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Abstract. A plane graph is called symmetric if it is invariant under the reflection across
some straight line. We prove a result that expresses the number of perfect matchings of a
large class of symmetric graphs in terms of the product of the number of matchings of two
subgraphs. When the graph is also centrally symmetric, the two subgraphs are isomorphic
and we obtain a counterpart of Jockusch’s squarishness theorem. As applications of our
result, we enumerate the perfect matchings of several families of graphs and we obtain new
solutions for the enumeration of two of the ten symmetry classes of plane partitions (namely,
transposed complementary and cyclically symmetric, transposed complementary) contained
in a given box. Finally, we consider symmetry classes of perfect matchings of the Aztec
diamond graph and we solve the previously open problem of enumerating the matchings that
are invariant under a rotation by 90 degrees.

0. Introduction

The starting point of this paper is a result [18, Theorem 1] concerning domino tilings of
the Aztec diamond compatible with certain barriers. This result has also been generalized
and proved bijectively by Propp [17]. We present (see Lemma 1.1) a further generalization,
which allows us to prove a basic factorization theorem for the number of perfect matchings
of plane bipartite graphs with a certain type of symmetry.

As a direct consequence, we obtain a counterpart of Jockusch’s squarishness theorem
[8, Theorem 1]. We then use the factorization theorem to enumerate the perfect matchings
of several families of graphs that either generalize or are concerned with the Aztec diamond.
Furthermore, we obtain new solutions for the enumeration of two of the ten symmetry
classes of plane partitions contained in a given box.

Motivated by the example of plane partitions, in the last section we consider the enu-
meration of perfect matchings of the Aztec diamond graph that are invariant under certain
symmetries. There are a total of five enumerative problems that arise in this way. Two of
them have been previously considered (one of which corresponds to matchings invariant
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under the trivial group). We present a solution for a previously open case and a new proof
for the previously solved non-trivial case.

1. A Factorization Theorem

A perfect matching of a graph is a collection of vertex-disjoint edges that are collectively
incident to all vertices. We will often refer to a perfect matching simply as a matching.

Let G be a plane graph. We say that G is symmetric if it is invariant under the reflection
across some straight line. Figure 1.1 shows an example of a symmetric graph. Clearly, a
symmetric graph has no perfect matching unless the axis of symmetry contains an even
number of vertices (otherwise, the total number of vertices is odd); we will assume this
throughout the paper.

A weighted symmetric graph is a symmetric graph equipped with a weight function
on the edges that is constant on the orbits of the reflection. The width of a symmetric
graph G, denoted w(G), is defined to be half the number of vertices of G lying on the
symmetry axis.

Let G be a weighted symmetric graph with symmetry axis l, which we consider to be
horizontal. Let a1, b1, a2, b2, . . . , aw(G), bw(G) be the vertices lying on l, as they occur from
left to right. A reduced subgraph of G is a graph obtained from G by deleting at each
vertex ai either all incident edges above l (we refer to this operation for short as “cutting
above ai”) or all incident edges below l (“cutting below l,” for short). Figure 1.2 shows a
reduced subgraph of the graph presented in Figure 1.1 (the deleted edges of the original
graph are represented by dotted lines).

The weight of a matching µ is defined to be the product of the weights of the edges
contained in µ. The matching generating function of a weighted graph G, denoted M(G),
is the sum of the weights of all matchings of G. The matching generating function is
clearly multiplicative with respect to disjoint unions of graphs. We will henceforth assume
that all graphs under consideration are connected.

Lemma 1.1. All 2w(G) reduced subgraphs of a weighted symmetric graph G have the same
matching generating function.

Proof. It is enough to prove the statement of the Lemma for two reduced subgraphs that
differ only around a single vertex ai. Let G1 and G2 be two reduced subgraphs obtained by
identical cutting operations except that for the former we made a cut above ai, while for
the latter we cut below ai (for some i ∈ {1, 2, . . . , w(G)}). Let µ be a matching of G1 and
let µ′ be the matching of G obtained from µ by reflection across l. Then ν = µ∪µ′ (where
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the union is a multi-set union) is a 2-factor of G that is symmetric about l. Therefore, ν
is a disjoint union of even-length cycles. Consider the cycle C containing ai, and let C ′

be the reflection of C across l. Since ν is symmetric about l, C ′ is a cycle of ν. Note that
C ′ 6= C would imply that C is disjoint from C ′, contradicting ai ∈ C ∩ C ′. Therefore C ′

coincides with C and C is symmetric with respect to l. Thus, since all vertices of C have
degree two, C has only one vertex on l besides ai. We claim that this vertex is one of
b1, b2, . . . , bw(G).

Otherwise, the set of vertices encircled by C has an odd number of elements on l.
Since this set is symmetric about l, it follows that it has an odd number of elements,
contradicting the fact that the 2-factor ν is a disjoint union of even-length cycles.

Define µ′′ to be the matching of G obtained from µ by replacing µ∩C by µ′ ∩C. Then
clearly µ′′ is a matching of G2 and the correspondence µ 7→ µ′′ is a weight-preserving
involution between the matchings of G1 and those of G2. �

Let G be a weighted symmetric graph that is also bipartite. Suppose that the set of
vertices lying on l is a cut set (i.e., removing these vertices disconnects the graph). In such
a case we say that l separates G. Let us color the vertices in the two bipartition classes
black and white. For definiteness, choose the leftmost vertex on the symmetry axis l to
be white. We define two subgraphs G+ and G− as follows. Perform cutting operations
above all white ai’s and black bi’s and below all black ai’s and white bi’s. Note that this
procedure yields cuts of the same kind at the endpoints of each edge lying on l. Reduce
the weight of each such edge by half; leave all other weights unchanged. Since l separates
G, the graph produced by the above procedure is disconnected into one component lying
above l, which we denote by G+, and one below l, denoted by G−. Figure 1.3 illustrates
this procedure for the graph pictured in Figure 1.1 (the edges whose weight has been
reduced by half are marked by 1/2).

Theorem 1.2 (Factorization Theorem). Let G be a bipartite weighted symmetric
graph separated by its symmetry axis. Then

M(G) = 2w(G)M(G+)M(G−).

In our proof we make use of the following preliminary result. Let v be a vertex of the
weighted graph G and let X ∪Y ∪Z be a partition of the edges incident to v. For an edge
e incident to v, let ϕ(e) be the other endpoint of e. Construct a new graph G′ from G by
changing the neighborhood of v as follows (see Figure 1.4):
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(i) remove v and the incident edges
(ii) insert three new vertices x, v′ and v′′

(iii) connect x to v′ and v′′ by edges of weight 1
(iv) for e ∈ X , connect v′ and v′′ to ϕ(e) by edges of weight (1/2) wt(e)
(v) for e ∈ Y , connect v′ to ϕ(e) by an edge of weight wt(e)
(vi) for e ∈ Z, connect v′′ to ϕ(e) by an edge of weight wt(e).

Lemma 1.3. The graphs G and G′ have the same matching generating function.

Proof. The matchings of G can be partitioned into |X |+ |Y | + |Z| classes according to
the possible ways of matching v. Note that since {x, v′} and {x, v′′} are the only edges
incident to x, in any matching of G′ there is exactly one edge with one endpoint in {v′, v′′}
and the other in {ϕ(e) : e ∈ X∪Y ∪Z}. This determines a partition of the set of matchings
of G′ into |X | + |Y | + |Z| classes.

Let µ′ be a matching of G′ and let e be the unique edge incident to v such that {v′, ϕ(e)}
or {v′′, ϕ(e)} is contained in µ′. Define µ to be the matching of G obtained from µ′ by
removing the edges incident to {v′, v′′, x} and including edge e. Then the mapping µ′ 7→ µ
is onto. Moreover, the weight of the preimage of µ is equal to wt(µ), for all matchings
µ of G (the weight of a set of matchings is defined to be the sum of the weights of the
elements).

Indeed, this mapping is one to one and weight-preserving on the classes corresponding
to e ∈ X∪Y . On the classes corresponding to e ∈ X , the mapping is two to one. However,
by the choice of weights is step (iv) of the construction of G′ we have that the sum of the
weights of the two preimages equals the weight of the image. This proves the statement
of the Lemma. �

Proof of Theorem 1.2. First, we show that we can reduce to the case when the vertices
of G lying on l form an independent set. To see this, we construct a new graph G̃ as
follows. Cut the graph G along l so that we obtain two copies of each vertex lying on l,
and two copies of each edge contained in l. Assign half the weight of the original edge
to each copy; keep the original weights for all other edges. Finally, insert a new vertex
between the two copies of each vertex formerly on l, and join it to both copies by an edge
weighted 1. It is clear that we can carry out this construction such that the resulting
graph is symmetric (this is illustrated in Figure 1.5 in the case of the graph G shown in

Figure 1.1). Denote it by G̃, and let l̃ be its symmetry axis. We claim that G and G̃ have
the same matching generating function.

Indeed, let G(1) be the graph obtained from G by performing the operation involved
in Lemma 1.3 around a1, with X , Y and Z being taken to be the set of edges incident
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to a1 that lie on, above and below l, respectively. Let G(2) be the graph obtained from
G(1) by modifying the neighborhood of b1, with a similar partition of the incident edges.
Continue in this manner, obtaining graphs G(i), i = 3, 4, . . . , 2 w(G). By Lemma 1.3,
M(G(i−1)) = M(G(i)) for all i ≥ 2. Since the last graph in this sequence is isomorphic to

G̃, this proves our claim.

Note that each vertex of G̃+ lying on l̃ has degree 1, hence any matching of G̃+ must
contain the edge incident to this vertex (see Figure 1.6). Also, by construction, all edges

of G̃+ incident to such vertices have weight equal to 1. Therefore, M(G̃+) is equal to

the matching generating function of the subgraph of G̃+ obtained by deleting the vertices
matched by the forced edges of weight 1. However, this subgraph is isomorphic to G−,
and we obtain that M(G̃+) = M(G−). Similarly, we deduce that M(G̃−) = M(G+).

Thus, it is enough to prove the statement of the theorem for a graph G whose vertices
lying on l form an independent set. According to Lemma 1.1, it is enough to show that
M(G+)M(G−) is the matching generating function of some (hence any) of the 2w(G)

reduced subgraphs of G. We prove this for the reduced graph H obtained by cutting
above the white ai’s and below the black ai’s. For this, it suffices to show that every
matching of H is also a matching of G+ ∪ G−, i.e., that in every matching µ of H the
white bi’s are matched upward and the black bi’s downward. Let x and y be the number of
white and black vertices of G lying above l, respectively. Let x1 and y1 (resp., x2 and y2)
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be the number of white and black ai’s (resp., bi’s). We then clearly have

2x + x1 + x2 = 2y + y1 + y2 (1.1)

and

x1 + y1 = w(G) = x2 + y2. (1.2)

Let α and β be the number of white and black bi’s matched upward in µ, respectively.
We need to show that α = x2 and β = 0.

Consider the set of edges of µ that lie above l. Among their endpoints, x + α are white
and y + y1 + β are black, so x + α = y + y1 + β. We therefore obtain

x2 ≥ α ≥ α − β = y − x + y1. (1.3)

However, by relations (1.2) and (1.1) we have

x2 − y1 =
1

2
((x2 − y1) + (x1 − y2)) =

1

2
(2y − 2x) = y − x,

so we actually have equality in (1.3). This implies α = x2 and β = 0, as desired. �

2. Perfect Matchings and Perfect Squares

Let G be a symmetric bipartite graph separated by the symmetry axis l. We say that G
is Klein-symmetric if G is in addition invariant under the rotation ρ by 180◦. The graph is
said to be Klein-even-symmetric if there is an even number of edges in a path connecting
a vertex to its image under ρ.

Theorem 2.1. For any Klein-even-symmetric graph G we have

M(G) = 2w(G)M(G+)2.

Proof. Since G is invariant under ρ, we must have ρ(ai) = bw(G)−i+1, for i = 1, . . . , w(G).
Therefore, ai and bw(G)−i+1 have the same color. Given our algorithm for constructing

G+ and G−, this implies that G− is the image of G+ under ρ. The factorization theorem
thus yields the stated result. �

Remark 2.2. The above theorem gives a combinatorial explanation for the fact, first
proved by Montroll using linear algebra (see [11, Problem 4.29] for an exposition), that
the number of perfect matchings of the 2n × 2n grid graph is either a perfect square or
twice a perfect square; thus Theorem 2.1 answers the last question of [8, p.114]. In the
equivalent language of domino tilings, we obtain that the number of tilings of the 2n× 2n
chessboard equals 2n times the square of the number of tilings of the portion lying below
the zig-zag line in Figure 2.1.

Remark 2.3. Let us consider the tiling of the plane by unit squares with vertices
having integer coordinates. Define a planar region to be the union of finitely many such
unit squares. In case the symmetric graph G is the dual of a planar region R and the line
of symmetry has slope ±1, the factorization theorem can be stated more directly in terms
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of domino tilings. Indeed, let P be a zig-zag lattice path that leaves the unit squares that
intersect the line of symmetry alternately on one side of P and the other (see Figure 2.2).

Let R+ and R− be the subregions of R determined by P . Then if D(R) denotes the
number of domino tilings of R, we obtain that

D(R) = 2w(R)D(R+)D(R−), (2.1)

where w(R) is half the number of unit squares of R intersected by the line of symmetry.

3. The Holey Aztec Diamond

Consider a (2n+1)× (2n+1) chessboard with black corners. The graph whose vertices
are the white squares and whose edges connect precisely those pairs of white squares that
are diagonally adjacent is called the Aztec diamond of order n. (Technically speaking, this
is the dual of the region dubbed the Aztec diamond in [6].) In [6] it is shown that it has
2n(n+1)/2 perfect matchings (see [3] for an alternate proof).

The holey Aztec diamond is obtained by removing the vertices of the central 4-cycle
of this graph. Jockusch conjectured formulas for the number of perfect matchings of the
holey Aztec diamond, formulas that have been recently proved [17]. We give a short proof
in the case when the order of the diamond is congruent to 2 or 3 modulo 4.

Theorem 3.1. The holey Aztec diamonds of order 4n + 2 and 4n + 3 have 28n2+10n and

28n2+14n+3 perfect matchings, respectively.
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Figure 3.1

Proof. Let G be the (plain) Aztec diamond of order 4n + 2. Apply Theorem 2.1 to G
with respect to the horizontal symmetry axis l (see Figure 3.1). The vertices lying on l
are in the same bipartition class, thus by our convention they are all white. Therefore, the
cuts producing the two subgraphs involved in the factorization theorem occur alternately
above and below the vertices lying on l, as viewed from left to right.

Note that any matching of G+ has 2n + 1 forced edges along the western part of its
boundary. Let H be the graph obtained from G+ by deleting the 4n+2 endpoints of these
forced edges. Then M(G) = 22n+1M(H)2, and since M(G) = 2(2n+1)(4n+3) we obtain

that M(H) = 2(2n+1)2 . Note that H has a vertical symmetry axis; denote it by l′.

Let us now delete the four central vertices of G and denote the remaining graph by G1.
Let x be rightmost of the two deleted vertices lying on l (see Figure 3.2). Note that as
in the case of G+, any matching of G+

1 has 2n + 1 forced edges. Let H1 be the graph
obtained from G+

1 by deleting the endpoints of these edges. Then H1 is obtained from H
by deleting vertex x and its northwestern neighbor. Also, the fact that the order of the
diamond is congruent to 2 modulo 4 implies that x lies on l′. A similar statement is true
for orders congruent to 3 (mod 4), but not for the other two cases.

The matchings of H can be partitioned in two classes: those in which x is matched to
the northwest and those in which it is matched to the northeast. Note that the matchings
of the first class are in bijection with the matchings of H1. Similarly, the matchings of the
second class are in bijection with the matchings of the subgraph of H obtained by removing
vertex x and its northeastern neighbor. However, this subgraph is just the reflection of
H1 across l′, hence the two classes have the same size. Therefore, 2M(H1) = M(H), so

M(H1) = 24n2+4n. Thus, by Theorem 2.1 we obtain

M(G1) = 22nM(G1
+)2 = 22nM(H1)

2 = 28n2+10n.

The case when the order is congruent to 3 (mod 4) is treated similarly. The key fact is
that we can deduce again the relation 2M(H1) = M(H) (see the observation at the end
of the third paragraph of the proof). �
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4. Holey Aztec Rectangles

A natural generalization of the Aztec diamonds is the following. Consider a (2m +
1) × (2n + 1) rectangular chessboard and suppose the corners are black. Define the Aztec
rectangle R(m, n) to be the graph whose vertices are the white squares and whose edges
connect precisely those pairs of white squares that are diagonally adjacent.

However, the graphs R(m, n) have no perfect matchings unless m = n. Indeed, the sizes
of the two bipartition classes differ by |m−n|. One is therefore naturally lead to consider
subgraphs of R(m, n) obtained by deleting |m − n| vertices from the larger bipartition
class.

Let m be even and suppose m ≤ n. The vertices of R(m, n) lying on the horizontal
symmetry axis l are then contained in the larger bipartition class. Label them consecutively
by 1 through n (see Figure 4.1(a)). For any subset S of [n] := {1, . . . , n} of size n − m
define R(m, n; S) to be the graph obtained from R(m, n) by deleting the vertices with
labels in S; an example is shown in Figure 4.1(b).

Note that for odd m, the vertices lying on l are contained in the smaller bipartition
class, and therefore the graphs obtained by the above procedure have no perfect matchings.
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Theorem 4.1. For even m, the graph R(m, n; S) has

2m(m+4)/4

(0! 1! · · · (m/2− 1)!)2

∏

1≤i<j≤m/2

(t2j−1 − t2i−1)(t2j − t2i)

perfect matchings, where [n] \ S = {t1, . . . , tm}, t1 < · · · < tm.

Before giving the proof we need some preliminary results. Let m ≤ n and let A be an
m × n matrix. We say that A is an alternating sign matrix if

(i) all entries are 1, 0 or −1
(ii) every row sum equals 1
(iii) in reading every row from left to right and every column from top to bottom the

nonzero entries alternate in sign, starting with a +1.

(Note that this is a generalization of the standard notion of an alternating sign matrix
introduced in [13], which assumes the matrix is square.)

Let ASM(m, n; S) be the set of m×n alternating sign matrices whose column sums are
zero precisely for the column indices belonging to S (note that |S| = n − m). We denote
by N+(A) and N−(A) the number of 1’s and −1’s in A, respectively.

A monotone triangle of size n is an n-rowed triangular array of non-negative integers
such that

(T1) all rows are strictly increasing
(T2) the numbers are non-decreasing in the polar directions +60◦ and −60◦.

Let us weight every monotone triangle T by 2s(T ), where s(T ) is the number of elements
of T that are strictly between their neighbors in the row below, and let f(t1, . . . , tn)
be the generating function of monotone triangles with bottom row t1, . . . , tn. Then by
[13, Theorem 2] we have

f(t1, . . . , tn) =
2n(n−1)/2

0! 1! · · · (n − 1)!

∏

1≤i<j≤n

(tj − ti). (4.1)

Proof of Theorem 4.1. In [13] a bijection is given between ASM(n, n; ∅) and the set of
monotone triangles with bottom row 1, 2, . . . , n; the −1 entries of a matrix correspond to
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Figure 4.3

entries of the monotone triangle that are strictly between their neighbors in the row below.
This construction generalizes immediately to give a bijection between ASM(m, n; S) and
the set of monotone triangles with bottom row t1, . . . , tm, where {t1, . . . , tm} = [n]\S (see
Figure 4.2 for an illustration of this bijection; the second matrix is obtained by considering
partial column sums in the alternating sign matrix, while the triangular array records the
position of the 1’s in the rows of the second matrix). We obtain therefore

∑

A∈ASM(m,n;S)

2N
−

(A) = f(t1, . . . , tm). (4.2)

Suppose m ≤ n and label the bottom n vertices of R(m, n) consecutively by 1 through
n. Let S be an (n−m)-element subset of [n] and denote by R̄(m, n; S) the graph obtained
from R(m, n) by deleting the vertices with labels in S (see Figure 4.3 for an example).

Shade the faces of R(m, n) in a chessboard fashion so that the edges on the boundary
belong to shaded faces. By a cell we mean a 4-cycle of R(m, n) with shaded interior.
Let µ be a matching of R̄(m, n; S). Write in each cell one of the numbers 1, 0 or −1,
corresponding to the cases when the cell contains 2, 1 or 0 edges of µ. Let A be the m×n
matrix generated in this fashion.

Although the graph R̄(m, n; S) is not “cellular” in the sense of [3], the proof of Lemma
2.1 of [3] shows that A ∈ ASM(m, n; S). Furthermore, the proof of Lemma 2.2 of [3]
shows that there are exactly 2N+(A) matchings giving rise to the alternating sign matrix
A. We therefore obtain that

M(R̄(m, n; S)) =
∑

A∈ASM(m,n;S)

2N+(A). (4.3)

Therefore, since N+(A) − N−(A) = m, we have by relations (4.1)–(4.3) that

M(R̄(m, n; S)) =
2m(m+1)/2

0! 1! · · · (m − 1)!

∏

1≤i<j≤m

(tj − ti), (4.4)

where [n] \ S = {t1, . . . , tm}, t1 < · · · < tm.
Apply the factorization theorem to R(m, n; S), with l chosen to be the horizontal sym-

metry axis. From the definition of the two subgraphs involved in the factorization the-
orem, it follows that R(m, n; S)+ is isomorphic to R̄(m/2, n; S ∪ {t1, t3, . . . , t2n−1}) and
R(m, n; S)− is isomorphic to R̄(m/2, n; S ∪ {t2, t4, . . . , t2n}) (see Figure 4.4). The result
follows then from relation (4.4). �
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Figure 4.4

Remark 4.2. Okada has obtained [15, Theorem 4.4] a deformation of Weyl’s denom-
inator formula for the root system of type Cn that yields by specialization a product
formula for the number of centrally symmetric matchings of R(2n, 2n + 1; {n + 1}). It
turns out that the methods of [3] can be used to prove this as well; details will appear
elsewhere.

Remark 4.3. The number of matchings of R(2m, n; S) can be interpreted as follows.
Let µ be a matching of R(2m, n; S). Write in each cell one of the numbers 1, 0 or −1
according to the instances when the cell contains 2, 1 or 0 edges of µ, respectively. Denote
by A and B the m × n matrices thus formed above and below l, respectively. Using the
ideas of [3, Section 2] one can show that A and the matrix obtained by turning B upside
down are alternating sign matrices. Moreover, a pair of m × n alternating sign matrices
arises in this way if and only if the two sets of column indices corresponding to columns
of sum 1 form a partition of [n] \ S. Furthermore, any such pair (A, B) corresponds to
exactly 2N+(A)2N+(B) matchings µ. Therefore, denoting by c(A) the set of column indices
of A corresponding to columns of sum 1, we obtain that

M(R(2m, n; S)) =
∑

c(A)∪c(B)=[n]\S

2N+(A)2N+(B)

= 22m
∑

c(A)∪c(B)=[n]\S

2N
−

(A)2N
−

(B)

= 22m
∑

|U |=|V |=m

U∪V =[n]\S

∑

c(A)=U

2N
−

(A)
∑

c(B)=V

2N
−

(B), (4.5)

where in the summation ranges involving A and B it is assumed that they are m × n
alternating sign matrices. Note that the expression on the right hand side of (4.1) may
be written in terms of Schur functions as 2n(n−1)/2sλ(1n), where λ is the partition having
parts t1 ≤ t2 − 1 ≤ · · · ≤ tn − n + 1 and sλ(1n) is the Schur function indexed by λ
with n variables specialized to 1 and the rest to 0 (see Example I.3.4 of [12]). Therefore,
according to (4.2), we can rewrite the right hand side of (4.5) as

22m+m(m−1)
∑

sλ(U)(1
m)sλ(V )(1

m),
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where for a set Z = {z1 < z2 < · · · < zk}, λ(Z) denotes the partition with parts z1 ≤
z2 − 1 ≤ · · · ≤ zk − k + 1. Furthermore, it follows from the proof of Theorem 4.1 that we
can write the left hand side of (4.5) as

23m+m(m−1)sλ({t1,t3,...,t2m−1})(1
m)sλ({t2,t4,...,t2m})(1

m).

(recall that [n] \ S = {t1 < · · · < t2m}). Therefore, we obtain the following

Corollary 4.4. Let T = {t1 < t2 < · · · < t2m} be a set of positive integers. Then

∑

sλ(U)(1
m)sλ(V )(1

m) = 2msλ({t1,t3,...,t2m−1})(1
m)sλ({t2,t4,...,t2m})(1

m),

where the sum ranges over all partitions of T into two classes U and V of equal size.

Let sλ be the generic (unspecialized) Schur function indexed by the partition λ. Based
on the previous corollary and numerical evidence, we propose the following

Conjecture 4.5. Let T and the summation range be as above. Then

∑

sλ(U)sλ(V ) = 2msλ({t1,t3,...,t2m−1})sλ({t2,t4,...,t2m}).

5. Quasi-Quartered Aztec Diamonds

Consider the infinite planar region R shown in Figure 5.1, having rows consisting of
2, 4, 6, . . . unit squares. Let xn and yn be the NW and SE corners of the leftmost unit
square in the n-th row from the bottom, respectively, and let zn be the SE corner of the
rightmost square of the n-th row from the bottom. Let Xn (resp., Yn) be the infinite
lattice path starting at xn (resp., yn) and taking alternately two steps North and two
steps East. Let Zn be the infinite lattice path starting at zn and taking alternately two
steps North and two steps West. The paths Xn and Zn divide R into four regions, exactly
one of which is bounded; denote it by An. Define similarly the region Bn, using the paths
Yn and Zn.

The bounded region determined by Zn and the translation of Xn one unit downward
is an example of what is called a quartered Aztec diamond in [9]. We call An and Bn

quasi-quartered Aztec diamonds. Recall that D(R) denotes the number of domino tilings
of the planar region R.
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Theorem 5.1.
(a) For all n, we have D(An) = 2n(n+1)/2.

(b) For even n we have D(Bn) = 2n2/2, while for odd n D(Bn) = 2(n2−1)/2.

Proof. Let ADn be the planar region whose dual is the Aztec diamond graph of order
n. Apply the domino-tiling version of the factorization theorem to ADn (see Remark 2.3).
Since D(ADn) = 2n(n+1)/2 and AD+

n is isometric to AD−
n , we obtain that

D(AD+
n ) = 2n2/4, for even n (5.1)

and

D(AD+
n ) = 2(n2−1)/4, for odd n (5.2)

(these formulas also follow from more general formulas given in [EKLP]).
Part of the tiling of AD+

n along the boundary is forced; let Hn be the portion of AD+
n

left uncovered after placing the forced dominoes (see Figure 5.2(a)). Note that Hn is
symmetric, so we can apply the factorization theorem to Hn. Delete the unit squares
covered by forced dominoes from the two resulting regions H+

n and H−
n . It turns out that

the remaining regions are either Ai’s or Bi’s, for suitable indices i.
Indeed, let us assume for example that n = 4k, k ∈ Z (this case is illustrated in

Figure 5.2(b)). Then one of the regions H+
4k and H−

4k has no forced dominoes and is con-
gruent to B2k, while the portion of the other not covered by forced dominoes is congruent
to A2k−1. Since H4k has width k, we obtain

D(H4k) = 2kD(A2k−1)D(B2k). (5.3)

Similarly, we deduce that

D(H4k+1) = 2kD(A2k)D(B2k), (5.4)

D(H4k+2) = 2k+1D(A2k)D(B2k+1), (5.5)

and

D(H4k+3) = 2k+1D(A2k+1)D(B2k+1). (5.6)

14



From relations (5.3) and (5.4) we deduce that D(A2k)/D(A2k−1) = D(H4k+1)/D(H4k),
and since D(Hn) = D(AD+

n ) we obtain by (5.1) and (5.2) that D(A2k)/D(A2k−1) = 22k.
Similarly, equations (5.5) and (5.6) yield D(A2k+1)/D(A2k) = 22k+1. Therefore, we have
in fact that D(An) = 2nD(An−1) for all n, and since D(A1) = 2, we obtain part (a) of
the theorem. Solving for D(Bn) in equations (5.3) and (5.5) we obtain part (b). �

Remark 5.2. It is remarkable that An has exactly as many domino tilings as ADn,
and that the number of tilings of Bn is the square of the number of tilings of AD+

n .

6. Plane Partitions

A plane partition π is a rectangular array of non-negative integers with non-increasing
rows and columns and finitely many nonzero entries. We can also regard π as an order
ideal of N3, i.e., a finite subset of N3 such that (i, j, k) ∈ π implies (i′, j′, k′) ∈ π, whenever
i ≥ i′, j ≥ j′ and k ≥ k′.

By permuting the coordinate axes, one obtains an action of S3 on the set of plane
partitions. Let π 7→ πt and π 7→ πr denote the symmetries corresponding to interchanging
the x- and y-axes and to cyclically permuting the coordinate axes, respectively. For the set
of plane partitions π contained in the box B(a, b, c) := {(i, j, k) ∈ N3 : i < a, j < b, k < c},
there is an additional symmetry

π 7→ πc := {(i, j, k) ∈ N3 : (a − i − 1, b− j − 1, c − k − 1) /∈ π},

called complementation.
These three symmetries generate a group isomorphic to the dihedral group of order 12,

which has 10 conjugacy classes of subgroups. These lead to 10 enumeration problems:
determine the number of plane partitions contained in a given box that are invariant
under the action of one of these subgroups. The program of solving these problems was
formulated by Stanley [21] and has been recently completed (see [1], [10] and [22]).
We present a short way of enumerating transposed complementary plane partitions (i.e,
plane partitions π with πt = πc) contained in a given box. This case was first solved by
Proctor [16]. We then relate the number of cyclically symmetric (πr = π), transposed
complementary plane partitions to the number of cyclically symmetric plane partitions
that fit in a given box, thus obtaining a new proof of the cyclically symmetric, transposed
complementary case, first solved by Mills, Robbins and Rumsey [14].

Let TC(a, a, 2b) be the number of transposed complementary plane partitions contained
in B(a, a, 2b). Let P (a, b, c) denote the number of plane partitions contained in B(a, b, c).

Theorem 6.1.

TC(a, a, 2b) = 2b
b−1
∏

i=0

P (a + 2i, a + 2i, 2b− 2i)

P (a + 2i + 1, a + 2i + 1, 2b− 2i − 1)
.

Proof. We employ the following idea illustrated in [5], [19] and [10]. Define the a×b×c
honeycomb graph, denoted H(a, b, c), to be the graph obtained by gluing congruent regular
hexagons along edges so that their centers form an a× b× c hexagonal array (an example
is shown in Figure 6.1).
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Figure 6.1. H(2, 3, 4).
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Figure 6.2(a) Figure 6.2(b)

Then there is a bijection between plane partitions contained in B(a, b, c) and perfect
matchings of H(a, b, c). Moreover, the three symmetries of plane partitions translate
into symmetries of the honeycomb graph: t becomes reflection in a symmetry axis of the
honeycomb not containing any vertex, r rotation by 120◦ and c rotation by 180◦. Therefore,
TC(a, a, 2b) is the number of matchings of H(a, a, 2b) that are invariant under reflection
across the symmetry axis l of the honeycomb perpendicular to the sides containing 2b
hexagons (we consider l to be horizontal; see Figure 6.2(a)).

Note that every such matching has a forced edges on l, so TC(a, a, 2b) is actually the
number of matchings of the subgraph of H(a, a, 2b) induced by the vertices lying above l.

Let us apply the factorization theorem to H(a, a, 2b) with respect to l. Note that our
algorithm for performing cutting operations yields cuts above all the vertices on l. By the
previous paragraph, the number of matchings of H(a, a, 2b)+ is just TC(a, a, 2b) and we
obtain

P (a, a, 2b) = 2aTC(a, a, 2b)M(H(a, a, 2b)−). (6.1)

Let us now also consider the honeycomb H(a+1, a+1, 2b−1) (this is illustrated in Figure
6.2(b)). Observe that the graph H(a+1, a+1, 2b−1)+ has the same number of matchings
as H(a + 2, a + 2, 2b− 2)+. Indeed, H(a + 1, a + 1, 2b− 1)+ can be embedded in a natural
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way in H(a + 2, a + 2, 2b− 2)+. (See Figure 6.2(b); the edges not contained in the smaller
graph are represented by dotted lines.) However, any matching of the latter has 2b − 2
forced edges, and the subgraph induced by the set of vertices not matched by forced edges
is isomorphic to H(a + 1, a + 1, 2b− 1)+.

Similarly, because of forced edges in the matchings of H(a+1, a+1, 2b−1)−, this graph
and H(a, a, 2b)− have the same number of matchings. Hence by the factorization theorem
we obtain

P (a + 1, a + 1, 2b− 1) = 2a+1TC(a + 2, a + 2, 2b− 2)M(H(a, a, 2b)−). (6.2)

Relations (6.1) and (6.2) imply

TC(a, a, 2b) = 2 · TC(a + 2, a + 2, 2b− 2)
P (a, a, 2b)

P (a + 1, a + 1, 2b− 1)
.

By applying this relation repeatedly we obtain the statement of the theorem. �

It is routine to verify that the formula given by the above theorem agrees with the one
originally obtained by Proctor in [16], which may be written

TC(a, a, 2b) =

(

a + b − 1

a − 1

)a−2
∏

i=1

a−2
∏

j=i

2b + i + j + 1

i + j + 1
.

Let CS(a) and CSTC(a) be the number of cyclically symmetric and cyclically symmet-
ric, transposed complementary plane partitions contained in B(a, a, a), respectively. Note
that CSTC(a) is nonzero only for even a.

Theorem 6.2.

2 · CSTC(2a + 2) = CSTC(2a)
CS(2a + 1)

CS(2a)
.

Proof. The honeycomb H(a) := H(a, a, a) has three symmetry axes that contain vertices
of the graph; we refer to them as short symmetry axes. Suppose the x-axis is one of them
and let the origin be at the center of the honeycomb. Let G(a) be the subgraph of
H(a) induced by the vertices in the right half-plane contained in the (closed) 120◦ angle
determined by the other two short symmetry axes. Let S be the set of vertices of G(a)
lying on the sides of this angle. Label the vertices in S according to their distance from the
origin as follows: label the two vertices closest to the origin by 1, the two next closest by
2, and so on, ending with two vertices labeled a (Figure 6.3(a) illustrates this for a = 4).

Denote by G̃(a) the graph obtained from G(a) by identifying identically labeled vertices
(edges with both endpoints identified are considered to be identified). It is easy to see

that the r-invariant matchings of H(a) may be identified with the matchings of G̃(a).

Clearly, we can embed G̃(a) symmetrically in the plane (see Figure 6.3(b)). Since G̃(a)
is also bipartite, we can apply to it the factorization theorem. Note that our algorithm
for performing the cutting operations yields cuts above all vertices on the symmetry axis.

We now consider separately the cases of even and odd a. Apply the factorization
theorem to G̃(2a) with respect to the x-axis. As illustrated in Figure 6.4(a), the graph
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G̃(2a)+ is isomorphic to the subgraph K(2a) of H(2a) spanned by the vertices lying strictly
inside a 60◦ angle determined by two short symmetry axes of H(2a).

Since the number of matchings of K(2a) is precisely CSTC(2a), we obtain that

CS(2a) = 22aCSTC(2a)M(G̃(2a)−). (6.3)

Apply now the factorization theorem to G̃(2a + 1) with respect to the x-axis. The

graph G̃(2a + 1)+ is in a natural way an induced subgraph of K(2a + 2) (see Figure
6.4(b)). Moreover, any matching of K(2a + 2) is forced on the vertices not belonging to

G̃(2a + 1)+. Therefore, the number of matchings of G̃(2a + 1)+ is just CSTC(2a + 2) and
we obtain

CS(2a + 1) = 22a+1CSTC(2a + 2)M(G̃(2a + 1)−). (6.4)

18



However, due to forced edges in any matching of G̃(2a + 1)−, this graph is seen to have

the same number of matchings as G̃(2a)− (see Figure 6.4(a)). Then relations (6.3) and
(6.4) imply the statement of the theorem. �

The cyclically symmetric case was first solved by Andrews [2]. The cyclically symmetric,
self-complementary case was first solved by Mills, Robbins and Rumsey [14]. Based on
the formula for CS(a) and by repeated use of Theorem 6.2 we obtain a new proof of the
latter case.

Remark 6.3. It is interesting that Theorem 6.2 is also a consequence of relations (0.2)
and (0.3) of [22], relations that may be used to solve the totally symmetric case.

7. Symmetries of Matchings of the Aztec Diamond

The honeycomb graphs can be alternatively described as follows. Consider the tiling
of the plane by congruent regular hexagons. Let H1 be one of these hexagonal tiles, and
define Hn for n ≥ 2 to be the union of the set of tiles sharing at least one edge with some
tile contained in Hn−1. Then Hn is the n × n × n honeycomb graph.

Motivated by the simple product formulas that enumerate the symmetry classes of
matchings of honeycombs, it is natural to investigate symmetry classes of the graphs
arising by applying the inductive construction in the previous paragraph to the tiling of
the plane by squares. Remarkably, these graphs are just the Aztec diamonds.

The symmetry group of the Aztec diamond is isomorphic to the dihedral group of or-
der 8. Let r and t be the symmetries corresponding to rotation by 90◦ and reflection across
a diagonal, respectively. Then r and t generate the symmetry group of the Aztec diamond.
Since the elements rt and r3t act as reflections across lines containing independent vertices
of the Aztec diamond, there are no rt- or r3t-invariant matchings. Up to conjugacy, there
are five distinct subgroups of 〈r, t〉 not containing any of these two elements. Imposing the
condition that a matching is invariant under the action of one of these subgroups G leads
to five different enumeration problems.

Two of these problems have been previously considered: the case when G is the trivial
group (treated in [6]) and the case G = 〈r2〉 (i.e., centrally symmetric matchings), which
was solved by Yang [23]. The latter case is also implicit in the unpublished work of
Robbins [20]; see Remark 7.3.

In this section, we solve the case G = 〈r〉 and we present a new solution for the centrally
symmetric case.

The two problems that remain open are the enumeration of matchings invariant under
reflection across one or both diagonals (i.e., invariant under 〈t〉 or 〈r2, t〉). For the first
few orders of the Aztec diamond the corresponding numbers and their factorizations are
shown in Table 7.1. Apparently these numbers do not all factor into small primes, so a
simple product formula seems unlikely in these two cases.

Our proofs involve the planar regions known as quartered Aztec diamonds defined in [9],
which can be described as follows. Let us consider the planar region whose dual is the
Aztec diamond graph of order n. This region can be divided into two congruent parts by
a zig-zag lattice path that changes direction after every two steps, as shown in Figure 7.1.

By superimposing two such paths that intersect at the center of the region we divide it
into four pieces that are called quartered Aztec diamonds. Up to symmetry, there are two
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n 〈t〉 − invariant factorization

1 2 2

2 6 2 · 3

3 24 23 · 3

4 132 22 · 3 · 11

5 1048 23 · 131

6 11960 23 · 5 · 13 · 23

n 〈r2, t〉 − invariant factorization

1 2 2

2 4 22

3 10 2 · 5

4 28 22 · 7

5 96 25 · 3

6 384 27 · 3

7 1848 23 · 3 · 7 · 11

8 10432 26 · 163

9 70560 25 · 32 · 5 · 72

10 564224 210 · 19 · 29

11 5386080 25 · 3 · 5 · 72 · 229

Table 7.1. 〈t〉-invariant and 〈r2, t〉-invariant matchings of the Aztec diamond.

Figure 7.1

different ways we can superimpose the two cuts. For one of them, the obtained pattern has
fourfold rotational symmetry and the four pieces are congruent (see Figure 7.2(a)); denote
the number of their domino tilings by R(n). For the other, the resulting pattern has Klein
4-group reflection symmetry and there are two different kinds of pieces (see Figure 7.2(b));
they are called abutting and non-abutting quartered Aztec diamonds and the numbers of
their domino tilings are denoted by Ka(n) and Kna(n), respectively.

We are now able to state and prove our results. Denote by Q(n) and H(n) the number
of 〈r〉-invariant and 〈r2〉-invariant matchings of the Aztec diamond of order n, respectively
(this notation is motivated by the words “quarter-turn” and “half-turn,” which describe
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the corresponding symmetries).

Theorem 7.1. For all n ≥ 1, we have

Q(n) = 2b(n+1)/4cR(n).

Therefore, by Theorem 1 of [9] we obtain that Q(n) = 0 for n congruent to 1 or 2 (mod 4),
and

Q(4k) = 2kQ(4k − 1) = 2k(3k+1)/2
∏

1≤i<j≤k

2i + 2j − 1

i + j − 1
.

Proof. Consider the Aztec diamond of order n and suppose it is centered at the origin.
Let G be the subgraph induced by the vertices lying in the closed first quadrant. Let S
be the set of vertices of G lying on the coordinate axes. Label the two vertices in S that
are closest to the origin by 1, label the two next closest by 2 and so on, ending with two
vertices labeled b(n + 1)/2c (see Figure 7.3). Then the r-invariant matchings of the Aztec

diamond are in bijection with the matchings of the graph G̃ obtained from G by identifying
all pairs of vertices with the same label. Note that since no r-invariant matching of the
Aztec diamond contains the edge with both endpoints labeled 1 in Figure 7.3, we may
discard from G̃ the loop arising from this edge.

As illustrated by Figure 7.4(a), we can embed G̃ symmetrically in the plane. By our

observation at the beginning of the paper, G̃ has no perfect matching unless there are an
even number of vertices on its symmetry axis; i.e., b(n + 1)/2c has to be even. Therefore,
an Aztec diamond has no r-invariant perfect matching unless its order is congruent to 0
or 3 (mod 4). Since this is precisely the condition for R(n) to be nonzero, the theorem is
verified for n congruent to 1 or 2 (mod 4).

Let us therefore assume that b(n + 1)/2c = 2k, k ∈ Z. By Lemma 1.1, all 2k reduced

subgraphs of G̃ have the same number of matchings. Consider the reduced graph H
obtained by performing cutting operations above all even-labeled vertices of G̃. We claim
that in any matching of H the odd-labeled vertices are matched upward.

Indeed, let us consider the collection C of the 2k subgraphs of H obtained by making
all possible combinations of cuts at the odd-labeled vertices. The set of matchings of H
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is in bijection with the disjoint union of the sets of matchings of the members of C: the
instance of a particular odd-labeled vertex being matched upward (downward) corresponds
to making a cut below (above) that vertex. However, every member K of C is a bipartite
graph, and it is easy to see that the two bipartition classes have the same size only if K
was obtained by cutting below all odd-labeled vertices. This proves our claim.

Therefore, M(G̃) = 2kM(K), where K is the subgraph of G̃ obtained by cutting above
all even-labeled vertices and below all odd-labeled ones. However, the graph K is easily
seen to be isomorphic to the dual of the quartered Aztec diamond of order n, quartered
with fourfold rotational symmetry (see Figure 7.4(b)). Also, it is straightforward to check
that k = b(n + 1)/4c for both n ≡ 0 and n ≡ 3 (mod 4). This completes the proof. �

Theorem 7.2. For all n ≥ 1, we have

H(n) = 2b(n+1)/2cKa(n)Kna(n).
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Therefore, by Theorem 1 of [9] we obtain that

H(4k) = 22kH(4k − 1) = 2k(3k−1)
∏

1≤i<j≤k

2i + 2j − 3

i + j − 1

∏

1≤i≤j≤k

2i + 2j − 1

i + j − 1
,

and

H(4k − 2) = 22k−1H(4k − 3) = 23k2−4k+2
∏

1≤i<j≤k

2i + 2j − 3

i + j − 1

∏

1≤i≤j≤k−1

2i + 2j − 1

i + j − 1
.

Proof. Consider the Aztec diamond of order n and choose the origin to be at its center.
Let G be the subgraph induced by the vertices having non-negative x-coordinates. Let S
be the set of vertices of G lying on the y-axis. Label the two vertices of S lying closest
to the origin by 1, label the two next closest by 2 and so on, ending with the two vertices
furthest away from the origin being labeled b(n+1)/2c (see Figure 7.5). Then the centrally
symmetric matchings of the Aztec diamond are equinumerous with the matchings of the
graph G̃ obtained from G by identifying all pairs of identically labeled vertices (note that

there is a pair of vertices of G̃ connected by two parallel edges).

As shown in Figure 7.6(a), we can embed G̃ symmetrically in the plane. Since G̃ is also
bipartite, we can apply the factorization theorem. However, as indicated in Figure 7.6(b),

the graphs G̃+ and G̃− are isomorphic to the duals of the non-abutting and abutting
quartered Aztec diamonds, respectively. This proves the statement of the theorem. �

Remark 7.3. The symmetry classes of matchings of the Aztec diamond are related to
the symmetry classes of square alternating sign matrices considered by Robbins [20]. The
subgroups G act on this set of matrices (in fact, in this context G can be any subgroup of
〈r, t〉). Give each alternating sign matrix A the weight xN

−
(A/G), where N−(A/G) is the
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number of orbits of −1’s in the action of G on A. Let fn,G(x) be the generating function
of G-invariant alternating sign matrices of order n.

Denote by an,G the number of G-invariant matchings of the Aztec diamond of order n.

The connection mentioned at the beginning of this Remark lies in a construction (related
to the one described in Remark 4.3) that expresses an,〈1〉 as fn+1,〈1〉(2) (see Lemmas 2.3
and 2.4 of [3]).

There are similar formulas for each symmetry class of matchings. Indeed, using the
methods in [3], one can prove that for G 6= 〈r〉 we have

an,G = fn+1,G(2). (7.1)

In the special case G = 〈r〉, the above formula is true for odd n, but for even n a
potential problem can occur: for even n, in case the central entry of an 〈r〉-invariant
alternating sign matrix is −1, the corresponding matchings are not 〈r〉-invariant (the
reason for this exception is the fact that the set consisting of two opposite edges of the
central 4-cycle in the Aztec diamond is invariant under the action of all subgroups under
consideration, except for 〈r〉). However, one can prove that the central entry of an 〈r〉-
invariant alternating sign matrix of order 2k + 1 depends only on the parity of k: it is
always 1 for even k and −1 for odd k.

This shows that the potential problem mentioned above never actually occurs for orders
of the form 4k + 1, and hence f4k+1,〈r〉(2) = a4k,〈r〉. It also follows that f4k−1,〈r〉(2) =
2a∗

4k−2,〈r〉, where a∗
4k−2,〈r〉 denotes the number of r-invariant matchings of the holey Aztec

diamond of order 4k − 2. However, by [4, Theorem 1.4.2] this latter number is equal to
R(4k − 1). Since there are no r-invariant alternating sign matrices of order of the form
4k − 2 (see e.g. [20]), this completes the evaluation of fn,〈r〉(2) for all n.

Using the product formula for R(n) given in [9] we obtain the following result, which
appears to be new.
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Theorem 7.4. For all k ≥ 1 we have

2k−1f4k−1,〈r〉(2) = f4k,〈r〉(2) = 2−kf4k+1,〈r〉(2) = 2k(3k−1)/2
∏

1≤i<j≤k

2i + 2j − 1

i + j − 1
.

On the other hand, using relation (7.1) we can regard the statement of Theorem 7.2 as
providing a formula for fn,〈r2〉(2). Thus, Theorem 7.2 is equivalent to a result (Theorem 4)
stated (but not proved) in [20].

Note. Conjecture 4.5 has been proved independently by Glenn Tesler (private commu-
nication) and Markus Fulmek [7].
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