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The technique used here emphasizes pivotal quantities and ancillary statistics relevant for
obtaining statistical predictive or confidence decisions for anticipated outcomes of applied
stochastic models under parametric uncertainty and is applicable whenever the statistical
problem is invariant under a group of transformations that acts transitively on the parameter
space. It does not require the construction of any tables and is applicable whether the
experimental data are complete or Type II censored. The proposed technique is based on a
probability transformation and pivotal quantity averaging to solve real-life problems in all
areas including engineering, science, industry, automation & robotics, business & finance,
medicine and biomedicine. It is conceptually simple and easy to use.
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Introduction

Statistical predictive or confidence decisions (under parametric uncertainty) for future random quantities (future outcomes, order statistics,
etc.) based on the past and current data is the most prevalent form of statistical inference. Predictive inferences for future random quantities are
widely used in risk management, finance, insurance, economics, hydrology, material sciences, telecommunications, and many other industries.
Predictive inferences (predictive distributions, prediction or tolerance limits (or intervals), confidence limits (or intervals) for future random
quantities on the basis of the past and present knowledge represent a fundamental problem of statistics, arising in many contexts and producing
varied solutions. The approach used here is a special case of more general considerations applicable whenever the statistical problem is
invariant under a group of transformations, which acts transitively on the parameter space.'?

I. Adequate mathematical models of cumulative distribution functions of order statistics for constructing one-sided tolerance limits
(or two-sided tolerance interval) in new (future) data samples under parametric uncertainty

Theorem 1: Let us assume that Y <... <Y will be a new (future) random sample of n ordered observations from a known distribution with a
probability density function (pdf) f, o (¥), cumulative distribution function (cdf) F » (»), where £ is the parameter (in general, vector). Then

the adequate mathematical models for a cumulative probability distribution function of the kth order statistic ¥, k€{l, 2, ..., n}, to construct
one-sided j — content tolerance limits (or two-sided tolerance interval) for ¥, with confidence level £, are given as follows:

A. Adequate Applied Mathematical Model I of a Cumulative Distribution Function of the kth Order Statistic Y is given by

Fp ) n
n . N
[ forin()dr=P,(3, <y, [n)= LTI AT M)
0 J=k
In the above case, a ( v, ) upper, one-sided y — content tolerance limit y,i] with confidence level § can be obtained by using the following
formula:
F,(3)
EPr| [ friadrzy [r=E{Pr(P,(Y, <3 In)27)} =5, @
0
where
1 k-1 (n—k+1)-1
r)y=——r (1-r , O<r<l, 3)
Lo =gy 477

is the probability density function (pdf) of the beta distribution (Beta(k,n —k +1)) with the shape parameters k and n — k+1.

][ N .
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Proof: It follows from (1) that
d F,(y) d
—— [ o) =——P (¥, <3, |n). @
) dy,
This ends the proof.
A ( v, ) lower, one-sided y — content tolerance limit with confidence level f can be obtained by using the following formula:

F,(vF)

E{Pr(P,(Y, >y} |n)2;/)} =EPr| 1= [ fi, aGduzy|t=p. )
0
A ( v, ) two-sided y — content tolerance interval with confidence level f can be obtained by using the following formula:

{aag(E{Pr(Ppm >3t Im2r)f=p). awg(E{pe(B,0 <) In>y)) =ﬁ)}

Yk

F,(70) F,08)

= arLg E<Pr _[ Sinan(Mdr<l—y |p=p1, agg E<Pr I Jinaua(drzy |r=p
Vi 0 Yk 0

L U
= I:y ko Vi :| (6)
B. Adequaz‘e Applied Mathematical Model 2 of a Cumulative Distribution Function of the kth Order Statistic Y is given by
_[ Sk (r)dr =P, (Y <y ln)= Z(]][F (yk)]] [1-F (yk)]n g (7
1-F, (J’k)

In the above case, a (7/, ,B) upper, one-sided y — content tolerance limit y,ij with confidence level f can be obtained by using the
following formula:

1
EPr| [ fopudrzy |=E{Pr(B,(%, <3 Im)2y)| =5, ®)

1-F,(3{)

where

J,

n—k+1,

1
B (n —k+1, k)
is the probability density function (pdf) of the beta distribution (Beta(n —k +1,k)) with the shape parameters n — k+1 and k.
Proof: It follows from (9) that

(u)= rOETA—p (), 0<r<], )

Jen—k+1

d | d
—— [ foias(dr =——P, (%, <y, | n). (10)
i 1) dy,

This ends the proof.

A ( v, ) lower, one-sided y — content tolerance limit with confidence level f can be obtained by using the following formula:

1
E{Pr(Pp(Yk Sybimzy)l=E{Pr| 1= [ f, (drzy|t=B. (11)

1-F, ()

two sided y — content tolerance interval with confidence level £ can be obtained by using the following formula:

A
{arg Pr P(Y, >y, In)>7)} ﬂ), agg(E{Pr(Pp(Yk <yl |n)27/)}:ﬁ)i|

1 1
=|arg| £ Pr [ frwasdr<i—y |r=p |, arg| E4Pr [ frvas)drzy [1=p
Vi

1-F, (5¢) i 1-F,(3%)
L U
=[yk,yk]. (12)
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C. Adequate Applied Mathematical Model 3 of a Cumulative Distribution Function of the kth Order Statistic Y, is given by

n—k+1 F,(y)
ko 1=F, (%) v (n
f Ppsn(r)dr=P (Y, <y |n)= Z(J.][Fp )Y I=F,(y)I". (13)
0 Jj=k

In the above case, a (}/, ,3) upper, one-sided y — content tolerance limit y,i/ with confidence level f can be obtained by using the
following formula:

n—k+1 F,(3{)

k1=, ()
EPr| [ g drzy = E{Pr(B,( <3 )2 y)| =B, (14)
0
where
k k-1
1 n—k+1 k
' = , 0,00), (15)
Pra-en () B(k,n—k+1)[ x T‘n—kﬂ 7<)
l+— %
n—k+1

is the probability density function (pdf) of the F distribution (F'(k,n — k + 1)) with parameters k and n—k+1, which are positive integers
known as the degrees of freedom for the numerator and the degrees of freedom for the denominator.

Proof: It follows from (13) that

n—k+1 F, ()
k1=F, ()
d ) d
- Py nyn(r)dr =——P (Y, <y, [n). (16)
dy, ‘([ dy, "
This ends the proof.

A ( 7, ) lower, one-sided y — content tolerance limit with confidence level £ can be obtained by using the following formula:

n—k+l F,(y¢)
k1-F,(5)

E{Pr(B,(% >y Im2y)|=E{Pr|1- [ g,  (ndrzy|t=p 17

0

A ( v, ) two-sided y — content tolerance interval with confidence level f can be obtained by using the following formula:

{aig(E (Pr(B05 >t Im =)} =), ag(E{Pe(B,0; <0 1> 7)) =ﬁ)}

Vi
n—k+1 F,(v) n—k+1 F,(07)
Kk 1=F, () k 1-F, ()
=|arg| E5Pr| [ @, .(Ddrsl-y|i=p| arg| E\Prl [ g, (Ndrzy (=8
YK 0 Vi 0
L U
=[yk,yk]. (18)
D. Adequate Applied Mathematical Model 4 of a Cumulative Distribution Function of the kth Order Statistic Y, is given by
T _ < _\[" j nej
Py (P)dr =P (Y, <y, |n)—z NE, )Y [T=F,(y ). (19)
k1=F, (%) J=k

n—k+1 Fp(y,()

In the above case, a ( v, ) upper, one-sided y — content tolerance limit y,l(] with confidence level £ can be obtained by using the
following formula:

0

EsPrl [ g mdrzy b= E{Pr(P(Y, <y Im=y)| =5, (20)
K 1-F,(3)
n—k+1 F, ()
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where

n—k+1 [”_k‘klr}nk

k k

n—k+1,k){ n—k+1 }‘
1+——r

¢n—k+1,k (l") = B( re (0300)5 (21)

is the probability density function (pdf) of the F distribution (F'(n — k + 1,k)) with parameters n—k+1 and k, which are positive integers
known as the degrees of freedom for the numerator and the degrees of freedom for the denominator.

Proof: It follows from (19) that

d K d
— | (A =——P,(%, <y, |n).
dy,

22
dy, 1=F,(5) (22)
n=k+1 F, (y)
This ends the proof.
A ( v, ) lower, one-sided y — content tolerance limit with confidence level £ can be obtained by using the following formula:
EPrl 1= [ g, (drzy | = E{Pr(B,(Y, >y Im)2y)| = 23)
kK 1-F,00)
n—k+1 Fp(y,f)
A (}/,,B) two-sided y — content tolerance interval with confidence level f can be obtained by using the following formula:
rg( E{Pr(P,(Y, >y  |n)>y)t = B), arg| E{Pr(P,(Y, <y! |n)>y)l =8
aLg oAy >V (n)2y ’aug Py SV in)2y
Vi Yk
=|arg| E\Pr f Ppin(M)dr <1=y \¢=f |, arg| EPr j Puini()drzy |r=p
Yk K 1-F,(3F) Tk k 1-F,00)
n—k+1 Fp(y,f) n—k+1 Fp(y,f')
L U
=[yk,yk ] (24)

I1. Adequate mathematical models of conditional cumulative distribution functions of order statistic for constructing one-sided
tolerance limits (or two-sided tolerance interval) in new (future) data samples under parametric uncertainty

Theorem 2: Let us assume that ¥ < ... <Y will be a new (future) random sample of n ordered observations from a known distribution with
a probability density function (pdf) f » (¥), cumulative distribution function (cdf) F » (»), where P is the parameter (in general, vector).
Then the adequate mathematical models for a conditional cumulative distribution function (ccdf) of the /th order statistic Y, I€{2, ..., n}, to
construct one-sided p — content tolerance limits (or two-sided tolerance interval) for ¥, (1 <k <I/<mn) ), given Y,=y,, with confidence level S,
are determined as follows:

E. Adequate Applied Mathematical Model 5 of a Conditional Cumulative Distribution Function of the Ith Order Statistic Y, is given by

Fp(y])
- / ‘
Fy(ye) n=k I’l—k F (y) ! F (y) "
f, n7+(r)dr=P(YSy|Y :y;n): . ]—_P ! P ! , (25)
_([ Ik nl+1 SV =) j;k j E) || F,0)

In the above case, a ( v, ) upper, one-sided y — content tolerance limit le with confidence level £ can be obtained by using the
following formula:
R0
A

E{Pr| [ frpadrzy [p=E{Pr(B,( <) 1Y = yimzy) = 4, 26)
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where F (z)=1-F,(2),
I=k-1 (n=1+1)-1
d-r)
fra(m) = , O<r<l, 27
e B(l-k,n—1+1)
is the probability density function (pdf) of the beta distribution (Beta(l —k,n—[ +1)) with shape parameters /—k and n—/+1
Proof: It follows from (25) that
_ fp )
d F,(v) d ‘
- Jrknra@)dr =—=F, (Y, <y, | Y, = y;n). (28)
dy, dy,
This ends the proof.
( v, ) lower, one-sided y — content tolerance limit with confidence level £ can be obtained by using the following formula
)
Vi)
L .
E{Pr|1- j Sroinra(dr 2y [t =E{Pr(P, (Y, >y | Y, = y3m) 2 7)) = B. (29)

Vs ,B two-sided y — content tolerance interval with confidence level £ can be obtained by using the following formula:

A
{arg(E (Pe(B,(t) > v/ 1%, = yy3m) 2 )} = B), arg(E{Pr(B,(t <3 |m)2 7))} ﬂ)}
Y
LEOD LEOD
F,(n) F, (3
I fl—k,n—1+1(r)dr27/ =p

I Sk ()dr <l—y 1o=f |, arg E<{Pr
Yk

=|arg| E<Pr
Vi
(30)

L U
=Lt ]
F. Adequate Applied Mathematical Model 6 of a Conditional Cumulative Distribution Function of the Ith Order Statistic Y, is given by
— J — n—k—j
A (n—k F,) || £,
Sy (P)dr =P (Y, <y, Y, = ykan)_Z( . Jl_—p l - (1)
J F,(vo) | | £,

1
Jj=l-k
(6

In the above case, a ( v, ) upper, one-sided y — content tolerance limit le with confidence level £ can be obtained by using the

F,(
F (3 )
following formula:
j FrimasPdr 2y | = E{Pr(P,(5 <3 1Y, =y3m) 2 )} = B, (32)
F,00)
()’k)
where F (y)=1-F,(»),
(n —1+1)— (l— )1 k-1
foria ()= O<r<l, (33)
T B(n=1+1,1-k)
is the probability density function (pdf) of the beta distribution (Beta(n —1I+1,/ —k)) with shape parameters n—/+1 and I—k.
(34)

Proof: It follows from (31) that

d | d

[ s ==—P,(%, <3, 1Y, = yim)
1 F,(0) dy,
F,,(,Vk)

This ends the proof.
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A ( v, ) lower, one-sided y — content tolerance limit with confidence level £ can be obtained by using the following formula:

1
L . —
ESPr| 1= [ f 0 (drzy | =E{Pr(P,(Y, >y Y, =ysm) 2 y)| = B. (35)
F,01)
ﬁy(,"k)
A two sided y — content tolerance interval with confidence level § can be obtained by using the following formula:

{arg (Pe(B,(4) > ¥/ 1Y, = y3m) 2 7)) = B, arg(E{Pe(B,(1 <30 | ¥, =yk;n)27)}=ﬂ)}

=| arg| £1Pr j Franss (Y <1=y | = |, arg| E\Pr j s (P)drzy [r=p

F,(3) (1)
F,(n) Fy(3)
L U
:I:yl i ] (36)
This ends the proof.

G. Adequate Applied Mathematical Model 7 of a Conditional Cumulative Distribution Function of the Ith Order Statistic Y, is given by

n—l+1( ﬁp(yl) Fp()ﬁ)
I~k L] Fpu‘)]/ﬁ,(m = ir &= n—k=j
| (n—kj[l_ Fp(y,)} {Fpm)} ’ 7

Frin =B, <y Yo =yim= 3 | -2 -
I—k,n-1+1 o\ 115k k z j Fp(yk) Fp(J’k)

0 J=l=k
In the above case, a (}/, p ) upper, one-sided y — content tolerance limit y,U with confidence level f can be obtained by using the
following formula:

=il B0 ) JF,01)
-k Fp()’k) ﬁp(.yl()
ES{Pr I Jickmn(P)dr 2y | = E{Pr(Pp Y, <y | Y, =y;n)> ;/)} =/, (38)

0

where F(y)=1-F,(»),

I_k |: l k :ll—k—l
n—[+1 n—Il+1
B(l—k,n—l+1){ I—k }”"‘*"
I+ ——r
n—1[+1
r €(0,), (39)

is the probability density function (pdf) of the F distribution (F'(/ —k,n—1 +1)) with parameters [~k and n—/+1, which are positive integers
known as the degrees of freedom for the numerator and the degrees of freedom for the denominator.

Proof: It follows from (36) that

n—I+1 I f};(}ﬁ) ’jp )
I-k Fp(,"A) Fp(yA)

ﬁ—k,rz—l+1(r) =

d
o | Frsain () == B (1 S X, = yyim). (40)
I 0 I
This ends the proof.

A ( v, ) lower, one-sided y — content tolerance limit with confidence level f can be obtained by using the following formula:

=il | F, (i) JF (i)
-k F/)(yk) Fp(}’k)

EqPr| 1~ Jrtwra@dr=y [t =E{Pr(B,(% >y} 1Y, = yim 2 y)| = B. “h)
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A ( v, ) two-sided y — content tolerance interval with confidence level f can be obtained by using the following formula:

{agg(E{Pr(Pp(K >y Y =yam = 7)| = B), aﬁg(E{Pr(Pr(Pp(Yz <y 1Y =y =7))| =ﬁ)}

)i/
n-t+1f, 00| [0
Ik " F,(n) )] F,(»)
arg| EqPr J Srpara@dr <=y [1=B .

Vi 0

n-l+1 I_Ff,(y/”) F,01)
-k F,() )] Fp()

arg| £1Pr | Sroka()dr 2y 2=

Yk 0
=[] (42)
This ends the proof.

H. Adequate Applied Mathematical Model 8 of a Conditional Cumulative Distribution Function of the Ith Order Statistic Y, is given by

J. Sorerin (r)dr
Ik Fp(}’l)/{l Fp(m}
n—l+1ﬁp(yk) ﬁp(yk) .
— J — n
nk (p—k F,(y) F,(y)
:PP(Y[Syl|Yk:yk;n):Z( : J 1-£= ==
J FP(J/k) Fp(zk)

=k
In the above case, a (}/, p ) upper, one-sided y — content tolerance limit le with confidence level f can be obtained by using the
following formula:

—k—j

43)

E{Pr | Srriwdr=y [t =E{Pr(B,(Y, <y 1Y, =ysm)=y)} =B (44)
1=k B0 J[| F0i)
n—1+1F, () ()

where £/ (y)=1-F,(y),

l_k |: l—k r:ll—k—l
n—[+1 n—Il+1
B(l—k,n—l+1)[ I—k T"‘“’
I+——r

n—1[+1

is the probability density function (pdf) of the F distribution (F(n—1+ 1,/ —k)) with parameters n — /+1 and / — k, which are positive
integers known as the degrees of freedom for the numerator and the degrees of freedom for the denominator.

r€(0,), (45)

Joria (1) =

Proof: It follows from (36) that

d K d
e I S, (r)dr = d_Pp Y <y, 1Y, = yin). (46)
Vi e Fon [1 F,,(yn] Vi
n—l+1 F,{;(,V/.») fp(yk)
This ends the proof.

A ( 7, ) lower, one-sided y — content tolerance limit with confidence level £ can be obtained by using the following formula:

E{Pr|1- [ Frsnaa ()dr 2y | b= E{Pr(P,(4, > 5} 1Y, = yimy 2 7)) = B. (47)
-k F,GF) [ljp(yh]

n=I+1F, (y;) F,(v0)
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A ( v, ) two-sided y — content tolerance interval with confidence level f can be obtained by using the following formula:

[arLg(E{Pr(Pp(K >y Y =yam = 7)| = B), agg(E{Pr(Pr(Pp(Yz <y 1Y =y =7))| =ﬁ)}

—3

arg| E<Pr ]pnfm,sz,(r)drgl_}/ =p |,

L —
i & F (y, F,00)
n— /+1F () F, > ()

arg| E4Pr

W

f;l—l+1,l—k, (Ndrzy |r=p

o0
-k F,(3) F,(5)
n=l+1 F, (y;) E, ()

L U
=[yl i } (48)
This ends the proof.
I11. Two-parameter exponential distribution

LetY=(Y, ...<Y ) be the first m ordered observations (order statistics) in a sample of size  from the two-parameter exponential distribution
with the probability density function

f,n=9" exp(—y—;uj, 9>0, v>0, (49)
and the cumulative probability distribution function

19
F,(y)=1- exp(—Tj F,(y)=1-F,(y)= exp(—Tj, (50)

where p = (0,9), vis the shift parameter and @ is the scale parameter. It is assumed that these parameters are unknown. In Type 11
censoring, which is of primary interest here, the number of survivors is fixed and Y is a random variable. In this case, the likelihood function
is given by

Lw.9) =T T£,0)(F )" =3imepof(y,- —0)+ (h=m)(, —u)} /9]

i=1

='9L,,,exr)[ {i(yi—yl+y1—v)+(h—m)(ym—yl+y1—0)}/'9J

i=1

- 9,11 exp[—[i(yi )+ (h—m)(y, —yl)} /3)

1 h(y, —u)j 1 s ) 1 ( h(s, —u)j
x—exp| — = exp| ——= |x—exp| ——— |, 51
9 p( 9 g p 9) g p g (51)
where
S=(SI=Y1» Sm=Z(Yi—Y1)+(h—m)(Ym—Yl)j (52)
i=1
is the complete sufficient statistic for p. The probability density function of S = (S, S )is given by
1exp[_smjx 1exp[_ (s, —u)) Lo _s,,,)x 1 (_ hs, - u)j
fp (Sl,sm _ 19'"71 9 9 9 19'"71 p 9 g p 719
i h(s, —v) T(m—1) 1
S S e S
1 m2 s h h(s, —v)
T gl eXp| = | * ¢ = S S1)s 53
T(m—1)g" " p( 3} 9 p( g )= Lo(s.) 1 (5) 53)
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where

£, (s;) :%exp(—@], s, >0,

1 ) s
fols,)=———————s “exp| —=|, s, 20.
o(5n) C(m—-1)9"" 9
S, —v
3
is the pivotal quantity, the probability density function of which is given by

L) =hexp(—hvl), v, 20,
S

m

V1:

Vm
9
is the pivotal quantity, the probability density function of which is given by

f;ﬂ (Vm )

= va‘Z exp(-v,), v, =0.

Copyright:
©2024 Nechval et al.

A. Constructing a (7, g ) upper, one-sided y — content tolerance limit with confidence level S for the case of Model 1

(54)

(55)

(56)

(57)

(58)

(59)

Theorem 3: Let Y \<...<Y be the first m ordered observations from the preliminary sample of size / from a two-parameter exponential

distribution defined by the probability density function (49). Then the upper one-sided y-content tolerance limit (with a confidence level f) y,ij
on the kth order statistic Y, from a set of n future ordered observations ¥ <...<Y also from the distribution (49), which satisfies

E{Pr(P,(Y, <y Im)27)} =B,

is given by
B 1] 1
s Sl 2 (2 <
1 h ﬂ 9 ﬂ =4
U o_ L i
Ve = r RN )
QF \m-1 QF \m-1
s + 5 S
where

Q =1-4,, ), (Beta(k,n-k+1), y quantile).
Proof: It follows from (2) and (3) that

E{Pr(P,(Y, <3/ |m)=27)|

F,08)

U
J. f;f,n—kﬂ(r)dr > Y :E{Pr(l_exp{_-yk'g_u
0

U _ .
= E{PI‘ _)}k—lgl) S 1n(1 - qk,n—k+1;7 )J} = E{Pr[_yk—lgl)

=FE<{Pr

Il
ey
f_/%\
)-U
—
VR
@
4
o
VR

v _ _ v
:E{Pr Vi S1S_m S, UZ—ln(l—qk’nkH;y)J}:E{Pr[SlgUZ_yk S,

S 9 9

= E{Pr(V, 2=V, ~nQ )l = E{1-Pr(V, <[V, -InQ, )| = E{1-

where

=1V, ~InQ,

J

0

S

— —In
4

S v, ¢,

U

Y
3

1%
] S 1 - qk,n—k+l;y j}

(1= G s, )J}

(60)

(61)

(62)

(63)

(64)
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It follows from (63) and (64) that
—1],? Vm—any —n,f/Vm—any

E{1- _[ Siv)dv, ¢ =E{1- _[ hexp(—hv, Jdv,

0 0

= E{l - [1 - exp(—h[—anm -nQ, ])J} = E{exp(hn,ﬁ’Vm )exp(ln Q) )} = E{Qj exp(hanm )}

St 8 O ——— 8

(@ exp(imi'v,,)) £,0,)dv,

(Q: eXp(hﬂ;?Vm ));V”"z exp(-v,, )dv, =Q; !ﬁvﬁ'z exp(—vm [1 —hn! ])dvm

C(m-1) "
Qh
= ﬁ =p. (65)
i
It follows from (64) and (65) that
1
U QF |m1
nlgzyk—Sl:l 1-| —ZL (66)
S h B
It follows from (66) that
1
h Am-1
yfj:Sl+& 1-|— : (67)

h B

Then (61) follows from (67), this ends the proof.
B. Constructing a (7/, p ) lower, one-sided y — content tolerance limit with confidence level S for the case of Model 1

Theorem 4: Let Y <...<Y be the first m ordered observations from the preliminary sample of size 4 from a two-parameter exponential

distribution defined by the probability density function (49). Then the lower one-sided y-content tolerance limit (with a confidence level ) y,f
on the kth order statistic ¥, from a set of » future ordered observations Y,...<Y also from the distribution (49)), which satisfies

E{Pr(Pﬂ(Yk > yr |n)2y)}:,8, (68)
is given by
B 1] 1
Qh m—1 Qh m—1
S1+S—’" 1-| —=Z , if i <1,
h 1-5 1-p
Vi = - - 1 (69)
Q! Qb
SI+S—’” —r 1, if s >1,
hi1-p -4
where ) _
Q_, =1- Dontsr)ioy (Beta(k,n -k+1),1-y quantile). (70)

Proof: It follows from (3) and (5) that

F,(y6) L
-0
E{Pe(P,(Y, > yf m2y)} =EPr| [ f, ,(dr<i—y | =E Pr(exp(—y" . JZI—qk,,,Mw]

0
L L
V=88, S -v S-v_ ¥y, =58,
:E{Pr[ kSM 1?+ 19 g—ln(l—qk’n_kﬂ;l_y)]}:E{Pr[ 19 <-— kSm 1j_ln(1—qk’n_k+l;l_7)
iV, ~InQ,_,
:E{Pr(Vl g—n,fVm—anl_y)}:E [ fiopa (71)
0
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where

L
i =S,

. 72

S (72)

m

It follows from (57) and (71) that

717,51/,” -InQ_, 777;!/”7 -InQ_,
E{ | f](v])dvl}zE{ | hexp(—hvl)dv]}
0

mo=

0

= E{l—exp(—h[—n,fVm —anH])} =E{l—exp(hn,fVm)exp(qanH )} =E{1—Qf’77 exp(hn,fVm )}

(1 -Qp, exp(hn,fvm ))fm (v,)dv,

©

1
_ _O" L m-2 _ —1_ h m-2 _ _ L
= (1 Q, exp(hnk v ))—F(m 3 v exp(-v, )dv, =1 Ql_y-([—l“(m 3 v exp( v, [1 hn| ])dvm
Qh
S PR S ) (73)
L
[1 —hn, }
It follows from (72) and (73) that
1
L QF =1
n, =St 1—| 22 ' (74)
s h|l |1-p
It follows from (74) that
1
Q|
TR I e S (75)
h 1-B

Then (69) follows from (75), this ends the proof.
C. Numerical Practical Example
Let us assume that £ =5, m =8, h =10, n=12, y == 0.95,

s:(sl “%=9.8, = -1 )+ (h-m)(, —m]

i=1
=(8,=9,8,=0+1+2+4+6+10+15+23+(10-8)23=107), (76)
Then , the ( y=095p0= 0.95) upper, one-sided y — content tolerance limit y,ij with confidence level S can be obtained from (61),

where the quantile of Beta(k,n -k +1),y is given by

Qs = 0-609138, a7
Q, =1-q, 4, =1-0.609138=0.390862. (78)
It follows from (61), (76) and (78) that
1 _
Q' \nt 0.390862]" |+
yY =S1+S—’" 1-| = _9, 107 1—¥ =9+7.883285 = 16.883285. (79)
h B 10 0.95

The ( y =0.95,=0.95 ) lower, one-sided y — content tolerance limit y,[f with confidence level § can be obtained from (69), where the
quantile of Beta(k,n -k +1),1 —y is given by
~0.181025, (80)
=1-0.181025=0.818975. (81)

q(k,n—kJrl),l—;/

Qlfy = 1 - q(k,n—k+1),l—y
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It follows from (69), (76) and (81) that

1 B
QF 0.818975]° |+
y,f:Sl+S—’” ek 20 S P L [0.818975] -1 _9+m[1 15335326 1] =10.64088, (82)
hil1-5 10|| 1-095

The ( y=0095,0= 0.95) two-sided y — content tolerance interval with confidence level f can be obtained by using (6), (79) and (82):

[vi, 3 |=[10.64088, 16.883285]. (83)
IV. New intelligent transformation technique for derivation of the density function of the student’s T distribution

Theorem 5: If W, € N(0,1) and W, € »*(v) are independent random variables, then

W, I W, /v =T(), (84)

where #(v) follows the student’s ¢ distribution with U degrees of freedom,

P (R0 VT | S
t(v) f(t)_\/Er(u/z)[Hu} , <t<oo, (85)

Proof:

w1~f1(w1)=Lexp R , —oo<w <o, (86)
N2 2

where
" 1/2 w2
—t[ 2} , dwlz{—z} dt. (87)
) 1)
It follows from (86) and (87) that
1 w’ 1 tz[w /l)] [W }”2
w,)dw, = —exp| —— |dw, = exp| ————2 || == | dt=f(t|w,)dt, —o<t<o. (88)
ﬂ(JIMp(Z]lmp : . f(tlwy)
1 (0/2)-1 w,
w, ~ fL(W,))=———w exp| ——=1|, O<w, <. 89
2 fz( 2) F(U/2)2U/2 2 p 2 2 ( )

It follows from (88) and (89) that

f@)= j F(t1w,) £,0n,)dbw,

Tl tZ[Wz/U] |:W2 }1/2 1 (/2)-1 ( wzj
fd — — — v —_——— d
_'([\/Z_CXI{ 5 (0/2) W, exp w,

; , 1)/2)) —(v+D)/2
_ (WH)/2)-1 LY I R ((U * —0<t<o, 90
}[x/% [(v/2)2¢" " exp( 2 { U:D " NE F(U/Z) T ’ o0

This ends the proof.

V. Confidence interval for the difference of means of two different normal populations

In most applications, two populations are compared using the difference in the means. Let U, U,, ..., U_ be a sample of size m from a normal
population havmg mean 4, and variance O' and let Z, ..., Z be a sample of size n from a dlfferent “hormal population having mean i,
and variance O' and suppose that the two samples are mdependent of each other We are interested in constructing a confidence interval for
M, —u,. To obtain this confidence interval, we need the distribution of U, . —Z,,where

Umini/m~N(,um,0'i/m), Z, ZZ/ (un, f/n) 1)
i=l1

It follows from (91) that

2 2
gz ~N[ym_ﬂ,,,0_m+&j. o)
m n
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It follows from (92) that
U,~Z,— (4, —1,)
o /m+o./n

=W, ~ N(0,1). 93)

This is independent of

m

>(U,-0,) o :(m-D;(U’_U"’) _(m-Ds;

. ~ 1 94
“~ m m O_’i (m _ 1) O'jl lmfl ( )
and
(2,-7,)
u = \2 (n—l)g( ! " (n—l)S2 N
Z. _Z 02 — i=1 — n___ , 95
;( i n) / n O'j (}’[—1) 03 Zn—l ( )
where
-ns: -s?
(m sz)Sm LODS  mene) 6
Taking (84), (93) and (96) into account, we have that
U,=Z,— (4 —1,)
w, 3 o /m+ao./n
W,/ (m+n-2 —-1S? —-1S?
Wit : \/{(m ?S'" +(n IZ)S” }/(m+n—2)
O-m n

U-Z (- —
— m n (lum 'u’l) 2m+n 3 =T(m+n—2)~f(t), (97)
Jm=182 /62 +(n-1)S> /o> \ @, /m+a, /n

where T(m+n-2) is a t-random variable with m + n — 2 degrees of freedom,

_ 2 —(m+n-1)/2
f)= F((m+n 1)/2) {H ! } , —0<f<om.

(98)
7(m+n-2) T((m+n-2)/2) m+n-—2
Using (97) and (98), it can be obtained a 100(1—a)% confidence interval for Um — Zn — ( n, =, ) from
T -7 ~(u - Jmin2
P(t,<T(m+n-2)<t,) =P\t < w2~ (# = 14) min2 <t
\/(m—l)Si/O'i+(n—l)Sf/0'f \/O',i/erO'f/n
-DS} /o +(n-1S’ /o’ - =
tl\/(m )5, /0, +(n=DS, O-”./Gi/m+0'f/nSUm—Zn—(,um—,un)
m+n—2
=P =l-«a 99)
_1 2 2 _1 2 2
Stz\/(m ISR ) Sl ey
m+n—2

by suitably choosing the decision variables #, and ¢, . Hence, the statistical confidence interval for Um - Zn - ( M, = ,un) is given by

\/(m—l)S,i /62 +(n-1)S>/ o \/(m ~1S2 /6% +(n-1)S2/ o
A

m+1n—2 m+1n—2 ‘ (100)

2 2 2 2
o, m+o,/n \O, /m+o, /n

The length of the statistical confidence interval for U I Zn - ( M, — ,u") is given by

-DS2 / o} -1)S?/ o}
L tl,t2|\/(m ), (o, +(n =D, O-”«/Jf,/m+crf/n

4

m+n—2
. 2 2 _ 2 2
=(t2—t1)\/(m l)Sm/am+(n2 DS/ %) [ Tmr o Tm (o1,
m+n-—
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In order to find the confidence interval of shortest-length for ljm - Zn - ( M, — U, ) , we should find a pair of decision variables #, and f,
such that (101) is minimum.

It follows from (98) and (99) that

t, t, f

[r@ar=]fr@de-[f@od =(1-a+p)-p=1-a, (102)
f 0 0

where p (0 < p < @) is a decision variable,

ff(t)dt=1—a+P (103)
0

and

[f®at=p. (104)
0

Then ¢, represents the (1— ¢ + p) - quantile, which is given by
L =g pirmin-2)) > (105)
1, represents the p - quantile, which is given by

L =4 (min-2))- (106)

The shortest length confidence interval for U, —Z, — ( M, — ,un) can be found as follows:

Minimize
2 2
(tz - ) = (q17a+17;(t(m+n72)) - qP;(t(m+n72))) (107)
subject to
0<p<a, (108)

2
The optimal numerical solution minimizing (t2 —tl) can be obtained using the standard computer software “Solver” of Excel 2016. If
o, =0, itfollows from (101) that

_ 2 _ 2 _ 2 _ 2
I tl,t2|\/(m DS, +(n-1)S; }m+n Z(fz—fl)\/(m DS, +(n-1)S, ’M+n‘ (109)
m+n—2 mn m+n—2 mn

If, for example, m=58, n=27, a. = 0.05, Um =70.7, Zn =76.13, S,i = (1.8)2, S: = (2.42)2, then the optimal numerical solution of
(107) is given by

P=0.025, 1, =, (ominay =—1.98896, £ =G\ 0. imonay =1.98896 (110)
and it follows from (99) and (109) that the 100(1—a)% confidence interval of shortest-length (or equal tails) for 4, — f4,is given by

_ 2 _ 2
( m—f,,)—tz\/(m DS2 +(n-1S> [m+n
m+n—2 mn

b

(1, — 1) e =(—6.330947,-4.52905) (111)

(@, - )_tJ(m—l)Sj,+(n—1)Sj m+n

mo) A m+n—2 mn

or

—6.330947 < p,—u, <—4.52905. (112)

VI. Confidence interval for the ratio of means of two different normal populations

Ratio in the means is used to compare two populations of positive data. Let U,, U,, ..., U, be a sample of size m from a normal population

having mean £, and variance O'; andlet U, ..., U be asample of size n from a different normal population having mean x, and variance O'j
and suppose that the two samples are independent of each other. We are interested in constructing a confidence interval for the ratio of means

(u,,, 1, of two different normal populations To obtain this confidence interval, we need the distribution of U m kU .» Where

U, =iUl./m~N(,um,0'i/m), U, =Zn:Ui/n~N(yn,0'f/n). (113)
i=1 i=1
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It can be shown that

2 2 _2
7, -«0, ~N(um—r<ﬂn,d—'"+'( G"J (114)
m n
or
T x0T, —(, —
n KUY, (/um Klun) =VV1 ~N(0,1) (115)
2 2_2
O-m K O-’l
7+7
m n

This is independent of

m

— \2
U,-0,)
D i T
U-U 2 _ i1 = m o 116
;( i m) /Gm O_i (m—l) O'jl mel ( )
and
12 2
i(U T )2/0_2_(”’_1)]2;(Uj_ n) _(n_l)S;f~ 2 (117)
R
where
-1S: 1S’
(mgz) n {2 2) =W, ~ y*(m+n-2). (118)
It follows from (84), (115) and (118) that
m _U,—xU, —(u, —xu,) 1
W, [ (m+n-2) N e —1NS? —-1Ns?
2 Om K Ou (m 2)S”’+(n Z)S” (m+n-2)
m n O-m O-n

=T(m+n-2)~ f(?), (119)

_ U, U, (g, ~xp,) J m+n-2
- 2 2 2
Jm-182 /6% +(n-1)S* /o> N0, /m+ &0, /n
where T(m+n-2) is a t-random variable with m + n — 2 degrees of freedom. Taking Theorem 5 into account, we have that
I'(m+n-1)/2 £ ~men1)/2
(( )/ ) 1+ , —00<t<oo,
7(m+n=2) T((m+n-2)/2) m+n-—2
Using (119) and (120), it can be obtained a 100(1—)% confidence interval for U, —&U, — (x4, —xt,) from
P(z‘1 ST(m+n—2|l7m ~xU, —(u, —Kyn))ﬁtz)

[ < U, -«U, - (4, —Ku,) Jmtn-2

Jon -S> /02 +(n-0)S* /0> Joo Im+ it In

Zl\/(m—nsi/aj,+(n—1)sj/aj
m+n-2

f=

(120)

=P

\/O'i Im+xc In<U, —xU, —(u, —Ku,)

=P =l-« (121)

. \/(m—1)sjl/oj,+(n—1)sj/aj
o7 m+n—2

2 2_2
\/O'm/m+lc o, /n

By suitably choosing the decision variables #, and ¢, . Hence, the statistical confidence interval for U e KU L —(u, —xu,) is given by

\/(m—l)S,i /62 +(n-1)S>/ o \/(m —1S2 /6% +(n-1)S2/ o

m+n—2 m+n—=2
1 1 )1 1 (122)
\/O'i/m+l(20'f/n \/O',i/erKzaj/n
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The length of the statistical confidence interval for U m kU L —(u, —Ku,) is given by

_1 2 2 _1 2 2
e |\/(m )S2 /o2 +(n—1)S> /o7
m+n—2

2 2 _2
\/O'm/m+l< o, /n

(¢ t)\/(m—l)Si/a,i+(n—l)Sf/af
—\274

Jol Im+ ol /. (123)
m+n—2

In order to find the confidence interval of shortest-length for U m xkU , —(u,, —xu, ), we should find a pair of decision variables , and
t, such that (123) is minimum. It follows from (121) and (123) that

jf(t)dt:jf(t)dt—jf(t)dt =(l—a+p)-p=l-a, (124)

where p (0 < p <) is a decision variable,

If(f)dt=1—a+P (125)
0

and

If(f)dl =p. (126)
0

Then f, represents the (1 -a+ p) - quantile, which is given by
tZ = ql—a+p;(t(m+n—2)) > (127)
t, represents the p - quantile, which is given by

L =4, men-2))- (128)

The shortest length confidence interval for U = KU . —(u, —xu,) can be found as follows:

Minimize
2 2
(tz - tl) = (qlfa+p;(t(m+n72)) - qp;(t(m+n72))) (129)
subject to
0<p<a, (130)

The optimal numerical solution minimizing (t2 -1 )2 can be obtained using the standard computer software “Solver” of Excel 2016. If
ol =0, it follows from (123) that

2 2 2 2 2 2
. tl,t2|\/(m_1)S”’+(n_l)S" \/i+1<_ :(tz_tl)\/(m—l)Sm+(n—l)Sn \/i+1<_‘ 131)

m+n—2 m n m+n—2 m n

If, for example, m=6, n=4, o.= 0.05, (7m =117.5, Un =126.8, S,i =(9.7), S; = (12)’, then the optimal numerical solution of (129)
is given by

P=0.025 1, =4, min2y="2306, 1, =G 4, min2y =2-306 (132)
and it follows from (121) and (131) that the 100(1—a)% confidence interval of shortest-length (or equal tails) for 4 — &, is given by
~1S? +(n—1)S? \/ L«

m+n—2

0T, -, 3121 L,

(133)

—1DS? +(n—1)S> \/L K>

m+n—2 m n

If k=1, it follows from (133) that

_ _ _1 2 _1 2
(0.0, ) -1, [=DSi+ =S} [T T

m+n—2 m n
_ _ _1 2 _1 2
m+n—2 \'m n
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(117.5-126.8)-2.306x10.6 /%%,
=(-25.07, 6.47) (134)

(117.5-126.8) +2.306x10.6 %+%

or

=25.07 <p,—p, <647

An analytical expression for determining the optimal value of x (the ratio in means of two different normal populations) can be obtained

(135)

from (121), where it is assumed that o = & and (,um — K, ) =0:

m-1)S; +(n-1)S;
tl\/( )8, +(=DS, i e _ J(m—l)SiHn—l)Sfm@

m+n-—2 kU, +¢
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minimize:
2
2

(K—0.926656—0.192773\/0.166667+0.251< ) A (e<108526,
= > |7\ 20815431/ (136

(K—0.926656+O.192773\/0.166667+0.25K2) |0

subject to: x> 0.

Thus, it follows from (136) that
Kk €(0.815431, 1.05526). (137)

Conclusion

The new intelligent computational models proposed in this paper are conceptually simple, efficient, and useful for constructing accurate
statistical tolerance or prediction limits and shortest-length or equal-tailed confidence intervals under the parametric uncertainty of applied
stochastic models. The methods listed above are based on adequate computational models of the cumulative distribution function of order
statistics and constructive use of the invariance principle in mathematical statistics. These methods can be used to solve real-life problems in
all areas including engineering, science, industry, automation & robotics, machine learning, business & finance, medicine and biomedicine,

optimization, planning and scheduling.
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