization cases performed at hovering for a 
supposed mass of 0.6 kg (1 rotor) and at forward flight for a quadrotor 
of 2.5 kg at three different advance speeds (10, 15, & 20 m/s). The 
baseline is a straight untwisted blade rotor with a radius (R) of 20 
cm, a chord of 2 cm, and 10 deg pitch. Besides that, the optimization 
is constrained and bounded for avoiding negative pitch or chord. 
Additionally, a penalization is used for cases that do not fulfill the 
limitation 0.1xµ ≥ .

 0.1 /x xf P Pµ µ< → =                                                               (15)

PatternSearch optimization is divided in 2 steps: mesh creation 
and polling. The default algorithm is GPS algorithm. It creates 2N 
searching vectors used for creating additional evaluation points, 
N is the number of independent optimization variables. Those are 
director vectors of dimension1 :[ 1 0...], [0 1...]N× ± ± etc. The mesh is 
created using a scalar mÄ , which is the mesh size of default value 1. 
The points are created using the initial condition ( )0x , the mesh size

 
( )m∆

 
and the searching vectors ( )iv . 

0
m

i ix x v= + ∆                                                                                 (16)

After that, the mesh is evaluated, that is called polling. By default, 
it evaluates until finding one point with a lower value than the 
original, successful poll, the new point is selected, and the mesh is 
expanded. Otherwise, the poll is unsuccessful, and the mesh size is 
reduced. Expansion and contraction factors are 2 and 0.5. The process 
is repeated until the stopping criteria is reached.

i. The mesh size is less than the MeshTolerance (1e-6).

Number of iterations reaches MaxIteration ( )100 N× .

Maximum number of function evaluations reached ( )2000 N×  

If after a successful poll, both, distance between initial and new 
point and mesh size is less than StepTolerance (1e-6).

If after a successful poll the change in the evaluation function is 
less than StepTolerance (1e-6).

Full information about PatternSearch and how it works can be 
found in MATLAB PDF documentation20 chapter 6.
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Twist and chord distributions and parameters

Linear twist and Linear chord parameters: root pitch and differential 
pitch (θ0, slp) and root chord and tip/root chord ratio ( ),root tapc .

( )
( ) ( )( )

0

1 1root

r slp r

c r c r tap

θ θ= + ⋅

= + −
                                              (17)

2 Linear twist and Linear chord parameters: (θ0, slp1, slp2, rper1) 
and ( )1,  2,  2,rootc tap tap rper . Where ( )rper is the blade section where 

segment changes.

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

0 1 11 2 1
1 1

2 21 2 1
2

1 2,   
1

2 11 1 ,   1
1

perc perc
perc perc

root perc perc
perc

slp slpr r r r r r
r r

tapc r c r tap c r c r r r
r

θ θ θ θ= + ⋅ = + −
−

 −
= + − = + −  − 

        (18)

Quadratic twist and chord parameters: ( )0 1 2 , , ,rootc a aθ , (a) 
parameters control the chord/pitch at the tip.

( )
( ) ( )

2
0 1 1

2
2 2

2

 1 2root

r a r a r

c r c a r a r

θ θ= + ⋅ − ⋅

= + ⋅ − ⋅
                                                 (19)

Cubic Bezier twist parameters: (θ0, θtip, r3, y4, r5, y6)→P0(0, 
θ0), P2(1, θtip), P1(r3, y4), P3(r5, y6), the parameters ( ),r y are the 
coordinates of the spline points.

( ) ( ) ( ) ( )3 2 2 31 0 3 1 1 3 1 2 3r r P r r P r r P r Pθ = − + − ⋅ + − ⋅ +         (20)

Cubic Bezier chord parameters:

( ) ( ) ( ),  3, 4, 5, 6 0 0, , 2 )1, · , 1 6, ( (3,  4 ,  3 5,)  root root rootc tap r y r y P c P tap c P r y P r y→

( ) ( ) ( ) ( )3 2 2 31 0 3 1 1 3 1 2 3c r r P r r P r r P r P= − + − ⋅ + − ⋅ +         (21)

The bounds of the optimization variables are gathered in Tables 1 
& 2. Where R is the radius of the rotor (20cm).

Table 1 Chord optimization parameters’ bounds

Bound Croot(m) tap tap1 tap2 a2 rper1 r3 r4 y3(m) y4(m)

Low 0.05R 0.2 0.2 0.7 0 0.2 0.2 0.55 0.01 R 0.01 R

Upper 0.1 R 1.3 1.3 1 1 0.8 0.45 0.8 0.2 R 0.2 R

Table 2 Twist optimization parameters’ bounds

Bound θroot(deg) slp(deg) slp1(deg) slp2(deg) a1(deg) rper2 r3 r4 y3(deg) y4(deg)

Low 5 -35 -35 -35 0 0.1 0.2 0.55 -45 -45

Upper 35 0 0 0 25 0.9 0.45 0.8 45 45

Additionally, the problem is constrained for avoiding negative 
pitch using inequalities.

i. Linear distribution: |Slp|-θ_root≤0

ii. Quadratic distribution: a_1-θ_root≤0

iii. 2. Linear distribution: |slp1+slp2|-θ_root≤0

iv. Bézier distribution: ( ) [ ]0 0,1r rθ− ≤ ∀ ∈

PatternSearch verifies that the points of the mesh fulfill the 
limits. If not, they are projected in the feasible subspace. The 
case of Bézier distribution limitation is more complex, nonlinear 
constraints problems are solved using Augmented Lagrangian 
Pattern Search (ALPS) algorithm, which solves several subproblems. 
ALPS algorithm combines penalization methods, who transforms 
a constrained problem into a non-constrained problem adding a 
penalization term, and lagrange methods for solving subproblems and 
reaching the optimal solution. This can be used for equality constraints 
and inequality constraints. The combination of both avoids problems 
with the penalization going to infinity for ensuring convergence. The 
general expression for the constrained subproblem with equalities
( )iceq , inequalities ( )ic and penalization factor (ρ) is:

( ) ( ) ( )( ) ( ) ( )
1 1 1

2
, , , log

2

m mt mt

i i m i m
x y s f x S S C x ceq x ceq xi i i i i i i

ρ
ρ

= = + = +
∑ ∑ ∑Θ = − Λ − + Λ +

    
(22)

The previous expression is the Lagrangian function of a constrained 
optimization problem with the addition of the penalization factor for 
the equality constraints. This subproblem is handled separately from 
upper and lower bounds and if required, linear constrains, which can 
be handled by projection of the points in the limits and subspaces. 

The subproblem expression considers the inequalities assuming the 
equivalence of the constraints ( )0ic ≤ and ( )( )( )logi i is s c x− where

is are positive values known as shifts which are computed considering 
the penalty values (ρ) and the Lagrange multipliers estimates

 ( )iΛ . 

Moreover, this previous term ensures that the constraint inequality is 
fulfilled. As a global overview, what the inner algorithm responsible 
of solving the subproblem seeks is the convergence in a set of values
( )kx that are first-order stationary points, or what is the same, a Kuhn-
Tucker points. The algorithm is driven by the penalty factor, which is 
also used for estimating the Lagrange multipliers and convergence is 

reached if ( )1
ρ  tends to a sufficiently small value. For deep details 

about the algorithm and the inequality constrained it is suggested to 
check MATLAB user guide documentation20 as well as the article 
dedicated to Augmented Lagrangian Optimization with inequality 
constraints and bounds.21 

Optimization results and CFD simulations
Hovering optimization

Chord optimization, constant pitch of 10 deg: Tapered blades 
and quadratic chord distributions did not improve rotor efficiency in 
these regimes. Straight blade geometry was the optimal. Improving 
efficiency is represented by the term ( )( )100 /opt BL BLP P P P∆ = ⋅ −

, which is the percentual power reduction (-) or increment (+) with 
respect to the baseline rotor. Regarding to the distribution with two 
linear segments showed that hexagonal blade platforms can be an 

https://doi.org/10.15406/aaoaj.2024.08.00201


Blade shape optimization in hover and forward flight 140
Copyright:

©2024 Ortiz et al.

Citation: Ortiz T, Cunha FS. Blade shape optimization in hover and forward flight. Aeron Aero Open Access J. 2024;8(3):134‒150. 
DOI: 10.15406/aaoaj.2024.08.00201

interesting alternative to straight blades. Finally, the spline distribution 
showed similar behavior to the previous distribution. The platform 
area is increased, and a slight taper is set near the tips, where speeds 
and profile drag are higher. Optimal parameters are in Table 3 whereas 
rotor’s comparative is found in Table 4.

Twist optimization, constant chord of 0.02 m:

Moving on to twist optimizations, the model predicts greater 
improvements for twisted blades. Additionally, the average blade pitch 

has been increased from the original pitch of 10 deg. This increment 
reduces the required rotational speed, thereby the profile drag. 
Furthermore, all distributions, except for the quadratic distribution, 
which is conditioned by its curve shape, show similar behavior, and 
have a comparable differential pitch between the root and tip. Like for 
large-scale rotors, twist optimal rate is negative. Parameters for each 
distribution and performance results are found in Tables 5 & 6, and 
they are plotted in Figure 11.

Table 3 Chord optimal distributions for hovering: 1 Linear segment, quadratic case, 2 linear segment and Bézier distribution

Case Croot(m) tap / tap2 / a2 rperc r3 / y4 r5 / y6 

1.Linear Chord 0.02 1 / - / - - - / - - / -

Quadratic Chord 0.02 - / - / 0 - - / - - / -

2.Linear Chord 0.02 1.3 / 0.6429 / - 0.63 - / - - / -

Bézier. Chord 0.02 0.8822 / - / - - 0.409 / 0.04 0.7537 / 0.0261

Table 4 Performance comparative for hovering of optimized chord cases

Base Line 1.Linear Chord Quadratic Chord 2.Linear Chord Bézier Chord

( )/rad sΩ 421.74 421.74 421.74 405.28 400.41

Power (W) 52.64 52.64 52.64 50.8085 50.5681

( )%P∆          - 0 0 -3.5 -3.93

Table 5 Performance comparative for hovering of optimized twist cases

Base Line 1.Linear Twist Quadratic Twist 2.Linear Twist Bézier Twist

( )/rad sΩ 421.74 358.55 365.18 361.88 355.4

Power (W) 52.64 46.72 49.6 47.94 46.71

( )%P∆         - -11.25 -5.8 -8.93 -11.25

Table 6 Twist optimal distributions for hovering: 1 Linear segment, quadratic case, 2 linear segment and Bézier distribution

Case θroot θtip /a1/ slp r3 /slp2 y4 / rperc r5 y6
1.Linear Twist 0.3317 - / - / -0.1252 - / - - / - - -
Quadratic Twist 0.4836 - / 0.2854 / - - / - - / - - -
2.Linear Twist 0.2864 - / - / -0.0282 - / -0.0721 - / 0.5638 - -
Bézier. Twist 0.3327 0.1823 / - / - 0.3250 / - 0.2464 / - 0.675 0.2797

Figure 11 Isolated optimizations of chord and twist for hovering

(a) Optimal chord distributions (b) Optimal twist distributions.
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Twist and chord optimization

Among the possible combinations of distributions, the optimization 
of bézier chord distribution was carried out with three different twist 
distributions: bézier twist, two linear segments twist, and quadratic 
twist. In general, quite similar chord distributions are observed for the 
three cases, Table 7, making clear the benefits of increasing the chord 

along the blade and reduce it again near the tips.

In terms of twist, Table 8, an interesting result is observed. The 
pitch is slightly increased near the root, followed by the typical 
negative rate. Notably, the 2 linear segment distribution has a flat zone, 
positive slopes were not permitted by the constraints. Distributions 
are plot in Figure 12.

Table 7 Twist and chord combined optimization, chord distribution parameters, and power requirements estimations for hovering

Case Croot(m) tap r3 y4 r5 y6 Ω(rad/s) P(W) ∆P(%)

Béz.Chord/Béz.Twist 0.02 1 0.3062 0.04 0.6461 0.04 294.9891 43.84 -16.7

Béz.Chord/2.lin.Twist 0.02 0.947 0.1901 0.04 0.5101 0.04 289.55 44.1986 -16

Béz.Chord/Quad.Twist 0.02 1 0.3278 0.04 0.6726 0.04 302.9091 44.2211 -15.98

Table 8 Twist and chord combined optimization, twist distribution parameters, and power requirements estimations for hovering 

Case θroot θtip /a1/ slp r3 / slp2 y4/rperc r5 y6 ( )/rad sΩ P(W) ( )%P∆
B.Chord/B.Twist 0.285 0.2024/ -/- 0.306 /- 0.4004/- 0.646 0.225 294.99 43.84 -16.7

B.Chord/2 L.Twist 0.413 -/ - / 0 -/ -0.214 -/0.1901 - - 289.55 44.2 -16

B.Chord/Q.Twist 0.4363 -/ 0.214 /- - / - - - - 302.91 44.22 -15.98

Figure 12 Combined optimizations of chord and twist for hovering

(a) Optimal chord distributions. (b) Optimal twist distributions.

Forward flight optimization

Chord optimization, constant pitch of 10 deg

Linear case and quadratic chord, 2 parameters: As it happened for 
hovering, the straight blade was the optimal solution for all the cases 
and velocities. Table 9 shows the parameters of the baseline rotor, 
the geometry achieved. For the quadratic case, the parameter ( )2a
was zero for all analyzed cases. Hence, straight blade geometry is 

preferred rather than a quadratic tapered ( )root tipc c> distribution.

2 linear segments case, 4 parameters:

First differences appear. Table 10 gathers the results for hexagonal 
blades. Regarding to the case of 20 m/s, with the fixed constant pitch 
and the radius of the blade defined, no platforms could be found 
that provided the required thrust without violating the condition of
( )0.1xµ ≥ . Figure 13(a) shows the distributions.

Bézier cubic curve, 6 parameters:

The difference between the solutions is only the radial coordinate 
of the control points of the curve, however, the sensitivity of the 
function is not that big (Table 11), so the coordinates do not have 
an impact. Similarly to the previous case, the platform surface is 
increased, Figure 13(b).

Table 9 1 linear segment chord distributions, parameters, and power 
requirements estimations for forward flight regime at three different speeds

Vf(m/s) Croot(m) tap P(W)

10 0.02 1 45.0791

15 0.02 1 83.1649

20 (*µx=0.0927) 0.02 1 202.2638
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Table 10 2 linear segment chord distributions, parameters, and power requirements estimations for forward flight regime at three different speeds

Vf(m/s) Croot(m) tap1 tap2 rperc P(W) ∆P(%)
10 0.02 1.3 1/1.3 0.8 42.5221 -5.67
15 0.02 1.3 0.3 0.8 76.9866 -7.43
(1) 20 (*µx=0.0924) 0.02 1.3 0.3 0.8 184.1586 -8.95
(2) 20(*µx=0.0959) 0.02 1.3 1/1.3 0.8 192.5949 -4.78

Table 11 Bézier cubic chord distributions, parameters, and power requirements estimations for forward flight regime at three different speeds

Vf(m/s) Croot(m) tap r3 y4 r5 y6 P(W) ∆P(%)
10 0.02 1 0.3802 0.04 0.7783 0.04 39.9319 -11.42
15 0.02 1 0.3831 0.04 0.7783 0.04 72.9050 -12.33
20 (*µx=0.097) 0.02 1 0.3177 0.0400 0.6076 0.04 187.374 -7.36

Figure 13 Isolated chord optimization for forward flight

(a) Optimal 2. linear chord distributions. (b) Optimal Bézier distributions.

Twist optimization, constant chord of 0.02 m

By contrast to the chord optimization, for which the optimal 
solution was barely the same regardless of the speed case. For twist, 
differences are found in the pitch variation between root and tip and, 
for some cases, in the curvature of the whole distribution.

Linear case, 2 parameters:

As it is frequent, the twist rate is negative. Moreover, for the case 
of 20 m/s, the differential pitch is smaller. More constant pitch is 
required due to high thrust demands. Regarding the other cases, pitch 
near the tip is barely zero, it is observed the influence of the tip losses. 
Those sections of the blade barely provide lift so a big pitch would 
only mean more drag without benefits for lift generation, Table 12, 
and Figure 14(a).

Quadratic case, 2 parameters:

Like in the linear case, increasing the forward speed tends to result 
in a flatter pitch distribution. See Table 13 and Figure 14(b).

Figure 14 Isolated twist optimization for forward flight

(a) Optimal 2 linear twist distributions. (b) Optimal Bézier distributions.

2 linear cases, 4 parameters:

All solutions share the same behavior. First segment’s slope is 
less negative than near the tip. Near the tip, a steep pitch reduction is 
observed for all the cases until almost zero pitch, therefore, reducing 
the lift in the tip. Results are showed in Table 14 and Figure 15(a).

Bézier cubic curve, 6 parameters:

For the two first speeds analyzed show similar results to the 
previous ones, a clear negative twist, the middle zone of the blade 
shows flatter distributions whereas near to the tip the pitch approaches 
to zero rapidly. By contrast, the case of 20 m/s shows a particular 
opposite tendency for sections closer to the root where the pitch is 
increased. See the results in Table 15 and Figure 15(b).

Table 12 1 linear segment twist distributions, parameters, and power 
requirements estimations for forward flight regime at three different speeds

Vf(m/s) θroot(rad) slp P(W) ∆P(%)

10 0.3145 -0.2896 39.8667 -11.56

15 0.3717 -0.3555 65.7039 -20.99

20 0.2948 -0.1649 172.4304 -14.75

Table 13 Quadratic twist, parameters, and power requirements estimations 
for forward flight regime at three different speeds

Vf(m/s) θroot(rad) slp1 slp2 rperc P(W) ∆P(%)

10 0.2532 -0.1120 -0.1178 0.8323 38.9792 -13.53

15 0.3426 -0.2374 -0.1021 0.8997 64.2680 -22.72

20 0.4363 -0.18 -0.2563 0.8420 150.5187 -25.6
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Table 14 2 linear segment twist distributions, parameters, and power requirements estimations for forward flight regime at three different speeds

Vf(m/s) θroot(rad) slp1 slp2 rperc P(W) ∆P(%)
10 0.2532 -0.1120 -0.1178 0.8323 38.9792 -13.53
15 0.3426 -0.2374 -0.1021 0.8997 64.2680 -22.72
20 0.4363 -0.18 -0.2563 0.8420 150.5187 -25.6

Table 15 Bézier cubic twist distributions, parameters, and power estimations for forward flight regime at three different speeds

Vf(m/s) θroot θtip r3 y4 r5 y6 P(W) ∆P(%)
10 0.4342 0.0213 0.2317 0.0336 0.7783 0.3128 39.0150 -13.45
15 0.3517 0.0165 0.2467 0.1827 0.6724 0.2980 64.2927 -22.69
20 0.2290 0.0831 0.2428 0.4363 0.5582 0.2157 145.4929 -28.06

Figure 15 Combined optimizations of Bezier chord and Bezier twist 
distributions for forward flight

(a) Optimal chord distributions (b) Optimal twist distributions.

Twist and chord optimization

Bézier chord and Bézier twist, 12 parameters:

The chord distributions obtained are identical to those obtained 
through isolated resolution, in which the optimal distribution was 
increasing the platform area. Parameters and the representation are in 
Table 16 and Figure 16. 

Optimal twist distributions show slight differences compared 
to those obtained without chord optimization, Table 17. Two first 
distributions are quite similar one to the other. Apart from that, the 
pitch for 20 m/s case, decreases faster near to the tip than it was for the 
previous study. Distributions are displayed in Figure 16.

Figure 16 Combined optimizations of Bezier chord and quadratic twist 
distributions for forward flight

(a) Optimal chord distributions (b) Optimal twist distributions.

Quadratic twist and Bezier chord, 8 parameters:

Only the 3rd considered speed scenario shows interesting 
variations. For detailed results check Tables 18 & 19 and Figure 17.

Figure 17 Combined optimizations of 2 linear chord and Bezier twist 
distributions for forward flight

(a) Optimal chord distributions (b) Optimal twist distributions.

In terms of pitch. Again, 20 m/s case is the one showing relevant 
discrepancies to previous results. Before, for the quadratic distribution 
it was already noticed that the distribution was flatter for this speed, 
however, now with the addition of the chord distribution, the parabola 
it is even flatter, and the pitch remains on average quite constant over 
the blade. Also, this can be related with the necessity if a smaller blade 
surface for generating the required thrust, mainly because on average 
the pitch is bigger, so more lift is produced.

Bézier twist and 2 linear chord, 10 parameters:

As it happened during the optimization of chords following this 
distribution, the tendencies are again to increase the surface available 
for lift generation creating hexagonal blades. Results in Table 20 & 
21 and Figure 18.

Figure 18 Fluid domains and boundary conditions

(a) Hovering simulations (b) Forward flight simulations.
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Table 16 Combined twist and chord optimization, chord distribution parameters, and power requirements estimations for forward flight regime at three 
different speeds, optimization case 1

Vf(m/s) Croot tap r3 y4 r5 y6 P(W) ∆P(%)
10 0.02 1 0.26 0.04 0.6543 0.04 33.4445 -25.8
15 0.02 1 0.26 0.0400 0.6543 0.04 53.7427 -35.4
20 0.02 1 0.4259 0.0400 0.7727 0.04 131.51 -34.98

Table 17 Combined twist and chord optimization, twist distribution parameters, and power estimations for forward flight regime at three different speeds, 
optimization case 1

Vf(m/s) θroot θtip r7 y8 r9 y10 P(W) ∆P(%)
10 0.2871 0.0273 0.3850 0.2192 0.6543 0.2122 33.4445 -25.8
15 0.2921 0.02 0.3850 0.1758 0.6543 0.277 53.7427 -35.4
20 0.2074 0.0396 0.4259 0.3474 0.7727 0.2641 131.51 -34.98

Table 18 Combined twist and chord optimization, chord distribution parameters, and power requirements estimations for forward flight regime at three 
different speeds, optimization case 2

Vf(m/s) Croot tap r3 y4 r5 y6 P(W) ∆P(%)
10 0.02 1 0.2317 0.0400 0.7783 0.04 35.2283 -21.85
15 0.02 1 0.2528 0.0400 0.6054 0.04 59.9568 -27.9
20 0.01 0.2002 0.3177 0.0400 0.6076 0.04 176.98 -12.5

Table 19 Combined twist and chord optimization, twist distribution parameters, and power requirements estimations for forward flight regime at three 
different speeds, optimization case 2

Vf(m/s) θroot    a1 P(W) ∆P(%)
10 0.4363 0.3511 35.2833 -21.85
15 0.4361 0.3316 59.9568 -27.9
20 0.2667 0.0745 176.98 -12.5

Table 20 Combined twist and chord optimization, chord distribution parameters, and power requirements estimations for forward flight regime at three 
different speeds, optimization case 3

Vf(m/s) Croot tap1 tap2 rperc P(W) ∆P(%)
10 0.02 1.3 1/1.3 0.8 36.4908 -19.05
15 0.02 1.3 1/1.3 0.8 59.7391 -28.17
20 0.02 1.3 1/1.3 0.8 132.6546 -34.41

Table 21 Combined twist and chord optimization, twist distribution parameters, and power requirements estimations for forward flight regime at three 
different speeds, optimization case 3

Vf(m/s) θroot θtip r3 y4 r5 y6 P(W) ∆P(%)
10 0.3861 0.0221 0.4493 0.0951 0.7398 0.2817 36.4908 -19.05
15 0.3694 0.0180 0.3268 0.1647 0.7384 0.2883 59.7391 -28.17
20 0.1535 0.0635 0.4403 0.4363 0.6679 0.2279 132.6546 -34.41

For the pitch, the distributions remain quite the same to the 
previous ones. 

In terms of power reduction, all cases show enhanced performance 
compared to the baseline. Moreover, the combination of chord and 
twist seems to be better than just modifying one parameter, as it 
happens with large scale rotors. However, obtained results show large 
improvements in terms of power consumption. Those results might be 
quite optimistic, and they must be verified against CFD simulations.

CFD simulations

Set up and previous studies

As previously mentioned, CFD simulations are used for verification 
of the obtained results and models. Complex 3D phenomena and 
other aspects difficult to quantifies theoretically can be approached 
with these tools. Within the domain of CFD, there are usually more 
than one approach for the same kind of problem. As stated during 

the introduction, rotary flows can be treated with three methods. 
The setup of the simulations as well as the fluid domain geometry 
depend on the course of action for tackling up the issue. Among 
the possible alternatives, Multiple reference frame (MRF) has been 
chosen for solving hover simulations, as it was done by R.Cagnato.1 
This strategy allows simulating the problem in quasi-steady approach 
without needing transient simulations by using a static absolute frame 
and a rotational frame. MRF can only be applied to constant rotational 
flows and Navier-Stokes equations are solved considering the relative 
velocities between frames.1

On the other hand, for addressing forward flight, transient 
simulations are required. Sliding mesh will be used. Prior to this, 
other researchers obtained satisfactory results by this method.7 Sliding 
mesh is selected since forward flight flow requires a more accurate 
time solution due to flow variation over the revolution. Concerning to 
the turbulent model, based on the preferences in prior projects, k − ω 
SST has been chosen for hovering and forward flight. This model can 
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transition automatically from viscous sublayer to logarithmic layer. 
Furthermore, it is suitable for low Reynolds regime, and it is possible 
to activate a third equation for addressing the possible transition 
between laminar to turbulent flow.22

Fluid domain configuration

For hover simulations, two cylindrical domains are created: one 
surrounds the rotor and represents the fluid zone linked to the rotary 
reference frame, while the other represents the static zone and is linked 
to the absolute frame of reference. The dimensions, Table 22, of both 
zones are defined based on the dimensional analysis available in.17

For forward flight simulations. The rotary domain is represented 
by a cylinder. However, the static domain is a rectangular prism. 
Moreover, an extra rectangular box was used for grid refinement 
tasks near the interface between domains. The dimensions have been 
determined based on prior studies.7,23 Table 23 shows the dimensions 
of the domains.

Table 22 CFD hovering simulations fluid domain final dimensions

Domain Zone upper length 
(m)

bottom 
length(m) Radius(m)

Outer Cylinder 2.5 4.5 4 
Inner Cylinder 0.3 0.3 0.35

Table 23 CFD hovering simulations fluid domain final dimensions

Domain Zone Height (m) thickness/radius(m) Length(m)
Outer box 8 4 12
Refinement box 2 1.5 4
Inner Cylinder 0.066 0.44 -

Boundary conditions and set up

The top base of the static cylinder is designated as a pressure inlet, 
while the bottom is set as a pressure outlet. Symmetry conditions 
are applied to the lateral surface to prevent perpendicular flow or 
convection. The shared surface between fluid zones is declared as an 
interface and rotor surface as a moving wall with no-slip condition 
and zero relative speed to adjacent cell zones. The rest of set up 
configurations follows R. Cagnato procedure,1 which are based 

on Ansys guidelines. Computations are performed using absolute 
reference frame with Pressure solver, velocity-pressure coupling 
is solved using the COUPLED method because of its robustness 
converging. Discretization is set using second order upwind for more 
accuracy, except for pressure, which uses the PRESTO scheme.

For forward flight simulations, all faces except the backward are 
set as velocity inlets, defined by the flow magnitude and direction, 
allowing consideration of various rotor inclinations. The backward 
surface is a pressure outlet. Inner box solid is just used for grid 
discretization. Static-rotational cylinder iteration is defined as 
an interface and rotor surface is set as a moving wall with no-slip 
condition and zero relative velocity to adjacent cell zone. COUPLED 
is again selected to solve the differential equation system, with second 
order upwind used for discretization. Figure 19 shows the defined 
fluid domains and the boundary conditions.

Grids and time step analysis

For both cases, an unstructured grid was chosen due to its semi-
automatic generation and proven ability to yield good results. To 
ensure proper capture of the boundary layer, inflation with multiple 
prismatic layers was applied around the rotor blades. The first layer 
thickness was set to 5e-6 meters to maintain a wall y+ ∼ 1.

Figure 19 Comparison between model estimations and CFD simulations of 
the baseline rotor at hovering flight (a) Thrust (N) versus rotational 

speed ( )( )rpmΩ . (b) Power (W) versus rotational speed ( )( )rpmΩ .

Grid analysis was performed for both simulations to ensure grid 
independence and reach a balance between time and accuracy, crucial 
for forward flight simulations, which demanded a high computational 
cost. Results are shown in Table 24 & 25.

Table 24 CFD hovering simulations grid analysis at 5000 rpm

Grid N.Elements(×106) T (N) ( )%T∆ Torque (Nm) ( )%Torque∆
Coarse 1.4 8.78 3.25 0.27 16.12
Medium 3.5 9 0.826 0.242 4.086
Medium-Fine 5 9.05 0.276 0.235 1.07
Fine 6 9.075 - 0.2325 -

Table 25 CFD forward flight simulations step time analysis

Step T (N) ( )%T∆ Trq (Nm) ( )%Torque∆

 = 2◦ 5.302 0.263 0.07764 0.414

 = 1◦ 5.292 0.415 0.07727 0.647

 = 0.7◦ 5.316 - 0.07732 -

It is concluded that a medium-fine grid should be sufficient, as the 
variations with the finest mesh are lower than 5% for both cases.

Moving on to forward flight grids, it must be checked the grid 
independence and the required time step. These simulations must be 
done transiently, which requires high simulation time. Additionally, 

to prevent convergence issues and ensure stability, it is mandatory 
to use an appropriate time step. Priorly, in,8 for hovering sliding 
mesh simulation, a time step equivalent to 4ψ = deg was enough. 
However, in forward flight, other researchers performed simulations 
with smaller time steps within the range of 1ψ∆ = deg.7 Results of the 
step-time analysis showed in Table 26.
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Table 26 CFD forward flight simulations grid analysis

Grid N.Elements(×106) T (N) ( )%T∆ Torque (Nm) ( )%Torque∆
Coarse 4 5.42 2.5 0.0779 1.04
Medium 6 5.29 0.038 0.07715 0.065
Fine 8.7 5.288 - 0.0771 -

After the studies, it is concluded that a medium grid combined 
with a time step of 2ψ∆ = deg is a compromise solution. With this 
combination, the time required per simulation (four full rotations until 
report convergence) was approximately 19 h.

Discussion of results: Model and CFD 
comparison
Hover simulations

The baseline rotor was simulated at several rotational speeds. 
In general, model and CFD simulations show similar results. 
The model based on BEMT seems suitable for estimating rotor 
performance capacities in hover. The theoretical model overestimates 
thrust capacities and under predicts power requirements, still, good 
predictions are yielded. Figure 20 shows the results and the inflow 
distribution is analyzed in Figure 21.

Figure 20 Inflow speed distribution ( )iv


along the blade from CFD 
simulations at hovering.

Figure 21 Comparison between model estimations and CFD simulations of 
the baseline rotor and some optimal rotors at forward flight

(a) Thrust (N) versus rotational speed ( )( )rpmΩ
 
(b) Power (W) versus 

rotational speed ( )( )rpmΩ .

The induced speed distribution shows the effect of the hub, near to 
the root the induced speed goes to zero. Moreover, it is observed the 
presence of tip vortexes, there is an upward inflow at the tips because 
of the circulating flow due to the difference of pressure between 
bottom and upper zones.

Forward flight simulations

The baseline rotor was simulated at multiple rotational speeds 
to obtain the evolution of thrust and power at different pilot inputs. 

Additionally, the best optimal geometries were simulated at the 
rotational speed estimated for providing enough thrust for the drone 
model and at the same operational speed than the baseline. It is 
observed that the model is overestimating the thrust with errors of the 
order of 20%, Figure 22.

Figure 22 Comparison between inflows distributions from CFD simulations 
and theoretical lineal model16 at forward flight

CFD longitudinal inflow. ( )( )/iv m s

 (b) Theoretical longitudinal linear 
inflow distribution.

Overestimation of thrust may be related to some sources of 
error. Firstly, as it was pointed out, XFOIL estimations for airfoil 
aerodynamic coefficients tends to be optimistic with lift capabilities 
and stall point prediction, as it can be observed in Figure 1. Besides 
that, the model and the simulations tend to diverge as rotational 
speed is increased, already during optimization problems with the 
applicability of the theory were observed, since the theory can only 
be applied for 0.1µx ≥ . The operational speeds computed for each of 
the optimized rotors are closed to this limit of 0.1. Finally, the model 
is being applied for high pitch of the rotor, whereas when the theory is 
applied to large scale rotors for which the rotor pitch is usually a small 
angle. The bigger the inclination, the closer to an axial flight regime. 
Moreover, it is observed that the over-prediction of thrust is even 
bigger for the rotor geometries with variable pitch along the blades. 
As seen in the analysis of the optimized rotors, the twist distributions 
lead to very low pitch angles near to the tip due to the presence of 
losses, however, this is affecting considerably to the lift generation 
and simulations are not reflecting the estimated reduction in power by 
decreasing the pitch.

If the power requirements are compared, Table 27, it is observed 
that some of the geometries, that were supposed to enhance the 
baseline capabilities, are far for reaching the predicted improvements, 
particularly for the cases related with twist optimization.

Table 27 Power requirements comparison for the studied rotors

Base 
Line

Béz.
Chord

Bez. Chord/
Twist

2 Lin.
Twist

Power (W) 39.4 37.08 39.08 41.62
∆P(%) - -5.88 -0.8 +5.6

The optimization of the chord distribution provides a benefit in 
terms of power requirements. However, the rotor with variable pitch 
and constant chord does not improve the baseline and the combination 
of chord and twist shows negligible improvements. The improvement 
predictions of the model were only achieved for the chord optimization.
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During the simulations, it was obtained the induced speed over 
the blades at multiple azimuth positions. As explained, the inflow was 
assumed to be linear. However, at the simulations, high non-uniform 
inflows were obtained. The inflow is far from the linear distribution 
assumed for longitudinal ( )0,180 degψ = and lateral (90,270 deg) 
positions, as depicted in Figures 23 & 24.

The estimation of the inflow affects the predictions having a bigger 
impact on the pitch optimization than on chord because the pitch is 
used to set the airfoils at maximum aerodynamic efficiency whereas 
the chord optimization is linked with profile drag and lift generation by 
available surface. Regarding to tip/hub losses, by contrast to hovering 
where upwash was observed near the tip. At these inflows though the 
downwash is reduced, the flow is far from changing its direction. This 
can be related with the presence of a lighter effect of tip vortexes. 
To check if this could have a substantial impact on the model, some 
modifications were performed. First, the tip/hub losses were removed, 
meaning that, it is assumed that the tip/hub sections can generate lift. 
Moreover, the linear models were modified to try to estimate inflows 
more like the predicted with the simulations. The modification of the 
inflow model was done with some simple changes. Figures 25 & 26 
shows the comparison between original and modified models.

Figure 23 Comparison between inflows distributions from CFD simulations 
and theoretical lineal model16 at forward flight: (a) CFD lateral inflow 

( )( )/iv m s

. (b) Theoretical lateral linear inflow distribution.

Figure 24 Comparison between original inflow model and modified inflow 

model based on CFD simulations: (a) Original longitudinal inflow ( )( )/iv m s

 
Modified longitudinal inflow ( )( )/iv m s

.

Figure 25 Comparison between original inflow model and modified inflow 

model based on CFD simulations: (a) Original lateral inflow. ( )( )/iv m s

 (b) 

Modified lateral inflow ( )( )/iv m s

.

Figure 26 Isolated optimizations of chord and twist for forward flight at 10 
m/s with the modified model

(a) Optimal chord distributions. (b) Optimal twist distributions.

i. Firstly, since a certain degree of symmetry is observed with 
respect to the azimuth position, the absolute value of the azimuth 
angle is considered in the equation 11.

Secondly, lateral, and horizontal inflow is similar than. Pitt & 
Peters model assumes constant inflow for lateral inflow, Equation 11, 
however, for approximating the simulations, it is used the longitudinal 
inflow coefficient ( )xk .

Finally, since both blades showed different initial inflow values but 
only slightly different slopes, it is applied a sigmoid function between 
the opposite azimuth angles. Smoothly reducing the initial inflow and 
varying slightly the slope.

After that, optimization was run again for the case of 10 /fV m s=

. Regarding to chord optimization, no significant changes were found 
with the linear and quadratic distributions, which still are worse than 
the baseline. Two linear segment distributions were the same than the 
obtained in the first optimization, Table 11, and Figure 13. Regarding 
to Bézier, almost no changes are observed, results are in Table 28.

With respects to twist, some interesting results were achieved, new 
distributions differ to the previous from the original model. Parameters 
are gathered in Table 29 whereas Figure 27 shows the distributions.

Figure 27 Combined optimizations of chord and twist distributions for 
forward flight at 10 m/s

(a) Optimal chord distributions. (b) Optimal twist distributions.

The new twist rate in all distributions is more moderate and the 
airfoils near the tip are set with bigger pitch angles. Apart from that, 
the spline distribution shows a quite linear behavior. 

Moreover, it was performed the dual optimization of chord and 
twist. Whose results are shown in Tables 30 & 31. General tendencies 
analyzed before are observed again, negative twist enhances the 
performance, twist implementation helps setting the airfoils at angle 
of attacks for which aerodynamic efficiency is high, as it approaches 
to the tip, the inflow angle ( )atan( / )P TU Uφ = decreases as a 
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consequence of the higher tangential speed that increases faster than 
the induced speed. Hence, the required pitch for keeping a moderate 
angle of attack is smaller, as a result of this, the same thrust is generated 
with lower rotational required speed than the baseline, which affects 
the drag, as reflected in Table 5 for hovering and by Figure 28(a). 
With respects to chord, it is increased in middle sections of the blades 
and reduce near the tips were drag is bigger. As mentioned during the 
introduction, the benefit of the larger chords is linked with the higher 
Reynolds regime over the blades. Particularly, thick airfoils with non-
ideal designed for operating at these regimes, such as the used NACA 
0012, increased their efficiency rapidly even with small variations 
of the Reynolds regime. Moreover, despite this effect cannot be 
considered since the data base is fixed, the chord variation would 
have an impact on the thickness ratio of the airfoils, making them 
more slender bodies, which as stated by other researchers that did 
analyze the optimization of the airfoils,4 is interesting at low Reynolds 
regimes. Further justification and explanation of the optimal shapes 
would require a more thorough analysis, CFD simulations can also be 
used for studying the physics around the blades and can be used for 
studying the wake and checking distributions such as lift or pressure 
along the blade. 

These new geometries were simulated in CFD and the estimations 
for the baseline were compared with the new model predictions. 
Figure 28 shows the comparative between the simulations and the 
estimations form the modified model.

Figure 28 Comparison between modified model estimations and CFD 
simulations of the baseline rotor and some optimal rotors at forward flight

(a) Thrust (N) versus rotational speed ( )( )rpmΩ . (b) Power (W) versus 

rotational speed ( )( )rpmΩ .

It is observed that the overestimation of thrust has been reduced. 
Furthermore, opposite to previous optimization, the new geometries 
enhance the performance of the baseline rotor, as estimated by the 
model. The Table 32 shows the estimations of power of each of the 
geometries and the power reduction with respect to the baseline as 
well as the estimated pilot input for reaching that performance.

New model predicts improvements from the baseline geometry, 
however, despite it happened before, the power reductions are more 
conservative, and they seem less optimistic than the previous ones. 
Table 33 shows the same results but obtained from CFD simulations.

Table 28 Bézier chord distribution parameters and power requirements, modified model optimizations at forward flight

Vf(m/s) Croot tap r3 y4 r5 y6 P(W)

10 0.01 1 0.4 0.04 0.72 0.04 62.9368

Table 29 Twist distributions parameters and power requirements, modified model optimizations at forward flight

Case θroot θtip /a1/ slp r3 /slp2 y4 / rperc r5 y6 P(W)

Lin. Twist 0.3601 - / - / -0.2211 - / - - / - - - 60.6125

Quad. Twist 0.4363 - / 0.253 / - - / - - / - - - 60.7312

2 Lin. Twist 0.4061 - / - / -0.1066 - / -0.1359 - / 0.3324 - - 60.5457

Béz. Twist 0.4316 0.1714 / - / - 0.3635 / - 0.3026 / - 0.7223 0.2050 60.4866

Table 30 Chord distribution parameters and power requirements, modified model combined twist and chord optimizations at forward flight

Case Croot tap r3 y4 r5 y6 P(W)

Béz.Chord/Béz.Twist 0.0200 1.0000 0.2317 0.0400 0.7783 0.0400 57.31

Béz Chord/2 Lin Twist 0.0200 1.0000 0.4491 0.0500 0.7197 0.0130 58.43

Béz Chord/Quad Twist 0.0200 0.3091 0.4323 0.0400 0.7974 0.0400 57.85

Table 31 Twist distribution parameters and power requirements, modified model combined twist and chord optimizations at forward flight

Case θroot θtip / a1/ slp r3 /slp2 y4 / rperc r5 y6 P(W)
Béz.Chord/Béz.Twist 0.4363 0.1111 / - / - 0.3490 / - 0.3125 / - 0.7783 0.2656 57.31

Béz.Chord/2 Lin. Twist 0.4145 - / - / -0.1673 - / -0.0803 - / 0.5727 - - 58.43

Béz.Chord/Quad. Twist 0.4362 - / 0.2443 / - - / - - - - 57.85

Table 32 Power requirements comparison of different rotors Estimations from the modified forward flight model

Optim.Rotor // BL T (N) Ω (rpm) P (W) ∆P (%)

Béz.Chord // BL 6.35 // 6.35 4478 // 4347 62.93 // 65.1 -3.33

Béz.Chord & Twist // BL 6.35 // 6.35 3495 // 4467 57.32 // 65.1 -11.95

Béz.Twist // BL 6.35 // 6.35 3822 // 4334 60.49 // 65.1 -7.08
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Table 33 Power requirements comparison of different rotors Estimations from the CFD simulations at forward flight

Optim.Rotor // BL T (N) Ω (rpm) P (W) ∆P (%)
Béz. Chord // BL 6.197 // 6.197 4478 // 4347 55.014 // 56.82 -3.18
Béz. Chord/Twist // BL 6.55 // 6.55 3495 // 4467 50.51 // 61.58 -17.97
Béz. Twist // BL 6.1741 // 6.1741 3822 // 4334 50.58 // 56.49 -10.46

Clearly, the modifications in the model provide more accurate 
results. The power reductions estimated are confirmed with the CFD 
simulations.

Conclusions
The present study assessed the feasibility of developing low-

fidelity models for small-scale rotors as a cost-effective alternative 
to more expensive tools. The model based on BEMT for hovering, 
implemented in MATLAB using XFOIL for airfoil properties, 
showed good agreement with CFD simulations. The second model for 
forward flight, however, overestimated thrust generation and power 
reduction of variable pitch rotors. The proposed chord optimizations 
improved baseline performance, but variable pitch benefits were not 
reflected in the simulations. Simulations showed non-uniform inflows 
contradicting linear theoretical models. Adjusting the inflow reduced 
thrust overestimation but continued to predict lower power demands 
with decreased pitch near tips. 3D losses functions direct applicability 
for forward flight was uncertain, hence, they were removed from 
the model. New optimized geometries resulted in different pitch 
distributions without affecting chord distributions. CFD simulations 
agree with the new model predictions.

In summary, linear inflow assumptions were invalidated by CFD 
results, impacting rotor performance predictions. Hub/tip losses 
models’ applicability in forward flight remains uncertain. Variable 
chord and pitch distributions offer potential improvements in small-
scale rotor designs. As it happens for large scale rotors, negative twist 
implementation shows promising results for reducing power demands. 
The variation of pitch along the blade try to set all the airfoils sections 
at angles of attack with better aerodynamic efficiency. In terms 
of chord distributions, by contrast to large scale rotors, for which 
tapered blades are common, for small scale rotors seems interesting 
a concave shape. Increasing the chord implies bigger Reynolds over 
the blade, which enhances airfoil aerodynamic efficiency due to the 
low Reynolds regime, in which small changes have an important 
impact on the lift/drag ratio, another positive effect that cannot be 
quantified would be the impact on the thickness ratio of the airfoils. 
Optimizations predicted power reductions of 3−4% for chord, 7−11% 
for twist, and up to 17% for combined distributions.

Despite CFD is a higher fidelity tool than theoretical models, it 
would be interesting to perform wind tunnel tests for checking the 
results. Moreover, CFD simulations were performed focusing on 
validating the models, but they can also be used as a tool for analyzing 
thoroughly the physics and impact of the geometrical changes on the 
flow over the blades. Additionally, the created models can be used 
for analyzing other sizes of rotors for heavier vehicles apart from 
studying other parameters such as the number of blades as well as 
they can be used as a base for implementing new parametrical effects 
considerations such as tip shapes effects.
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