

Extracting Significant Phrases from

Documents in English and Chinese

Yuan Jenq (Oliver) Lui

St Hugh’s College

Thesis submitted for the degree of Doctor of Philosophy

Michaelmas Term 2008

 ii

In memory of my father (1949-2006)

 iii

Acknowledgments

I would like to thank my family (especially my father) and friends for their support,

Prof Richard Brent and Dr Ani Calinescu for their supervision, Prof Stephen Pulman

and Prof Beniamino Di Martino for examining my work, Dr Stephen Clark and Dr

Vasile Palade for their comments on my work, Prof Laurence Yang for his help, and

Dr Jeff Sanders for checking the Z specification in the Appendix.

 iv

Declaration

The following papers have been published during my doctoral studies at the

University of Oxford:

Journals

• Yuan Lui, Ani Calinescu, Richard Brent and Laurence Yang, Extraction of
Significant Phrases from Documents in English and Chinese, Cybernetics and
Systems, 2008 (submitted)

• Yuan Lui, Extraction of Significant Phrases from Text, International Journal of
Computer Science, Vol. 2, No. 2, pp. 101-109, 2007

Conferences

• Yuan Lui, Richard Brent and Ani Calinescu, Extracting Significant Phrases from
Text, Proceedings of IEEE Data Mining and Information Retrieval (DMIR-07),
Ontario, Canada, IEEE Computer, pp. 361-366, 2007

• Yuan Lui, An Improved Keyphrase Extraction Algorithm, Proceedings of
PREP2005, Lancaster, UK, 2005

Research Report

• Yuan Lui, Learning to Extract Significant Phrases from Text, Research Report
RR-07-01, Oxford University Computing Laboratory, UK, 2007

 v

Abstract

Prospective readers can quickly determine whether a document is relevant to their

information need if the significant phrases (or keyphrases) in this document are

provided. Although keyphrases are useful, not many documents have keyphrases

assigned to them, and manually assigning keyphrases to existing documents is costly.

Therefore, there is a need for automatic keyphrase extraction.

This thesis proposes a new domain-independent keyphrase extraction algorithm. The

algorithm approaches the problem of keyphrase extraction as a classification task, and

uses a combination of statistical and text processing techniques, a new set of

attributes, and a new machine learning method to distinguish keyphrases from non-

keyphrases. The experiments indicate that this algorithm performs better than other

keyphrase extraction tools and that it significantly outperforms Microsoft Word

2000’s AutoSummarize feature. The domain independence of this algorithm has also

been validated on a set of heterogeneous documents. To explore the use of this

algorithm in a language other than English, we make minimal changes to this

algorithm and apply it to Chinese documents. This variation of the algorithm has been

tested on a set of Chinese documents on different subject areas, and the experiments

show that it can extract keyphrases from these documents. This confirms the domain

independence of this algorithm, and suggests that the keyphrase extraction algorithm

proposed in this thesis can be applied to another language. This is, as far as we know,

the first time a keyphrase extraction algorithm has been validated and evaluated on

different domains and different languages.

 vi

Contents

1 INTRODUCTION..1

1.1 BACKGROUND...1

1.2 APPLICATIONS OF KEYPHRASES..3

1.3 DEFINITIONS ...4

1.3.1 Stopwords...4

1.3.2 Index Terms..5

1.3.3 Phrases and Term Phrases ..6

1.3.4 Inverted Files ...6

1.3.5 TF×IDF ...7

1.3.6 Position ..7

1.3.7 Title ..8

1.3.8 Proper Noun...8

1.3.9 Number of Terms..8

1.3.10 Document Length ...9

1.3.11 Indicator Phrases...9

1.3.12 Recall and Precision ..9

1.4 OUTLINE ...10

1.4.1 Research...10

1.4.2 Thesis ...14

1.5 SUMMARY...15

2 RELATED WORK ..16

2.1 OVERVIEW ..16

2.2 KEYPHRASE EXTRACTION...17

2.2.1 GenEx...17

2.2.2 Kea ...20

2.2.3 LAKE..21

2.2.4 KIP ...22

 vii

2.2.5 Kex ...23

2.2.6 KPSpotter...23

2.2.7 Kea++..24

2.2.8 W3SS ..25

2.3 INFORMATION RETRIEVAL ..27

2.3.1 Indexing..28

2.3.2 Searching ...29

2.3.3 Term Weighting Scheme ..30

2.3.4 Vector Space Model ...34

2.3.5 Evaluation ..36

2.3.6 TREC..37

2.4 INFORMATION EXTRACTION..39

2.4.1 MUC...40

2.4.2 Comparison with IR ...42

2.5 SUMMARIZATION ..42

2.5.1 Comparison with IR and IE ...46

2.6 STEMMING ..46

2.6.1 The Porter Algorithm...49

2.6.2 The Lovins Algorithm...51

2.6.3 The Iterated Lovins Algorithm...53

2.7 PART-OF-SPEECH TAGGING ..53

2.7.1 Eric Brill’s Part-of-Speech Tagger..54

2.8 NEURAL NETWORKS ...57

2.9 SUMMARY...59

3 THE KE ALGORITHM ...60

3.1 OVERVIEW ..60

3.2 OVERVIEW OF KE ...61

3.3 DESCRIPTION OF KE ...63

3.3.1 Attributes..64

3.3.2 Selecting Words ...65

3.3.3 Scoring Terms ..66

3.3.4 Selecting Phrases ...69

3.3.5 Scoring Term Phrases..70

 viii

3.3.6 Expanding Terms ...73

3.3.7 Dropping Duplicates..74

3.3.8 Displaying Output..75

3.4 TRAINING OF KE...78

3.5 COMPARISON WITH GENEX AND KEA...82

3.6 SUMMARY...83

4 EXTRACTION OF KEYPHRASES FROM ENGLISH DOCUMENTS84

4.1 OVERVIEW ..84

4.2 MAIN CORPUS...85

4.3 EVALUATION ..88

4.3.1 Criteria...88

4.3.2 Stemming..90

4.3.3 Recall and Precision ..91

4.4 EXPERIMENTAL RESULTS..92

4.4.1 Training..93

4.4.2 Different Attributes ..94

4.4.3 Different Combinations of Attributes...102

4.4.4 Different Combinations of TF×IDF ..105

4.4.5 Different Keyphrase Extraction Tools ...109

4.4.6 Different Learning Methods...110

4.4.7 Different Corpus ..117

4.5 DISCUSSION OF RESULTS ..123

4.6 SUMMARY...125

5 EXTRACTION OF KEYPHRASES FROM CHINESE DOCUMENTS ..126

5.1 OVERVIEW ..126

5.2 BACKGROUND...127

5.3 DEFINITIONS ...128

5.4 EXTENSION OF KE TO CHINESE DOCUMENTS ...129

5.5 CORPUS AND EVALUATION CRITERIA ...132

5.6 EXPERIMENTAL RESULTS..134

5.6.1 Training..134

5.6.2 Different Language ..135

 ix

5.7 DISCUSSION OF RESULTS ..136

5.8 SUMMARY...138

6 CONCLUSIONS ..139

6.1 OVERVIEW ..139

6.2 SUMMARY...139

6.3 CONTRIBUTIONS ...143

6.4 FUTURE WORK ..145

6.4.1 Relevance Feedback...145

6.4.2 Hyperlinks ..146

APPENDIX...149

REFERENCES...168

 x

Figures

FIGURE 2.1: OVERVIEW OF THE IR PROCESS...27

FIGURE 2.2: RESOLVING POWER OF SIGNIFICANT AND NON-SIGNIFICANT WORDS32

FIGURE 2.3: POOLING TECHNIQUE ..39

FIGURE 3.1: OVERVIEW OF THE KE ALGORITHM ..62

FIGURE 3.2: DETECTING EQUIVALENT STEMS ...67

FIGURE 3.3: EXPANDING TERMS TO TERM PHRASES ..73

FIGURE 3.4: DELETING DUPLICATE TERM PHRASES...75

FIGURE 3.5: IDENTIFYING THE MOST FREQUENT PHRASES...76

FIGURE 3.6: DELETING INFERIOR SUBPHRASES ...76

FIGURE 4.1: COMPARISON OF THE INDIVIDUAL PERFORMANCE OF DIFFERENT

ATTRIBUTES (GROUP A)..98

FIGURE 4.2: COMPARISON OF THE INDIVIDUAL PERFORMANCE OF DIFFERENT

ATTRIBUTES (GROUP B) ..100

FIGURE 4.3: COMPARISON OF THE INDIVIDUAL PERFORMANCE OF DIFFERENT

ATTRIBUTES (GROUP C) ..102

FIGURE 4.4: COMPARISON OF DIFFERENT COMBINATIONS OF ATTRIBUTES (GROUP D)104

FIGURE 4.5: COMPARISON OF DIFFERENT COMBINATIONS OF ATTRIBUTES (GROUP E)107

FIGURE 4.6: COMPARISON OF DIFFERENT COMBINATIONS OF TF×IDF........................108

FIGURE 4.7: COMPARISON OF KE AND KE-C4.5 ..114

FIGURE 4.8: DECISION TREE FOR CLASSIFYING TERMS ..116

FIGURE 4.9: DECISION TREE FOR CLASSIFYING TERM PHRASES117

FIGURE 4.10: COMPARISON OF THE PERFORMANCE OF KE ON DIFFERENT JOURNALS .123

FIGURE 5.1: PERFORMANCE OF KEC ON CHINESE DOCUMENTS135

FIGURE 6.1: USE OF HYPERLINKS FOR KEYPHRASE EXTRACTION147

FIGURE 7.1: DETECTING EQUIVALENT STEMS ...156

FIGURE 7.2: EXPANDING TERMS TO TERM PHRASES ..162

FIGURE 7.3: DELETING DUPLICATE TERM PHRASES...163

FIGURE 7.4: IDENTIFYING THE MOST FREQUENT PHRASES...164

FIGURE 7.5: DELETING INFERIOR SUBPHRASES ...165

 xi

Tables

TABLE 1.1: INVERTED FILE ...6

TABLE 1.2: DIFFERENCES BETWEEN KE, GENEX AND KEA..12

TABLE 2.1: PARAMETERS USED IN GENEX..18

TABLE 2.2: OVERVIEW OF W3SS..26

TABLE 2.3: VERIFICATION OF ZIPF’S LAW ..31

TABLE 2.4: TERM ASSIGNMENT MATRIX ...35

TABLE 2.5: THE PORTER ALGORITHM ...50

TABLE 2.6: THE LOVINS ALGORITHM..52

TABLE 2.7: THE PENN TREEBANK TAGSET..54

TABLE 3.1: INPUT AND OUTPUT OF EACH STEP IN KE..62

TABLE 3.2: VARIABLES USED IN THE PSEUDOCODE FOR KE..63

TABLE 3.3: TAGS USED IN KE...65

TABLE 3.4: ELEMENTS IN AN INPUT VECTOR...80

TABLE 3.5: ELEMENTS IN A TARGET OUTPUT VECTOR...80

TABLE 3.6: TRAINING EXAMPLES..81

TABLE 4.1: SOURCES OF THE MAIN CORPUS...86

TABLE 4.2: NUMBER OF WORDS PER DOCUMENT (MAIN CORPUS)86

TABLE 4.3: NUMBER OF KEYPHRASES PER DOCUMENT (MAIN CORPUS)87

TABLE 4.4: NUMBER OF WORDS PER KEYPHRASE (MAIN CORPUS)87

TABLE 4.5: PERCENTAGE OF KEYPHRASES FOUND IN THE DOCUMENT (MAIN CORPUS) 87

TABLE 4.6: NUMBER OF KEYPHRASES FOUND IN THE TITLE (MAIN CORPUS)88

TABLE 4.7: EXAMPLES OF CORRECT AND INCORRECT KEYPHRASES..............................89

TABLE 4.8: EXAMPLES OF THE BEHAVIOUR OF DIFFERENT STEMMING ALGORITHMS.....91

TABLE 4.9: MATRIX FOR KEYPHRASE CLASSIFICATION...92

TABLE 4.10: INDIVIDUAL PERFORMANCE OF DIFFERENT ATTRIBUTES (GROUP A)97

TABLE 4.11: INDIVIDUAL PERFORMANCE OF DIFFERENT ATTRIBUTES (GROUP B).........99

TABLE 4.12: INDIVIDUAL PERFORMANCE OF DIFFERENT ATTRIBUTES (GROUP C).......101

TABLE 4.13: PERFORMANCE OF DIFFERENT COMBINATIONS OF ATTRIBUTES (GROUP D)

..103

 xii

TABLE 4.14: PERFORMANCE OF DIFFERENT COMBINATIONS OF ATTRIBUTES (GROUP E)

..106

TABLE 4.15: PERFORMANCE OF DIFFERENT COMBINATIONS OF TF×IDF107

TABLE 4.16: EXAMPLE OF THE KEYWORDS EXTRACTED BY AUTOSUMMARIZE109

TABLE 4.17: PERFORMANCE OF DIFFERENT KEYPHRASE EXTRACTION TOOLS.............111

TABLE 4.18: EXAMPLES OF THE KEYPHRASES EXTRACTED BY KE..............................112

TABLE 4.19: PERFORMANCE OF KE AND KE-C4.5 ...114

TABLE 4.20: SOURCES OF CORPUS B ..118

TABLE 4.21: NUMBER OF WORDS PER DOCUMENT (CORPUS B)...................................119

TABLE 4.22: NUMBER OF KEYPHRASES PER DOCUMENT (CORPUS B)..........................119

TABLE 4.23: NUMBER OF WORDS PER KEYPHRASE (CORPUS B)..................................120

TABLE 4.24: PERCENTAGE OF KEYPHRASES FOUND IN THE DOCUMENT (CORPUS B) ..121

TABLE 4.25: PERFORMANCE OF KE ON CORPUS B ...122

TABLE 5.1: NUMBER OF CHARACTERS PER DOCUMENT (CORPUS C)133

TABLE 5.2: NUMBER OF KEYPHRASES PER DOCUMENT (CORPUS C)............................133

TABLE 5.3: NUMBER OF CHARACTERS PER KEYPHRASE (CORPUS C)133

TABLE 5.4: PERCENTAGE OF KEYPHRASES FOUND IN THE DOCUMENT (CORPUS C)134

TABLE 5.5: PERFORMANCE OF KEC ON CORPUS C...135

 1

CHAPTER ONE

1 Introduction

1.1 Background

With the proliferation of the Internet and the huge numbers of documents1 it contains,

the provision of condensed versions (or summaries) of these documents has become

more and more important. Prospective readers can quickly determine whether a

document is relevant to their information need if the significant phrases (or

keyphrases) in this document are provided. Keyphrases give a short summary of the

document and provide supplementary information for the readers, in addition to titles

and abstracts. Even though keyphrases are useful, only a small minority of documents

have keyphrases assigned to them, and manually assigning keyphrases to existing

documents is rather costly. Therefore, there is a need for automatic keyphrase

extraction [34, 66-69, 105-108].

Automatic keyphrase extraction (keyphrase extraction for short) is the identification

of the most important phrases within the body of a document by computers rather than

humans. It normally involves the use of statistical information. There is no controlled

vocabulary list, so in theory any phrase within the body of the document can be

identified as a keyphrase. When authors assign keyphrases without a controlled

vocabulary list, typically 70-90% of their keyphrases appear somewhere in their

documents [105]. Keyphrases are similar to keywords, except that the document is

summarized by a set of phrases rather than words.

1 “Document” is regarded as being synonymous with “text” in this thesis. We ignore non-text elements,

e.g. graphics, sound and video, though a document might contain them in its body.

 2

Keyphrase extraction involves the use of computers to extract keyphrases from

documents. However, it is very difficult to get computers to understand the meaning

(or semantics) of human languages, so statistical methods have been used instead.

Luhn [64] used statistical methods to automatically extract significant words from

documents and it was a big success. Since then, statistical methods have been

increasingly used by the information retrieval (IR) community, and they have proved

effective in various contexts [4, 12, 60, 89].

Keyphrase extraction is a classification task: a document could be seen as a set of

phrases, and a keyphrase extraction algorithm should correctly classify a phrase as a

keyphrase or a non-keyphrase. Machine learning techniques can automate this task if

they are provided with a set of training data composed of both keyphrase examples

and non-keyphrase examples. The data are used to train the algorithm to distinguish

keyphrases from non-keyphrases. The resulting algorithm can then be applied to new

(i.e. previously unseen) documents for keyphrase extraction. Previous work shows

that the training data and the new documents need not be from the same domain,

though the performance of the algorithm can be boosted significantly if they are [34].

A number of keyphrase extraction algorithms have been proposed [17, 27, 34, 71, 93,

107, 118, 123]. Some of these algorithms use domain-dependent information to

extract keyphrases and are tied to a specific domain [71, 118]; some use purely

statistical techniques [34, 93, 107]; some use a different corpus to evaluate their

performance [17, 27, 123], so it is very difficult to directly compare their results. In

addition, all these algorithms are intended for English documents and have only been

tested on these documents. For details of these keyphrase extraction algorithms, see

Section 2.2.

 3

We would like to develop a domain-independent keyphrase extraction algorithm, to

use statistical and text processing techniques to extract keyphrases from

heterogeneous documents, to validate our algorithm by using the same training and

testing data as in some existing algorithms so that our performance can be directly

compared with theirs, and to explore the use of our algorithm in a language other than

English. For details of the corpora used in our experiments, see Section 4.2, Section

4.4.7 and Section 5.5.

1.2 Applications of Keyphrases

Keyphrases have a wide range of applications: summarization, indexing, compression,

author assistance, query reformulation, and classification and clustering [39, 52, 108].

• Keyphrases provide a short summary of the document. This could be a useful

feature of web browsers. A browser could provide an option to allow users to

summarize the current page, or provide the site map of a given web site by

traversing the site and summarizing each page in a few keyphrases.

• A document could be summarized by a number of keyphrases. These phrases

could be used as the index terms to represent the content of that document.

Jones and Staveley [52] suggest that keyphrase-based indexing can be as

effective as full text indexing, although their system has only been tested on a

small scale. Similarly, a back-of-the-book index could be automatically

generated by extracting keyphrases from each section or chapter and then

merging all the keyphrases together to form the index of that book.

• The summarizing feature of keyphrases means that fewer words can be used to

represent the content of a document.

 4

• As we will see later, the quality of machine-extracted keyphrases is not as

good as that of author-assigned keyphrases. Nevertheless, machine-extracted

keyphrases can provide valuable information about the content of a document,

and give the author a useful starting point for further manual refinement when

author-assigned keyphrases are not available.

• Keyphrases could also be used for query reformulation. Web users may

sometimes provide the search engine with queries that are too general. This

often results in a long list of matching documents. The search engine could

help the users to narrow down the list by providing a keyphrase list for each

returned document so that the users can reformulate their query by adding new

words to it. This is similar to the idea of relevance feedback in IR [87].

• Keyphrases could be used for document classification and clustering.

Classification involves the assignment of documents to one of the predefined

categories, while clustering involves the division of documents into groups

such that the similarity between groups (inter-group) is minimized and the

similarity within groups (intra-group) is maximized.

1.3 Definitions

This section defines some of the important terms which will be used in this thesis.

Terms that are used only in one chapter are defined in that chapter.

1.3.1 Stopwords

Stopword lists contain words with high frequency and little semantic value. These

words are generally not used for searching. Articles, prepositions and conjunctions are

typical examples of stopwords. Different stopword lists have been proposed [32, 110].

The British National Corpus [11] may be consulted about the frequency of common

English words for potential stopwords. Stopword lists will be discussed again in

Section 2.3.

 5

1.3.2 Index Terms

Index terms (terms for short) or keywords are used to represent (or describe) the

content of a document or query. Not all the words in a document or query text are

equally important. Some words contain more meaning than others. Nouns (or groups

of nouns) are usually the ones which are the most representative of text content [2].

Less important words could be removed from the text for efficiency purposes. This

usually involves three activities: elimination of stopwords, stemming, and detection of

equivalent stems [89, 95, 110].

1. A stopword list is used to eliminate high frequency words such as ‘a’, ‘is’, and

‘the’.

2. A stemming algorithm is then applied to the remaining words to reduce

variants of a word to a single form. For example, ‘connect’ is the stem of the

forms ‘connect’, ‘connected’, ‘connecting’, ‘connection’ and ‘connections’.

3. Multiple occurrences of a given stem (i.e. words with the same stem) are

combined into a single term for content representation. In other words,

‘connected’, ‘connecting’, ‘connection’ and ‘connections’ are combined into

the term ‘connect’.

As a result, terms are usually stems rather than full words [85]. Suppose a document

contains the sentence ‘People in need of information require effective retrieval

services’ [89]. Words such as ‘in’, ‘need’, ‘of’, and ‘require’ might be eliminated

through a stopword list. The remaining words are then stemmed and combined into

terms representing this sentence: ‘People’, ‘inform’, ‘effect’, ‘retriev’, and ‘service’

(which correspond to the words: ‘People’, ‘information’, ‘effective’, ‘retrieval’, and

‘services’). Index terms will be discussed again in Section 2.3.

 6

1.3.3 Phrases and Term Phrases

Phrases consist of one or more words, e.g. ‘effective retrieval services’.

Term phrases consist of one or more terms, e.g. ‘effect retriev service’ (which

corresponds to the phrase: ‘effective retrieval services’).

1.3.4 Inverted Files

An inverted file (or inverted index) is a mechanism for indexing the document

collection to speed up the searching process. This file consists of two elements: term

and document reference number (i.e. the documents in which the term occurs) [90].

Each term is used as a key to access the corresponding documents. Table 1.1 shows

an example of the inverted file. However, inverted files have a big disadvantage: the

addition of new documents to the collection can be costly because not only must a

new document be placed in the collection, but the index entries relating to this

document must also be updated [90, 115].

Table 1.1: Inverted file

Term Document Reference Number

Algorithm 3

Computer 1, 3, 5

Network 2, 4

Programming 1, 6

 7

1.3.5 TF×IDF

The attribute TF×IDF [2, 85, 88, 95] consists of two parts. The first part is term

frequency (TF) which is the frequency of a term in the document. The more often a

term occurs in the document, the more likely it is to be important for that document.

The second part is inverse document frequency (IDF), or collection frequency, which

is the rarity of a term across the collection (or corpus). A term that occurs in only a

few documents is often more valuable than a term that occurs in many documents.

The standard TF and the standard IDF of a term T in a document D is calculated by:

 Standard TF = no. of occurrences of T in D (1.1)

 Standard IDF =
in occurs documents of no.

collectionin documents of no.log
T

 (1.2)

Despite the popularity of TF and IDF, they do not have a universal definition.

Different definitions of TF and IDF have been proposed [88]. In addition to the

standard TF and standard IDF, the normalized TF and Kea’s IDF will be discussed in

this thesis. Please refer to Section 2.2.2 for further information about Kea’s IDF, and

to Section 2.3.3 for the normalized TF.

1.3.6 Position

The attribute position [34, 71, 107] is the position where a term first appears in the

document. A term that occurs at the beginning of the document is often more valuable

than a term that occurs at the end of that document. Turney [107] defines position as

the actual position where a term T first appears in a document D (for details, see

Section 2.2.1), but we think it is more reasonable to normalize the actual position by

the document length:

 Position =
D

DT
 oflength

in appearsfirst hereposition w (1.3)

 8

Number of words has been used as the unit of measurement for position.

1.3.7 Title

The attribute title is a flag that indicates if a term appears in the title of the document.

This assumes that the author of a document reveals the most important concepts in the

title of his work [112]. A term that occurs in the title of the document is often more

valuable than a term that does not. Titles may not provide enough information on their

own, but they may contain some important words. In fact, it has been reported that the

use of abstracts in addition to titles brings substantial advantages in retrieval

effectiveness and that the additional utilization of the full texts of the documents

appears to produce little improvement over titles and abstracts alone in most subject

areas [90]. If a term is found in the title, title is set to 1; otherwise, it is set to 0.

1.3.8 Proper Noun

The attribute proper noun is a flag that indicates if a term is a proper noun. Proper

nouns could sometimes be valuable. They might not be valuable in domains such as

academic papers which tend to contain many proper nouns, especially in the

References section. However, they might be valuable in domains such as news where

they tend to occur less frequently. If a term is a proper noun, proper noun is set to 1;

otherwise, it is set to 0.

1.3.9 Number of Terms

The attribute number of terms is the number of terms in a term phrase. A term tends to

occur more frequently in the document than a two-word term phrase, and a two-word

term phrase tends to occur more frequently than a three-word term phrase. If a three-

word term phrase occurs the same number of times as a two-word term phrase, it is

likely to be more important. The number of terms of a term phrase P is given by:

 Number of Terms = no. of terms in P (1.4)

 9

1.3.10 Document Length

The attribute document length [85] is the length of a document. The document length

of a document D is calculated by:

 Document length = no. of words in D (1.5)

1.3.11 Indicator Phrases

Paice [76] suggests the use of indicator phrases for summarizing documents.

Indicator phrases contain words that are likely to accompany indicative or informative

summary material, e.g. ‘The objective of this study is…’, ‘The findings from our

research show…’, and ‘We may conclude that…’, which may help to identify

sentences about the topic, aim or findings of a document [49].

1.3.12 Recall and Precision

Recall and precision are often used as measures of retrieval effectiveness.

Effectiveness refers to the ability of an IR system to satisfy the user in terms of the

relevance of documents retrieved [110]. Recall is the proportion of the relevant

documents that are retrieved in a search, while precision is the proportion of the

documents retrieved in a search that are relevant. The standard recall and the standard

precision are given by [88, 95]:

 Recall =
collectionin documentsrelevant of no.

retrieved documentsrelevant of no. (1.6)

 Precision =
retrieveddocumentsof no.

retrieved documentsrelevant of no. (1.7)

Recall and precision will be discussed again in Section 2.3.5 and Section 4.3.3.

 10

1.4 Outline

This section provides an outline of our research work and this thesis.

1.4.1 Research

This thesis discusses a new domain-independent keyphrase extraction algorithm

called KE. KE is not tied to a specific domain; it is designed to summarize a given

document, which is written in English and can be on any topic2, in a few keyphrases

automatically extracted from the body of that document.

The selection of relevant attributes is probably the most important factor in

determining the effectiveness of a keyphrase extraction algorithm. Many attributes

have been evaluated in our experiments, e.g. the length of a document, the number of

characters in a term, the number of occurrences of a term throughout the collection,

etc. However, only five of them have been found useful for keyphrase extraction:

TF×IDF, position, title, proper noun and number of terms.

The KE algorithm consists of seven steps which could be grouped into three activities

(see Section 3.3 for a detailed description of KE):

2 Excluding poetry and other similar works of literature.

 11

1. KE selects words and phrases from the input document, and uses a vector of

terms and a vector of term phrases to represent this document. Each term is

characterized by four attributes: TF×IDF, position, title, and proper noun. A

score is assigned to each term based on these attributes. The weights

associated with these attributes are tuned by a machine learning method using

keyphrase and non-keyphrase examples during training. After training, they

are frozen and used to make predictions. For details of the training of KE, see

Section 3.4. The term phrase vector is similar to the term vector, except that

each term phrase is characterized by a different set of attributes: TF×IDF,

position, title and number of terms.

2. A one-to-one relationship is established between the terms and the term

phrases. For each term, KE finds all the term phrases that contain the term,

and link it with the highest scoring term phrase. More than one term may link

to the same term phrase. If that is the case, the term phrase will be linked to

the highest scoring term. The result is a list of term phrases ordered by the

scores of the corresponding terms. This is because it is generally preferable to

represent documents and measure the importance of each representation

element using single terms rather than term phrases [88].

3. The list of term phrases is then used to generate the output keyphrases. For

each term phrase in the list, KE finds the most frequent corresponding phrase

in the document. The result is a list of phrases. If a phrase occurs within

another phrase, it will only be accepted as a keyphrase if it is ranked higher;

otherwise, it will be deleted from the output list.

 12

Table 1.2: Differences between KE, GenEx and Kea

 KE GenEx Kea

Techniques Statistical and text

processing; uses

part-of-speech

tagging to select

candidate phrases

Statistical Statistical

Attributes TF×IDF, position,

title, proper noun

and number of

terms

Many more attributes;

does not use TF×IDF

and title

TF×IDF and distance

(same as position)

Learning

method

Neural network3 Genetic algorithm Naïve Bayes

Algorithm Seven steps; takes

both words and

phrases as

candidate phrases

More complicated; ten

steps, considers both

words and phrases, and

involves many post-

processing tasks

Simple; selects only

phrases as candidate

phrases, so does not

involve any linking

between words and

phrases

KE is based on two previously published keyphrase extraction algorithms, GenEx

[106, 107] and Kea [34], but differs from them in several ways. Please refer to Section

2.2.1 for further information about the GenEx algorithm, to Section 2.2.2 for the Kea

algorithm, and to Section 3.5 for a detailed comparison between KE, GenEx and Kea.

Table 1.2 summarizes the differences between KE, GenEx and Kea. The experimental

results summarized in Table 4.17 (see Section 4.4.5) suggest that these differences

make KE a better algorithm than either GexEx or Kea.

3 “Neural network” is regarded as being synonymous with “artificial neural network” in this thesis.

 13

We need some way to evaluate the performance of KE. KE has been tested on two

different corpora. The first corpus is the same as the one used in GenEx and Kea, and

it has been used to train and test KE in all our experiments (except the one discussed

in Section 4.4.7). The criteria used for evaluating the output keyphrases are also the

same as in GenEx and Kea, so direct comparison is possible. For details of this corpus

and the evaluation method used, see Section 4.2 and Section 4.3. The second corpus is

different and larger than the first one, and it has been used to test the generalization

performance of KE. The evaluation criteria used for this corpus are the same as for the

first corpus. For details of this corpus, see Section 4.4.7.

Testing has been carried out to validate and evaluate the KE algorithm. We have

evaluated the individual performance of different attributes and the performance of

different combinations of attributes. The experiments suggest that position gives the

best individual performance and that the best combination of attributes involves

TF×IDF, position, title, proper noun and number of terms. In addition, we have

compared different combinations of TF×IDF, and found that the standard TF and

Kea’s IDF gives the best performance. The experiments also indicate that KE

performs better than other keyphrase extraction tools, including GenEx and Kea, and

that it significantly outperforms Microsoft Word 2000’s AutoSummarize feature. We

have tried using the C4.5 decision tree learning method to tune KE, but the

experiments show that neural networks are better for keyphrase extraction than this

method. The domain independence of KE has also been confirmed in our experiments

using the second corpus. For further information about the experimental results

relevant to KE, see Section 4.4.

 14

To extend the use of the KE algorithm to another language, we make minimal

changes to KE and apply it to Chinese documents. For details of these changes, see

Section 5.4. For convenience, we use KEC to refer to this variation of KE for Chinese

documents. Because of a different language, we use a different corpus (to train and

test KEC) and different criteria (to evaluate the performance of KEC). For details of

this corpus and the evaluation method used, see Section 5.5. KEC has been trained

and tested on a set of Chinese documents. The experiments show that KEC

successfully extracts keyphrases from these documents (for details, see Section 5.6).

By ‘successfully’, we mean the algorithm is capable of extracting at least one correct

keyphrase from these documents. This is, as far as we know, the first time a keyphrase

extraction algorithm has been validated and evaluated on different domains and

different languages.

1.4.2 Thesis

The rest of this thesis is organized as follows:

• Chapter 2 discusses related work by other researchers. This chapter reviews a

number of keyphrase extraction algorithms, including GenEx and Kea. In

addition, we discuss information retrieval, information extraction and

summarization, and explain the relationship between them and their

relationship to keyphrase extraction. The text processing techniques used in

KE (i.e. stemming and part-of-speech tagging) and the learning method used

to tune KE (i.e. neural networks) are also discussed.

• Chapter 3 describes the KE algorithm. The algorithm is described using

pseudocode and explained with examples and informal English descriptions.

In addition, we introduce the training of KE and the normalization of different

attributes evaluated in our experiments. This chapter also discusses the

differences between KE, GenEx and Kea.

 15

• Chapter 4 presents the experimental results relevant to the KE algorithm. This

chapter introduces the corpus used to train and test KE, and the criteria used

for evaluating the output keyphrases. We also compare the individual

performance of different attributes, the performance of different combinations

of attributes and TF×IDF, the performance of different keyphrase extraction

tools, and the performance of KE on different learning methods and different

corpora.

• Chapter 5 extends the use of the KE algorithm to Chinese documents. This

chapter explains why KE can be adapted to another language and how this is

done, and extends KE (to KEC) to extract keyphrases from Chinese

documents. We also introduce the corpus and criteria used for evaluating the

performance of KEC. This chapter also presents the performance results of

KEC on Chinese documents.

• Chapter 6 discusses the conclusions and future work. This chapter summarizes

this thesis and the contributions of our research work, and suggests two

possible ways to improve the quality of the output keyphrases.

1.5 Summary

This chapter introduces our research work. We have given background information

about keyphrase extraction, and discussed some areas to which keyphrases could be

beneficial. Terms which will be used in this thesis have been defined in this chapter.

An outline of our research work and this thesis have also been provided. The next

chapter will discuss related work by other researchers.

 16

CHAPTER TWO

2 Related Work

2.1 Overview

This chapter summarizes related work by other researchers. We review GenEx, Kea

and some recent keyphrase extraction algorithms. A number of research areas related

to our work are also discussed: information retrieval (IR), information extraction (IE),

summarization, stemming, part-of-speech tagging, and neural networks. Many ideas

used in keyphrase extraction are borrowed from IR, e.g. indexing, TF×IDF, recall and

precision, so it is worth reviewing IR. IE and keyphrase extraction are closely related.

Both of them attempt to extract important information from the document.

Summarization and keyphrase extraction are also closely related. Keyphrase

extraction algorithms aim at automatically summarizing the content of a document in

a few keyphrases, so keyphrase extraction could be seen as a specific subject area of

summarization. We also discuss the text processing techniques used in KE: stemming

and part-of-speech tagging. Stemming is used to improve the efficiency of KE and

evaluate the performance of KE by reducing variants of a word to a single form. Part-

of-speech tagging is used to improve the quality of candidate phrases in KE: only

adjectives, verbs, nouns, and noun phrases4 are selected as candidate phrases. In

addition, neural networks are introduced in this chapter. This is because KE is tuned

by a back-propagation neural network.

4 In KE, a noun phrase is naively defined as zero, one or two nouns or adjectives followed by a noun or

a gerund (for details, see Section 3.3.4).

 17

Section 2.2 reviews a number of keyphrase extraction algorithms. Section 2.3

introduces some useful IR concepts. Section 2.4 discusses IE and the differences

between IR and IE. Previous work on summarization and the differences between IR,

IE, and summarization are discussed in Section 2.5. Section 2.6 introduces stemming

and discusses the Porter, the Lovins, and the iterated Lovins stemming algorithms.

Part-of-speech tagging and Eric Brill’s part-of-speech tagger are discussed in Section

2.7. Section 2.8 reviews the use of neural networks in different IR systems and

introduces neural networks. Section 2.9 concludes this chapter.

2.2 Keyphrase Extraction

This section discusses several keyphrase extraction algorithms. A number of

keyphrase extraction algorithms have been proposed [17, 27, 34, 71, 93, 107, 118,

123]. GenEx and Kea are the first two keyphrase extraction algorithms. Despite the

fact that they were introduced in the late 1990s, they remain rather important and are

reviewed in most of the research papers on keyphrase extraction. We discuss GenEx,

Kea and some recent keyphrase extraction algorithms in this section.

2.2.1 GenEx

Turney [106, 107] proposes a keyphrase extraction algorithm called GenEx, which

consists of a set of parameterized heuristic rules that are fine-tuned by a genetic

algorithm. During training, the genetic algorithm adjusts the rules’ parameters to

maximize the match between the output keyphrases and the target keyphrases. Table

2.1 shows the parameters used in GenEx. The sample values of these parameters are

from [107].

 18

Table 2.1: Parameters used in GenEx

Parameter Description Sample

Value

NUM_PHRASES Length of the output list, i.e. the number of

keyphrases to be output

10

NUM_WORKING Length of the working list, i.e. only words

ranked higher than this are considered as

candidate phrases

50

FACTOR_TWO_ONE Reward for two-word phrases (or bigrams) 2.33

FACTOR_THREE_ONE Reward for three-word phrases (or

trigrams)

5

MIN_LENGTH_LOW_RANK Low rank words must be longer than this;

if not, they might be removed from the

output list

0.9

MIN_RANK_LOW_LENGTH Short words must be ranked higher than

this; if not, they might be removed from

the output list

5

FIRST_LOW_THRESH Definition of early occurrence; words

which first occur before this position are

rewarded by FIRST_LOW_FACTOR

40

FIRST_HIGH_THRESH Definition of late occurrence; words which

first occur after this position are penalized

by FIRST_HIGH_FACTOR

400

FIRST_LOW_FACTOR Reward for early occurrence 2

FIRST_HIGH_FACTOR Penalty for late occurrence 0.65

STEM_LENGTH Maximum characters for fixed length

stemming

5

SUPPRESS_PROPER Flag for suppressing proper nouns 0

 19

There are ten steps in GenEx. We summarize these steps in a number of activities:

1. Stem the words in the input document by truncating them at STEM_LENGTH

characters, and select terms and term phrases from the resulting stems.

2. Calculate the score of each term by multiplying the frequency of a term by a

factor: the default value of this factor is one, but it is set to

FIRST_LOW_FACTOR if this term first occurs before

FIRST_LOW_THRESH, and to FIRST_HIGH_FACTOR if this term first

occurs after FIRST_HIGH_THRESH.

3. Select the NUM_WORKING highest scoring terms.

4. Calculate the score of each term phrase by multiplying the frequency of a term

phrase by the factor used in Step 2 and another factor: the default value of this

factor is one, but it is set to FACTOR_TWO_ONE if this term phrase contains

two terms, and to FACTOR_THREE_ONE if this term phrase contains three

terms.

5. Build a one-to-one relationship between the terms and the term phrases, and

use this relationship together with the frequency of phrases to select a list of

phrases as output.

6. Perform many post-processing tasks which involve considering the structure

and capitalization of phrases, and removing phrases from the output list if they

are shorter than MIN_LENGTH_LOW_RANK, ranked lower than

MIN_RANK_LOW_LENGTH, or a proper noun when SUPPRESS_PROPER

is set to one.

7. Display the top NUM_PHRASES keyphrases in the output list.

 20

GenEx has been trained on a set of journal articles and tested on a different set of

journal articles, web pages and email messages. The experiments show that machine

learning techniques can be used for the problem of keyphrase extraction and that

GenEx generalizes well across collections. While GenEx is trained on a collection of

journal articles, it successfully extracts keyphrases from web pages on different

topics.

2.2.2 Kea

Frank et al. [34] discuss another keyphrase extraction algorithm called Kea, which is

based on the naïve Bayes machine learning technique. The basic model of Kea

involves two attributes: TF×IDF and distance (same as position). The standard TF is

used, but the IDF is defined differently. Please refer to Section 1.3.5 for the definition

of the standard TF. They calculate the IDF of a term T in a document D by:

 Kea’s IDF = –log (no. of documents in collection that contain T, excluding D)5 (2.1)

The naïve Bayes learning method can process numeric (or continuous) attributes by

assuming that they have a normal distribution [34]. However, this is not the case for

the problem of keyphrase extraction as keyphrases always constitute less than 1% of

the document length (and non-keyphrases constitute the remaining 99%). Therefore,

both of these attributes have been discretized into a small number of distinct ranges

(or intervals), i.e. to convert these numeric attributes into nominal (or discrete) ones,

using Fayyad and Irani’s discretization method [30] before the learning method is

applied. This discretization method recursively partitions an attribute into intervals,

minimizes the class entropy at each stage, and stops partitioning when a criterion

based on the minimum description length principle is satisfied.

5 The counters start with one to avoid taking the logarithm of zero.

 21

Kea uses the same set of training and testing documents (excluding the email

messages) as in GenEx so that its performance can be directly compared with that of

GenEx. The experiments indicate that GenEx and Kea perform at roughly the same

level, measured by the average number of matches between author-assigned

keyphrases and machine-extracted keyphrases.

Frank et al. then extend this model by adding a new attribute, i.e. keyphrase frequency

(the number of times a phrase occurs as an author-assigned keyphrase throughout the

collection, excluding the document that contains this phrase). They find that Kea’s

performance improves significantly when it is trained on documents that are from the

same domain as the document from which keyphrases are extracted. They also argue

that Kea can be trained much faster than GenEx in a new domain because of the

simple learning technique (i.e. naïve Bayes) employed [34]. Although keyphrase

frequency is an interesting concept, the usefulness of this attribute is restricted to a

specific domain and is therefore of no use to us. We want KE to be domain-

independent and to apply it to heterogeneous documents.

2.2.3 LAKE

D’Avanzo et al. [26, 27] propose a keyphrase extraction algorithm called LAKE,

which is based on the naïve Bayes learning method. It uses two attributes: TF×IDF

and first occurrence (same as position). The main feature that differs it from Kea is

that it uses part-of-speech tagging to help to select candidate phrases.

The selection of candidate phrases involves four steps:

1. Tag the input document.

2. Group sequences of words which are considered a single lexical unit together,

e.g. ‘Christmas’ and ‘tree’ are combined into ‘Christmas tree’.

 22

3. Identify all the person, location, and organization names, dates and time, and

currency and percentage figures (i.e. named entities) in the document, e.g.

‘London’, ‘December 25 2007’. Named entities will be discussed again in

Section 2.4.1.

4. Select candidate phrases from the document if they match one of the many

manually predefined linguistics-based patterns, e.g. adjective + noun, and

noun + verb + adjective + noun (the symbol ‘+’ denotes ‘followed by’).

The experiments suggest that this algorithm works. Nevertheless, since LAKE uses a

different set of training and testing documents, it is not certain if it is better than

GenEx and Kea as it is not possible to directly compare their results. Because of this

reason, LAKE has not been used as a standard of comparison for evaluating the

performance of our algorithm. All the keyphrase extraction tools evaluated in our

experiments have been trained and tested on the same corpus (as the one used in

GenEx and Kea) so that direct comparison is possible.

2.2.4 KIP

Wu et al. [118] introduce a domain-dependent keyphrase extraction system called

KIP. The system is based on the hypothesis that the more keywords a candidate

phrase contains and the more significant these keywords are, the more likely this

candidate phrase is a keyphrase.

KIP uses a domain-dependent glossary database (similar to a dictionary) to extract

keyphrases from documents. The database consists of two lists: one contains manual

keywords and their corresponding weight, and the other contains manual keyphrases

and their corresponding weight. KIP selects all the noun phrases in the input

document as candidate phrases, and calculates the score of each candidate phrase by

the frequency and composition of a phrase (i.e. check if this phrase contains any

manual keyword or manual keyphrase stored in the database and obtain the

corresponding weight if it does). The system then sorts these phrases in order of score

and selects phrases with the highest scores as the output keyphrases.

 23

KIP has been tested on a set of journal and conference papers on information systems,

and the experiments show that it works. Nevertheless, since the system uses a

different corpus from ours, it is difficult to directly compare its results with ours.

Therefore, KIP has not been used as a standard of comparison in our experiments.

2.2.5 Kex

Chen et al. [17] propose an algorithm for automatically extracting keyphrases from

web pages called Kex. The algorithm selects phrases containing at most four terms as

candidate phrases. Six attributes are used in Kex: 1) the number of occurrences of a

phrase in the web page, 2) the average number of occurrences of a term in the phrase,

3) a formula that involves TF, IDF, and document length, 4) the number of terms in

the phrase that occurs in the meta tag or the title of the page, 5) the number of terms in

the text segments that occur before and after the current text segment, and 6) a score

used to discriminate between text segments in different visual styles.

Kex has been trained and tested on a set of web pages from www.msn.com. Human

assessors were asked to assign keyphrases to these pages. The experiments confirm

that Kex can be used to extract keyphrases from web pages. Nevertheless, since Kex

uses a different set of training and testing documents from ours, it is not possible to

directly compare its results with ours. Therefore, Kex has not been used as a standard

of comparison in our experiments.

2.2.6 KPSpotter

Song et al. [93] discuss a keyphrase extraction system called KPSpotter. The system

can process various formats of input data such as XML, HTML and unstructured text

data, and generate an XML file as output. It involves two attributes: TF×IDF and

Distance from First Occurrence (same as position). These numeric attributes are

discretized into ranges using the equal-depth (frequency) partitioning method. The

resulting nominal attributes are used to calculate the information gain of each

candidate phrase. The candidate phrases are then ranked in order of information gain.

 24

KPSpotter has been trained and tested on a set of abstracts (rather than full

documents) of computer science technical reports. The same data have been used to

train and test Kea so that the performance of KPSpotter can be directly compared with

that of Kea. The experiments show that KPSpotter and Kea give similar results.

Nevertheless, since KPSpotter uses a different set of training and testing data (i.e. a

collection of abstracts rather than documents), it is not possible to directly compare its

results with ours. Therefore, KPSpotter has not been used as a standard of comparison

in our experiments.

2.2.7 Kea++

Medelyan and Witten [71] propose a new method of improving the quality of the

output keyphrases called Kea++. Kea++ is based on Kea, but differs from it in two

ways: Kea++ uses a domain-dependent thesaurus and a different set of attributes.

Non-descriptors in the document are first replaced by their equivalent descriptors

using semantic information about terms and phrases in the thesaurus. Descriptors and

non-descriptors are synonyms. Descriptors refer to the ‘preferred’ terms, and non-

descriptors refer to the ‘less preferred’ terms, e.g. ‘love’ is a descriptor and ‘affection’

is a non-descriptor. Candidate phrases are then measured by four attributes: TF×IDF,

distance, the length of a candidate phrase in words (same as number of terms), and the

node degree. The first two attributes are used in Kea. The node degree is the number

of thesaurus links that connect a candidate phrase to other candidate phrases.

Kea++ has been tested on a set of documents on food and agriculture. The

experiments indicate that Kea++ significantly outperforms Kea. Nevertheless, Kea++

has not been used as a standard of comparison in our experiments. Kea++ uses a

controlled vocabulary list and is tied to a specific domain, while KE is a domain-

independent algorithm. In addition, Kea++ uses a different set of training and testing

documents, so it is not possible to directly compare its results with ours.

 25

2.2.8 W3SS

Zhang et al. [123] introduce a new approach to automatic summarization of web sites

called W3SS. The output summary is based on keywords and keyphrases extracted

from a given web site. W3SS uses machine learning techniques to generate this

summary, and this involves a number of steps (see Table 2.2).

While keywords and keyphrases are extracted (in Step 4 and 5), it is observed that 40-

70% of the keywords and 20-50% of the keyphrases appear somewhere in the home

page of a web site. This is because the home page often gives a general idea of what

the site is about (this information is likely to be useful for summarizing the whole

site), and as we go deeper into the site, web pages tend to be more specific (this

information is likely to be too specific and not useful for summarizing the whole site).

W3SS has been tested on a set of web sites. Human assessors are divided into four

groups and asked to answer questions about those sites (e.g. the purpose of a site)

after 1) they read the generated summaries, 2) they read the manual summaries, 3)

they browse only the home pages of those sites, 4) they browse each of those sites for

10 minutes. The experiments show that the group that read the manual summaries

give the best results, followed by the group that read the generated summaries, the

group that browse each site for a limited time, and the group that browse only the

home pages.

Despite being interesting, W3SS has not been used as a standard of comparison in our

experiments. All the documents used in our experiments are plain text, i.e. there is no

anchor text and special text. The aim of W3SS is also different from ours: W3SS aims

at summarizing a collection of web documents (i.e. web site), while KE aims at

summarizing a single document.

 26

Table 2.2: Overview of W3SS

Step Input Output

1. Follow the links in the home page

of a given web site using breadth-

first traversal

Web site Set of web pages

2. Remove all the HTML tags and

scripts in these pages

Set of web pages Set of plain text

3. Use the number of words in a

paragraph and the part-of-speech of

the words in a paragraph to extract

narrative paragraphs from the plain

text

Set of plain text Set of narrative

text

4. Use the part-of-speech of a word

and the number of occurrences of

this word in the narrative text,

anchor text (e.g. hyperlinks) and

special text (e.g. italic text) to

extract keywords

Set of narrative text,

anchor text and

special text

Set of keywords

5. Use the keywords, the part-of-

speech of a phrase and the number

of occurrences of this phrase in the

narrative text, anchor text and

special text to extract keyphrases

Set of narrative text,

anchor text, special

text and keywords

Set of keyphrases

6. Use the extracted keywords and

keyphrases to extract key sentences

Set of narrative text,

keywords and

keyphrases

Set of key

sentences

7. Provide the extracted keywords,

keyphrases and key sentences as a

summary of this site

Set of keywords,

keyphrases and key

sentences

Summary

 27

2.3 Information Retrieval

This section discusses two important activities in information retrieval (i.e. indexing

and searching), some useful retrieval concepts such as TF×IDF, the vector space

model, recall and precision, and the Text Retrieval Conferences (TREC).

Information retrieval is often regarded as being synonymous with document retrieval

and text retrieval. It involves the retrieval of documents or texts with information

content that is relevant to a user’s information need [95]. Library systems, e.g. online

public access catalogues (OPAC) [44] and search engines, e.g. Google and Yahoo!,

are examples of IR systems. IR consists of two related but different activities:

indexing and searching.

Before indexing and searching are discussed, we would like to give an overview of

the IR process (see Figure 2.1):

1. The IR system indexes all the documents in the collection.

2. When the user provides the IR system with a query, it indexes the query,

searches the document collection and retrieves the relevant documents.

3. The user might provide feedback on the relevance of the retrieved documents.

This information helps to improve the performance of the IR system.

IR System

Collection

Query Retrieved Documents

Feedback

Indexing/ Searching UserUser

Figure 2.1: Overview of the IR process

 28

2.3.1 Indexing

Indexing refers to the way that documents and requests are represented for retrieval

purposes. Requests are expressions of a user’s information need in natural language,

and are translated into queries for the actual searching [95]. A document (or request)

text is often represented by a set of index terms. Not all the words in the text are

useful for retrieval purposes. Some of them are less important than others and are not

generally used for searching. To eliminate these words, a stopword list is used.

Unfortunately, the remaining words often have many morphological variants. To

solve this problem, a stemming algorithm is used to reduce variants of a word to a

single form.

A stopword list contains words with high frequency and little semantic value, e.g.

articles, prepositions, and connectives. The use of a stopword list not only eliminates

unimportant words, but also reduces the size of the inverted file by 30-50%, and thus

improves the efficiency of the IR system [110]. For example, in the TREC collection,

there are 33 terms that occur in more than 38.2% of the documents. These terms

account for almost 30% of all term occurrences and 11% of the pointers stored in the

inverted file. A further 39 terms occur in 24.5-38.2% of the documents and account

for another 6.3% of the pointers. The next 63 terms occur in 18.1% of the documents

and account for 7.3% of the pointers. In combination, these three groups of terms

account for 25% of the pointers in the inverted file [115]. Nevertheless, stopword lists

have a problem: the system can hardly retrieve documents containing phrases like ‘To

be, or not to be’. Therefore, some search engines use a full text representation [2]. A

full text representation always demands more computational resources, while a very

concise representation might lead to poor retrieval results (i.e. low recall). However,

due to recent advances in computer technology (e.g. storage devices have become

cheaper), there is a tendency to use almost all the words in a document (or request)

text.

 29

A stemming algorithm aims at overcoming the variation of word forms (e.g. singular/

plural forms), which is likely to be encountered in a free text environment [95].

Stemming also helps to reduce the size of the inverted file. For example, after case-

folding (i.e. replacing all uppercase characters with lowercase) and stemming the raw

documents in the TREC collection, the number of pointers in the inverted file is

reduced by 16% and the number of distinct terms by about 40% [115]. Several

stemming algorithms will be discussed in more detail in Section 2.6.

2.3.2 Searching

Searching refers to the way that a document collection is examined and the documents

in it are retrieved as relevant to the search query. It consists of two important

operations: matching and scoring. Matching establishes what is in common between

the document and query representations, normally what terms are shared. Scoring

assigns a particular value to the match according to the chosen system function (or

retrieval model) [95].

Given sets of terms that characterize a user’s information need (i.e. query) and the

content of each of the documents in the collection, a best match search involves

calculating a score denoting the similarity between the sets of terms for the query and

for each document. The documents are then ranked in descending order of score, i.e.

the documents at the top of the list are judged to be the best match for the query and

are therefore displayed first to the user [95].

The similarity measure consists of two important components: term weighting scheme

and similarity coefficient. The term weighting scheme allocates numerical values to

each of the index terms in the document (or query) to reflect their relative importance.

The similarity coefficient uses these weights to calculate the overall degree of

similarity between a document and a query. The term weighting scheme plays an

important role in IR and is probably the most important factor in determining the

effectiveness of an IR system [95].

 30

2.3.3 Term Weighting Scheme

Before the term weighting scheme is discussed, we need to explain why statistical

methods can be used for retrieval purposes. The number of occurrences of distinct

words in natural language documents is always different, and this is useful for content

representation. If the frequency were the same, it would be impossible to distinguish

between different words using quantitative criteria [90]. In fact, it has long been

observed that words occur unevenly in natural language documents. As a result,

words can be distinguished by their frequency. In one of Luhn’s early papers [65], he

suggests that:

“The justification of measuring word significance by use-frequency is based on the

fact that a writer normally repeats certain words as he advances or varies his

arguments and as he elaborates on an aspect of a subject. This means of emphasis is

taken as an indicator of significance.”

It is known that when the distinct words in a document are arranged in descending

order of frequency, the relationship between the frequency of words and their rank

order can be characterized by Zipf’s law [124]:

 constant≈× rankfrequency

Zipf’s law states that the frequency of a given word multiplied by the rank order of

that word is approximately the same as the frequency of another word multiplied by

its rank order. The law has been explained by citing a general ‘principle of least

effort’ which makes it easier for authors to repeat certain words instead of using new

and different words. The least-effort principle also accounts for the fact that the most

frequent words tend to be short function words (e.g. and, the, etc). The law has been

verified by text materials in different areas. Table 2.3 gives an example of such

verification from [90]. It has also been reported that the most frequent 20% of the

words in natural language documents account for some 70% of word usage [90].

 31

Table 2.3: Verification of Zipf’s law [90]

Rank (R) Word Frequency (F) R • (F/ 1,000,000)

1 The 69,971 0.070

2 Of 36,411 0.073

3 And 28,852 0.086

4 To 26,149 0.104

5 A 23,237 0.116

6 In 21,341 0.128

7 That 10,595 0.074

8 Is 10,099 0.081

9 Was 9,816 0.088

10 He 9,543 0.095

Luhn [65] also suggests that neither high nor low frequency words are good content

identifiers, and that middle frequency words, which have high ‘resolving’ power, are

presumably the best content identifiers (see Figure 2.2). By resolving power, he

means the ability of a word to identify relevant documents and to distinguish them

from the nonrelevant6 ones. As we will see later, non-significant high frequency

words can be eliminated by the use of inverse document frequency, and non-

significant low frequency words by the use of term frequency.

6 The information retrieval community often uses ‘nonrelevant’, instead of ‘irrelevant’, to refer to

documents that are not relevant.

 32

R
es

ol
vi

ng
 P

ow
er

Words in Rank Order

Significant middle
frequency words

Non-significant
low frequency

words

Non-significant
high frequency

words

Figure 2.2: Resolving power of significant and non-significant words [90]

One of the most important term weights is term frequency (TF). TF measures the

frequency of a term in the document or query, and improves retrieval performance

(i.e. higher recall) by rewarding terms that are often mentioned in the document or

query.

However, TF alone is not enough to ensure acceptable retrieval performance. When

the high frequency terms are not concentrated in a few documents, but are prevalent

in the whole collection instead, all documents tend to be retrieved. To solve this

problem, another term weight, inverse document frequency (IDF), or collection

frequency, is used. IDF measures the rarity of a term across the collection, and

improves retrieval performance (i.e. higher precision) by rewarding terms that are

concentrated in a few documents of the collection [88].

A common way of measuring term importance is to use the product of TF and IDF,

i.e. TF×IDF. Despite the popularity of these weights, they do not have a universal

definition.

 33

Salton and Buckley [88] review the use of statistical information for weighting

document terms and query terms, and discuss various ways of defining and combining

three term weights: TF, IDF, and length normalization (LN). LN is used to ensure that

short documents have the same chance of being retrieved as the longer ones. A total

of 1,800 different term weighting combinations were used in their experiments, and

287 were found to be distinct. They make recommendations on the best combination

in different situations. For technical documents (like the ones used in our corpora),

they recommend using the normalized TF and the standard IDF. The normalized TF is

calculated by normalizing the standard TF factor by the maximum TF in the vector7

[88]:

 Normalized TF =
TF

TF
max

5.05.0 + (2.2)

Please refer to Section 1.3.5 for further information about the definition of the

standard TF and standard IDF, and to Section 4.2, Section 4.4.7 and Section 5.5 for

details of the corpora used in our experiments.

Robertson and Sparck-Jones [85] introduce a simple formula, which combines three

term weights: the standard TF, the standard IDF, and the normalized document length

(NDL), for text retrieval. The NDL is calculated by normalizing the length of a

document by the average length of the documents in the collection. The combined

weight formula has proved effective through extensive testing during TREC and is

easy to apply [85]. The formula is given by:

 Combined Weight =
TFNDL

IDFTF
+×+−×

+××
)K)K1((K

)1(K

221

1 (2.3)

where K1 and K2 are tuning constants.

7 The normalization result lies in the range of 0.5 to 1.0.

 34

The constant K1 (which is usually greater than 0) modifies the extent of the influence

of TF, and K2 (which ranges between 0 and 1) modifies the effect of NDL. Ideally,

these constants should be set after systematic trials on the particular document set. In

TREC, where heterogeneous sets of documents are used, these constants have been

found to be effective when K1 is set to 2 and K2 to 0.75. Those values could be used

as a starting point for tuning these constants.

2.3.4 Vector Space Model

There are three main types of IR models: the Boolean model (or logical model), the

vector space model (or vector processing model), and the probabilistic model [2, 95].

Nevertheless, only the vector space model [89] is discussed in this thesis because this

is the model which is most related to our work: vectors are used to represent

documents in the KE algorithm.

A model is an abstraction of a process, so an IR model could be seen as an abstraction

of the process of retrieving relevant documents on the basis of a query. The vector

space model has been the most influential model in the development of IR [95]. In

this model, documents and queries are represented by vectors, in which the i-th

element denotes the value of the i-th term, with the value of each element being

determined by the term weighting scheme employed.

Suppose there are t terms and d documents in an IR system. A document Doci can be

represented by a vector of weighted terms:

),...,,(Doc 1i itiji www=

where wij is the weight of the term j assigned to the document i.

 35

In the vector space model, a document collection can be represented as a matrix of

terms where each row of the matrix represents a document and each column

represents the assignment of a specific term to the documents of the collection (see

Table 2.4) [89].

Table 2.4: Term assignment matrix

 Term1 Termj … Termt

Doc1 w11 w1j … w1t

… … … …

Doci wi1 wij … wit

… … … …

Docd wd1 wdj … wdt

Similarly, a query Queryk can be represented by a term vector:

),...,,(Query 1k ktkjk www=

where wkj is the weight of the term j assigned to the query k.

A common way to calculate the degree of similarity between a document vector Doci

and a query vector Queryk is by using the cosine correlation [88, 89]:

∑∑

∑

==

=

×

×
=

t

j
kj

t

j
ij

t

j
kjij

ww

ww

1

2

1

2

1
ki

)()(
)Query,Doc(Similarity (2.4)

This formula measures the cosine of the angle between Doci and Queryk.

 36

Unlike the Boolean model, terms in the vector space model are not equally weighted;

each term is associated with a specific weight which reflects the importance of that

term. TF and IDF, which have been discussed in Section 2.3.3, are the two most

important term weights in the vector space model.

2.3.5 Evaluation

We need some quantitative methods of evaluating the ability (or effectiveness) of an

IR system to retrieve relevant documents and reject nonrelevant documents. The two

most common measures of retrieval performance are recall and precision. Recall is

the proportion of the relevant documents that are retrieved in a search, while precision

is the proportion of the documents retrieved in a search that are relevant.

In principle, an IR system that produces both high recall by retrieving all possibly

relevant documents and high precision by rejecting all possibly nonrelevant

documents is preferred. The recall function appears to be best served by using broad,

high frequency terms that occur in many documents of the collection. These terms are

likely to retrieve many documents, including many of the relevant documents.

However, the precision function appears to be best served by using narrow, highly

specific terms that are likely to isolate the few relevant documents from the mass of

nonrelevant documents. In practice, compromises are always made by using terms

that are broad enough to produce reasonably high recall without at the same time

producing unreasonably low precision [88]. IR systems have been found to operate at

no more than 30% recall and 30% precision (in large, realistic test collections), with

an increase in one causing a decrease in the other [95].

Because of the trade-off between recall and precision, F-measure has been proposed.

F-measure is a common way of combining recall and precision. It is the harmonic

mean of these measures, i.e. the inverse of the average of the inverses. It penalizes

low recall and low precision. The standard F-measure is given by [2]:

 37

 F-measure =
)(5.0

1

Recall
1

Precision
1 +×

 =
RecallPrecision

RecallPrecision2
+

×× (2.5)

F-measure attempts to find the best possible compromise between recall and

precision. An IR system will only produce high F-measure if both recall and precision

are high [2]. Recall and precision will be discussed again in Section 4.3.3.

2.3.6 TREC

The Text Retrieval Conference (TREC) [103] is one of the most important

conferences on IR. The aim of TREC is to encourage research on IR for large text

applications by providing large test collections, uniform scoring procedures, and a

forum for organizations interested in comparing their results. A test collection is an

abstraction of an operational retrieval environment that provides a means of exploring

the relative benefits of different IR techniques in a laboratory setting [111]. Recall and

precision are the most common measures of performance at TREC. The performance

results allow the participants to compare the effectiveness of different IR techniques

and to determine how differences between systems affect performance [2].

Before TREC, the evaluation of IR systems was based on small test collections. IR

testing was on a relatively small scale, and earlier work tended to use the same test

material to maintain comparability. Even by 1990, experiments were still often carried

out with collections of 75 requests against 2,000 documents while the test collections

had grown slowly from 35 requests against 82 documents, through 225 against 1,400,

to 93 against 11,429 [95].

A total of 103 groups participated in TREC 2004. These groups came from 21

different countries and included academic, commercial and government institutions.

TREC 2004 consisted of seven areas of focus called tracks: genomics, high accuracy

retrieval from documents (HARD), novelty, question answering (QA), robust,

terabyte, and web. For details of these tracks, see [111].

 38

The test collections used at TREC consist of three parts: the documents, the topics

(same as requests), and the relevance judgements (an indication of which documents

should be retrieved in response to those topics, i.e. sets of relevant documents to those

topics) [111].

TREC is designed to evaluate large scale IR systems, and therefore it uses large sets

of documents. The primary document sets used at TREC 2004 contain about two

gigabytes of text (between 500,000 and 1,000,000 documents), and consist of mainly

newspaper and newswire articles, though there are some government documents and

computer science abstracts [111]. The document sets used in various tracks, on the

other hand, are smaller and larger depending on the needs of the track and the

availability of data.

Topics have to be translated into queries before searching can be carried out.

Participants in TREC can use any method to create queries from those topic

statements. TREC 2004 makes a distinction between two basic query construction

techniques: automatic methods and manual methods. An automatic method is a means

of deriving a query from a topic statement without any manual intervention, while a

manual method is anything else [111].

The relevance judgements could be seen as the ‘right answers’ to those topics, and are

what turns sets of documents and topics into a test collection. Because of the size of

the document sets, it is not possible to produce a complete list of relevant documents

to each topic by asking the topic author to go through every document and judge its

relevance to that topic. Instead, TREC uses a technique called pooling: a pool of

possible relevant documents is created by taking a sample of documents selected by

the various participating IR systems, and is then shown to the human assessors (see

Figure 2.3). The sample is constructed by taking the top X documents (usually X=100)

retrieved by each system for a given topic and merging them into the pool. The human

assessors will only judge documents that are in the pool; those not in the pool are

assumed to be nonrelevant and will not be judged. This is a valid sampling technique

because the retrieval results are usually ranked, with the documents most likely to be

relevant to the topic coming first [41, 111].

 39

IR System 1

Pool

Top X documents Top
 X

 do
cu

men
ts

Assessor

... IR System N

Figure 2.3: Pooling technique

2.4 Information Extraction

This section discusses information extraction, the Message Understanding

Conferences (MUC), and the differences between information retrieval and

information extraction.

Another related area to keyphrase extraction is information extraction. Information

extraction involves the identification of pre-specified types of information within a

text [95]. An IE system extracts specific information from the document according to

some predefined guidelines. These guidelines are always specific to a given topic area

or type of text (i.e. domain-dependent). For example, if the topic area is news articles

on a terrorist attack, the guidelines might specify that the IE system should identify

information about the terrorist organizations involved in the attack, the victims of the

attack, the type of the attack, and the date and time of the attack.

 40

A major problem of IE systems is that they are always tied to particular subject

domains. Systems that work well in one domain might work badly in other domains,

so they have to be tuned before they can be used in a new domain. Recent work,

however, shows that machine learning techniques can be used to make IE systems

more domain-independent. Tellez-Valero et al. [102] build an IE system called

TOPO, which is based on text classification methods. TOPO uses regular expression

analysis to identify candidate text segments, and supervised learning techniques to

classify those segments as relevant or irrelevant. The extraction decisions rely on a set

of classifiers instead of sophisticated linguistic analysis. Different classifiers have

been used for different types of text segments, e.g. name, date and quantity. The

experiments indicate that TOPO can be easily adapted to a new domain while

maintaining an average F-measure of 72% [102].

2.4.1 MUC

The Message Understanding Conference (MUC) is one of the most important

conferences on IE. IE systems have been evaluated with corpora in various topic

areas, including naval message narratives (MUCK1, MUCK2; the K in MUCK was

dropped from the names of more recent conferences), Latin American terrorism

(MUC-3, MUC-4), joint ventures and microelectronics in English and Japanese

(MUC-5), and the Wall Street Journal articles (MUC-6) [98, 99]. Recall, precision

and F-measure have been used to evaluate the effectiveness of IE systems. There were

four extraction tasks at MUC-6 (http://cs.nyu.edu/faculty/grishman/muc6.html):

named entity, coreference, template element, and scenario template [21, 37, 84, 98].

For example, consider the following text:

“Citigroup on Friday agreed to pay $2bn to settle a class action lawsuit filed by Enron

investors who sued the world’s largest financial services group for its alleged role in

fraudulent deals at the collapsed energy group.” – Financial Times, June 10 2005

 41

1. Named entity (NE) involves the identification of all the person, location, and

organization names, dates and time, and currency and percentage figures. An

NE system should recognize ‘Citigroup’, ‘Friday’, ‘$2bn’ and ‘Enron’ as

named entities if the above text is used. NE was the simplest and the most

reliable task among the four. 15 systems were tested on this task at MUC-6,

and half of the systems achieved over 90% F-measure. The best system scored

96% recall and 97% precision.

2. Coreference (CO) involves the identification of coreferring relations among

noun phrases. Noun phrase NP1 is said to corefer with noun phrase NP2 if they

refer to the same entity [109]. A CO system should link ‘the world’s largest

financial services group’ and ‘its’ with ‘Citigroup’ if the above text is used.

Seven systems were tested on this task at MUC-6. Most systems achieved

approximately the same levels of performance: five of them were in the 51-

63% recall range and 62-72% precision range.

3. Template element (TE) is based on NE and CO. It involves the extraction of

basic information related to person and organization entities (i.e. NE results)

from the document (using CO results). The basic information is presented in a

fixed-format, database-like structure. Suppose the organization object

‘Citigroup’ contains a slot called ‘descriptor’, a TE system should extract ‘the

world’s largest financial services group’ and associate it with ‘descriptor’ if

the above text is used. 11 systems were tested on this task at MUC-6. Almost

all the systems achieved over 70% F-measure: four of them were able to

achieve recall in the 70-80% range while maintaining precision in the 80-90%

range. The best system scored 75% recall and 86% precision.

 42

4. Scenario template (ST) is a difficult IE task. It involves the extraction of pre-

specified event information from the document, and relating the event

information to the particular person and organization entities involved in the

event. In other words, it ties TE entities together into event and relation

descriptions. The entities and relations involved in the event are presented in a

fixed-format structure. An ST system should be able to answer basic questions

such as ‘Who agreed to pay how much to whom?’ if the above text is used.

Nine systems were tested on this task at MUC-6. The levels of performance

were similar to those achieved in previous MUCs (40-50% recall range and

60-70% precision range). The best system scored 56% F-measure (47% recall

and 70% precision).

2.4.2 Comparison with IR

Information extraction is not information retrieval. IR selects a relevant subset of

documents from a larger set, while IE extracts information (often salient facts about

pre-specified types of events, entities or relationships) from documents. In short, IR

gets sets of relevant documents and IE gets facts out of documents [19, 22, 74, 84].

However, the application of IE is usually preceded by an IR phase, which selects a set

of documents relevant to a query. An IR system can therefore be viewed as a combine

harvester that brings back potentially useful material from vast fields of raw material.

An IE system can then transform the material, refining and reducing it to the germ of

the original text [18]. The difference between IR and IE can be illustrated by the

following example: we use a search engine to retrieve news articles on recent mergers

and acquisitions, and an IE tool to extract the bids and companies involved (from

these articles).

2.5 Summarization

This section reviews previous work on summarization, and discusses the differences

between IR, IE, and summarization.

 43

Automatic text summarization (summarization for short) involves the abstraction of

the most important parts of text content [95]. Extracting (mainly sentence extraction)

and abstracting (or abstract generation) are two important activities in summarization

[70, 121]. The difference between these activities lies in their output. An extract (i.e.

output of extracting) is a summary that consists of material entirely copied from the

input document, while an abstract (i.e. output of abstracting) is a summary that

contains at least some material that is not present in the document [70]. Sentence

extraction involves extracting key sentences from the document. Those sentences

often lack coherence because of the frequent occurrence of anaphoric references.

Noun phrase NP1 is said to be the anaphoric antecedent of noun phrase NP2 if NP2

depends on NP1 for interpretation [109]. For example, consider the sentence ‘John left

his wallet on the table’, in which the pronoun ‘his’ (i.e. NP2) refers to ‘John’ (i.e.

NP1). Anaphora and coreference (at MUC) sound similar, but they are different

things. For details of their difference, see [109]. Anaphora makes it difficult to

generate a coherent abstract by concatenating independent extracted sentences. It is

very difficult for readers to understand what those anaphors in the abstract mean.

Therefore, abstract generation often involves selecting key sentences and dealing with

the anaphors in those sentences before putting the sentences together to form an

abstract of that document.

Johnson et al. [49] discuss techniques for identifying anaphors to improve the quality

of machine-generated abstracts. Sentence selection is guided by a set of rules which

involves indictor phrases and information about sentence structure obtained from

parsing. The rules are designed to identify sentences which contain non-anaphoric

noun phrases and introduce important concepts of the document. The experiments

confirm that the important concepts are identified, but the abstracts generated are too

long [49].

Purely statistical techniques have proved effective for (single term) indexing in many

IR projects, but they appear not good enough for complex information entities such as

sentences [95]. Therefore, most of the recent work on summarization is based on a

combination of statistical and linguistic methods.

 44

Edmundson [28] describes a sentence extraction algorithm based on statistical and

linguistic methods. Four attributes are used in the algorithm: cue words, title words

(i.e. words from the title, subtitles, and headings), key words (i.e. high frequency

content words), and sentence location. Cue words are similar to indicator phrases.

They are based on the hypothesis that the probable relevance of a sentence is affected

by the presence of pragmatic words such as ‘significant’, ‘impossible’, and ‘hardly’.

The cue words are divided into three categories: bonus words – words that are

positively relevant (e.g. comparatives and superlatives), stigma words – words that are

negatively relevant (e.g. anaphoric expressions), and null words – words that are

irrelevant (e.g. prepositions, pronouns and adjectives). Each sentence in the document

is scored by a linear function, which involves the four attributes and their

corresponding weight. The experiments indicate that sentence location gives the best

individual performance and that the best combination involves cue words, title words,

and sentence location [28].

Brandow et al. [7] discuss a system called ANES which performs domain-independent

summarization of news documents. The system has been used to generate summaries

from a number of publication types (e.g. newspapers, magazines and newswires) and

publication sources. Initially, indicator phrases were planned to be used, but they were

abandoned because of their domain-dependent nature. Instead, TF×IDF is used to

measure the ‘uniqueness’ of every word in the document. Words with high TF×IDF

values together with other attributes are used to determine which sentences are

selected. ANES has been evaluated against another system based on a commercial

product called Searchable Lead, which summarizes the same articles using only the

first portion of the documents. The experiments, however, indicate that the Searchable

Lead-based summaries significantly outperform the ‘intelligent’ ANES summaries

[7]. We believe this is mainly because of the nature of the document set. News articles

are usually quite well-written, and journalists often put important information at the

beginning of their documents.

 45

Kupiec et al. [58] develop a trainable sentence extraction program based on statistical

and heuristic methods. A Bayesian classification function, which takes each sentence

in the document and estimates the probability that it is included in the summary, is

used in this program. The summary is generated by ranking the sentences according to

their probability. The generated summary is then compared with the corresponding

manual summary. Five attributes have been evaluated in the experiments: sentence

length cut-off (i.e. length of a sentence), fixed-phrase (i.e. indicator phrase),

paragraph (i.e. location of a sentence), thematic word (i.e. high frequency content

word), and uppercase word (i.e. similar to proper noun). Paragraph has been found to

give the best individual performance, and the best combination involves paragraph,

fixed-phrase, and sentence length cut-off [58].

Goldstein et al. [36] present an analysis of news article summaries generated by

sentence selection. Each sentence in the document is scored by a weighted

combination of statistical and linguistic methods, and ranked according to its

likelihood of being part of the summary. The statistical methods are adapted from

standard IR methods, e.g. TF×IDF. The linguistic methods are derived from an

analysis of newswire summaries. Their work shows that the evaluation of

summarization systems should take into account both the compression ratios and the

characteristics of the document set being used.

Keyphrase extraction has attracted less attention of the summarization community

compared with sentence extraction and abstract generation. Nevertheless, it is

technically easier than them. It does not have to resolve anaphors and the structure of

keyphrases is simple. Training for keyphrase extraction is also easier. Most author-

assigned keyphrases can be found in the body of the document, but this is not the case

for abstract generation [107]. Most author-supplied abstracts are not composed of

sentences that appear in the document, so manual work is needed before training can

be carried out.

 46

Although indicator phrases, cue words, and fixed phrases have proved effective in

some summarization projects, they rely on detailed knowledge of the corpus’s

language constructs and are therefore not appropriate for KE. This is because KE is

intended for heterogeneous documents.

2.5.1 Comparison with IR and IE

Summarization is similar to indexing (in IR), but it is more difficult. Summarization

involves using much fewer words to describe a document than indexing; in other

words, it requires a higher level of abstraction. Also, the aim of summarization and IR

are different. Summarization attempts to get a shorter text (i.e. summary or keyphrase

list) from a longer text (i.e. document), while IR often attempts to use a shorter text

(i.e. query) to get a longer text (i.e. relevant document) [94].

The main difficulty in evaluating the output keyphrases is that, unlike IE,

summarization is more subjective: different people might have different opinions on

what the most important parts of a document are. The evaluation of IE systems,

however, is more objective: the extracted information, e.g. the terrorist organizations

involved in an attack and the date and time of that attack, is always either correct or

not correct. However, Jones and Paynter [51] argue that it is reasonable to use author-

assigned keyphrases as a standard of comparison for evaluating machine-extracted

keyphrases. This will be discussed in more detail in Section 4.3.1.

2.6 Stemming

This section introduces stemming and discusses three stemming algorithms developed

for English documents: the Porter algorithm, the Lovins algorithm, and the iterated

Lovins algorithm. The focus of this section is on how these algorithms work.

 47

Documents (and queries) often contain unimportant words (e.g. articles, prepositions,

and connectives) and morphological variants (i.e. different forms of words). A

stopword list is used to eliminate those unimportant words. A stemming algorithm is

then applied to the remaining words to reduce all words with the same root to a single

form, which is often done by suffix stripping. The use of stopword lists and stemming

algorithms reduces the total number of terms in the IR system, and hence reduces the

size and complexity of the data in the system.

Words that appear in documents (and queries) often have various forms, e.g.

‘connect’, ‘connected’, ‘connecting’, ‘connection’ and ‘connections’. ‘Connect’ and

‘connection’ will not be considered equivalent unless some sort of language

processing is performed on these words. The assumption that two words having the

same underlying stem belong to the same conceptual group and should be considered

equivalent is obviously an oversimplification [110]. For example, sometimes we

might want to distinguish between ‘organize’ and ‘organization’. Sometimes, even

words which are essentially equivalent may refer to different things in different

contexts. However, it is worth pointing out that suffix stripping programs aim at

improving retrieval performance and therefore should not be regarded as a linguistic

exercise [78].

 48

Morphological variants generally have similar meanings and can be considered

equivalent for retrieval purposes. For this reason, a number of stemming algorithms

(or stemmers) have been proposed. However, only the Porter, the Lovins, and the

iterated Lovins algorithms are discussed in this thesis. This is because the Porter and

the Lovins algorithms are the two most common ones developed for English

documents [46, 56], and the iterated Lovins algorithm has been used to stem the

output keyphrases in KE, GenEx and Kea [34, 107]. Stemming algorithms not only

conflate different forms of a word to a single form, but also reduce the size of the

inverted file. A smaller inverted file size improves the efficiency of the IR system by

saving more storage space and processing time. For retrieval purposes, it usually does

not matter whether the stems generated are genuine words or not, provided that

different words with the same meaning are conflated to the same form and that words

with distinct meanings are kept separate [45].

Although it is possible to carry out stemming by looking the stem of every word up in

a (stem) dictionary, this is not practical. This kind of stemming, though simple and

linguistically accurate, consumes considerable storage space and computational

resources, and is therefore rarely used. Apart from the efficiency concern, it also has

another major problem: not all the words can be found in the dictionary, some of them

might be too new or too technical.

 49

The automatic removal of suffixes from words, on the other hand, is much more

efficient. However, this is not perfect either: the success rate for any suffix stripping

program is always less than 100%. For example, if ‘work’ and ‘worker’ get conflated,

so most probably will ‘wand’ and ‘wander’. The error here is that the ‘er’ of ‘wander’

has been treated as a suffix, but it is actually part of the stem. This is known as the

over-stemming error (i.e. words that should not be conflated are grouped together).

Similarly, a suffix stripping program might fail to conflate words with similar

meanings to a single stem. For example, ‘explain’ and ‘explanation’ might be

considered different when in fact they belong to the same conceptual group. This is

known as the under-stemming error (i.e. words that should be conflated are not

grouped together). This explains the difficulty of developing suffix stripping

programs: the addition of more rules to increase the performance in one area causes

the degradation of performance somewhere else. Unless this is noticed in time, it is

easy for the program to become much more complex than is necessary. It is also easy

to give undue emphasis on cases which appear to be important but are rare in practice.

Since there is no simple way to make these distinctions, we would have to tolerate a

certain proportion of errors and assume that they will not degrade retrieval

effectiveness too much [45, 78].

2.6.1 The Porter Algorithm

The Porter algorithm uses a suffix list (about 60 different suffixes) with various rules

for suffix stripping. It treats complex suffixes as compounds made up of simple

suffixes. A word that is to be stemmed is characterized by its measure, which is the

number of constituent alternating vowel-consonant sequences [78, 95]:

][)(][VVCC m

where C is a list of consonants, V is a list of vowels, and m is the measure of this word

(square brackets indicate optionality). For example, 1) the measure of ‘by’ is zero, 2)

the measure of ‘trees’ is one, 3) the measure of ‘private’ is two [78].

 50

Suffixes are removed in five steps: Step 1 deals with plurals and past participles, Step

2 to 4 deal with the removal of suffixes, and Step 5 deals with tidying up. Each step

consists of a number of rules, which are given in the following form [78]:

S2S1→)(condition

This means that if a word ends with suffix S1 and if the stem before S1 meets the

given condition (which usually involves the value of measure), S1 will be replaced by

S2. For example, consider the following rule [78]:

→> EMENT 1)(m

This rule will, for example, map ‘replacement’ to ‘replac’ because S1 is ‘ement’, S2 is

null, and the measure of ‘replac’ is two.

The remaining stem will then be passed to the next step. If a word fails to satisfy the

condition of a rule, it will be tested by the next rule (or passed to the next step, if there

is no more rule in that step). However, if a word meets the condition of several rules,

only one rule will be obeyed, and this will be the one with the longest matching suffix

for that word [78]. Table 2.5 shows how ‘generalizations’ is stripped to ‘gener’ using

the Porter algorithm.

Table 2.5: The Porter algorithm

Step Rule Stem

0 – Generalizations

1 → S Generalization

2 IZE IZATION)0(→>m Generalize

3 AL ALIZE)0(→>m General

4 →> AL 1)(m Gener

5 Does not satisfy any rule Gener

 51

The experimental results show that the Porter algorithm performs slightly better than a

much more elaborate system used for IR research [78]. The effectiveness of this

algorithm has also been confirmed by other researchers [46, 56].

The Porter algorithm is probably the most widely used stemmer in IR research [2, 45,

95]. There are several reasons for this: it is fast, conceptually simple, and works at

least as well as other complex algorithms [78, 95]. Despite its popularity, there is no

linguistic basis for this algorithm. It is simply based on the observation that the use of

measure helps to decide whether it is wise to remove a suffix [78].

2.6.2 The Lovins Algorithm

The Lovins algorithm uses a much longer suffix list (about 290 different suffixes)

with various rules for suffix stripping. Suffixes are removed in two steps: Step 1 deals

with the removal of suffixes, and Step 2 deals with the ending of the remaining stems.

The algorithm involves 294 endings, 29 conditions and 35 transformation rules. A

complete list of them can be found in [63, 79]. Each ending (similar to S1 in the

Porter algorithm) is associated with one condition (similar to condition in the Porter

algorithm). Two examples of these endings are shown below [79]:

.09.

ationally B

.07.

ionally A

The endings are grouped by suffix length (i.e. .09. and .07.), from 11 characters down

to one. Each ending is followed by a condition code (i.e. B and A).

 52

The conditions associated with the above endings are shown below [79]:

A – No restrictions on stem8

B – Minimum stem length = 3

In the first step, the longest ending which satisfies the associated condition is found

and removed. For example, ‘nationally’ has the ending ‘ationally’ which is associated

with condition B. If ‘ationally’ is removed, it will leave a stem of length one. This

violates the condition and is therefore rejected. However, ‘nationally’ also has the

ending ‘ionally’ which is associated with condition A. Condition A has no restriction

on the stem length, so ‘ionally’ is removed, leaving ‘nat’ [79].

In the second step, the transformation rules are applied to the ending of the remaining

stem. This step is carried out no matter whether a suffix is removed in the first step.

The transformation rules handle features such as letter undoubling (e.g. remove the

last ‘t’ in ‘sitt’ which is the stem after Step 1: ‘sitting’ → ‘sitt’ → ‘sit’), irregular

plurals (e.g. matrix/ matrices), and English morphological oddities caused by the

behaviour of Latin verbs of the second conjugation (e.g. assume/ assumption, and

commit/ commission) [79]. Table 2.6 shows how ‘recursive’ is stripped to ‘recur’

using the Lovins algorithm.

Table 2.6: The Lovins algorithm

Step Rule Stem

0 – Recursive

1 .03.

ive A

A – No restrictions on stem

Recurs

2 ur urs → Recur

8 There is actually an implicit assumption in all conditions, including condition A: the minimum stem

length is two.

 53

The Lovins algorithm, which was introduced in 1968, was the first stemming

algorithm. It was innovative and remarkable for its time and had a strong influence on

later work in this area. However, it has also been criticized for its poor performance

on short words (or words with short stems) and for failing to include some common

endings in its ending list (e.g. ‘ements’ and ‘ents’, though their singular form ‘ement’

and ‘ent’ are included). The algorithm is larger than the Porter algorithm because of

the extensive ending list employed. However, because of this list, the algorithm is

faster; it takes only two steps to remove suffixes from words (compared with five in

the Porter algorithm) [79].

2.6.3 The Iterated Lovins Algorithm

It has been reported that aggressive stemming is better for keyphrase extraction than

conservative stemming [106-108]. Aggressive stemming is more likely to map two

words to the same stem, but it is also more likely to make over-stemming errors. The

Lovins algorithm is more aggressive than the Porter algorithm, and the iterated Lovins

algorithm is more aggressive than the Lovins algorithm. The iterated Lovins

algorithm has also been used for stemming in GenEx and Kea [34, 107]. We therefore

use this algorithm to stem the input document and the output keyphrases in KE.

Basically, there is nothing new about this algorithm; it just repeatedly applies the

Lovins algorithm to a given word until it stops changing.

2.7 Part-of-Speech Tagging

This section introduces part-of-speech tagging and discusses Eric Brill’s part-of-

speech tagger. The focus of this section is on how this tagger works.

Part-of-speech tagging involves choosing the most likely sequence of syntactic

categories for the words in a sentence [1]. A typical set of (syntactic) tags is the Penn

Treebank tagset (see Table 2.7). It contains 36 tags, but only adjectives (JJ, JJR, JJS),

verbs (VB, VBD, VBG, VBN, VBP, VBZ) and nouns (NN, NNS, NNP, NNPS) are

used in KE.

 54

Table 2.7: The Penn Treebank tagset [1]

CC Coordinating conjunction PP$ Possessive pronoun

CD Cardinal number RB Adverb

DT Determiner RBR Comparative adverb

EX Existential there RBS Superlative adverb

FW Foreign word RP Particle

IN Preposition/ subordinating

conjunction

 SYM Symbol (mathematical/ scientific)

JJ Adjective TO To

JJR Comparative adjective UH Interjection

JJS Superlative adjective VB Verb, base form

LS List item marker VBD Verb, past tense

MD Modal VBG Verb, gerund/ present participle

NN Noun, singular or mass VBN Verb, past participle

NNS Noun, plural VBP Verb, non-third person, present

NNP Proper noun, singular VBZ Verb, third person, present

NNPS Proper noun, plural WDT Wh-determiner

PDT Predeterminer WP Wh-pronoun

POS Possessive ending WPZ Possessive wh-pronoun

PRP Personal pronoun WRB Wh-adverb

2.7.1 Eric Brill’s Part-of-Speech Tagger

Brill [9] proposes a simple rule-based part-of-speech tagger. Although most part-of-

speech taggers are based on statistical techniques, Brill’s is based on rules. This

tagger works as well as stochastic (or statistical) taggers, but it is simpler and requires

less stored information. That is why we use it to select candidate phrases in the KE

algorithm. Brill’s tagger initially tags by assigning each word its most likely tag,

which is estimated by examining a large tagged corpus (i.e. the training corpus)

without regard to context. It then uses a smaller tagged corpus (i.e. the patch corpus)

to recognize and remedy its weaknesses and improve its performance.

 55

Brill uses the Brown Corpus [33] in his work. The corpus is divided into three parts:

training, patch, and testing. The training corpus is used to train the tagger, the patch

corpus is used to improve the performance of the tagger, and the testing corpus is used

to test the tagger.

The initial tagger has two built-in procedures to improve performance; neither of them

makes use of contextual information [9]:

• To tag words which are capitalized and not found in the training corpus as

proper nouns.

• To tag words not seen in the training corpus by assigning such words the tag

most common for words ending in the same three letters. For example,

‘blahblahous’ will be tagged as adjective because adjective is the most

common tag for words ending in ‘ous’. This information is derived from the

training corpus.

The tagger then acquires patches to reduce its error rate. After the initial tagger is

trained, it is used to tag the patch corpus. A list of tagging errors is generated by

comparing the output of the tagger with the correct tagging of the patch corpus. This

list consists of triples <taga, tagb, number> which involve the number of times the

tagger mistagged a word as taga when it should have been tagged as tagb in the patch

corpus. For each error triple, the tagger determines which template from the pre-

specified set of patch templates results in the greatest improvement. The patch

templates are given by [9]:

Change tag a to tag b when:

• The preceding (or following) word is tagged as z.

• The word two before (or after) is tagged as z.

• One of the two preceding (or following) words is tagged as z.

 56

• One of the three preceding (or following) words is tagged as z.

• The preceding word is tagged as z and the following word is tagged as w.

• The preceding (or following) word is tagged as z and the word two before (or

after) is tagged as w.

• The current word is (or is not) capitalized.

• The previous word is (or is not) capitalized.

For each patch, the reduction in error caused by applying that patch to the patch

corpus is calculated. The patch which results in the greatest error reduction is added to

the list of patches. After that, the patch is applied in order to improve the tagging of

the patch corpus, and the patch acquisition procedure continues.

The experiments indicate that Brill’s tagger performs as well as stochastic taggers.

Nevertheless, it has two main advantages over those taggers [8, 9]:

• The tagger is much more portable. It is rather difficult for stochastic taggers to

transfer many of the higher level procedures used to improve performance

from one tag set, corpus genre or language to another. This rule-based tagger,

however, can do that fairly easily.

• The tagger does not require large tables of statistics. In a stochastic tagger,

tens of thousands of lines of statistical information are often needed to capture

contextual information. However, in this rule-based tagger, contextual

information is captured in fewer than 80 rules. This not only makes the tagger

smaller and simpler, but also makes it easier to find and implement

improvements to the tagger. Contextual information is expressed in a more

compact and understandable form compared with the information hidden in

those large tables of contextual probabilities.

 57

2.8 Neural Networks

This section reviews the use of neural networks in different IR systems and introduces

neural networks.

Many machine learning methods have been proposed [72]. GenEx uses a genetic

algorithm to distinguish keyphrases from non-keyphrases [107], Kea, LAKE and

Kea++ use the naïve Bayes techniques [27, 34, 71], Kex uses a logistic regression

model [17], and W3SS uses a decision tree learning method [123]. Please refer to

Section 2.2 for details of these keyphrase extraction algorithms.

KE is tuned by a standard back-propagation neural network (for details, see Section

4.4.1). Neural networks are used because they provide a simple black box for pattern

recognition [6, 83, 86] and have proved useful in a number of IR projects [48, 113,

119]. Cunningham et al. [23] provide an excellent review of the application of neural

networks to IR. For further information about the application of other machine

learning techniques to IR, see [16, 24].

Wilkinson and Hingston [113] implement an IR system based on neural networks.

The system takes a query as input, compares all the documents in the collection with

the query, and returns the relevant ones as output. Neural networks are used to

identify the relationships between the input query and the output documents. In their

system, each query term is associated with an input unit, each of the set of terms

representing all the documents in the collection is associated with a hidden unit, and

each document is associated with an output unit. The experiments indicate that neural

networks can be used as an alterative IR model and that standard IR techniques (e.g.

the cosine correlation) can be used in this model [113].

 58

Jo [48] describes a keyword extraction algorithm which involves six attributes: TF,

IDF, inverted term frequency (ITF), title, first sentence, and last sentence. The output

of the algorithm is a set of important words (rather than phrases) automatically

extracted from the body of the document. ITF is the number of occurrences of a term

throughout the collection. First sentence is a flag that indicates if a term occurs in the

first sentence of the document. Similarly, last sentence is a flag that indicates if a term

occurs in the last sentence of the document. First sentence and last sentence have a

similar effect to position. The algorithm has been tuned by a back-propagation neural

network and tested on a collection of news articles. The experiments indicate that the

resulting algorithm performs better than two term weighting equations based on

TF×IDF [48].

You et al. [119] build an IR system that automatically retrieves hot topics from a

bulletin board system (BBS). The system has been trained to classify topics as hot or

not hot by different machine learning methods, including neural networks and the

naïve Bayes techniques. The experiments show that back-propagation neural networks

give the best performance result [119].

As mentioned earlier, KE is tuned by a standard back-propagation neural network.

Therefore, we think it is worth introducing neural networks. The idea underlying a

neural network is simple. The network has to learn how to make predictions [81].

During training, we provide it with a set of input vectors and the corresponding target

output vectors. Each input value and target output value is associated with a neuron

(or unit). The set of input neurons forms the input layer and the set of output neurons

forms the output layer. The number of input units and output units are constrained by

the training examples [72].

 59

Typically, there is another set of neurons between the input layer and the output layer

called the hidden layer. It is called ‘hidden’ because the output of these hidden units is

available only within the network and is not available as part of the global network

output [72]. It is possible to have more than one hidden layer in a neural network, but

one hidden layer is adequate for most applications [29, 86]. The number of hidden

units is variable and affects the generalization performance of the network [54, 59].

The choice depends on a number of factors such as the number of training examples

and the complexity of the classification task that the network is trying to learn. If the

number of hidden units is too small, the network will not have enough power to learn

from the training data (i.e. underfitting) and will likely produce high training error and

high generalization error. However, if the number of hidden units is too large, the

network will tend to memorize the training data (i.e. overfitting) and produce low

training error but high generalization error. For most problems, there is only one way

to find the best number of hidden units: try many networks with different number of

hidden units and find the best network [5, 40, 80].

Each unit is connected with other units by means of communication links, each with

an associated weight. The weights may be positive or negative [29, 86]. Typically,

each hidden unit is connected with all the input units, and each output unit is

connected with all the hidden units. This is known as a fully connected neural

network.

2.9 Summary

This chapter summarizes related work by other researchers. A number of keyphrase

extraction algorithms have been reviewed. In addition, we have discussed IR, IE and

summarization, and compared their differences. The text processing techniques used

in KE (i.e. stemming and part-of-speech tagging) and the learning method used to

tune KE (i.e. neural networks) have also been introduced. The next chapter will

describe the KE algorithm.

 60

CHAPTER THREE

3 The KE Algorithm

3.1 Overview

This chapter describes the KE algorithm. KE is based on GenEx and Kea, but differs

from them in several ways: it uses a combination of statistical and text processing

techniques, a different set of attributes, and a different machine learning method to

extract keyphrases from documents. For details of the differences between KE,

GenEx and Kea, see Section 3.5. Part-of-speech tagging, which is a useful text

processing technique, has been used to select only adjectives, verbs, nouns, and noun

phrases as candidate phrases. Five attributes have been found useful for keyphrase

extraction in our experiments and are used in KE: TF×IDF, position, title, proper

noun and number of terms. Descriptions of these attributes can be found in Section

1.3. This chapter is mostly concerned with the description of KE. We explain in detail

how KE works using pseudocode. The training of KE using a neural network is also

discussed. After training, KE can be used to extract keyphrases from new documents.

Section 3.2 gives an overview of KE. A high-level description of KE using

pseudocode is provided in Section 3.3. Section 3.4 discusses how KE is trained and

why attributes evaluated in our experiments have to be normalized and how this is

done. Section 3.5 compares KE with GenEx and Kea. Section 3.6 concludes this

chapter.

 61

3.2 Overview of KE

When a user provides KE with a document, the title of the document and the desired

number of output keyphrases, the title is stemmed and the document is tagged and

stemmed. We use the iterated Lovins stemmer to stem the input title and the input

document (for efficiency purposes) and the output keyphrases (for evaluation

purposes), and Eric Brill’s part-of-speech tagger to tag the input document. The

iterated Lovins stemmer is chosen because 1) it has been used for stemming in GenEx

and Kea [34, 107] 2) aggressive stemming is better for keyphrase extraction than

conservative stemming [106-108]. Eric Brill’s part-of-speech tagger is selected

because it works as well as statistical taggers but it is simpler and requires less stored

information [9]. Please refer to Section 2.6 and Section 4.3.2 for further information

about the stemmer, and to Section 2.7 for the tagger. Unimportant words in the

document are filtered out by using the stopword list and selecting only adjectives,

verbs, nouns, and noun phrases as candidate phrases.

The resulting title and document are then used to identify keyphrases. There are seven

steps in KE (see the Gantt chart in Figure 3.1). These steps are discussed in detail

using pseudocode in Section 3.3. In addition, a formal description of these steps using

the Z notation is provided in the Appendix. Step 1 and 2 of the algorithm are

conceptually independent of Step 3 and 4, so they can be carried out at the same time

if adequate resources are available. Table 3.1 summarizes the input and output of each

step.

After going through the above steps, KE provides a list of keyphrases as output. A

phrase which is nearer the top of the list is more likely to be a keyphrase. No

keyphrase should appear more than once in the list and this is reinforced by Step 6 of

the algorithm. This is because identical keyphrases add no value to the summary

generated.

 62

7. Display Output

6. Drop Duplicates

Time

1. Select Words

2. Score Terms

3. Select Phrases

4. Score Term Phrases

5. Expand Terms

Step

Figure 3.1: Overview of the KE algorithm

Table 3.1: Input and output of each step in KE

Step Input Output

1. Select Words Input document List of words

2. Score Terms List of words (output of Step 1) List of terms ordered by the

scores calculated in this step

3. Select Phrases Input document List of phrases

4. Score Term

Phrases

List of phrases (output of Step 3) List of term phrases ordered

by the scores calculated in

this step

5. Expand Terms List of terms and list of term

phrases (output of Step 2 and 4)

List of term phrases ordered

by the scores calculated in

Step 2

6. Drop Duplicates List of term phrases (output of

Step 5)

List of term phrases

7. Display Output List of term phrases (output of

Step 6)

List of keyphrases

 63

As we will see, terms are used for ranking purposes (see Section 3.3.6). This is

because previous work suggests that it is generally preferable to represent documents

and measure the importance of each representation element using single terms rather

than term phrases [88]. Term phrases, on the other hand, are used for output purposes

(see Section 3.3.8). This is because documents are summarized by a set of phrases,

not words.

3.3 Description of KE

This section gives a high-level description of the KE algorithm using pseudocode.

Table 3.2 shows the variables used in the pseudocode described in the following sub-

sections. The meaning of these variables will become clear as the algorithm is

described.

Table 3.2: Variables used in the pseudocode for KE

Variable Description

lcp List of phrases corresponding to the term phrases in lutp

lctp List of term phrases containing the terms in lt

lk List of keyphrases

lltp List of term phrases linked to the terms in lt

lp List of phrases selected from the input document

ls List of stems generated from lw

lsp List of stem phrases generated from lp

lt List of terms generated from ls

ltp List of term phrases generated from lsp

lup List of unique phrases generated from lcp

lutp List of unique term phrases generated from lltp

lw List of words selected from the input document

sid Stemmed input document

sit Stemmed input title

tid Tagged input document

 64

3.3.1 Attributes

The selection of relevant attributes is probably the most important factor in

determining the effectiveness of a keyphrase extraction algorithm. If we do not select

relevant attributes (i.e. attributes which together convey enough information to make

learning tractable), any attempt to apply machine learning techniques is likely to fail.

This is why Witten and Frank [114] argue that the choice of a learning method is

usually much less important than coming up with a set of relevant attributes.

Many attributes have been considered, e.g. the frequency of a term, the length of a

document, the position of a term in the document, the number of characters in a term,

the number of occurrences of a term throughout the collection, etc (for details, see

Section 4.4.2). However, only five attributes have been found useful for keyphrase

extraction in our experiments: TF×IDF, position, title, proper noun, and number of

terms (for details, see Section 4.4). Please refer to Section 1.3 for the definitions of

these attributes.

In KE, a document is represented by a set of terms and a set of term phrases. Terms

are characterized by four attributes: TF×IDF, position, title, and proper noun.

Number of terms is not appropriate because it is always one when it comes to single

terms and thus fails to discriminate between different terms. Term phrases are also

characterized by four attributes: TF×IDF, position, title, and number of terms. Proper

noun is not included because preliminary results show that the additional utilization of

this attribute does not make much improvement on the performance of KE9.

We have implemented and tested different combinations of TF×IDF. The standard TF

and Kea’s IDF have been found to give the best performance (for details, see Section

4.4.4), so they are used to define TF and IDF respectively.

9 A proper noun phrase was defined as a phrase containing at most three consecutive proper nouns.

 65

3.3.2 Selecting Words

Step 1 involves the selection of all the words which have been tagged as adjective,

verb and noun, and are not included in the stopword list.

As mentioned in Section 2.7, there are 36 part-of-speech tags in the Penn Treebank

tagset. Nevertheless, we are only interested in adjectives (JJ, JJR, JJS), verbs (VB,

VBD, VBG, VBN, VBP, VBZ) and nouns (NN, NNS, NNP, NNPS) (see Table 3.3).

Table 3.3: Tags used in KE

JJ Adjective VB Verb, base form

JJR Comparative adjective VBD Verb, past tense

JJS Superlative adjective VBG Verb, gerund/ present participle

NN Noun, singular or mass VBN Verb, past participle

NNS Noun, plural VBP Verb, non-3s, present

NNP Proper noun, singular VBZ Verb, 3s, present

NNPS Proper noun, plural

A stopword list contains words with high frequency and little semantic value (for

details, see Section 1.3.1). The stopword list used in KE contains 17 common verbs,

which are basically the various forms of ‘be’, ‘do’, and ‘have’: ‘be’, ‘were’, ‘was’,

‘being’, ‘am’, ‘been’, ‘are’, ‘is’, ‘do’, ‘did’, ‘doing’, ‘done’, ‘does’, ‘have’, ‘had’,

‘having’, and ‘has’.

It is unlikely that adjectives and verbs will be output, but they are still being

considered. They help to boost the score of their noun form (provided their stems are

the same as the noun’s) and therefore increase the likelihood that it will be output.

Suppose that the input document contains ‘compute’, ‘computation’, and

‘computational’. Even though it is unlikely that ‘compute’ and ‘computational’ will

be output, they help to boost the score of the stem ‘comput’, and therefore increase

the likelihood that ‘computation’ will be output.

 66

Here is the pseudocode for this step:

Step: Select Words

Input: Tagged input document, tid

Output: List of words, lw

Method:

1 FOR each word w in tid

2 IF the part-of-speech of w is adjective, verb or noun

3 IF w is not in the stopword list

4 Add w to lw

5 END IF

6 END IF

7 END FOR

The variable w in the ‘FOR each’ loop takes on a new value from tid for each

iteration. The first time through the loop, it is the first word in tid; the second time, it

is the second word in tid; the last time, it is the last word in tid.

3.3.3 Scoring Terms

Step 2 involves six closely related tasks:

1. Stem the selected words

2. Detect equivalent stems

3. Delete terms that occur only once in the document

4. Calculate the TF×IDF (using the standard TF and Kea’s IDF), position, title

and proper noun of each term

5. Assign a score to each term based on these attributes

6. Sort the terms in descending order of score (if two terms have the same score,

they are ranked in ascending order of position)

 67

Multiple occurrences of a given stem (i.e. words with the same stem) are combined

into a single term in Task 2. For example, ‘mathematics’ and ‘mathematician’ are

combined into ‘mathemat’ if they occur in the input document (see Figure 3.2).

Stem Set Term Set

mathematmathemat
mathemat

...
...

Word Set

mathematics
mathematician

...

Figure 3.2: Detecting equivalent stems

We noticed in our experiments that some terms had the same score. Therefore, we

tried to sort these terms according to their attribute values, such as TF×IDF and

position. The experiments show that KE gives better performance results if two terms

having the same score are ranked in ascending order of position. Terms with smaller

position values are preferred because their first appearance in the document precedes

that of terms with larger position values.

Here is the pseudocode for this step:

Step: Score Terms

Input: List of words, lw

Output: List of terms, lt, ordered by the scores calculated in this

step

Method:

1 // Get a list of stems

2 FOR each word w in lw

3 Add the stem of w to ls

4 END FOR

5

6 // Get a list of unique stems

7 FOR each stem s in ls

8 IF s is not in lt

9 Add s to lt

10 END IF

11 END FOR

12

13 // Calculate TF

14 FOR each term t in lt

15 Set TF to the number of occurrences of t in sid

 68

16 END FOR

17

18 // Delete terms that occur only once

19 FOR each term t in lt

20 IF the TF of t is 1

21 Remove t from lt

22 END IF

23 END FOR

24

25 // Calculate IDF, position, title, proper noun, and score

26 FOR each term t in lt

27

28 // Calculate IDF

29 Set n to the number of documents in the collection that

contain t (excluding the input document)

30 Set IDF to -log(n+1)

31

32 // Calculate position

33 Set position to the number of stems before the first

appearance of t in sid

34

35 // Calculate title

36 IF t occurs in sit

37 Set title to 1

38 ELSE

39 Set title to 0

40 END IF

41

42 // Calculate proper noun

43 IF the part-of-speech of t is proper noun

44 Set proper noun to 1

45 ELSE

46 Set proper noun to 0

47 END IF

48

49 // Calculate score

50 Calculate the score of t based on TF×IDF, position, title,

and proper noun

51

52 END FOR

53

54 // Sort the terms

55 Rank the terms in lt in descending order of score

56 IF two terms have the same score

57 Rank these terms in ascending order of position

58 END IF

 69

The code from line 1 to 4 deals with Task 1, line 6 to 11 deals with Task 2, line 13 to

23 deals with Task 3, line 28 to 47 deals with Task 4, line 49 to 50 deals with Task 5,

and line 54 to 58 deals with Task 6. The ‘END FOR’ in line 52 corresponds to the

‘FOR’ in line 26.

3.3.4 Selecting Phrases

Step 3 involves the selection of all the noun phrases in the document. Like KE,

D’Avanzo et al. [26, 27] use a part-of-speech tagger to select candidate phrases in the

LAKE algorithm (see Section 2.2.3): candidate phrases are selected if they match one

of the many manually predefined linguistics-based patterns, e.g. adjective + noun, and

noun + verb + adjective + noun (the symbol ‘+’ denotes ‘followed by’). Nevertheless,

we believe this could be simplified by selecting only noun phrases from the

document. This is because almost all the keyphrases are noun phrases and they

normally contain less than four words and match the following pattern [108]:

 (NN | NNS | NNP | NNPS | JJ)0..2 (NN | NNS | NNP | NNPS | VBG)

This pattern means zero, one or two nouns or adjectives (NN | NNS | NNP | NNPS |

JJ) followed by a noun or a gerund (NN | NNS | NNP | NNPS | VBG).

A two-word phrase that matches the above pattern has at most three candidates. For

example, 1) prime (JJ) number (NN) has two: number and prime number, 2)

important (JJ) algorithm (NN) has two: algorithm and important algorithm, 3)

decision (NN) making (VBG) has three: decision, making and decision making.

A three-word phrase that matches the above pattern has at most six candidates. For

example, 1) large (JJ) prime (JJ) numbers (NNS) has three: numbers, prime numbers

and large prime numbers, 2) integer (NN) factorization (NN) algorithm (NN) has six:

integer, factorization, algorithm, integer factorization, factorization algorithm and

integer factorization algorithm.

 70

Here is the pseudocode for this step:

Step: Select Phrases

Input: Tagged input document, tid

Output: List of phrases, lp

Method:

1 FOR each word w in tid

2 IF the part-of-speech of w is noun or gerund

3 Add w to lp

4 Set v to the word right before w

5 IF the part-of-speech of v is adjective or noun

6 Add v followed by w to lp

7 Set u to the word right before v

8 IF the part-of-speech of u is adjective or noun

9 Add u followed by v followed by w to lp

10 END IF

11 END IF

12 END IF

13 END FOR

3.3.5 Scoring Term Phrases

Similar to Step 2, Step 4 involves six closely related tasks:

1. Stem the selected phrases

2. Detect equivalent stem phrases

3. Delete term phrases that occur only once in the document

4. Calculate the TF×IDF (using the standard TF and Kea’s IDF), position, title,

and number of terms of each term phrase

5. Assign a score to each term phrase based on these attributes

6. Sort the term phrases in descending order of score (if two term phrases have

the same score, they are ranked in ascending order of position followed by

descending order of number of terms)

 71

This step is very similar to Step 2, so readers could see Section 3.3.3 for reference.

We noticed in our experiments that some term phrases had the same score. Therefore,

we tried to sort these term phrases according to their attribute values such as TF×IDF,

position and number of terms. The experiments show that KE gives better

performance results if two term phrases having the same score are ranked in

ascending order of position followed by descending order of number of terms. Term

phrases with smaller position values are preferred because their first appearance in the

document precedes that of term phrases with larger position values. Longer term

phrases are preferred because they generally provide more information than shorter

term phrases.

Here is the pseudocode for this step:

Step: Score Term Phrases

Input: List of phrases, lp

Output: List of term phrases, ltp, ordered by the scores calculated

in this step

Method:

1 // Get a list of stem phrases

2 FOR each phrase p in lp

3 Add the stem of p to lsp

4 END FOR

5

6 // Get a list of unique stem phrases

7 FOR each stem phrase sp in lsp

8 IF sp is not in ltp

9 Add sp to ltp

10 END IF

11 END FOR

12

13 // Calculate TF

14 FOR each term phrase tp in ltp

15 Set TF to the number of occurrences of tp in sid

16 END FOR

17

18 // Delete term phrases that occur only once

19 FOR each term phrase tp in ltp

20 IF the TF of tp is 1

 72

21 Remove tp from ltp

22 END IF

23 END FOR

24

25 // Calculate IDF, position, title, number of terms, and

score

26 FOR each term phrase tp in ltp

27

28 // Calculate IDF

29 Set n to the number of documents in the collection that

contain tp (excluding the input document)

30 Set IDF to -log(n+1)

31

32 // Calculate position

33 Set position to the number of stems before the first

appearance of tp in sid

34

35 // Calculate title

36 IF tp occurs in sit

37 Set title to 1

38 ELSE

39 Set title to 0

40 END IF

41

42 // Calculate number of terms

43 Set number of terms to the number of terms in tp

44

45 // Calculate score

46 Calculate the score of tp based on TF×IDF, position,

title, and number of terms

47

48 END FOR

49

50 // Sort the term phrases

51 Rank the term phrases in ltp in descending order of score

52 IF two term phrases have the same score

53 Rank these term phrases in ascending order of position

54 IF two term phrases have the same position

55 Rank these term phrases in descending order of number of

terms

56 END IF

57 END IF

 73

The code from line 1 to 4 deals with Task 1, line 6 to 11 deals with Task 2, line 13 to

23 deals with Task 3, line 28 to 43 deals with Task 4, line 45 to 46 deals with Task 5,

and line 50 to 57 deals with Task 6. The ‘END FOR’ in line 48 corresponds to the

‘FOR’ in line 26.

Because of the way how position is calculated (see line 33), it is possible that two

term phrases have the same position value. This is why line 54 to 56 is needed.

Suppose that there are 10 stems before the first appearance of the term phrase ‘integer

fact algorithm’. Some of the candidate phrases from this term phrase (i.e. integer,

integer fact, and integer fact algorithm) have the same position value (i.e. 10).

3.3.6 Expanding Terms

Step 5 involves expanding single terms to term phrases. For each term, find all the

term phrases that contain the term, and link it with the highest scoring term phrase.

The result is a list of term phrases ordered by the scores calculated in Step 2.

This step ensures that no term links to more than one term phrase and uses the scores

calculated in Step 2 to rank the output list of this step. The scores calculated in Step 4,

on the other hand, may be discarded after this step. They are only useful for

expanding single terms to term phrases, but are not useful for ranking the output list.

Suppose that the term phrase ‘integer fact algorithm’ and ‘fact’ appear in the first and

second position of the term phrase set respectively. The term ‘fact’ (stem of

‘factorization’) will link to ‘integer fact algorithm’ instead of ‘fact’ (see Figure 3.3).

Term Set Term Phrase Set

integer fact algorithm
fact

fact
algorithm

... ...

Figure 3.3: Expanding terms to term phrases

 74

Here is the pseudocode for this step:

Step: Expand Terms

Input: List of terms, lt, and list of term phrases, ltp

Output: List of term phrases, lltp, ordered by the scores

calculated in Step 2

Method:

1 FOR each term t in lt

2 FOR each term phrase tp in ltp

3 IF tp contains t

4 Add tp to lctp

5 END IF

6 END FOR

7 Add the highest scoring term phrase in lctp to lltp

8 END FOR

3.3.7 Dropping Duplicates

Step 6 involves the elimination of duplicates from the list of term phrases. More than

one term may link to the same term phrase (i.e. there may be converging arrows in the

graph). If that is the case, the term phrase will be linked to the highest scoring term.

If there is more than one term linking to the same term phrase, that term phrase will

appear more than once in the list of term phrases. If that is the case, we can simply

keep the first appearance of that term phrase (because it is linked to the highest

scoring term) and remove the rest from the list.

Suppose that the term ‘fact’ (appears in the first position of the term set) and

‘algorithm’ (appears in the second position) are expanded to the term phrase ‘integer

fact algorithm’. ‘Fact’ instead of ‘algorithm’ will link to ‘integer fact algorithm’ (see

Figure 3.4).

 75

Term Set Term Phrase Set

integer fact algorithm
fact

fact
algorithm

... ...

Figure 3.4: Deleting duplicate term phrases

Here is the pseudocode for this step:

Step: Drop Duplicate

Input: List of term phrases, lltp

Output: List of term phrases, lutp

Method:

1 FOR each term phrase tp in lltp

2 IF tp is not in lutp

3 Add tp to lutp

4 END IF

5 END FOR

3.3.8 Displaying Output

Step 7 involves two closely related tasks:

1. Identify the most frequent corresponding phrase in the input document for

each of the term phrases. If a term phrase is linked to more than one phrase,

the most frequent phrase will be chosen.

2. Delete subphrases if they do not perform better than their superphrases. If

phrase P1 occurs within phrase P2, P1 is a subphrase of P2 and P2 is a

superphrase of P1. If a phrase is a subphrase of another phrase, it will only be

accepted as a keyphrase if it is ranked higher; otherwise, it will be deleted

from the output list.

 76

Suppose that the term phrase ‘mathemat’ is linked to ‘mathematics’ (appears twice in

the input document) and ‘mathematician’ (appears once). ‘Mathematics’ instead of

‘mathematician’ will be chosen for output (see Figure 3.5).

Phrase Set Term Phrase Set

mathemat

...

mathematics
mathematics

mathematician
...

Figure 3.5: Identifying the most frequent phrases

Preliminary results suggest that the performance of KE can be boosted by performing

some sort of post-processing on the output list before it is shown to the user. Some

keyphrases could be redundant; similar keyphrases diminish the value of the summary

generated. Therefore, Task 2 has been incorporated into our algorithm.

Suppose that the phrase ‘integer factorization algorithm’ appears in the first position

of the output list and ‘factorization’ appears in the second position, ‘factorization’ will

be removed because it is a subphrase of ‘integer factorization algorithm’ and is ranked

lower (see Figure 3.6).

Output List

integer factorization algorithm
factorization

...

Figure 3.6: Deleting inferior subphrases

Here is the pseudocode for this step:

Step: Display Output

Input: List of term phrases, lutp

Output: List of keyphrases, lk

Method:

 77

1 // Get the most frequent corresponding phrase

2 FOR each term phrase tp in lutp

3

4 // Get a list of corresponding phrases

5 FOR each phrase p in lp

6 IF the stem of p is the same as tp

7 Add p to lcp

8 END IF

9 END FOR

10

11 // Get a list of unique phrases

12 FOR each phrase p in lcp

13 IF p is not in lup

14 Add p to lup

15 END IF

16 END FOR

17

18 // Get phrase frequency

19 FOR each phrase p in lup

20 Set PF to the number of occurrences of p in the input

document

21 END FOR

22 Add the phrase with the highest PF to lk

23

24 END FOR

25

26 // Delete subphrases

27 FOR each phrase p in lk

28 FOR each phrase q in the part of lk that follows p

29 IF p contains q

30 Remove q from lk

31 END IF

32 END FOR

33 END FOR

The code from line 1 to 24 deals with Task 1, and line 26 to 33 deals with Task 2. The

‘END FOR’ in line 24 corresponds to the ‘FOR’ in line 2.

 78

3.4 Training of KE

Keyphrase extraction is a classification problem: a document could be seen as a set of

phrases, and a keyphrase extraction algorithm should correctly classify a phrase as a

keyphrase or a non-keyphrase. We approach this problem from the perspective of

machine learning, and treat it as a supervised learning task [29]. A collection of

documents is used in our experiments. It is divided into two sets: training documents

and testing documents. These two sets are disjoint. For details of these sets of

documents, see Section 4.2. The training documents are used to tune KE. Each

document consists of a set of keyphrase and non-keyphrase examples, and each

example consists of a set of input values and the corresponding target output value.

The testing documents are used to evaluate the generalization performance of the

tuned KE.

The set of terms (i.e. output of Step 2) and the set of term phrases (i.e. output of Step

4) were tuned separately by a back-propagation neural network. The resulting sets

were then combined to perform Step 5, 6 and 7 of the KE algorithm. After training,

KE can be used to extract keyphrases from new documents. For details of the training

results of KE, see Section 4.4.1. Neural networks are used because they are good at

recognizing patterns and we do not have to understand how the input values are

mapped to the target output values due to the networks’ black box feature [6, 83, 86].

They have also proved useful in some IR projects [48, 113, 119]. For details of neural

networks, see Section 2.8. Standard back-propagation techniques have been used to

tune KE. We use the sigmoid function (or logistic function) as the activation function

and the total squared error to calculate the associated error. We also use the

momentum term, which is a common variation of the back-propagation algorithm, to

speed up the training process. For details of these techniques, see [13, 29, 86].

 79

To minimize the risk of overfitting, we use the cross-validation method [43] to

estimate the appropriate point to stop training. Rumelhart et al. [86] argue that this

method is reasonably powerful and simple, and often gives good results. It also has

the advantage of drastically reducing the training time [25]. The set of training

documents for KE is further divided into two sets: one used for training and the other

used for cross-validation. These two sets are disjoint. For details of these sets of

documents, see Section 4.2. Weights in the neural network are adjusted using the

training set, but the error is computed using the validation set. In other words, the

performance of the network is evaluated on the validation set. As long as the error for

the validation set decreases (i.e. the network continues to improve on the validation

set), the training continues. When the error begins to increase (i.e. the network begins

to show poorer performance on the validation set), which is the point where

overfitting occurs, the training stops. In short, overfitting is avoided in KE by

stopping the training when the minimum of the validation set error is reached [29, 38,

72, 86].

The term set and the term phrase set are implemented as a vector of terms and a

vector of term phrases during the implementation of KE. When KE is trained, a term

phrase vector (or term vector) is used as an input vector of the neural network. Table

3.4 shows several elements in a term phrase vector representing a training document.

The TF×IDF values are negative because Kea’s IDF is used. For details of Kea’s

IDF, see Section 2.2.2. The reason why some TF×IDF values are zero is that these

term phrases only occur in the document which contains them and do not occur in any

other documents in the training corpus (i.e. IDF is 0).

 80

Table 3.4: Elements in an input vector

Phrase utility scores services conjoint analysis

Term Phrase util scor serv conjoint an

TF×IDF -0.000 -89.126 -0.000

Position 0.179 0.001 0.000

Title 0.000 0.000 1.000

Number of Terms 2.000 1.000 2.000

We also need another vector which contains an attribute indicating if a term phrase (or

a term) is a keyphrase, and use this vector as a target output vector during the training

of KE. If a term phrase is a keyphrase (or if a term occurs in a keyphrase), the

attribute is set to 1; otherwise, it is set to 0. Table 3.5 shows a target output vector

which corresponds to the input vector in Table 3.4.

Table 3.5: Elements in a target output vector

Phrase utility scores services conjoint analysis

Term Phrase util scor serv conjoint an

Flag for Keyphrase 1.000 0.000 1.000

Each training document consists of a set of keyphrase and non-keyphrase examples,

and each example consists of a set of input values and the corresponding target output

value. In KE, each training example consists of four input values and one target

output value. Table 3.6 shows some examples used to train KE.

 81

Table 3.6: Training examples

Phrase utility scores services conjoint analysis

Term Phrase util scor serv conjoint an

TF×IDF -0.000 -89.126 -0.000

Position 0.179 0.001 0.000

Title 0.000 0.000 1.000

Number of Terms 2.000 1.000 2.000

Flag for Keyphrase 1.000 0.000 1.000

Different attributes in KE are measured on different scales (see Table 3.6). If they are

directly used by the network, the effect of some attributes (e.g. title) might be

completely dwarfed by attributes which have larger scales of measurement (e.g.

TF×IDF). Therefore, it is common to normalize all the attribute values to lie in a

fixed range, such as from 0 to 1. Normalization is particularly useful for classification

algorithms involving neural networks. If the neural network back-propagation

algorithm is used, normalizing the input values of each attribute will help to speed up

the learning process [40].

If the maximum and minimum values are known, we could use the linear scaling

function (or min-max normalization) to squash the input value into the 0-1 range. This

function is used in KE because of its simplicity. The normalized value of the attribute

a is calculated by [81, 114]:

Normalized a =
minmax

mina
−

− (3.1)

where max and min are the maximum and minimum values in the vector that contains

a respectively.

 82

The linear scaling function works well if the maximum and minimum values are

known. The range of the sample is always known, but the maximum and minimum

values of the population may not be known sometimes. If the linear scaling function is

used, values outside the sample range will be transformed into numbers that fall

outside the 0-1 range. To solve this problem, the logistic function could be used [81].

The normalized value of the attribute a is given by:

Normalized a = ae−+1
1 (3.2)

All the five attributes used in KE have been normalized by the linear scaling function.

We have also evaluated other attributes in our experiments (see Section 4.4.2 for

details). Some of them (such as document length) have been normalized by the

logistic function. This is because the input document could be of any length, i.e. the

maximum and minimum values of this attribute are unknown, and therefore the

normalized value could fall outside the 0-1 range (if the linear scaling function is

used).

3.5 Comparison with GenEx and Kea

KE is based on GenEx and Kea, but differs from them in several ways. For details of

GenEx and Kea, see Section 2.2.1 and Section 2.2.2 respectively.

• Purely statistical methods are used in GenEx and Kea. KE, however, uses a

combination of statistical and text processing techniques for keyphrase

extraction. Part-of-speech tagging has been used to improve the quality of

candidate phrases. Better quality data (i.e. better quality candidate phrases)

often lead to better performance results [40, 114]. Only adjectives, verbs,

nouns and noun phrases are selected as candidate phrases.

 83

• KE uses a different set of attributes to discriminate between keyphrases and

non-keyphrases: TF×IDF, position, title, proper noun and number of terms.

Kea uses only two attributes: TF×IDF and distance. GenEx, on the other hand,

uses many more attributes, but it does not use TF×IDF and title.

• KE uses a different machine learning algorithm; it is tuned by a neural

network. GenEx is tuned by a genetic algorithm, while Kea is based on the

naïve Bayes learning technique.

• KE is a different model; it consists of seven steps, and takes both words and

phrases as candidate phrases. Kea is a simple model; it only selects phrases as

candidate phrases, so it does not involve any linking between words and

phrases. GenEx is more complicated; it consists of ten steps, considers both

words and phrases, and involves many post-processing tasks.

The experimental results summarized in Table 4.17 (see Section 4.4.5) suggest that

these differences make KE a better algorithm than either GexEx or Kea.

3.6 Summary

This chapter describes the KE algorithm. The algorithm has been described using

pseudocode and explained with examples and informal English descriptions. In

addition, we have introduced the training of KE and the normalization of different

attributes evaluated in our experiments. The differences between KE, GenEx and Kea

have also been discussed. The next chapter will present the experimental results

relevant to KE.

 84

CHAPTER FOUR

4 Extraction of Keyphrases from

English Documents

4.1 Overview

This chapter presents the experimental results relevant to the KE algorithm. Testing

has been carried out to validate and evaluate KE. KE has been tested on two different

corpora. The first corpus is the same as the one used in GenEx and Kea, and it has

been used to train and test KE in all our experiments (except the one discussed in

Section 4.4.7). The criteria used for evaluating the output keyphrases are also the

same as in GenEx and Kea, so direct comparison is possible. The second corpus is

different and larger than the first one, and it has been used to test the generalization

performance of KE. The evaluation criteria used for this corpus are the same as for the

first corpus. We have evaluated the individual performance of different attributes and

the performance of different combinations of attributes. The experiments suggest that

position gives the best individual performance and that the best combination of

attributes involves TF×IDF, position, title, proper noun and number of terms. In

addition, we have compared different combinations of TF×IDF, and found that the

standard TF and Kea’s IDF gives the best performance. The experiments also indicate

that KE performs better than other keyphrase extraction tools, including GenEx and

Kea, and that it significantly outperforms Microsoft Word 2000’s AutoSummarize

feature. We have tried using the C4.5 decision tree learning method to tune KE, but

the experiments show that neural networks are better for keyphrase extraction than

this method. The domain independence of KE has also been confirmed in our

experiments using the second corpus.

 85

Section 4.2 introduces the corpus used to train and test KE. The criteria used for

evaluating the output keyphrases are discussed in Section 4.3. Section 4.4 compares

the individual performance of different attributes, the performance of different

combinations of attributes and TF×IDF, the performance of different keyphrase

extraction tools, and the performance of KE on different learning methods and

different corpora. Section 4.5 discusses the performance results. Section 4.6 concludes

this chapter.

4.2 Main Corpus

Turney [106, 107] uses five different corpora to train and test the GenEx algorithm

(for details of GenEx, see Section 2.2.1). The five corpora are Journal Articles, Email

Messages, Aliweb Web Pages, NASA Web Pages, and FIPS Web Pages. The links to

these corpora (except for Email Messages) are provided in [107]. Frank et al. [34] use

almost the same corpora to train and test the Kea algorithm (for details of Kea, see

Section 2.2.2). Email Messages was the only corpus they could not access because it

contained confidential messages. However, because of the ephemeral nature of the

Web, most of these corpora are no longer available. Journal Articles is the only corpus

we have access to (http://www.apperceptual.com/downloads/journals.zip).

A number of recent keyphrase extraction algorithms have been discussed in Section

2.2. However, these algorithms use different corpora (from the one used in GenEx and

Kea) and the aim of some of these algorithms is different from ours, so we did not use

those corpora in our experiments (for details, see Section 2.2). In addition, KE is

based on GenEx and Kea, so it is better to use the same corpus (as the one used in

these algorithms) so that our experimental results can be directly compared with

theirs. We therefore use the Journal Articles corpus to train and test the KE algorithm.

Because of the nature of this corpus, we believe it is possible to improve the

performance of KE by removing common words used in academic writing (e.g.

chapter, paper, etc) and using indicator phrases to ignore words that occur in specific

sections (e.g. References). However, we decided not to do this because we want KE to

be domain-independent.

 86

The Journal Articles corpus contains 75 articles selected from five different journals.

Three of these journals are about cognition, one is about hotel industry, and one is

about chemistry. Please see Table 4.1 for the sources of the Journal Articles corpus.

All these articles contain keyphrases supplied by the authors.

Table 4.1: Sources of the Main Corpus

Journal Name Field Number of

Documents

Psycoloquy Cognition 20

The Neuroscientist Cognition 2

Behavioural and Brain Sciences Preprint Achieve Cognition 33

Journal of the International Academy of Hospitality

Research

Hotel industry 6

Journal of Computer-Aided Molecular Design Chemistry 14

Psycoloquy has been used to test KE and the remaining journals have been used for

training and cross-validation. Psycoloquy makes up about 25% of the corpus and the

other journals make up the remaining 75%. Also, we would like to test the ability of

KE to generalize across journals (i.e. domain independence), so it is best if the testing

set does not contain any journal article from the training set10.

Table 4.2 shows that most of the documents in the training set are much longer than

those in the testing set.

Table 4.2: Number of words per document (Main Corpus)

Corpus Average Range Standard Deviation

Training 13120.00 3150.00-33575.00 7747.47

Testing 4350.20 1010.00-12449.00 2725.50

10 Five documents have been randomly selected from the training set to form the validation set.

 87

Table 4.3 shows that most of the documents contain seven to eight keyphrases.

Table 4.3: Number of keyphrases per document (Main Corpus)

Corpus Average Range Standard Deviation

Training 7.13 3.00-12.00 2.58

Testing 8.35 4.00-17.00 3.12

Table 4.4 shows that most of the keyphrases contain one to two words. Keyphrases

often contain only characters and rarely contain numbers. Only two out of 75

documents provide keyphrases containing numbers. Both of these documents are

concerned with 3-D (three dimensions).

Table 4.4: Number of words per keyphrase (Main Corpus)

Corpus Average Range Standard Deviation

Training 1.75 1.13-2.60 0.37

Testing 1.53 1.08-2.43 0.31

Table 4.5 shows that about 80% of the keyphrases can be found in the document.

Keyphrases and documents have been stemmed before they are compared (for details,

see Section 4.3).

Table 4.5: Percentage of keyphrases found in the document (Main Corpus)

Corpus Average Range Standard Deviation

Training 0.84 0.44-1.00 0.17

Testing 0.78 0.50-1.00 0.16

 88

Table 4.6 confirms that titles are a good source of high quality keyphrases.

Table 4.6: Number of keyphrases found in the title (Main Corpus)

Corpus Average Range Standard Deviation

Training 1.00 0.00-3.00 0.98

Testing 1.00 0.00-3.00 0.97

4.3 Evaluation

This section discusses the criteria, the stemming algorithm, and the performance

measures used for assessing the quality of the output keyphrases.

4.3.1 Criteria

We need some ways to assess the ability of KE to extract keyphrases and reject non-

keyphrases. Asking human assessors to evaluate machine-extracted keyphrases seems

the most direct way, but this is costly. It is more common to compare machine-

extracted keyphrases with author-assigned keyphrases. Jones and Paynter [50, 51]

argue that authors do provide good quality keyphrases, so it is reasonable to use them

as a standard of comparison for evaluating machine-extracted keyphrases. They also

suggest that author-assigned keyphrases are listed with the most important keyphrases

first, which might have some implications when author-assigned keyphrases are used

to measure keyphrase quality.

 89

If the author suggests that ‘concepts’ is a keyphrase and the computer provides

‘concept’ as an output keyphrase, they should be considered the same. On the other

hand, ‘thinking’ should be considered different from ‘analogical thinking’, and

‘hominid evolution’ should be considered different from ‘evolution’. A machine-

extracted keyphrase is said to be correct if its stem matches the stem of an author-

assigned keyphrase. Abbreviations are therefore considered different from their

complete form, e.g. ‘EEG’ is not the same as ‘electroencephalogram’. The word order

in keyphrases is also important, e.g. ‘data archiving’ is different from ‘archiving data’.

However, keyphrases with and without a hyphen (-) or a slash (/) should be

considered the same, e.g. ‘tactile-kinesthetic body’ is the same as ‘tactile kinesthetic

body’. Table 4.7 shows an example of the keyphrases extracted by KE. Keyphrases

which match their corresponding author-assigned keyphrases according to the iterated

Lovins stemmer are said to be correct and are in bold type.

Table 4.7: Examples of correct and incorrect keyphrases

Title Precis of: The Roots of Thinking

Author-assigned Keyphrases Analogical thinking, animate form, concepts,

evolution, tactile-kinesthetic body

Machine-extracted

Keyphrases (Top 5)

Thinking, concept, tactile kinesthetic body,

hominid evolution, thesis

 90

4.3.2 Stemming

Stemming plays an important role in determining if a machine-extracted keyphrase is

correct. Many stemming algorithms have been proposed. The Porter and the Lovins

algorithms are the two most common ones developed for English documents [46, 56].

Further details of the Porter and the Lovins algorithms can be found in Section 2.6.

Table 4.8 shows some examples of the behaviour of different stemming algorithms.

These examples are from [108]. The Lovins stemmer correctly recognizes that

‘science’ and ‘scientist’ have the same stem, but the Porter considers them different.

On the other hand, the Lovins stemmer incorrectly maps ‘police’ and ‘policy’ to the

same stem (i.e. over-stemming error), but the Porter correctly recognizes them as

different words.

The iterated Lovins stemmer has been used to evaluate the performance of KE.

Further details of this stemmer can be found in Section 2.6.3. The iterated Lovins

stemmer correctly recognizes that ‘science’ and ‘scientist’ have the same stem, but

incorrectly maps ‘police’ and ‘policy’ to ‘pol’ (see Table 4.8). It also fails to

recognize that ‘assemblies’ and ‘assembly’ have the same stem (i.e. under-stemming

error) despite the fact that it is the most aggressive stemming algorithm among the

three.

 91

Table 4.8: Examples of the behaviour of different stemming algorithms [108]

Word Porter Stemmer Lovins Stemmer Iterated Lovins Stemmer

Science Scienc Sci Sc

Scientist Scientist Sci Sc

Police Polic Polic Pol

Policy Polici Polic Pol

Assemblies Assembli Assembl Assembl

Assembly Assembli Assemb Assemb

4.3.3 Recall and Precision

As mentioned in Section 1.3.12, recall and precision are the two most common

measures of retrieval performance. Recall is the proportion of the relevant documents

that are retrieved in a search, while precision is the proportion of the documents

retrieved in a search that are relevant [88, 95]. It makes sense to define recall and

precision using terms such as ‘relevant’, ‘documents’ and ‘retrieved’ because

information retrieval is about the retrieval of relevant documents. These terms,

however, are not applicable to the problem of keyphrase extraction because keyphrase

extraction is about the extraction of correct keyphrases. Therefore, we need to adapt

the standard definition of recall and precision.

Keyphrase extraction is a classification task. A phrase can be classified as a keyphrase

or a non-keyphrase by the author or the machine. The four possible cases could be

illustrated by a matrix [107] (see Table 4.9).

 92

Table 4.9: Matrix for keyphrase classification

 Classified as a keyphrase

by the author

Classified as a non-

keyphrase by the author

Classified as a keyphrase

by the machine

A B

Classified as a non-

keyphrase by the machine

C D

When recall and precision are used to evaluate keyphrase extraction algorithms, recall

is the proportion of correct keyphrases extracted, while precision is the proportion of

extracted keyphrases that are correct. For the problem of keyphrase extraction, recall

and precision are calculated by [107]:

 Recall =
CA

A
+

 (4.1)

 Precision =
BA

A
+

 (4.2)

4.4 Experimental Results

This section provides the training results, and compares the individual performance of

different attributes, the performance of different combinations of attributes and

TF×IDF, the performance of different keyphrase extraction tools, and the

performance of KE on different learning methods and different corpora.

 93

4.4.1 Training

KE has to be trained before it can be applied to new documents for keyphrase

extraction. The set of terms (i.e. output of Step 2) and the set of term phrases (i.e.

output of Step 4) were tuned separately by a fully connected 4-9-1 back-propagation

neural network (for details of neural networks, see Section 2.8). The resulting sets

were then combined to perform Step 5, 6 and 7 of the KE algorithm (for details of

KE, see Section 3.2). The number of input units and output units of a neural network

are constrained by training examples. Since each training example in KE consists of

four input values and one target output value (see Section 3.4), there are four input

units and one output unit. The number of hidden units and hidden layers, however, are

variable. The number of hidden units affects the generalization performance of a

neural network. We have tested different numbers of hidden units, and found that nine

hidden units give the best result. Also, it is possible to have more than one hidden

layer in a neural network, but one hidden layer is adequate for most applications. KE

has been tuned and tested on a neural network with two hidden layers, but the

experiments indicate that the difference between that and one hidden layer is small.

Therefore, only one hidden layer is used.

During training, the initial weights of the neural network used to tune KE were set to

random values ranged from –0.5 to +0.5. We have also tried different values of the

learning rate and the momentum term, and found that the network gives the best

performance when the learning rate is set to 0.1 and the momentum term to 0.5.

 94

The experiments also indicate that the term set often requires more training iterations

than the term phrase set. A training iteration (or epoch) involves all the documents in

the training set and the selection of 150 term phrases (and terms), including both

keyphrase and non-keyphrase examples (and keyword and non-keyword examples),

from each document. During training, the author-assigned keyphrases are used as

keyphrase examples, and phrases (other than those supplied by the author as

keyphrases) are randomly selected from the document as non-keyphrase examples.

The term set works in a similar way, except that the author-assigned keyphrases are

tokenized (using white spaces), and the resulting words are used as keyword

examples, and words (other than those in the author-assigned keyphrases) are

randomly selected as non-keyword examples. Please refer to Section 3.4 for further

information about when to stop training.

4.4.2 Different Attributes

We have evaluated a number of attributes in our experiments: six of them have been

discussed in Section 1.3, and the remaining attributes will be discussed in this section

(these attributes are not introduced earlier because they are used only in this chapter

and, as we will see later in this section, the experiments show that they are not useful

for keyphrase extraction).

Six attributes have been discussed so far: TF×IDF, position, title, proper noun,

number of terms, and document length. For details of these attributes, see Section 1.3.

In addition to these attributes, seven attributes (i.e. inverse term frequency, number of

characters, average paragraph length, average paragraph position, average sentence

length, average sentence position, and topic sentence) have been evaluated in our

experiments. Their definitions are as follows:

 95

• The attribute inverse term frequency (ITF) is the rarity of a term across the

collection. It is similar to IDF, but is defined differently. The ITF of a term T

in a document D is given by:

 ITF =
collectiont throughou of soccurrence of no.

in of soccurrence of no.
T

DT (4.3)

• The attribute number of characters is the number of characters in a term.

• The attribute average paragraph length (APL) is the average number of words

in the paragraphs that contain a term. The APL of a term T in a document D is

calculated by:

 APL =
DT

T
in ofsoccurrenceofno.

contain that paragraphsin wordsof no. (4.4)

• The attribute average paragraph position (APP) is the average position of the

paragraphs that contain a term. The APP of a term T in a document D is given

by:

 APP =
DT

T
in ofsoccurrenceofno.
contain that paragraphs ofposition (4.5)

• The attribute average sentence length (ASL) is the average number of words

in the sentences that contain a term. The ASL of a term T in a document D is

calculated by:

 ASL =
DT

T
in ofsoccurrenceofno.
contain that sentencesin wordsof no. (4.6)

 96

• The attribute average sentence position (ASP) is the average position of the

sentences that contain a term. The ASP of a term T in a document D is given

by:

 ASP =
DT

T
in ofsoccurrenceof no.

contain that sentences ofposition (4.7)

• The attribute topic sentence is a flag that indicates if a term occurs in the topic

sentences of a document. A topic sentence is usually the first sentence of a

paragraph and is intended to give readers an idea of what the paragraph is

going to be about. If a term occurs in the first sentence of a paragraph, topic

sentence is set to 1; otherwise, it is set to 0.

We have compared the individual performance of different attributes. Two attributes

(i.e. number of terms and document length) have not been evaluated in this

experiment. Recall that each element of the term set is associated with at most one

element of the term phrase set (for details, see Section 3.3.6). Since number of terms

is always one when it comes to single terms, the attribute (if used alone) cannot

discriminate between different terms. Therefore, we decided not to evaluate the

individual performance of this attribute. Similarly, document length is always the

same when it comes to terms and term phrases that are from the same document.

Since this attribute cannot discriminate between those terms and term phrases, we did

not compare its individual performance with that of other attributes.

Attributes are divided into three groups according to their individual performance

results. Group A consists of the attributes that give the best performance: TF×IDF,

position, and title. Group B consists of proper noun, ITF, and number of characters.

Group C consists of the attributes that give the worst performance: APL, APP, ASL,

ASP, and topic sentence.

 97

Table 4.10 shows the individual performance of TF×IDF (using the standard TF and

Kea’s IDF), position, and title. The experiments indicate that the performance of

position is more stable than that of TF×IDF. The average precision of position lies

between 0.21 and 0.25, while that of TF×IDF lies between 0.16 and 0.35. In addition,

there is a tendency for the average precision of TF×IDF to fall. The experiments also

show that the performance of position is always better than that of title. We conclude

that position is the best individual indicator of keyphrase extraction. This confirms the

findings by Edmundson [28] and Kupiec et al. [58] that location-based methods give

the best performance, though their work is concerned with sentence extraction and

they use a different set of attributes. For details of their work, see Section 2.5. Figure

4.1 shows the comparison of the individual performance of different attributes in

Group A with varying number of output keyphrases.

Table 4.10: Individual performance of different attributes (Group A)

Attribute Number of

Keyphrases

Average Number of Correct

Keyphrases

Standard Deviation

1 0.35 0.49

2 0.55 0.69

3 0.70 0.92

4 0.80 1.06

TF×IDF

5 0.80 1.11

1 0.25 0.44

2 0.45 0.76

3 0.65 0.88

4 0.90 0.97

Position

5 1.05 1.10

1 0.25 0.44

2 0.35 0.59

3 0.60 0.82

4 0.80 1.01

Title

5 0.90 1.17

 98

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5

Number of Output Keyphrases

A
ve

ra
ge

 P
re

ci
si

on

TF×IDF
Position
Title

Figure 4.1: Comparison of the individual performance of different attributes (Group A)

Table 4.11 shows the individual performance of proper noun, ITF, and number of

characters. The experiments suggest that these attributes give similar performance

results when the desired number of output keyphrases is set to three or above. When

the number of output keyphrases is set to three, four and five, the differences between

the average precision of these attributes are 0.00, 0.01 and 0.02 respectively. The

individual performance of proper noun is worse than we expected. We believe this is

because of the nature of the corpus used (i.e. a collection of journal articles) and the

fact that proper noun is not a useful indicator on its own. The References section of a

journal article always occurs at the end of the document and contains many proper

nouns (e.g. author names). These proper nouns have a negative effect on those useful

ones that appear in the body of the document. They dwarf those useful proper nouns

and reduce their chance of being output. This is why proper noun is not a useful

indicator on its own. However, as we will see in Section 4.4.3, proper noun is more

useful when it is combined with attributes such as position. This is because position

gives information about the location of a proper noun in the document: terms with

small/ medium position and proper noun set to one (i.e. proper nouns that appear in

the body of the document) are preferred to terms with large position and proper noun

set to one (i.e. proper nouns that appear in the References section). Figure 4.2 shows

the comparison of the individual performance of different attributes in Group B with

varying number of output keyphrases.

 99

Table 4.12 shows the individual performance of APL, APP, ASL, ASP, and topic

sentence. The experiments suggest that these attributes are not useful for extracting

keyphrases from documents. In fact, ASL fails to identify any keyphrase. This means

that sentence length is not relevant to keyphrase extraction. The number of words in a

paragraph, however, is more useful than that in a sentence. We believe this is because

authors often devote some space to discussing keyphrases in their documents, so it is

unlikely that they occur in very short paragraphs. The experiments also show that the

performance of APL is the same as that of topic sentence, and that the performance of

APP is the same as that of ASP. Figure 4.3 shows the comparison of the individual

performance of different attributes in Group C with varying number of output

keyphrases.

Table 4.11: Individual performance of different attributes (Group B)

Attribute Number of

Keyphrases

Average Number of Correct

Keyphrases

Standard Deviation

1 0.10 0.31

2 0.15 0.37

3 0.20 0.41

4 0.20 0.41

Proper Noun

5 0.20 0.41

1 0.05 0.22

2 0.05 0.22

3 0.20 0.41

4 0.25 0.55

ITF

5 0.30 0.57

1 0.10 0.31

2 0.10 0.31

3 0.20 0.52

4 0.25 0.55

No. of

Characters

5 0.25 0.55

 100

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1 2 3 4 5

Number of Output Keyphrases

A
ve

ra
ge

 P
re

ci
si

on
Proper Noun
ITF
No. of Characters

Figure 4.2: Comparison of the individual performance of different attributes (Group B)

 101

Table 4.12: Individual performance of different attributes (Group C)

Attribute Number of

Keyphrases

Average Number of Correct

Keyphrases

Standard Deviation

1 0.00 0.00

2 0.05 0.22

3 0.10 0.31

4 0.10 0.31

APL

5 0.10 0.31

1 0.00 0.00

2 0.00 0.00

3 0.00 0.00

4 0.05 0.22

APP

5 0.10 0.31

1 0.00 0.00

2 0.00 0.00

3 0.00 0.00

4 0.00 0.00

ASL

5 0.00 0.00

1 0.00 0.00

2 0.00 0.00

3 0.00 0.00

4 0.05 0.22

ASP

5 0.10 0.31

1 0.00 0.00

2 0.05 0.22

3 0.10 0.31

4 0.10 0.31

Topic

Sentence

5 0.10 0.31

 102

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.04

1 2 3 4 5

Number of Output Keyphrases

A
ve

ra
ge

 P
re

ci
si

on APL
APP
ASL
ASP
Topic Sentence

Figure 4.3: Comparison of the individual performance of different attributes (Group C)

4.4.3 Different Combinations of Attributes

We have compared the performance of different combinations of attributes. As shown

in the experiment discussed in Section 4.4.2, TF×IDF (using the standard TF and

Kea’s IDF), position and title are useful for identifying high quality keyphrases, so we

have combined these attributes to form the basic model. The experiment discussed in

Section 4.4.2 also indicates that APL, APP, ASL, ASP, and topic sentence are not

useful for keyphrase extraction, so they were excluded from this experiment. In other

words, only attributes in Group A and Group B are used in this experiment.

A number of models have been built based on the basic model. They are divided into

two groups according to the number of attributes added to the basic model. Group D

consists of the models with only one attribute added to the basic model: basic model

+ proper noun, basic model + ITF, basic model + number of characters, basic model

+ number of terms, and basic model + document length. Group E consists of the

models with two attributes added to the basic model: basic model + proper noun +

number of terms, basic model + ITF + number of terms, basic model + number of

characters + number of terms, and basic model + document length + number of

terms.

 103

Table 4.13: Performance of different combinations of attributes (Group D)

Attribute Number of

Keyphrases

Average Number of Correct

Keyphrases

Standard Deviation

1 0.30 0.47

2 0.45 0.69

3 0.75 0.97

4 0.95 1.32

Basic Model

5 1.30 1.49

1 0.30 0.47

2 0.55 0.76

3 0.80 1.01

4 1.15 1.27

Basic Model

+ Proper

Noun

5 1.30 1.49

1 0.35 0.49

2 0.50 0.69

3 0.85 0.93

4 1.05 1.28

Basic Model

+ ITF

5 1.25 1.48

1 0.30 0.47

2 0.55 0.76

3 0.90 1.02

4 1.15 1.35

Basic Model

+ No. of

Characters

5 1.25 1.37

1 0.30 0.47

2 0.55 0.76

3 0.80 1.01

4 1.25 1.21

Basic Model

+ No. of

Terms

5 1.35 1.23

 104

1 0.30 0.47

2 0.55 0.76

3 0.85 0.99

4 1.15 1.27

Basic Model

+ Document

Length

5 1.20 1.36

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5

Number of Output Keyphrases

A
ve

ra
ge

 P
re

ci
si

on

Basic Model

Basic Model + Proper
Noun
Basic Model + ITF

Basic Model + No. of
Characters
Basic Model + No. of
Terms
Basic Model +
Document Length

Figure 4.4: Comparison of different combinations of attributes (Group D)

Table 4.13 shows the performance of different models in Group D. The experiments

show that all these models give similar performance (the average precision of these

models lies mostly in the range of 0.25 to 0.30), though basic model + number of

terms appears to give the best result. Figure 4.4 shows the comparison of different

combinations of attributes in Group D with varying number of output keyphrases.

As shown in the previous experiment, basic model + number of terms gives the best

result, so we have carried out more experiments by adding different attributes to this

model.

 105

Table 4.14 shows the performance of different models in Group E. The experiments

show that basic model + proper noun + number of terms performs better than the

other models, and that the differences between these models are small when the

desired number of output keyphrases is set to three or below. When the number of

output keyphrases is set to one, two and three, the differences between the average

precision of these models are 0.00, 0.03 and 0.03 respectively. We conclude that the

best combination consists of five attributes: TF×IDF, position, title, proper noun and

number of terms. Figure 4.5 shows the comparison of different combinations of

attributes in Group E with varying number of output keyphrases.

4.4.4 Different Combinations of TF×IDF

As mentioned in Section 2.3.3, there is no universal definition of TF×IDF. Four

different TF×IDF definitions have been discussed in this thesis: standard TF, standard

IDF, normalized TF, and Kea’s IDF. Please refer to Section 1.3.5 for further

information about the standard TF and the standard IDF, to Section 2.2.2 for Kea’s

IDF, and to Section 2.3.3 for the normalized TF. Three different combinations of

TF×IDF have been implemented using these definitions and tested in our

experiments.

Table 4.15 shows the performance of different TF×IDF combinations. The

experiments show that the difference between the standard TF and Kea’s IDF and the

standard TF and standard IDF is small, though the former tends to give more stable

results. The average precision of the standard TF and Kea’s IDF lies between 0.30 and

0.34, while that of the standard TF and standard IDF lies between 0.27 and 0.35. The

average precision of the normalized TF and standard IDF lies between 0.22 and 0.40,

and has a tendency to fall. Figure 4.6 shows the comparison of different TF×IDF

combinations with varying number of output keyphrases.

 106

Table 4.14: Performance of different combinations of attributes (Group E)

Combination of

Attributes

Number of

Keyphrases

Average Number

of Correct

Keyphrases

Standard Deviation

1 0.30 0.47

2 0.65 0.75

3 1.00 0.97

4 1.35 1.23

Basic Model +

Proper Noun + No.

of Terms

5 1.50 1.32

1 0.30 0.47

2 0.60 0.68

3 0.90 0.91

4 1.25 1.16

Basic Model + ITF

+ No. of Terms

5 1.35 1.14

1 0.30 0.47

2 0.65 0.75

3 0.95 1.05

4 1.10 1.25

Basic Model + No.

of Characters + No.

of Terms

5 1.35 1.39

1 0.30 0.47

2 0.60 0.75

3 0.95 0.94

4 1.15 1.14

Basic Model +

Document Length

+ No. of Terms

5 1.30 1.22

 107

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5

Number of Output Keyphrases

A
ve

ra
ge

 P
re

ci
si

on

Basic Model + Proper
Noun + No. of Terms

Basic Model + ITF +
No. of Terms

Basic Model + No. of
Characters + No. of
Terms
Basic Model +
Document Length +
No. of Terms

Figure 4.5: Comparison of different combinations of attributes (Group E)

Table 4.15: Performance of different combinations of TF×IDF

Combination of

TF×IDF

Number of

Keyphrases

Average Number of

Correct Keyphrases

Standard Deviation

1 0.30 0.47

2 0.65 0.75

3 1.00 0.97

4 1.35 1.23

Standard TF and

Kea’s IDF

5 1.50 1.32

1 0.35 0.49

2 0.70 0.57

3 0.85 0.75

4 1.15 0.99

Standard TF and

Standard IDF

5 1.35 1.09

1 0.40 0.50

2 0.65 0.81

3 0.85 1.04

4 0.95 1.00

Normalized TF and

Standard IDF

5 1.10 0.97

 108

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

1 2 3 4 5

Number of Output Keyphrases

A
ve

ra
ge

 P
re

ci
si

on Standard TF and
Kea’s IDF

Standard TF and
Standard IDF

Normalized TF and
Standard IDF

Figure 4.6: Comparison of different combinations of TF×IDF

 109

4.4.5 Different Keyphrase Extraction Tools

We have compared the performance of KE with that of other keyphrase extraction

tools: GenEx, C4.511, Kea, Kea-C4.512, and Microsoft Word 2000 (the

AutoSummarize13 feature). C4.5 and Kea-C4.5 have not been discussed in detail

because they have mainly been used as a standard of comparison for evaluating the

performance of GenEx and Kea respectively. Please refer to [34, 107] for further

information about C4.5 and Kea-C4.5, and to Section 2.2 for GenEx and Kea.

Microsoft Word was chosen because it was a very popular word processing tool with

the extraction of keywords and key sentences feature. Five keyphrases have been

extracted from each testing document by these tools and compared with the

corresponding author-assigned keyphrases. The number of output keyphrases is set to

five because AutoSummarize always generates exactly five keyphrases. Also, unlike

the other tools, AutoSummarize cannot be trained and the output keyphrases always

contain exactly one word. Table 4.16 shows the keywords extracted by

AutoSummarize from a testing document. Correct keywords are in bold type.

Table 4.16: Example of the keywords extracted by AutoSummarize

Title The Base Rate Fallacy Myth

Author-assigned

Keyphrases

Base rate fallacy, Bayes’ theorem, decision making, ecological

validity, ethics, fallacy, judgement, probability

Keywords Rate, base, information, judgement, psychology

11 C4.5 consists of a set of parameterized heuristic rules that are fine-tuned by the C4.5 decision tree

learning algorithm. Some of these parameters are used in GenEx.
12 Kea-C4.5 is a variation of Kea. The pre- and post-processing are the same as in Kea. The only

difference is that it uses the C4.5 decision tree learning algorithm, instead of the naïve Bayes learning

algorithm.
13 The AutoSummarize feature aims at extracting key sentences from a given document and is available

from the Tools menu. The generation of keywords is actually a by-product of AutoSummarize. When

AutoSummarize is used, it also fills in the Keywords field of the document’s Properties, which is

available from the File menu.

 110

Table 4.17 shows the number of correct keyphrases identified by different keyphrase

extraction tools. Direct comparison is possible because all the tools have been trained

(except AutoSummarize as it cannot be trained) and tested on the same set of

documents. Results of GenEx, C4.5, Kea, and Kea-C4.5 are from [34]. We tried to get

more statistical data from the authors of these methods, but since the experiments

were carried out in the late 1990s, the data are no longer available. The experiments

indicate that KE (using the standard TF and Kea’s IDF) performs better than the other

methods (in terms of the average number of correct keyphrases). The data available

for the other methods are insufficient for us to show that the difference between KE

and any of these methods is statistically significant. However, in all cases, the mean

for KE exceeds the mean for the other methods. Thus, the results are very suggestive,

although not conclusive. The distribution of the performance results of KE is

positively skewed, and we believe this is likely the case for the other methods. This

may explain why the standard deviations of KE and the other methods are quite large.

Since Word 2000 can only extract five single words from each document and most of

the keyphrases in the corpus contain more than one word, it is not surprising that

Word 2000 gives the worst performance.

Table 4.18 shows the keyphrases extracted by KE from three testing documents.

Correct keyphrases are in bold type. KE extracts zero, five, and two correct

keyphrases in the first, second and third example respectively. Nevertheless, if we

look at the first example carefully, we will find that KE has actually extracted one

correct keyphrase (i.e. ‘cell assemblies’). This keyphrase is considered different from

the author-assigned keyphrase ‘cell assembly’ because of the stemmer employed. This

will be discussed in detail in Section 4.5.

4.4.6 Different Learning Methods

In addition to neural networks, we have tried using the C4.5 decision tree learning

algorithm [82] to tune KE. There are two reasons for doing this:

 111

• Different machine learning methods should give approximately the same

performance results, but some methods might be more suitable for the problem

of keyphrase extraction than others. As shown in the experiment discussed in

Section 4.4.5, the choice of a learning method does affect the performance of a

keyphrase extraction algorithm: GenEx and Kea give different results when

they are tuned by different learning methods.

• The experiment discussed in Section 4.4.5 suggests that KE performs better

than the other keyphrase extraction tools. Nevertheless, the improvement in

performance could be a result of the algorithm (and the selection of attributes)

itself and/ or the learning method (i.e. neural networks) employed. Both

GenEx and Kea have been tuned by the C4.5 learning method, and the tuned

algorithms have been used as a standard of comparison for evaluating the

performance of GenEx and Kea. If KE is tuned by the C4.5 learning method,

we can exclude the effect of neural networks and evaluate only the

performance of the algorithm.

Table 4.17: Performance of different keyphrase extraction tools

 Average Number of Correct Keyphrases Standard Deviation

KE 1.50 1.32

GenEx 1.45 1.24

C4.5 1.40 1.28

Kea 1.35 0.93

Kea-C4.5 1.20 0.83

Word 2000 0.85 0.93

 112

Table 4.18: Examples of the keyphrases extracted by KE

Title Brain Rhythms, Cell Assemblies and Cognition: Evidence

from the Processing of Words and Pseudowords

Author-assigned

Keyphrases

Brain theory, cell assembly, cognition, event related

potentials, ERP, electroencephalograph, EEG, gamma band,

Hebb, language, lexical processing,

magnetoencephalography, MEG, psychophysiology,

periodicity, power spectral analysis, synchrony

Machine-extracted

Keyphrases (Top 5)

Words, processing, cell, cell assemblies, spatiotemporal

activity patterns

Title Precis of: Metapsychology: Missing Links in Behavior,

Mind, and Science

Author-assigned

Keyphrases

Behavior, causality, experimentation, explanation,

introspection, mind-body problem, observation, philosophy,

psychology, reductionism, science, theory

Machine-extracted

Keyphrases (Top 5)

Science, psychology, theory, explanation, behavior

Title Precis of: The Roots of Thinking

Author-assigned

Keyphrases

Analogical thinking, animate form, concepts, evolution,

tactile-kinesthetic body

Machine-extracted

Keyphrases (Top 5)

Thinking, concept, tactile kinesthetic body, hominid

evolution, thesis

 113

The C4.5 learning algorithm is an unstable classification algorithm, i.e. the

constructed classifier (in the form of a decision tree) is sensitive to small changes to

the training data, so bagging has been used to improve performance by reducing

variance [101, 114]. Both GenEx and Kea have been tuned by 50 bagged C4.5

decision trees [34]. To ensure comparability, the same has been carried out on KE.

The set of terms (i.e. output of Step 2) and the set of term phrases (i.e. output of Step

4) were tuned separately by 50 bagged C4.5 decision trees. The resulting sets were

then combined to perform Step 5, 6 and 7 of the KE algorithm (for details of KE, see

Section 3.2).

There are a number of options, which allow users of the C4.5 program [82] to

improve decision tree performance, such as the –c option and the –m option. The –c

option sets the confidence threshold for pruning, and the –m option sets the minimum

number of examples needed to form a leaf of the decision tree.

We have evaluated the performance of different numbers of training examples and

different values of –c and –m, and found that KE gives the best performance when

200 terms and 150 term phrases are selected from each training document with –c set

to 50% and –m to 10. The experiments also indicate that, in general, simple trees give

better results than bushy trees. We believe this is because bushy trees tend to be

overtrained on the training set.

Table 4.19 shows the performance of KE and KE-C4.5 (i.e. KE tuned by the C4.5

learning method). The experiments indicate that the performance of KE is more stable

than that of KE-C4.5 (the average precision of KE lies between 0.30 and 0.34, while

that of KE-C4.5 lies between 0.27 and 0.35), and that KE often gives better

performance results than KE-C4.5, except when the desired number of output

keyphrases is set to one. We conclude that neural networks are better for keyphrase

extraction than the C4.5 learning algorithm. Figure 4.7 shows the comparison of KE

and KE-C4.5 with varying number of output keyphrases.

 114

Table 4.19: Performance of KE and KE-C4.5

Algorithm Number of

Keyphrases

Average Number of Correct

Keyphrases

Standard Deviation

1 0.30 0.47

2 0.65 0.75

3 1.00 0.97

4 1.35 1.23

KE

5 1.50 1.32

1 0.35 0.49

2 0.55 0.60

3 0.90 0.91

4 1.15 1.23

KE-C4.5

5 1.35 1.27

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5

Number of Output Keyphrases

A
ve

ra
ge

 P
re

ci
si

on

KE
KE-C4.5

Figure 4.7: Comparison of KE and KE-C4.5

 115

Although KE gives better results when it is tuned by neural networks, neural networks

have been criticized for their poor interpretability (i.e. the level of understanding and

insight provided by the model). It is difficult to extract classification rules from neural

networks. The C4.5 learning algorithm, however, can do that easily [40]. Although

the performance of KE-C4.5 is not as good as that of KE, KE-C4.5 can help us to

understand how a phrase has been classified as a keyphrase or a non-keyphrase in this

experiment. Figure 4.8 and Figure 4.9 show the decision trees constructed from the

term set and the term phrase set respectively. Decision nodes are represented by

rounded rectangles. All the attributes have been normalized (for details, see Section

3.4), so they lie in the range of 0 to 1.

The process of term classification is simplified by seven rules (see Figure 4.8). Terms,

that appear at the beginning of the document, appear in the title, and have been tagged

as proper noun, are useful for identifying keyphrases. TF×IDF, however, is trickier; it

depends on the values of other attributes, but, in general, large TF×IDF values are not

preferred.

 116

Figure 4.8: Decision tree for classifying terms

The process of term phrase classification is also simplified by seven rules (see Figure

4.9). Term phrases, that appear at the beginning of the document, appear in the title,

or not in the title but contain more than one term, are useful for identifying

keyphrases. Large TF×IDF values are again not preferred.

= 0 = 1

= 0 = 1

TF×IDF

Position
Non-keyphrase

> 0.839993

TF×IDF

TF×IDF

Non-keyphrase

Keyphrase

Non-keyphrase

Non-keyphrase

Non-keyphrase Keyphrase

≤ 0.839993

> 0.020217≤ 0.020217

≤ 0.612557 > 0.612557

≤ 0.823876 > 0.823876

Proper Noun

Title

 117

Figure 4.9: Decision tree for classifying term phrases

4.4.7 Different Corpus

To ensure comparability, KE uses the same set of training and testing documents as in

GenEx and Kea. Nevertheless, we would like to see how KE performs when it is

tested on a different, larger corpus. For convenience, we use Corpus B to refer to this

corpus, and Corpus A to refer to the set of documents used in GenEx and Kea and in

our previous experiments.

Corpus B is used to evaluate the generalization performance of KE (tuned by neural

networks using the 55 training documents in Corpus A). For details of these

documents, see Section 4.2. Corpus A and Corpus B are disjoint. Corpus B contains

231 articles from four journals. These journals cover a variety of subject areas,

including life sciences, mathematical sciences, and social sciences. Please see Table

4.20 for the sources of Corpus B. All these articles contain keyphrases supplied by the

authors.

≤ 0.940219 > 0.940219

≤ 0.026616 > 0.026616 ≤ 0.000359 > 0.000359

= 0.5= 0 = 1

= 0 = 1

Title

Position

TF×IDF

Number of Terms

Position

Non-keyphrase

Non-keyphrase

Non-keyphrase

Non-keyphrase Keyphrase Keyphrase

Keyphrase

 118

To evaluate the correctness of the output keyphrases, we need a set of documents

which contain author-assigned keyphrases. Journal articles are, as far as we know, the

main source of these kinds of documents. It is not easy to find documents with author-

assigned keyphrases in other areas. Even if some documents do contain keyphrases,

the quality of these keyphrases might not be as good as that of the keyphrases in

journal articles. For example, keyphrases could be found in the meta tag of some web

pages. However, these phrases are often unreliable and misleading, so most major

search engines, including AltaVista, have stopped using them [97]. A recent study

also confirms that the importance of these phrases to search engine ranking is little

[31]. Therefore, journal articles have been used in this experiment (and the

experiment discussed in Section 5.6).

Table 4.20: Sources of Corpus B

Journal Name Field Number of

Documents

Journal of Molecular Biology Molecular

Biology

46

Information and Software Technology Information

Systems

65

Journal of Economic Behaviour and Organization Economics and

Econometrics

57

International Journal of Educational Development Education 63

All 231

Table 4.21 shows that, on average, the documents in Corpus B are about 80% longer

than the testing documents in Corpus A. For details of the length of the testing

documents, see Table 4.2.

 119

Table 4.21: Number of words per document (Corpus B)

Journal Name Average Range Standard Deviation

Journal of Molecular Biology 8539.28 4777.00-

15140.00

2316.76

Information and Software Technology 7591.46 2922.00-

12676.00

2202.08

Journal of Economic Behaviour and

Organization

7488.79 3168.00-

13187.00

2293.25

International Journal of Educational

Development

8258.63 2567.00-

16311.00

2359.49

All 7936.83 2567.00-

16311.00

2316.26

Table 4.22 shows that the documents in Corpus B contain much fewer keyphrases

than those in Corpus A. On average, there are only 4.58 keyphrases per document in

Corpus B compared with 7.46 in Corpus A (for details, see Table 4.3).

Table 4.22: Number of keyphrases per document (Corpus B)

Journal Name Average Range Standard Deviation

Journal of Molecular Biology 4.83 4.00-

5.00

0.38

Information and Software Technology 4.35 3.00-

7.00

0.94

Journal of Economic Behaviour and

Organization

4.39 2.00-

8.00

1.11

International Journal of Educational

Development

4.79 3.00-

9.00

1.12

All 4.58 2.00-

9.00

0.98

 120

Similar to Corpus A, most of the keyphrases in Corpus B contain one to two words

(see Table 4.23). Because of the nature of molecular biology, three documents in the

Journal of Molecular Biology provide non-alphanumeric keyphrases (e.g. ß-actin

mutants and ß-sheet), and 15 provide keyphrases containing numbers (e.g. HIV-1

fusion and T7 RNA polymerase).

Table 4.23: Number of words per keyphrase (Corpus B)

Journal Name Average Range Standard Deviation

Journal of Molecular Biology 1.68 1.00-

2.40

0.35

Information and Software Technology 2.00 1.00-

2.60

0.36

Journal of Economic Behaviour and

Organization

1.69 1.00-

2.40

0.33

International Journal of Educational

Development

1.70 1.00-

2.33

0.32

All 1.78 1.00-

2.60

0.36

Table 4.24 shows that, on average, 88% of the keyphrases in Corpus B can be found

in the document, which is slightly higher than the 82% in Corpus A. This confirms the

findings by Turney [105] that 70-90% of keyphrases appear somewhere in the

document.

 121

Table 4.24: Percentage of keyphrases found in the document (Corpus B)

Journal Name Average Range Standard Deviation

Journal of Molecular Biology 0.92 0.60-

1.00

0.14

Information and Software Technology 0.87 0.25-

1.00

0.19

Journal of Economic Behaviour and

Organization

0.88 0.25-

1.00

0.18

International Journal of Educational

Development

0.85 0.40-

1.00

0.16

All 0.88 0.25-

1.00

0.17

Table 4.25 shows the performance of KE on different journals in Corpus B. KE does

not seem to perform well in Corpus B compared with Corpus A. We believe this is

because of the higher compression (or document-keyphrase) ratio in Corpus B. On

average, the documents in Corpus B are longer (see Table 4.21) but the keyphrase

lists are shorter (see Table 4.22) than the testing documents in Corpus A. KE gives

similar performance results on these journals, except when the desired number of

output keyphrases is set to two. The average precision of these journals lies mostly

around 0.20. The experiments confirm the domain independence of KE: KE

successfully extracts keyphrases from documents on different subject areas (in Corpus

B) while it has been trained on something totally different (i.e. training set in Corpus

A). Figure 4.10 shows the comparison of the performance of KE on Corpus B with

varying number of output keyphrases.

 122

Table 4.25: Performance of KE on Corpus B

Journal Name Number of

Keyphrases

Average Number of Correct

Keyphrases

Standard Deviation

1 0.20 0.40

2 0.39 0.58

3 0.61 0.71

4 0.83 0.77

Journal of

Molecular

Biology

5 0.87 0.83

1 0.17 0.38

2 0.31 0.53

3 0.58 0.68

4 0.77 0.79

Information

and Software

Technology

5 0.94 0.88

1 0.19 0.40

2 0.49 0.66

3 0.65 0.74

4 0.79 0.80

Journal of

Economic

Behaviour and

Organization

5 0.93 0.84

1 0.19 0.43

2 0.44 0.56

3 0.60 0.68

4 0.84 0.81

International

Journal of

Educational

Development

5 0.98 0.91

1 0.19 0.40

2 0.41 0.58

3 0.61 0.70

4 0.81 0.79

All

5 0.94 0.86

 123

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 3 4 5

Number of Output Keyphrases

A
ve

ra
ge

 P
re

ci
si

on
Journal of Molecular
Biology

Information and
Software Technology

Journal of Economic
Behaviour and
Organization

International Journal
of Educational
Development

All

Figure 4.10: Comparison of the performance of KE on different journals

4.5 Discussion of Results

The above performance numbers are misleadingly low. Author-assigned keyphrases

are often a small subset of the set of good quality keyphrases for a given document.

On average, there are only 7.46 keyphrases per document in Corpus A (both training

set and testing set) and 4.58 in Corpus B, and these phrases constitute less than 1% of

the document length. In contrast, the desired number of key sentences is usually

defined to be 15-20% of the document length or a maximum of four sentences [112].

A more accurate picture can be obtained by asking human assessors to evaluate the

machine-extracted keyphrases. GenEx has been tested on 267 web pages: 62% of the

keyphrases extracted from these pages are rated by human assessors as ‘good’, 18%

as ‘bad’, and 20% as ‘no opinion’. This suggests that about 80% of the keyphrases

extracted by GenEx are acceptable, which should be sufficient for many applications

[106].

 124

Some of the machine-extracted keyphrases are rather close to their corresponding

author-assigned keyphrase, but because of the stemmer employed, they are regarded

as different. For example, the author-assigned keyphrase ‘cell assembly’ is considered

different from the machine-extracted keyphrase ‘cell assemblies’ because the stemmer

maps ‘assembly’ to ‘assemb’ and ‘assemblies’ to ‘assembl’ (see the first example in

Table 4.18). However, this kind of problem is inevitable if an automatic performance

measure is used.

We notice that some common words are ranked fairly high in the output list despite

the use of stopword lists and IDF. These words come from two main categories.

Recall that the score of a term (or term phrase) is dependent on TF×IDF, position,

and other attributes. Terms such as ‘chapter’ tend to occur at the beginning of the

document. Early occurrence often boosts the score of these terms and increases the

likelihood that they are output, though their IDF might be low. In addition, because of

the nature of Corpus A, terms such as ‘person’, which tend to occur rather frequently

in everyday documents, appear only in a few documents of the corpus. This boosts the

IDF of these terms and improves their ranking. A possible way of solving this

problem is to add these common words to the stopword lists, but this will make KE

more domain-dependent, and that is not what we want.

The use of proper noun appears to degrade the performance of KE. This is probably

because the training and testing documents are all academic papers, which tend to

contain many proper nouns, especially in the References section. Indicator phrases

may be used to resolve this problem by ignoring all the words in the References

section, but this will make KE more domain-dependent. However, we expect that

proper nouns might be useful in some domains (e.g. news) where they tend to occur

less frequently, but further testing is needed to support this.

Syntactic methods (e.g. the use of italics) [57] seemed helpful in extracting high

quality keyphrases, and initially they were considered as an attribute for keyphrase

extraction. However, all the documents in Corpus A are in ASCII and Unicode

format, so we cannot implement this.

 125

4.6 Summary

This chapter presents the experimental results. We have discussed the corpus used to

train and test KE, and the criteria used for evaluating the output keyphrases. The

comparison of the individual performance of different attributes, the performance of

different combinations of attributes and TF×IDF, the performance of different

keyphrase extraction tools, and the performance of KE on different learning methods

and different corpora have also been presented in this chapter. The next chapter will

extend the use of KE to another language.

 126

CHAPTER FIVE

5 Extraction of Keyphrases from

Chinese Documents

5.1 Overview

This chapter extends the use of the KE algorithm to Chinese documents. To explore

the use of KE in another language, we make some changes to KE and apply it to

Chinese documents. The changes are kept minimal because we have to make sure that

they will not affect the main features of KE while adapting KE to another language.

For details of these changes, see Section 5.4. This variation of KE has been tested on

a set of Chinese documents on different subject areas, and the experiments indicate

that it works on these documents. This confirms the domain independence of KE and

suggests that KE can be applied to another language for keyphrase extraction. KE is,

as far as we know, the first keyphrase extraction algorithm that has been validated and

evaluated on different domains and different languages.

Section 5.2 provides background information about the adaptation of KE to another

language. Section 5.3 defines some important terms used in this chapter. Section 5.4

describes how KE has been extended to extract keyphrases from Chinese documents.

Section 5.5 discusses the corpus and criteria used for evaluating the output

keyphrases. Section 5.6 evaluates the performance of KE on Chinese documents. The

performance results are discussed in Section 5.7. Section 5.8 concludes this chapter.

 127

5.2 Background

The experiments discussed in Section 4.4 indicate that the KE algorithm can be used

to extract keyphrases from heterogeneous documents. These documents, however, are

all English documents. To explore and adapt KE to another language, we make

minimal modifications to KE and extend it to KEC (i.e. a variation of KE for Chinese

documents). Because of a different language, we use a different corpus (to train and

test KEC) and different criteria (to evaluate the performance of KEC). KEC has been

trained and tested on a set of Chinese documents. The experiments show that KEC

successfully extracts keyphrases from these documents. This is, as far as we know, the

first time a keyphrase extraction algorithm has been validated and evaluated on

different domains and different languages.

Five attributes are used in KE: TF×IDF, position, title, proper noun and number of

terms. TF×IDF is used because keyphrases tend to occur frequently in the document

and concentrate in a few documents of the collection. Position is used because

keyphrases tend to occur at the beginning of the document. Title is used because

keyphrases often occur in the title of the document. Proper noun is used because

some keyphrases are proper nouns. Number of terms is used because most keyphrases

contain more than one word. These attributes characterize keyphrases and are

independent of languages (except for IDF), so all of them should be able to be used in

another language.

To adapt KE to another language, we need to make three modifications:

 128

• A set of documents (written in that language) is needed to train and test the

modified algorithm. Testing documents are used to evaluate the performance

of this algorithm on that language. Training documents are used to train this

algorithm and to calculate the IDF of a term; if the training documents and the

document that contains this term are in different languages, we will not be able

to measure the rarity of this term across the training set.

• A part-of-speech tagger (for that language) is needed to get the syntactic

category of the words in the document. This is because only adjectives, verbs,

nouns and noun phrases are selected as candidate phrases.

• A stemmer (for that language) is needed to stem the words in the document if

stemming applies to that language.

5.3 Definitions

Before we discuss the KEC algorithm, we need to define some important terms. The

character (though some people would refer to it as a ‘word’) is the smallest unit of

measurement for Chinese documents. A word (though some people would refer to it

as a ‘phrase’) consists of one or more characters, e.g. 系关 (relations) is a word

consisting of two characters. A phrase consists of one or more words, e.g. 国 系际关

(international relations) is a phrase consisting of two words. There is no easy way to

tokenize a phrase. This is because, unlike English, Chinese is not delimited by white

spaces. Therefore, it is possible that different people have different opinions on the

number of words in a phrase. For example, some people may suggest that 国 系际关

(international relations) is a phrase consisting of only one word. To solve this

problem, we use a part-of-speech tagger to tokenize a phrase (the resulting syntactic

tags can be ignored in this case); if the tagger breaks a phrase into two words, this

phrase consists of two words.

 129

5.4 Extension of KE to Chinese Documents

The user provides KEC with a document, the title of the document, and the desired

number of output keyphrases as input. KEC uses a part-of-speech tagger (to tag the

document) and a neural network (to tune KEC), and provides a list of keyphrases as

output. Unlike KE, KEC does not need a stemmer to stem the document. This is

because, unlike English, Chinese is not an alphabetical language and therefore

stemming is not applicable to the Chinese language.

It would be ideal if KE (which is trained on English documents) could be used

without change to extract keyphrases from Chinese documents. However, since the

documents are written in a different language, this is not possible. Therefore, the

following changes have been made to KE. We highlight the changes that have been

made to each of the steps in KE; things that are the same as in KE are skipped. For a

detailed description of KE, see Section 3.3. These changes are kept minimal because

we need to make sure that it is KE (and not these changes) which makes the extraction

work.

Step: 1. Select Words

Changes: Because of a different language, the stopword list has changed. The new

list contains only two stopwords, i.e. 是 (is), and 有 (have).

Remarks: Everything else is the same as in KE, i.e. select all the words which have

been tagged as adjective, verb and noun, and are not included in the

stopword list.

 130

Step: 2. Score Words

Changes: Stemming does not apply to the Chinese language. Therefore, there is no

need to stem the selected words and detect equivalent stems. Also, since

the words are not stemmed, we would refer to them as ‘words’ rather than

‘terms’.

Words that contain only one character, e.g. 人 (person) and 字 (word), are

deleted because they often give little semantic value.

Remarks: Everything else is the same as in KE, i.e. delete words that occur only

once in the document, use the same set of attributes to calculate the score

of each word, and sort these words in order of score followed by position.

Step: 3. Select Phrases

Changes: A noun phrase is defined as zero, one or two nouns, adjectives or verbal

nouns/ nominal verbs followed by a noun or a verbal noun/ nominal verb.

There is no gerund in Chinese, so at first a noun phrase was defined as

zero, one or two nouns or adjectives followed by a noun, but then we

noticed in our experiment that some of the words in the author-assigned

keyphrases were tagged as ‘vn’ (which is equivalent to verbal noun/

nominal verb in English), so we tried to include this syntactic tag in the

definition of noun phrases. Some of the words in Chinese have both

nominal and verbal properties (this also happens in English), e.g. 供应

(supply), and are therefore tagged as ‘vn’. The experimental results

indicate that if we include verbal nouns/ nominal verbs in the definition

of noun phrases, the performance of KEC improves by -5%, -3%, 0%,

4% and 7% when the desired number of output keyphrases is set to one,

two, three, four and five respectively.

Remarks: Everything else is the same as in KE, i.e. select all the noun phrases in the

document.

 131

Step: 4. Score Phrases

Changes: Stemming does not apply to the Chinese language. Therefore, there is no

need to stem the selected phrases and detect equivalent stem phrases.

Also, since the phrases are not stemmed, we would refer to them as

‘phrases’ rather than ‘term phrases’.

Phrases that contain only one character are deleted because they often

give little semantic value.

Remarks: Everything else is the same as in KE, i.e. delete phrases that occur only

once in the document, use the same set of attributes to calculate the score

of each phrase, and sort these phrases in order of score followed by

position and number of terms.

Step: 5. Expand Words

Changes: –

Remarks: Everything is the same as in KE, i.e. for each word, find all the phrases

that contain the word, and link it with the highest scoring phrase.

Step: 6. Drop Duplicates

Changes: –

Remarks: Everything is the same as in KE, i.e. for each phrase, link it with the

highest scoring word.

Step: 7. Display Output

Changes: Since stemming is not performed in KEC, there is no need to find the

‘corresponding’ phrases in the input document.

Remarks: Everything else is the same as in KE, i.e. delete subphrases if they do not

perform better than their superphrases.

 132

5.5 Corpus and Evaluation Criteria

Because of the vast availability of English documents (both online and offline),

Olsson et al. [75] use English documents to train their topic classification method for

Czech documents. We could also do this if IDF was not used in the KEC algorithm.

However, because of the language-dependent nature of IDF (which calculates the

number of documents a word/ term occurs in) and the fact that KEC is intended for

Chinese documents and KE is trained on English documents, a set of Chinese

documents have been used for the training of KEC.

We use the documents in [77] to build the corpus for training and testing the KEC

algorithm (for convenience, we use Corpus C to refer to this corpus). This website is

chosen because it provides a set of journal articles covering a wide range of topics

including economics, politics, law, education, literature, technology, etc. The wide

diversity of these topics also means that we can confirm the domain independence of

KE in this experiment. For details of the reasons why journal articles are used, see

Section 4.4.7. All the articles in [77] are written in simplified Chinese characters and

only those with author-assigned keyphrases are selected in Corpus C.

Three part-of-speech taggers [91, 100, 122] were considered and we decided to use

[122] to tag the journal articles. [91] is intended for documents written in simplified

Chinese characters, but it is not as popular as [100, 122]. [100], though more popular,

is designed for traditional Chinese characters, but all the documents in Corpus C are

written in simplified Chinese characters. [122] is a popular tagger intended for

simplified Chinese characters, and is therefore chosen.

As mentioned before, Corpus C is used to evaluate the performance of KE on Chinese

documents and to confirm the generalization performance of KE. Corpus C is disjoint

from Corpus A and Corpus B. It contains 265 documents; 50 of these documents have

been randomly selected and used to train KEC, and the remaining documents have

been used to test KEC.

 133

Since stemming is not applicable to the Chinese language, the criteria used for

evaluating the output keyphrases in this experiment have changed: a machine-

extracted keyphrase is said to be correct if it matches an author-assigned keyphrase.

Table 5.1 shows that, on average, the documents in the training set are longer than

those in the testing set.

Table 5.1: Number of characters per document (Corpus C)

Corpus Average Range Standard Deviation

Training 14957.14 5272.00-37124.00 7432.15

Testing 13876.68 5486.00-36321.00 6091.25

Table 5.2 shows that the documents in the training set contain slightly fewer

keyphrases than those in the testing set. On average, there are only 3.78 keyphrases

per document in Corpus C compared with 7.46 in Corpus A and 4.58 in Corpus B.

Table 5.2: Number of keyphrases per document (Corpus C)

Corpus Average Range Standard Deviation

Training 3.56 2.00-5.00 0.61

Testing 3.83 2.00-8.00 0.91

Table 5.3 shows that most of the keyphrases in Corpus C contain three to four

characters.

Table 5.3: Number of characters per keyphrase (Corpus C)

Corpus Average Range Standard Deviation

Training 3.73 2.00-8.00 1.14

Testing 3.87 2.00-6.00 0.84

Table 5.4 shows that over 94% of the keyphrases in Corpus C can be found in the

document, which is much higher than the 82% in Corpus A and the 88% in Corpus B.

 134

Table 5.4: Percentage of keyphrases found in the document (Corpus C)

Corpus Average Range Standard Deviation

Training 0.94 0.50-1.00 0.13

Testing 0.96 0.50-1.00 0.10

5.6 Experimental Results

This section describes how we train the KEC algorithm and evaluate the performance

of KEC on Chinese documents.

5.6.1 Training

The KEC algorithm has to be trained before it can be applied to new documents for

keyphrase extraction. During training, a total of 120 phrases (and words), including

keyphrase and non-keyphrase examples (and keyword and non-keyword examples),

are selected from each training document.

Like KE, the set of words (i.e. output of Step 2 in KEC) and the set of phrases (i.e.

output of Step 4 in KEC) were tuned separately by a back-propagation neural

network. The resulting sets were then combined to perform Step 5, 6 and 7 of the

KEC algorithm.

Keyphrase and non-keyphrase examples are selected in the same way as in KE, but

keyword and non-keyword examples are selected differently. To get keyword

examples from the document, the author-assigned keyphrases are broken into words

using a part-of-speech tagger (rather than white spaces as in KE, see Section 4.4.1).

This is because an author-assigned keyphrase may contain several words, which

means an author-assigned keyphrase could provide more than one keyword example.

The resulting words are used as keyword examples, and words (other than those in the

author-assigned keyphrases) are randomly selected from the document as non-

keyword examples.

 135

5.6.2 Different Language

Table 5.5 shows the performance of KEC on Corpus C. KEC does not seem to

perform well (the average precision of KEC lies between 0.12 and 0.16) compared

with KE on Corpus A and Corpus B (see Section 4.4.5 and Section 4.4.7). There is

also a tendency for the average precision of KEC to fall. However, considering there

are only 3.78 keyphrases per document in Corpus C (see Table 5.2), the relatively

poor performance is actually quite understandable. The experimental results suggest

that KE can be used to extract keyphrases from Chinese documents. The results also

confirm, in addition to the experiment discussed in Section 4.4.7, the domain

independence of KE. Figure 5.1 shows the performance of KEC on Chinese

documents with varying number of output keyphrases.

Table 5.5: Performance of KEC on Corpus C

Algorithm Number of

Keyphrases

Average Number of

Correct Keyphrases

Standard Deviation

1 0.16 0.37

2 0.27 0.51

3 0.38 0.66

4 0.50 0.73

KEC

5 0.58 0.78

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

1 2 3 4 5

Number of Output Keyphrases

A
ve

ra
ge

 P
re

ci
si

on

KEC

Figure 5.1: Performance of KEC on Chinese documents

 136

5.7 Discussion of Results

We notice that the syntactic pattern of the author-assigned keyphrases in Chinese

documents is much more complicated than that in English documents. For example,

食食食食 (food safety) is an author-assigned keyphrase, in which 食食 (food) is tagged

as noun and 食食 (safety) as nominal adjective. However, we are not sure whether this

is because of the part-of-speech tagger employed or the nature of the Chinese

language. Only 74% of the author-assigned keyphrases in the testing documents (and

78% in the training documents) follow the definition of noun phrases in KEC. This

means that KEC will not be able to provide 26% of the author-assigned keyphrases in

the testing documents as output if this definition is used to select noun phrases from

these documents. To improve the performance of KEC, we could use an ad hoc

definition of noun phrases by analyzing the syntactic tags of all the author-assigned

keyphrases and defining noun phrases using these tags, or we could (like the LAKE

algorithm, see Section 2.2.3) define a considerable number of manually predefined

linguistics-based patterns. However, these will make KE more language-dependent

and reduce the adaptability of KE to another language. Since KE contains several

language-dependent components (e.g. a stemmer, a part-of-speech tagger, and a set of

training and testing documents, see Section 5.2), it is already language-dependent.

However, we want KE to be language-independent as much as possible, and thus limit

these components to a minimum. We only use these components as user-defined

parameters to the main language-independent part of KE. These components are

necessary for KE to work in another language. In addition, they help to increase

accuracy.

 137

A stemmer reduces variants of a word to a single form, and sometimes this helps to

improve the performance of KE on English documents. Although a different phrase

(from the corresponding author-assigned keyphrase) might be output, as long as the

stem of this phrase matches the stem of an author-assigned keyphrase, it is considered

correct (see Section 4.3.1 for the evaluation criteria used in English documents).

However, this is not the case for Chinese documents. Since stemming does not apply

to the Chinese language, a machine-extracted keyphrase needs to be exactly the same

as an author-assigned keyphrase; if not, it is considered incorrect (see Section 5.5 for

the evaluation criteria used in Chinese documents). For example, 工 工业

(industrialization) is provided as an author-assigned keyphrase. If it is in an English

document, phrases such as ‘industry’ will be considered correct (in addition to

‘industrialization’). However, if it is in a Chinese document, the output keyphrase has

to be exactly ‘工 工业 ’; anything else will be considered incorrect. This shows the

additional difficulty of extracting keyphrases from Chinese documents.

Sometimes, KEC fails to combine several words (or phrases) together as an output

keyphrase. For example, the author provides 教教教教教教 (education system reform) as

a keyphrase, but instead of outputting this phrase, KEC breaks it into three words, i.e.

教教 (education), 教教 (system) and 教教 (reform) and outputs these words as

keyphrases. However, the decision of whether to divide a phrase is entirely made by

the computer, so there is not much we can do. Over-grouping of words (or phrases)

could as well create problems as some authors might prefer to provide more but

shorter keyphrases, e.g. 教教教教 (education system) and 教教 (reform).

Some of the machine-extracted keyphrases are more general (or more specific) than

the author-assigned keyphrases provided. For example, KEC outputs 教教 (education)

as a keyphrase, but the author-assigned keyphrase list does not contain this phrase

(probably because the author thinks this phrase is too general), though the document

is concerned with education policy (so it would be sensible to provide education as a

keyphrase). This also happens in English documents, see the third example in Table

4.18. However, this kind of problem is inevitable if author-assigned keyphrases are

used as a standard of comparison for evaluating the output keyphrases.

 138

5.8 Summary

This chapter extends the use of the KE algorithm to Chinese documents. We have

explained why KE can be adapted to another language and how this is done, and

extended KE (to KEC) to extract keyphrases from Chinese documents. In addition,

the corpus and criteria used for evaluating the performance of KEC have been

discussed in this chapter. We have also presented the performance results of KEC on

Chinese documents. The next chapter will discuss the conclusions and future work.

 139

CHAPTER SIX

6 Conclusions

6.1 Overview

This chapter summarizes this thesis and the contributions of our research work, and

suggests two possible ways to improve the performance of KE.

Section 6.2 summarizes this thesis. Section 6.3 discusses the contributions of our

work. Section 6.4 discusses two areas which warrant further investigation.

6.2 Summary

This thesis proposes a new domain-independent keyphrase extraction algorithm called

KE. KE is not tied to a specific domain; it is designed to summarize a given

document, which can be on any topic, in a few keyphrases automatically extracted

from the body of that document.

KE approaches the problem of keyphrase extraction as a classification task: a

document is seen as a set of phrases, and KE should correctly classify a phrase as a

keyphrase or a non-keyphrase. Five attributes have been found useful to do this in our

experiments: TF×IDF, position, title, proper noun and number of terms. The weights

associated with these attributes are tuned by a neural network using examples of

keyphrases and non-keyphrases during training. After training, they are frozen and

used by KE to classify phrases in new documents.

 140

The KE algorithm consists of seven steps which could be grouped into three

activities:

1. KE uses a part-of-speech tagger to select words and phrases from the input

document, and a vector of terms and a vector of term phrases to represent this

document. Each term is characterized by four attributes: TF×IDF, position,

title, and proper noun. A score is assigned to each term based on these

attributes. The term phrase vector is similar to the term vector, except that

each term phrase is characterized by a different set of attributes: TF×IDF,

position, title and number of terms.

2. A one-to-one relationship is established between the terms and the term

phrases. For each term, KE finds all the term phrases that contain the term,

and link it with the highest scoring term phrase. More than one term may link

to the same term phrase. If that is the case, the term phrase will be linked to

the highest scoring term. The result is a list of term phrases ordered by the

scores of the corresponding terms.

3. The list of term phrases is then used to generate the output keyphrases. For

each term phrase in the list, KE finds the most frequent corresponding phrase

in the document. The result is a list of phrases. If a phrase is a subphrase of

another phrase, it will only be accepted as a keyphrase if it is ranked higher;

otherwise, it will be deleted from the output list.

KE is based on GenEx and Kea, but differs from them in several ways.

• Purely statistical methods are used in GenEx and Kea. KE, however, uses a

combination of statistical and text processing techniques for keyphrase

extraction. Part-of-speech tagging has been used to improve the quality of

candidate phrases. Better quality data (i.e. better quality candidate phrases)

often lead to better performance results. Only adjectives, verbs, nouns and

noun phrases are selected as candidate phrases.

 141

• KE uses a different set of attributes to discriminate between keyphrases and

non-keyphrases: TF×IDF, position, title, proper noun and number of terms.

Kea uses only two attributes: TF×IDF and distance. GenEx, on the other hand,

uses many more attributes, but it does not use TF×IDF and title. Location-

based methods are used in all these algorithms. TF×IDF is used because

keyphrases tend to occur frequently in the document and concentrate in a few

documents of the collection. Title is used because keyphrases often occur in

the title of the document. Proper noun is used because some keyphrases are

proper nouns. Number of terms is used because most keyphrases contain more

than one word.

• KE uses a different machine learning algorithm; it is tuned by a neural

network. Neural networks are used because they provide a simple black box

for pattern recognition and have proved useful in some information retrieval

(IR) projects. GenEx is tuned by a genetic algorithm, while Kea is based on

the naïve Bayes learning technique.

• KE is a different model; it consists of seven steps, and takes both words and

phrases as candidate phrases. Words are used for ranking purposes. It is

generally preferable to represent documents and measure the importance of

each representation element using words (or terms, to be precise). Phrases, on

the other hand, are used for output purposes. This is because documents are

summarized by a set of phrases, not words. Kea is a simple model; it only

selects phrases as candidate phrases, so it does not involve any linking

between words and phrases. GenEx is more complicated; it consists of ten

steps, considers both words and phrases, and involves many post-processing

tasks.

The experimental results suggest that these differences make KE a better algorithm

than either GexEx or Kea.

 142

KE has been tested on two different corpora. The first corpus is the same as the one

used in GenEx and Kea, and it has been used to train and test KE in all our

experiments (except the one discussed in Section 4.4.7). The criteria used for

evaluating the output keyphrases are also the same as in GenEx and Kea, so direct

comparison is possible. The second corpus is different and larger than the first one,

and it has been used to test the generalization performance of KE. The evaluation

criteria used for this corpus are the same as for the first corpus.

We have evaluated the individual performance of different attributes and the

performance of different combinations of attributes. The experiments suggest that

position gives the best individual performance and that the best combination of

attributes involves TF×IDF, position, title, proper noun and number of terms. In

addition, we have compared different combinations of TF×IDF, and found that the

standard TF and Kea’s IDF gives the best performance. The experiments also indicate

that KE performs better than other keyphrase extraction tools, including GenEx and

Kea, and that it significantly outperforms Microsoft Word 2000’s AutoSummarize

feature. We have tried using the C4.5 decision tree learning method to tune KE, but

the experiments show that neural networks are better for keyphrase extraction than

this method. The domain independence of KE has also been confirmed in our

experiments using the second corpus.

To extend the use of the KE algorithm to Chinese documents, we have made minimal

changes to KE and extended it to KEC. Because of a different language, we use a

different corpus (to train and test KEC) and different criteria (to evaluate the

performance of KEC). KEC has been trained and tested on a set of Chinese

documents. The experiments show that KEC successfully extracts keyphrases from

these documents. This is, as far as we know, the first time a keyphrase extraction

algorithm has been validated and evaluated on different domains and different

languages.

 143

6.3 Contributions

A number of journal and conference papers have been published based on the material

discussed in this thesis [66-69]. The contributions of our work are as follows:

• Proposed a new domain-independent keyphrase extraction algorithm called

KE, which is based on GenEx and Kea and uses a combination of statistical

and text processing techniques, a different set of attributes, and a different

machine learning method to extract keyphrases from documents.

• Evaluated a number of different attributes in our experiments, and found that

five attributes are useful for keyphrase extraction: TF×IDF, position, title,

proper noun and number of terms. The usefulness of these attributes has also

been confirmed in our experiments using the decision trees generated by the

C4.5 learning method.

• Found in our experiments that better results can be achieved if two terms

having the same score are ranked in ascending order of position, and if two

term phrases having the same score are ranked in ascending order of position

followed by descending order of number of terms.

• Evaluated the individual performance of different attributes in our

experiments, and found that location-based methods give the best performance

result.

• Evaluated the performance of different combinations of TF×IDF in our

experiments, and found that KE gives the best performance when the standard

TF and Kea’s IDF is used.

• Found in our experiments that KE performs better than other keyphrase

extraction tools and that it significantly outperforms Microsoft Word 2000’s

AutoSummarize feature (on the problem of keyphrase extraction).

 144

• Found in our experiments that neural networks are better for keyphrase

extraction than the C4.5 decision tree learning method.

• Evaluated the generalization performance of KE on a different, larger corpus

(than the one used in GenEx and Kea) in our experiments. This corpus

contains documents on different subject areas. The domain independence of

KE has been validated by testing KE on this corpus. This suggests that KE can

be applied to other subject areas for keyphrase extraction.

• Extended the use of KE to Chinese documents. Minimal changes have been

made to KE to adapt it to another language. This variation of KE has been

tested on a set of Chinese documents on different subject areas, and the

experiments indicate that it works on these documents. This confirms the

domain independence of KE and suggests that KE can be applied to other

languages for keyphrase extraction.

• Showed in our experiments that the attributes and techniques used in KE are

useful for keyphrase extraction and can therefore serve as a useful starting

point for new keyphrase extraction algorithms. KE is, as far as we know, the

first keyphrase extraction algorithm that has been validated and evaluated on

different domains and different languages.

• Showed in our experiments that the choice of a learning method and the

compression (or document-keyphrase) ratio affect the performance of a

keyphrase extraction algorithm.

 145

6.4 Future work

This section discusses two ways to improve the quality of the output keyphrases.

6.4.1 Relevance Feedback

Relevance feedback is a useful technique for improving the effectiveness of an IR

system. The idea underlying relevance feedback is simple: it uses responses from the

user to mark retrieved documents as relevant or nonrelevant. When the user provides

the IR system with a query, the system retrieves documents from the collection based

on the query. Relevance information can be obtained by presenting those documents

to the user for judgement as relevant or nonrelevant. This information could then be

used to reformulate the query. This process of obtaining relevance information and

using it in a further search is known as relevance feedback [20].

Relevance feedback helps to improve retrieval performance by choosing important

terms from documents which have been identified by the user as relevant and

enhancing the importance of these terms in a new query formulation. The effect of

such a query alternation process is to ‘move’ the new query in the direction of the

relevant documents and away from the nonrelevant documents, in the hope of

retrieving more relevant documents and fewer nonrelevant documents in a later search

[87]. Relevance feedback has proved effective in a number of IR projects [42, 87, 89].

One of these projects suggests that adding as few as 20 well-selected terms to the

query could result in performance improvements of over 100% [42].

We believe the idea of relevance feedback can be used to improve the performance of

a keyphrase extraction algorithm. We could ask the user to assess the quality of the

output keyphrases in a trial run. The information provided could then be used to tune

the algorithm by adjusting the weight of different attributes used in this algorithm.

 146

6.4.2 Hyperlinks

The term ‘document’ has been used to refer to plain text (i.e. no hyperlinks [73] or

multimedia elements) in this thesis. It will be interesting to see if the use of web

documents can improve the performance of KE. Most web documents contain

hyperlinks, which add useful information to the document. The study of these kinds of

documents is commonly known as web mining.

Web mining involves the use of data mining techniques to automatically discover and

extract information from web documents and services [55]. It often refers to three

different activities: web structure mining, web usage mining, and web content mining

[55, 61]. All these activities qualify as data mining and involve the web, but the actual

data being mined and the motivation are different.

• Web structure mining attempts to extract information from the topology of the

web, i.e. the links among pages [61]. In its pure form, structure mining does

not require information about the content of the pages. Kleinberg’s HITS

algorithm [14, 15, 35, 53] is an example of web structure mining. It uses the

web topology to help to find authoritative pages. For example, if we want to

retrieve information about ‘Harvard’ from the web, Harvard University’s

website should stand out from other sites because it contains the most relevant

information and is therefore considered the most authoritative site on this

topic. Although Google has not revealed how its search algorithm works, it is

believed that the algorithm involves some sort of link analysis [10].

 147

• Web usage mining attempts to extract information about how the people who

traverse those links with their browsers make use of them [61]. Usage mining

could be the most interesting area from a business point of view because this is

where customer behaviour is revealed. The actual behaviour might sometimes

be different from what the developers expect. Web usage mining helps to

identify this and improve the site’s usability. Bell’s SearchLight project [92] is

an example of web usage mining. It is based on the finding that 40% of search

engine queries are repeated. It helps to reduce search time by providing users

with information about other people’s search results.

• Web content mining attempts to extract useful information from the text,

images, and other forms of content that make up the pages [61, 62]. In its pure

form, content mining does not require information about the links between

pages. Multimedia data mining [120] is still in its infancy, though much of the

content of the web involves sound and pictures. Currently, most content

mining is actually text mining [3, 61]. Search engines, and IBM’s Intelligent

Miner for Text [104] are examples of web content mining. Keyphrase

extraction may also be seen as a content mining activity if the document from

which keyphrases are to be extracted is a web document [55].

Input Document

Key:
Link to

Document 1 Document 2

Document 1.1

Document 1.1.1

Level 0

Level 1

Level 2

Level 3

Figure 6.1: Use of hyperlinks for keyphrase extraction

 148

It will be interesting to see if the use of hyperlink information (which has proved

effective in HITS and Google) can boost the quality of the output keyphrases. Recall

that the performance of a keyphrase extraction algorithm improves significantly when

it is trained on documents that are from the same domain as the document from which

keyphrases are extracted (for details, see Section 2.2.2). If a hyperlink document is

provided, we could follow all the links in that document say to the second level (see

Figure 6.1). We will then get a set of documents which is likely to be in the same

domain as the input document. The documents linked to the input document should be

related to the input document in some way; if not, they would not be linked. The

document set could be used to help to identify high quality keyphrases. This way, we

would not have to sacrifice domain independence for performance. Also, the

algorithm would not be tied to a specific domain because the document set is

generated only when a document is provided.

 149

APPENDIX

7 Formal Specification of KE

7.1 Overview

This appendix describes the KE algorithm using the Z notation. Z is a formal

specification language based on mathematics; because of its mathematical nature,

requirements written in Z are precise and unambiguous. This is why we use Z to

describe KE. This appendix is mostly concerned with the formal specification of KE.

To avoid ambiguity, all the steps and attributes involved in KE are specified in Z. To

improve readability, these steps are explained with examples and English

descriptions.

Section 7.2 discusses the formal specification of KE. Section 7.3 concludes this

appendix.

7.2 Formal Description of KE

This section specifies KE in Z and explains the specification with informal English

descriptions. Please refer to [47, 96, 116, 117] for further information about the Z

notation.

7.2.1 Types

A document is just a string. Although it could be divided up into a sequence of words

or even characters, these levels of abstraction are too low. For the purposes of this

specification, we suppose that String is a basic type:

 150

<4USJOH>

There are 36 part-of-speech tags in the Penn Treebank tagset (for details, see Section

2.7). Nevertheless, we are only interested in adjectives (JJ, JJR, JJS), verbs (VB,

VBD, VBG, VBN, VBP, VBZ) and nouns (NN, NNS, NNP, NNPS). Tags other than

these are classified as others.

We define PartOfSpeech as a free type with 14 constants:

1BSU0G4QFFDI ��¯ KK] KKS] KKT] WC] WCE] WCH] WCO]
 WCQ] WC[] OO] OOT] OOQ] OOQT] PUIFST

The set of all valid tagged words is represented as a schema type:

»¥¥¥¥¥ 5BH ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�T � 4USJOH
�Q � 1BSU0G4QFFDI
¡¥¥¥

Terms are characterized by four attributes: TF×IDF, position, title, and proper noun.

The set of all valid terms is represented as a schema type:

»¥¥¥¥¥ 5FSN ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�TUS � 4USJOH
�UG � Ø
�JEG � Ø
�QPTJUJPO � Ø
�UJUMF � Ø
�QSPQFS@OPVO � Ø
�TDPSF � Ø
¡¥¥¥

Term phrases are also characterized by four attributes: TF×IDF, position, title and

number of terms. The set of all valid term phrases is represented as a schema type:

 151

»¥¥¥¥¥ 5FSN1ISBTF ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�TUS � 4USJOH
�UG � Ø
�JEG � Ø
�QPTJUJPO � Ø
�UJUMF � Ø
�OP@PG@UFSNT � Ø
�TDPSF � Ø
¡¥¥¥

7.2.2 Predefined Functions

When a user provides KE with a document, the document is tagged and stemmed. We

use the iterated Lovins stemmer to stem the input document (for efficiency purposes)

and the output keyphrases (for evaluation purposes), and Eric Brill’s part-of-speech

tagger to tag the input document. Since the focus of this appendix is on the

specification of KE, the details of how the stemmer and the tagger work can be

temporarily ignored. For the purposes of this specification, we suppose that there are

two predefined functions performing these tasks. Please refer to Section 2.6 for

further information about the stemmer, and to Section 2.7 for the tagger.

�TUFN@ � 4USJOH kko 4USJOH
�UBH@ � 4USJOH kko TFR 5BH
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
���� EFGJOJUJPOT PNJUUFE ���

The details of how the following functions work are also not important to us, so we

suppose that they are predefined functions (three of these are about string

manipulation):

• The function concat is used to concatenate a string to the end of another string.

• The function indexof is used to get the index of the first occurrence of a string

within another string. If it does not occur within that string, zero will be

returned.

 152

• The function scoreterm is used to calculate the score of a term, taking

TF×IDF, position, title, and proper noun as input.

• The function scoretermphrase is used to calculate the score of a term phrase,

taking TF×IDF, position, title and number of terms as input.

• The function tokenize is used to break a string into tokens (i.e. a sequence of

strings).

�@DPODBU@ � 	4USJOH u 4USJOH
 kko 4USJOH
�@JOEFYPG@ � 	4USJOH u 4USJOH
 kko Ø
�TDPSFUFSN@ @ @ @� 	Ø u Ø u Ø u Ø
 kko Ø
�TDPSFUFSNQISBTF@ @ @ @� 	Ø u Ø u Ø u Ø
 kko Ø
�UPLFOJ[F@ � 4USJOH kko TFR 4USJOH
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
���� EFGJOJUJPOT PNJUUFE ���

7.2.3 Global Constants and Variables

A stopword list contains words with high frequency and little semantic value (for

details, see Section 1.3.1). The stopword list used in KE contains 17 common verbs,

which are basically the various forms of ‘be’, ‘do’, and ‘have’:

4UPQXPSET �� \ CF XFSF XBT CFJOH BN CFFO BSF JT
 EP EJE EPJOH EPOF EPFT IBWF IBE IBWJOH IBT ^

A corpus is just a collection of documents. We need a corpus to train KE and to

calculate the IDF of a term. For efficiency purposes, all the documents in the corpus

are stemmed.

$PSQVT �� i 4USJOH

The system stems the input document and the title of this document, and stores them

in the global variable document and title respectively. These variables will be used in

Section 7.2.6 and Section 7.2.8.

 153

�EPDVNFOU � 4USJOH
�UJUMF � 4USJOH

»¥¥¥¥¥ &YUSBDU ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�SBX@EPDVNFOU � 4USJOH
�SBX@UJUMF � 4USJOH
����
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�EPDVNFOU � TUFN	SBX@EPDVNFOU

�UJUMF � TUFN	SBX@UJUMF

����
¡¥¥¥

The system picks all the words tagged as proper noun and stores them in the global

variable proper_nouns, which will be used in Section 7.2.6.

�QSPQFS@OPVOT � i 4USJOH

�HFUQSPQFSOPVOT@ � TFR 5BH kko i 4USJOH
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�w U � TFR 5BH |
� HFUQSPQFSOPVOT U �
� \ J � ����U] 	U J
�Q Ï \OOQ OOQT^ |
� TUFN		U J
�T
 ^

»¥¥¥¥¥ &YUSBDU ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�SBX@EPDVNFOU � 4USJOH
����
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�QSPQFS@OPVOT � HFUQSPQFSOPVOT	UBH	SBX@EPDVNFOU

����
¡¥¥¥

The following global variables will also be used in the specification (their meaning

will become clear as the algorithm is described):

1. The system selects some words (or phrases) from the input document and

stores them in the variable words (or phrases).

2. The system stems the selected words (or phrases) and stores them in the

variable stemmed_words (or stemmed_phrases).

 154

3. The system calculates the score of each term (or term phrase) and stores it in

the variable terms (or term_phrases).

4. The system establishes a one-to-one relationship between the terms and the

term phrases, and stores it in the variable key_term_phrases.

�XPSET QISBTFT � TFR 4USJOH
�TUFNNFE@XPSET TUFNNFE@QISBTFT � 4USJOH kko 4USJOH
�UFSNT � TFR 5FSN
�UFSN@QISBTFT � TFR 5FSN1ISBTF
�LFZ@UFSN@QISBTFT � JTFR 4USJOH

7.2.4 Attributes

Five attributes have been found useful for keyphrase extraction in our experiments

(for details, see Section 4.4) and are used in KE: TF×IDF (using the standard TF and

Kea’s IDF), position, title, proper noun, and number of terms. The TF×IDF, position,

title, proper noun and number of terms of a term T (or a phrase P) in a document D

may be informally defined as:

5' � �	UPLFOJ[F	%
 � \5^

*%' � �MPH �\ D � $PSQVT] 	D JOEFYPG 5
�� z D�% | D ^
1PTJUJPO � 	% JOEFYPG 5
 EJW �UPLFOJ[F	%

	UJUMF JOEFYPG 5
 � � e 5JUMF � �
	UJUMF JOEFYPG 5
 � � e 5JUMF � �
5 Ï QSPQFS@OPVOT e 1SPQFS@/PVO � �
5 È QSPQFS@OPVOT e 1SPQFS@/PVO � �
/P@0G@5FSNT � �UPLFOJ[F	1

These attributes will be revisited and formally defined in Section 7.2.6 and Section

7.2.8.

7.2.5 Selecting Words

Step 1 involves the selection of all the words which have been tagged as adjective,

verb and noun, and are not included in the stopword list.

 155

�TFMFDUXPSET@ � TFR 5BH kko TFR 4USJOH
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�w U � TFR 5BH |
� TFMFDUXPSET U �
� TRVBTI \ J � ����U]
� 	U J
�Q � PUIFST z
� 	U J
�T È 4UPQXPSET |
� J {ko 	U J
�T ^

The system tags the input document before passing it to the function selectwords and

stores the return value of this function in the global variable words.

»¥¥¥¥¥ &YUSBDU ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�SBX@EPDVNFOU � 4USJOH
����
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�XPSET � TFMFDUXPSET	UBH	SBX@EPDVNFOU

����
¡¥¥¥

7.2.6 Scoring Terms

Step 2 involves six closely related tasks:

1. Stem the selected words

2. Detect equivalent stems

3. Delete terms that occur only once in the document

4. Calculate the TF×IDF (using the standard TF and Kea’s IDF), position, title

and proper noun of each term

5. Assign a score to each term based on these attributes

6. Sort the terms in descending order of score (if two terms have the same score,

they are ranked in ascending order of position)

 156

The function stems performs Task 1, detectstems performs Task 2 and 3, scoreterms

performs Task 4 and 5, and sortterms performs Task 6. These functions will be

discussed in this section.

The function stems takes a sequence of selected words as input and returns a set of

string pairs (i.e. a word and its stem). For example, it will return

\ NBUIFNBUJDT {ko NBUIFNBU NBUIFNBUJDJBO {ko NBUIFNBU ^ if

the input document contains ‘mathematics’ and ‘mathematician’.

�TUFNT@ � TFR 4USJOH kko 	4USJOH kko 4USJOH

¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�w T � TFR 4USJOH |
� TUFNT T � \ J � SBO T | J {ko TUFN	J
 ^

The system uses the function stems to stem the selected words and stores the return

value of this function in the global variable stemmed_words.

»¥¥¥¥¥ &YUSBDU ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
����
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�TUFNNFE@XPSET � TUFNT	XPSET

����
¡¥¥¥

Multiple occurrences of a given stem (i.e. words with the same stem) are combined

into a single term. For example, ‘mathematics’ and ‘mathematician’ are combined

into ‘mathemat’ if they occur in the input document (see Figure 7.1).

1

2

3

mathematics

mathematician

mathemat

s stemmed_words

String String

Figure 7.1: Detecting equivalent stems

 157

�EFUFDUTUFNT@ � TFR 4USJOH kko TFR 4USJOH
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�w T � TFR 4USJOH |
� EFUFDUTUFNT T �
� TRVBTI \ S � SBO	T g TUFNNFE@XPSET
]
� �		T g TUFNNFE@XPSET
 � \ S ^
 � � |
� NJO	EPN		T g TUFNNFE@XPSET
 � \ S ^

 {ko S ^

For each term, the value of TF×IDF, position, title, and proper noun is calculated.

Informal definitions and descriptions of these attributes can be found in Section 1.3.

�TDPSFUFSNT@ � TFR 4USJOH kko TFR 5FSN
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�w T � TFR 4USJOH |
� TDPSFUFSNT T fe w U � TFR 5FSN |
� �T � �U
� w J � ����U |
� 	U J
�TUS � T J
� 	U J
�UG �
� �		XPSET g TUFNNFE@XPSET
 � \ 	U J
�TUS ^

� 	U J
�JEG �
� �MPH �\ E � $PSQVT]
� 	E JOEFYPG 	U J
�TUS
 � � z E � EPDVNFOU | E ^
� 	U J
�QPTJUJPO � 	EPDVNFOU JOEFYPG 	U J
�TUS
 EJW
� �UPLFOJ[F	EPDVNFOU

� 	UJUMF JOEFYPG 	U J
�TUS
 � � e 	U J
�UJUMF � �
� 	UJUMF JOEFYPG 	U J
�TUS
 � � e 	U J
�UJUMF � �
� 	U J
�TUS Ï QSPQFS@OPVOT e 	U J
�QSPQFS@OPVO � �
� 	U J
�TUS È QSPQFS@OPVOT e 	U J
�QSPQFS@OPVO � �
� ���

Each term is scored based on these attributes.

�TDPSFUFSNT@ � TFR 4USJOH kko TFR 5FSN
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�w T � TFR 4USJOH |
� TDPSFUFSNT T fe w U � TFR 5FSN |
� ���
� w J � ����U |
� ���
� 	U J
�TDPSF �
� TDPSFUFSN		U J
�UG�	U J
�JEG 	U J
�QPTJUJPO
� 	U J
�UJUMF 	U J
�QSPQFS@OPVO

 158

The function sortterms sorts the objects in the sequence by score followed by

position. If object a has a higher score than object b, a is nearer the top of the

sequence; if a has the same score as b, the object with a smaller position value is

nearer the top.

�TPSUUFSNT@ � TFR 5FSN kko TFR 5FSN
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�w U � TFR 5FSN |
� TPSUUFSNT U fe w J K � ����U] J � K |
� 	U J
�TDPSF � 	U K
�TDPSF e
� 	U J
�TDPSF � 	U K
�TDPSF
� 	U J
�TDPSF � 	U K
�TDPSF e
� 	U J
�QPTJUJPO � 	U K
�QPTJUJPO

The system stores the return value of the function detectstems, scoreterms and

sortterms in the global variable terms.

»¥¥¥¥¥ &YUSBDU ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
����
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�UFSNT � TPSUUFSNT	TDPSFUFSNT	EFUFDUTUFNT	XPSET

����
¡¥¥¥

7.2.7 Selecting Phrases

Step 3 involves the selection of all the noun phrases in the document. This is because

almost all the keyphrases are noun phrases and they normally contain less than four

words and match the following pattern [108]:

 (NN | NNS | NNP | NNPS | JJ)0..2 (NN | NNS | NNP | NNPS | VBG)

This pattern means zero, one or two nouns or adjectives (NN | NNS | NNP | NNPS |

JJ) followed by a noun or a gerund (NN | NNS | NNP | NNPS | VBG).

 159

�TFMFDUQISBTFT@ � TFR 5BH kko TFR 4USJOH
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�w U � TFR 5BH |
� TFMFDUQISBTFT U �
� TRVBTI \ J � ����U]
� 	U J
�Q Ï \ OO OOT OOQ OOQT WCH ^ |
� J {ko 	U J
�T ^
� Ö
� TRVBTI \ J � ����U]
� 	U J��
�Q Ï \ OO OOT OOQ OOQT KK ^ z
� 	U J
�Q Ï \ OO OOT OOQ OOQT WCH ^ |
� J {ko 		U J��
�T DPODBU 	U J
�T
 ^
� Ö
� TRVBTI \ J � ����U]
� 	U J��
�Q Ï \ OO OOT OOQ OOQT KK ^ z
� 	U J��
�Q Ï \ OO OOT OOQ OOQT KK ^ z
� 	U J
�Q Ï \ OO OOT OOQ OOQT WCH ^ |
� J {ko 		U J��
�T DPODBU 	U J��
�T
� DPODBU 	U J
�T
 ^

The system tags the input document before passing it to the function selectphrases,

and stores the return value of this function in the global variable phrases.

»¥¥¥¥¥ &YUSBDU ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�SBX@EPDVNFOU � 4USJOH
����
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�QISBTFT � TFMFDUQISBTFT	UBH	SBX@EPDVNFOU

����
¡¥¥¥

7.2.8 Scoring Term Phrases

Similar to Step 2, Step 4 involves six closely related tasks:

1. Stem the selected phrases

2. Detect equivalent stem phrases

3. Delete term phrases that occur only once in the document

 160

4. Calculate the TF×IDF (using the standard TF and Kea’s IDF), position, title,

and number of terms of each term phrase

5. Assign a score to each term phrase based on these attributes

6. Sort the term phrases in descending order of score (if two term phrases have

the same score, they are ranked in ascending order of position followed by

descending order of number of terms)

Similar to Step 2, the function stems performs Task 1, and detectstems performs Task

2 and 3. For details of these functions, see Section 7.2.6. The remaining tasks are

performed by two functions: the function scoretermphrases performs Task 4 and 5,

and sorttermphrases performs Task 6.

For each term phrase, the value of TF×IDF, position, title, and number of terms is

calculated. Informal definitions and descriptions of these attributes can be found in

Section 1.3. Each term phrase is then scored based on these attributes.

�TDPSFUFSNQISBTFT@ � TFR 4USJOH kko TFR 5FSN1ISBTF
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�w T � TFR 4USJOH |
� TDPSFUFSNQISBTFT T fe w U � TFR 5FSN1ISBTF |
� ���
� w J � ����U |
� ���
� 	U J
�UG �
� �		QISBTFT g TUFNNFE@QISBTFT
 � \ 	U J
�TUS ^

� ���
� 	U J
�OP@PG@UFSNT �
� �UPLFOJ[F		U J
�TUS

� 	U J
�TDPSF �
� TDPSFUFSNQISBTF		U J
�UG�	U J
�JEG
� 	U J
�QPTJUJPO 	U J
�UJUMF
� 	U J
�OP@PG@UFSNT

 161

The function sorttermphrases sorts the objects in the sequence by score followed by

position and no_of_terms. If object a has a higher score than object b, a is nearer the

top of the sequence; if a has the same score as b, the object with a smaller position

value is nearer the top; if a has the same score and position value as b, the object with

a larger no_of_terms value is nearer the top.

�TPSUUFSNQISBTFT@ � TFR 5FSN1ISBTF kko TFR 5FSN1ISBTF
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�w U � TFR 5FSN1ISBTF |
� TPSUUFSNQISBTFT U fe w J K � ����U] J � K |
� 	U J
�TDPSF � 	U K
�TDPSF e
� 	U J
�TDPSF � 	U K
�TDPSF
� 	U J
�TDPSF � 	U K
�TDPSF z
� 	U J
�QPTJUJPO � 	U K
�QPTJUJPO e
� 	U J
�QPTJUJPO � 	U K
�QPTJUJPO
� 	U J
�TDPSF � 	U K
�TDPSF z
� 	U J
�QPTJUJPO � 	U K
�QPTJUJPO e
� 	U J
�OP@PG@UFSNT � 	U K
�OP@PG@UFSNT

The system uses the function stems to stem the selected phrases and stores the return

value of this function in the global variable stemmed_phrases. It then stores the return

value of the function detectstems, scoretermphrases and sorttermphrases in the global

variable term_phrases.

»¥¥¥¥¥ &YUSBDU ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
����
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�TUFNNFE@QISBTFT � TUFNT	QISBTFT

�UFSN@QISBTFT � TPSUUFSNQISBTFT	TDPSFUFSNQISBTFT
� 	EFUFDUTUFNT	QISBTFT

����
¡¥¥¥

7.2.9 Expanding Terms

Step 5 involves expanding single terms to term phrases. For each term, find all the

term phrases that contain the term, and link it with the highest scoring term phrase.

The result is a list of term phrases ordered by the scores calculated in Step 2.

 162

Suppose that the term phrase ‘integer fact algorithm’ and ‘fact’ appear in the first and

second position of the sequence p respectively. The term ‘fact’ (stem of

‘factorization’) will link to ‘integer fact algorithm’ instead of ‘fact’ (see Figure 7.2).

1

2

algorithm

fact

t

1

2

integer fact
algorithm

fact

p

Term TermPhrase

Figure 7.2: Expanding terms to term phrases

The function expandterms ensures that no term links to more than one term phrase

and uses the scores calculated in Step 2 to rank the output sequence.

�FYQBOEUFSNT@ @ � 	TFR 5FSN u TFR 5FSN1ISBTF

� kko TFR 5FSN1ISBTF
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�w U � TFR 5FSN� Q � TFR 5FSN1ISBTF |
� FYQBOEUFSNT 	U Q
 �
� TRVBTI \ J � ����U |
� J {ko 	Q 	NJO \ K � ����Q]
� 		Q K
�TUS JOEFYPG 	U J
�TUS
 � � | K ^

� ^

7.2.10 Dropping Duplicates

Step 6 involves the elimination of duplicates from the list of term phrases. More than

one term may link to the same term phrase (i.e. there may be converging arrows in the

graph). If that is the case, the term phrase will be linked to the highest scoring term.

Suppose that the terms ‘fact’ (appears in the first position) and ‘algorithm’ (appears in

the second position) are expanded to the term phrase ‘integer fact algorithm’. ‘Fact’

instead of ‘algorithm’ will link to ‘integer fact algorithm’ (see Figure 7.3).

 163

1
(fact)

2
(algorithm)

integer fact
algorithm

fact

TermPhrase

Figure 7.3: Deleting duplicate term phrases

The function dropduplicates ensures that no term phrase appears more than once in

the output sequence.

�ESPQEVQMJDBUFT@ � TFR 5FSN1ISBTF kko JTFR 4USJOH
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�w U � TFR 5FSN1ISBTF |
� ESPQEVQMJDBUFT U �
� TRVBTI \ J � SBO U |
� NJO	EPN	U � \ J ^

 {ko J�TUS ^

The system stores the return value of the function expandterms and dropduplicates in

the global variable key_term_phrases.

»¥¥¥¥¥ &YUSBDU ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
����
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�LFZ@UFSN@QISBTFT �
� ESPQEVQMJDBUFT	FYQBOEUFSNT	UFSNT UFSN@QISBTFT

����
¡¥¥¥

7.2.11 Displaying Output

Step 7 involves two closely related tasks:

1. Identify the most frequent corresponding phrase in the input document for

each of the term phrases. If a term phrase is linked to more than one phrase,

the most frequent phrase will be chosen.

 164

2. Delete subphrases if they do not perform better than their superphrases. If

phrase P1 occurs within phrase P2, P1 is a subphrase of P2 and P2 is a

superphrase of P1. If a phrase is a subphrase of another phrase, it will only be

accepted as a keyphrase if it is ranked higher; otherwise it will be deleted from

the output list.

The function displayoutput performs Task 1, and postprocess performs Task 2. These

functions will be discussed in this section.

Suppose that the term phrase ‘mathemat’ is linked to ‘mathematics’ (appears twice in

the input document) and ‘mathematician’ (appears once). ‘Mathematics’ instead of

‘mathematician’ will be chosen for output (see Figure 7.4).

1

2

3

mathematics

mathematician

mathemat

phrases stemmed_phrases

String String

Figure 7.4: Identifying the most frequent phrases

The function displayoutput takes a sequence of term phrases as input and returns a

sequence of phrases. The precondition of displayoutput is that

SBO JT Â SBO TUFNNFE@QISBTFT.

 165

�EJTQMBZPVUQVU@ � JTFR 4USJOH kko JTFR 4USJOH
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�w JT � JTFR 4USJOH |
� EJTQMBZPVUQVU JT � JT g
� \ J � SBO JT |
� J {ko \ 4 � EPN	TUFNNFE@QISBTFT � \ J ^
�
� N � 4USJOH] N Ï 4 z
� 	w O � 4 |
� �	QISBTFT � \ N ^
 Ó �	QISBTFT � \ O ^

 | N ^
� ^

Suppose that the phrase ‘integer factorization algorithm’ appears in the first position

of the output list and ‘factorization’ appears in the second position, ‘factorization’ will

be removed because it is a subphrase of ‘integer factorization algorithm’ and is ranked

lower (see Figure 7.5).

1

2

integer
factorization

algorithm
factorization

String

Figure 7.5: Deleting inferior subphrases

�QPTUQSPDFTT@ � JTFR 4USJOH kko JTFR 4USJOH
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�w JT � JTFR 4USJOH |
� QPTUQSPDFTT JT �
� TRVBTI \ K � ����JT]
� 	w J � ����JT | J � K z
� 		JT J
 JOEFYPG 	JT K

 � �
 | K {ko 	JT K
^

The system stores the return value of the function displayoutput and postprocess in

the keyphrase list keyphrases’.

 166

»¥¥¥¥¥ &YUSBDU ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
����
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�LFZQISBTFT� �
� QPTUQSPDFTT	EJTQMBZPVUQVU	LFZ@UFSN@QISBTFT

����
¡¥¥¥

7.2.12 Extracting Keyphrases

The keyphrase extraction system contains a list of keyphrases. A phrase which is

nearer the top of the list is more likely to be a keyphrase. No keyphrase should appear

in the list more than once (this is reinforced by Step 6), and all the keyphrases should

contain less than four words (this is reinforced by Step 3).

»¥¥¥¥¥ ,FZQISBTF&YUSBDUJPO ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�LFZQISBTFT � JTFR 4USJOH
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�w T � SBO LFZQISBTFT | �	UPLFOJ[F	T

 � �
¡¥¥¥

When the system is initialized, the keyphrase list is empty.

»¥¥¥¥¥ ,FZQISBTF&YUSBDUJPO*OJU ¥¥¥¥¥¥¥¥¥¥¥
�,FZQISBTF&YUSBDUJPO�
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�LFZQISBTFT� � Î
¡¥¥¥

To describe an operation which may change the contents of the keyphrase list, we

include two copies of the system state:

»¥¥¥¥¥ },FZQISBTF&YUSBDUJPO ¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�,FZQISBTF&YUSBDUJPO
�,FZQISBTF&YUSBDUJPO�
¡¥¥¥

 167

When the user provides the system with a document raw_document?, the title of this

document raw_title?, and the desired number of output keyphrases num?, the system

stems the title, tags and stems the document, goes through all the steps mentioned

above, and displays a list of the top num? keyphrases.

»¥¥¥¥¥ &YUSBDU ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�},FZQISBTF&YUSBDUJPO
�SBX@EPDVNFOU � 4USJOH
�SBX@UJUMF � 4USJOH
�OVN � Ø
�PVU� � JTFR 4USJOH
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
�EPDVNFOU � TUFN	SBX@EPDVNFOU

�UJUMF � TUFN	SBX@UJUMF

�QSPQFS@OPVOT � HFUQSPQFSOPVOT	UBH	SBX@EPDVNFOU

�XPSET � TFMFDUXPSET	UBH	SBX@EPDVNFOU

�TUFNNFE@XPSET � TUFNT	XPSET

�UFSNT � TPSUUFSNT	TDPSFUFSNT	EFUFDUTUFNT	XPSET

�QISBTFT � TFMFDUQISBTFT	UBH	SBX@EPDVNFOU

�TUFNNFE@QISBTFT � TUFNT	QISBTFT

�UFSN@QISBTFT � TPSUUFSNQISBTFT	TDPSFUFSNQISBTFT
� 	EFUFDUTUFNT	QISBTFT

�LFZ@UFSN@QISBTFT �
� ESPQEVQMJDBUFT	FYQBOEUFSNT	UFSNT UFSN@QISBTFT

�LFZQISBTFT� �
� QPTUQSPDFTT	EJTQMBZPVUQVU	LFZ@UFSN@QISBTFT

�PVU� � \ J � ���OVN] �LFZQISBTFT� Ó OVN |
� J {ko LFZQISBTFT� J ^
¡¥¥¥

7.3 Summary

This appendix describes the KE algorithm using the Z notation. The algorithm has

been specified in Z and explained with examples and informal English descriptions.

 168

References

1. James Allen, Natural Language Understanding, Benjamin/ Cummings, 2nd
Edition, 1995

2. Ricardo Baeza-Yates and Berthier Ribeiro-Neto, Modern Information Retrieval,
ACM Press, 1999

3. Alvaro Barbosa, Overview of Text Summarization in the Context of
Information Retrieval and Interpretation: Applications for Web Pages
Summarization, Research Article for the Audiovisual Institute of the Pompeu
Fabra University in the Context of the Doctorate Program in Computer Science
and Digital Communication, 2001

4. Peter Biebricher, Norbert Fuhr, Gerhard Knorz, Gerhard Lustig and Michael
Schwantner, The Automatic Indexing System AIR/ PHYS – from Research to
Application, Proceedings of 11th International Conference on Research and
Development in Information Retrieval, Grenoble, France, ACM Press, pp. 333-
342, 1988

5. Joseph Bigus, Data Mining with Neural Networks, McGraw-Hill, 1996

6. Christopher Bishop, Neural Networks for Pattern Recognition, Oxford
University Press, 1995

7. Ronald Brandow, Karl Mitze and Lisa Rau, Automatic Condensation of
Electronic Publications by Sentence Selection, Information Processing and
Management, Vol. 31, No. 5, pp. 675-685, 1995

8. Eric Brill, A Corpus-Based Approach to Language Learning, Ph.D.
Dissertation, Department of Computer and Information Science, University of
Pennsylvania, USA, 1993

9. Eric Brill, A Simple Rule-Based Part of Speech Tagger, Proceedings of 3rd
Conference on Applied Natural Language Processing, Trento, Italy, ACM Press,
pp. 152-155, 1992

 169

10. Sergey Brin and Lawrence Page, The Anatomy of a Large-Scale Hypertextual
Web Search Engine, Proceedings of 7th International Conference on World
Wide Web 7, Brisbane, Australia, Elsevier, pp. 107-117, 1998

11. British National Corpus, http://www.natcorp.ox.ac.uk/

12. John Broglio, James Callan and W. Bruce Croft, INQUERY System Overview,
Proceedings of Tipster Text Program: Phase 1, Virginia, USA, Association for
Computational Linguistics, pp. 47-67, 1993

13. John Bullinaria, John Bullinaria’s Step by Step Guide to Implementing a Neural
Network in C, http://www.cs.bham.ac.uk/~jxb/NN/nn.html

14. Soumen Chakrabarti, Byron Dom, David Gibson, Jon Kleinberg, Ravi Kumar,
Prabhakar Raghavan, Sridhar Rajagopalan and Andrew Tomkins, Mining the
Link Structure of the World Wide Web, IEEE Computer, Vol. 32, No. 8, pp. 60-
67, 1999

15. Soumen Chakrabarti, Byron Dom, Prabhakar Raghavan, Sridhar Rajagopalan,
David Gibson and Jon Kleinberg, Automatic Resource List Compilation by
Analyzing Hyperlink Structure and Associated Text, Proceedings of 7th
International World Wide Web Conference, Brisbane, Australia, Elsevier, pp.
65-74, 1998

16. Hsinchun Chen, Machine Learning for Information Retrieval: Neural Networks,
Symbolic Learning, and Genetic Algorithms, Journal of the American Society
for Information Science, Vol. 46, Issue 3, pp. 194-216, 1995

17. Mo Chen, Jian-Tao Sun, Hua-Jun Zeng and Kwok-Yan Lam, A Practical
System of Keyphrase Extraction for Web Pages, Proceedings of 14th ACM
International Conference on Information and Knowledge Management, Bremen,
Germany, ACM Press, pp. 277-278, 2005

18. Jim Cowie and Wendy Lehnert, Information Extraction, Communications of the
ACM, Vol. 39, No. 1, pp. 80-91, 1996

19. Jim Cowie and Yorick Wilks, Information Extraction,
http://www.dcs.shef.ac.uk/~yorick/papers/infoext.pdf

20. W. Bruce Croft and David Harper, Using Probabilistic Models of Document
Retrieval without Relevance Information, Journal of Documentation, Vol. 35,
No. 4, pp. 285-295, 1979

 170

21. Hamish Cunningham, Information Extraction – A User Guide (2nd Edition),
http://www.dcs.shef.ac.uk/~hamish/IE/userguide/main.html

22. Hamish Cunningham, Information Extraction, http://gate.ac.uk/ie/

23. Sally Cunningham, Geoffrey Holmes, Jamie Littin, Russell Beale and Ian
Witten, Applying Connectionist Models to Information Retrieval, Brain-Like
Computing and Intelligent Information Systems, Springer-Verlag, pp. 435-457,
1997

24. Sally Cunningham, James Littin and Ian Witten, Applications of Machine
Learning in Information Retrieval, Technical Report 97/ 6, Department of
Computer Science, University of Waikato, 1997

25. Bo Curry and David Rumelhart, MSnet: A Neural Network that Classifies Mass
Spectra, HP Labs Technical Report HPL-90-161, 1990

26. Ernesto D’Avanzo and Bernardo Magnini, A Keyphrase-Based Approach to
Summarization: The LAKE System at DUC-2005, Document Understanding
Workshop, Vancouver, Canada, 2005

27. Ernesto D’Avanzo, Bernardo Magnini and Alessandro Vallin, Keyphrase
Extraction for Summarization Purposes: The LAKE System at DUC-2004,
Document Understanding Workshop, Boston, USA, 2004

28. H. Edmundson, New Methods in Automatic Extracting, Journal of the ACM,
Vol. 16, Issue 2, pp. 264-285, 1969

29. Lauene Fausett, Fundamentals of Neural Networks: Architectures, Algorithms,
and Applications, Prentice-Hall, 1994

30. Usama Fayyad and Keki Irani, Multi-Interval Discretization of Continuous-
Valued Attributes for Classification Learning, Proceedings of 13th International
Joint Conference on Artificial Intelligence, Chambery, France, Morgan
Kaufmann, pp. 1022-1027, 1993

31. Rand Fishkin and Jeff Pollard, Search Engine Ranking Factors V2,

http://www.seomoz.org/article/search-ranking-factors

 171

32. William Frakes and Ricardo Baeza-Yates, Information Retrieval: Data
Structures and Algorithms, Prentice Hall, 1992

33. W. Nelson Francis and Henry Kucera, Brown Corpus Manual,
http://helmer.aksis.uib.no/icame/brown/bcm.html

34. Eibe Frank, Gordon Paynter, Ian Witten, Carl Gutwin and Craig Nevill-
Manning, Domain-Specific Keyphrase Extraction, Proceedings of 16th
International Joint Conference on Artificial Intelligence (IJCAI-99), California,
USA, Morgan Kaufmann, pp. 668-673, 1999

35. David Gibson, Jon Kleinberg and Prabhakar Raghavan, Inferring Web
Communities from Link Topology, Proceedings of 9th ACM Conference on
Hypertext and Hypermedia, Pennsylvania, USA, ACM Press, pp. 225-234, 1998

36. Jade Goldstein, Mark Kantrowitz, Vibhu Mittal and Jaime Carbonel,
Summarizing Text Documents: Sentence Selection and Evaluation Metrics,
Proceedings of 22nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR-99), California, USA, ACM
Press, pp. 121-128, 1999

37. Ralph Grishman and Beth Sundheim, Message Understanding Conference – 6:
A Brief History, Proceedings of 16th International Conference on Computational
Linguistics, Copenhagen, Denmark, Association for Computational Linguistics,
pp. 466-471, 1996

38. Kevin Gurney, An Introduction to Neural Networks, UCL Press, 1997

39. Carl Gutwin, Gordon Paynter, Ian Witten, Craig Nevill-Manning and Eibe
Frank, Improving Browsing in Digital Libraries with Keyphrase Indexes,
Journal of Decision Support Systems, Vol. 27, Issue 1-2, pp. 81-104, 1999

40. Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques,
Morgan Kaufmann, 2001

41. Donna Harman, Overview of the Third Text Retrieval Conference (TREC-3),
Proceedings of 3rd Text Retrieval Conference (TREC-3), Maryland, USA, NIST
Special Publication 500-225, 1994

42. Donna Harman, Relevance Feedback Revisited, Proceedings of 15th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval, Copenhagen, Denmark, ACM Press, pp. 1-10, 1992

 172

43. Robert Hecht-Nielsen, Neurocomputing, Addison-Wesley, 1990

44. Charles Hildreth, Online Library Catalogues as Information Retrieval Systems:
What Can We Learn From Research?, Proceedings of the Silver Jubilee
Conference of the City University’s Department of Information Science,
London, UK, Taylor Graham, pp. 9-25, 1988

45. Rob Hooper and Chris Paice, The Lancaster Stemming Algorithm,
http://www.comp.lancs.ac.uk/computing/research/stemming/index.htm

46. David Hull, Stemming Algorithms: A Case Study for Detailed Evaluation,
Journal of the American Society of Information Science, Vol. 47, No. 1, pp.70-
84, 1996

47. Jonathan Jacky, The Way of Z: Practical Programming with Formal Methods,
Cambridge University Press, 1997

48. Taeho Jo, Neural Based Approach to Keyword Extraction from Documents,
Proceedings of 2003 International Conference on Computational Science and its
Applications (ICCSA 2003), Montreal, Canada, Springer-Verlag, pp. 456-461,
2003

49. Frances Johnson, Chris Paice, William Black, and A. Neal, The Application of
Linguistic Processing to Automatic Abstract Generation, Journal of Document
and Text Management, Vol. 1, No. 3, pp. 215-241, 1993

50. Steve Jones and Gordon Paynter, Automatic Extraction of Document
Keyphrases for Use in Digital Libraries: Evaluation and Applications, Journal of
the American Society for Information Science and Technology, Vol. 53, Issue 8,
pp. 653-677, 2002

51. Steve Jones and Gordon Paynter, Human Evaluation of Kea, An Automatic
Keyphrasing System, Proceedings of 1st ACM/ IEEE-CS Joint Conference on
Digital Libraries, Virginia, USA, ACM Press, pp. 148-156, 2001

52. Steve Jones and Mark Staveley, Phrasier: A System for Interactive Document
Retrieval using Keyphrases, Proceedings of 22nd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
California, United States, ACM Press, pp. 160-167, 1999

 173

53. Jon Kleinberg, Authoritative Sources in a Hyperlinked Environment, Journal of
the ACM, Vol. 46, No. 5, pp. 604-632, 1999

54. Kevin Knight, Connectionist Ideas and Algorithms, Communications of the
ACM, Vol. 33, No. 11, pp. 58-74, 1990

55. Raymond Kosala and Hendrik Blockeel, Web Mining Research: A Survey,
SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on
Knowledge Discovery & Data Mining, ACM, Vol. 2, Issue 1, pp. 1-15, 2000

56. Robert Krovetz, Viewing Morphology as an Inference Process, Proceedings of
16th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Pennsylvania, USA, ACM Press, pp.
191-202, 1993

57. Bruce Krulwich and Chad Burkey, Learning User Information Interests through
the Extraction of Semantically Significant Phrases, Proceedings of AAAI
Spring Symposium on Machine Learning in Information Access, California,
USA, AAAI Press, pp. 110-112, 1996

58. Julian Kupiec, Jan Pedersen and Francine Chen, A Trainable Document
Summarizer, Proceedings of 18th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR-95),
Washington, USA, ACM Press, pp. 68-73, 1995

59. Savio Lam and Dik Lee, Feature Reduction for Neural Network Based Text
Categorization, Proceedings of 6th International Conference on Database
Systems for Advanced Applications (DASFAA-99), Taiwan, ROC, IEEE
Computer, pp. 195-202, 1999

60. Ray Larson, Jerome McDonough, Paul O’Leary, Lucy Kuntz and Ralph Moon,
Cheshire II: Designing a Next-Generation Online Catalog, Journal of the
American Society for Information Science, Vol. 47, Issue 7, pp. 555-567, 1996

61. Gordon Linoff and Michael Berry, Mining the Web: Transforming Customer
Data into Customer Value, Wiley, 2002

62. Bing Liu and Kevin Chen-Chuan-Chang, Editorial: Special Issue on Web
Content Mining, ACM SIGKDD Explorations Newsletter, Vol. 6, Issue 2, pp.
1-4, 2004

 174

63. Julie Lovins, Development of a Stemming Algorithm, Mechanical Translation
and Computational Linguistics, Vol. 11, No. 1, pp. 22-31. 1968

64. Hans Luhn, The Automatic Derivation of Information Retrieval Encodements
from Machine-Readable Texts, Information Retrieval and Machine Translation,
Vol. 3, Part 2, pp. 1021-1028, New York Interscience Publication, 1961

65. Hans Luhn, The Automatic Creation of Literature Abstracts, IBM Journal of
Research and Development, Vol. 2, No. 2, pp. 159-165, 1958

66. Yuan Lui, Extraction of Significant Phrases from Text, International Journal of
Computer Science, Vol. 2, No. 2, pp. 101-109, 2007

67. Yuan Lui, Learning to Extract Significant Phrases from Text, Research Report
RR-07-01, Oxford University Computing Laboratory, UK, 2007

68. Yuan Lui, An Improved Keyphrase Extraction Algorithm, Proceedings of
PREP2005, Lancaster, UK, 2005

69. Yuan Lui, Richard Brent and Ani Calinescu, Extracting Significant Phrases
from Text, Proceedings of IEEE Data Mining and Information Retrieval,
Ontario, Canada, IEEE Computer, pp. 361-366, 2007

70. Inderjeet Mani, Automatic Summarization, John Benjamins, 2001

71. Olena Medelyan and Ian Witten, Thesaurus Based Automatic Keyphrase
Indexing, Proceedings of 6th ACM/ IEEE-CS Joint Conference on Digital
Libraries, North Carolina, USA, ACM Press, pp. 296-297, 2006

72. Tom Mitchell, Machine Learning, McGraw-Hill, 1997

73. Chuck Musciano and Bill Kennedy, HTML: The Definitive Guide, 3rd Edition,
O’Reilly, 1998

74. Mary Okurowski, Information Extraction Overview, Proceedings of Tipster
Text Program: Phase 1, Virginia, USA, Association for Computational
Linguistics, pp. 117-121, 1993

 175

75. J. Scott Olsson, Douglas Oard and Jan Hajic, Cross-Language Text
Classification, Proceedings of 28th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, Salvador,
Brazil, ACM Press, pp. 645-646, 2005

76. Chris Paice, The Automatic Generation of Literature Abstracts: An Approach
Based on the Identification of Self-Indicating Phrases, Proceedings of 3rd
Annual ACM Conference on Research and Development in Information
Retrieval, Cambridge, UK, Butterworth, pp. 172-191, 1980

77. Paper Collection, http://www.usc.cuhk.edu.hk/wk.asp

78. Martin Porter, An Algorithm for Suffix Stripping, Program, Vol. 14, No. 3, pp.
130-137, 1980

79. Martin Porter and Richard Boulton, The Lovins Stemming Algorithm,
http://snowball.tartarus.org/algorithms/lovins/stemmer.html

80. Lutz Prechelt, Neural Networks FAQ, http://www.cs.cmu.edu/Groups/AI/html
/faqs/ai/neural/faq.html

81. Dorian Pyle, Data Preparation for Data Mining, Morgan Kaufmann, 1999

82. J. Ross Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann,

1993

83. Brian Ripley, Pattern Recognition and Neural Networks, Cambridge University
Press, 1996

84. Alexander Robertson and Robert Gaizauskas, On the Marriage of Information
Retrieval and Information Extraction, Proceedings of 19th Annual BCS-IRSG
Colloquium on IR Research, Aberdeen, UK, Springer-Verlag, pp.1-8, 1997

85. Stephen Robertson and Karen Sparck-Jones, Simple, Proven Approaches to
Text Retrieval, Technical Report TR356, Cambridge University Computer
Laboratory, UK, 1997

86. David Rumelhart, Bernard Widrow and Michael Lehr, The Basic Ideas in
Neural Networks, Communications of the ACM, Vol. 37, No. 3, pp. 87-92,
1994

 176

87. Gerard Salton and Christopher Buckley, Improving Retrieval Performance by
Relevance Feedback, Journal of the American Society for Information Science,
Vol. 41, Issue 4, pp. 288-297, 1990

88. Gerard Salton and Christopher Buckley, Term-Weighting Approaches in
Automatic Text Retrieval, Information Processing and Management, Vol. 24,
No. 5, pp. 513-523, 1988

89. Gerald Salton and Michael McGill, The SMART and SIRE Experimental
Retrieval Systems, Introduction to Modern Information Retrieval, McGraw-
Hill, pp. 118-156, 1983

90. Gerard Salton and Michael McGill, Introduction to Modern Information
Retrieval, McGraw-Hill, 1983

91. Serge Sharoff, Chinese Tokenisation and Tagging. http://corpus.leeds.ac.uk/
tools/zh/

92. Liddy Shriver and Christopher Small, The SearchLight Proxy Server, Bell
Laboratories, http://www.bell-labs.com/project/searchlight/

93. Min Song, Il-Yeol Song and Xiaohua Hu, KPSpotter: A Flexible Information
Gain-based Keyphrase Extraction System, Proceedings of 5th ACM
International Workshop on Web Information and Data Management, Louisiana,
USA, ACM Press, pp. 50-53, 2003

94. Karen Sparck-Jones, Language Modelling’s Generative Model: Is It Rational?,
http://www.cl.cam.ac.uk/~ksj/langmodnote4.pdf

95. Karen Sparck-Jones and Peter Willett, Readings in Information Retrieval,
Morgan Kaufmann, 1997

96. Mike Spivey, The Z Notation: A Reference Manual, Prentice-Hall, 1989

97. Danny Sullivan, Death of a Meta Tag, http://searchenginewatch.com/

showPage.html?page=2165061

98. Beth Sundheim, Overview of Results of the MUC-6 Evaluation, Proceedings of
6th Message Understanding Conference (MUC-6), Maryland, USA, Association
for Computational Linguistics, pp. 13-31, 1995

 177

99. Beth Sundheim and Nancy Chinchor, Survey of the Message Understanding
Conferences, Proceedings of the Workshop on Human Language Technology,
New Jersey, USA, Association for Computational Linguistics, pp. 56-60, 1993

100. Chia-Hung Tai, Chinese Word Segmentation System with Unknown Word
Identification, http://godel.iis.sinica.edu.tw/CKIP/engversion/wordsegment.htm

101. Pang-Ning Tan, Michael Steinbach and Vipin Kumar, Introduction to Data

Mining, Addison-Wesley, 2006

102. Alberto Tellez-Valero, Manuel Montes-y-Gomez and Luis Villasenor-Pineda, A
Machine Learning Approach to Information Extraction, Proceedings of 6th
International Conference on Intelligent Text Processing and Computational
Linguistics (CICLing-2005), Mexico City, Mexico, Springer-Verlag, pp. 539-
547, 2005

103. Text Retrieval Conferences (TREC), http://trec.nist.gov/

104. Daniel Tkach, Text Mining Technology: Turning Information into Knowledge,
A White Paper from IBM, IBM Software Solutions, 1998

105. Peter Turney, Coherent Keyphrase Extraction via Web Mining, Proceedings of
18th International Joint Conference on Artificial Intelligence (IJCAI-03),
Acapulco, Mexico, CogPrints, pp. 434-439, 2003

106. Peter Turney, Learning Algorithms for Keyphrase Extraction, Information
Retrieval, Vol. 2, No. 4, pp. 303-336, 2000

107. Peter Turney, Learning to Extract Keyphrases from Text, Technical Report
ERB-1057, Institute for Information Technology, National Research Council,
Canada, 1999

108. Peter Turney, Extraction of Keyphrases from Text: Evaluation of Four
Algorithms, Technical Report ERB-1051, Institute for Information Technology,
National Research Council, Canada, 1997

109. Kees van Deemter and Rodger Kibble, On Coreferring: Coreference in MUC
and Related Annotation Schemes, Computational Linguistics, Vol. 26, Issue 4,
pp. 629-637, 2000

 178

110. Keith van Rijsbergen, Information Retrieval, http://www.dcs.gla.ac.uk/Keith/
Preface.html

111. Ellen Voorhees, Overview of TREC 2004, Proceedings of 13th Text Retrieval
Conference (TREC 2004), Maryland, USA, NIST Special Publication SP 500-
261, 2004

112. Ryen White, Implicit Feedback for Interactive Information Retrieval, Ph.D.
Dissertation, Department of Computing Science, University of Glasgow, UK,
2004

113. Ross Wilkinson and Philip Hingston, Using the Cosine Measure in a Neural
Network for Document Retrieval, Proceedings of 14th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, Illinois, USA, ACM Press, pp. 202-210, 1991

114. Ian Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations, Morgan Kaufmann, 2000

115. Ian Witten, Alistair Moffat and Timothy Bell, Managing Gigabytes:
Compressing and Indexing Documents and Images, 2nd Edition, Morgan
Kaufmann, 1999

116. Jim Woodcock and Jim Davis, Using Z: Specification, Refinement, and Proof,
Prentice-Hall, 1996

117. Jim Woodcock and Martin Loomes, Software Engineering Mathematics,
Pitman, 1988

118. Yi-fang Wu, Quanzhi Li, Razvan Bot and Xin Chen, Domain-Specific
Keyphrase Extraction, Proceedings of 14th ACM International Conference on
Information and Knowledge Management, Bremen, Germany, ACM Press, pp.
283-284, 2005

119. Lan You, Yongping Du, Jiayin Ge, Xuanjing Huang and Lide Wu, BBS Based
Hot Topic Retrieval Using Back-Propagation Neural Network, Proceedings of
1st International Joint Conference on Natural Language Processing (IJCNLP
2004), Hainan Island, China, Springer-Verlag, pp. 139-148, 2005

 179

120. Osmar Zaiane, Jiawei Han, Ze-Nian Li, Sonny Chee and Jenny Chiang,
MultiMediaMiner: A System Prototype for MultiMedia Data Mining,
Proceedings of 1998 ACM SIGMOD International Conference on Management
of Data, Washington, USA, ACM Press, pp. 581-583, 1998

121. A. Zanasi, Text Mining and its Applications, WIT Press, 2005

122. Kevin Zhang, The ICTCLAS System, http://www.nlp.org.cn/project/
project.php?proj_id=6

123. Yongzheng Zhang, Nur Zincir-Heywood and Evangelos Milios, World Wide
Web Site Summarization, Web Intelligence and Agent Systems, Vol. 2, Issue 1,
pp. 39-53, 2004

124. George Zipf, Human Behaviour and the Principle of Least Effort, Addison-
Wesley, 1949

