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Can we derive the Standard Model — or something close — from
reasonable principles?

The internal degrees of freedom — hypercharge, isospin, color —
seem to be described by algebras of observables connected to
representations of S(U(2) ×U(3)). Why this particular group, and
these representations?

Connes and others have tried to answer this using noncommutative
geometry, for example:

▸ Ali Chamseddine and Alain Connes, Why the Standard Model?

https://arxiv.org/abs/0706.3688


I’ll present some much more tentative thoughts involving octonions
and Jordan algebras.

Jordan algebras are a framework for dealing with observables in
quantum physics. The exceptional Jordan algebra h3(O) plays a
unique role. It’s the algebra of observables of an “octonionic
qutrit”.

Following ideas of Dubois-Violette and Todorov, we’ll see that the
true gauge group of the Standard Model, S(U(2) ×U(3)), consists
of the symmetries of an octonionic qutrit that

1. preserve all the structure arising from a choice of unit
imaginary octonion i ∈ O

and

2. restrict to give symmetries of an octonionic qubit.



But let’s start at the beginning: what can we do with observables?

For example, suppose “observables” are self-adjoint complex
matrices, A ∈ hn(C).

We can take real-linear combinations of them.

The product of two self-adjoint matrices is not self-adjoint, but the
square of a self-adjoint matrix is self-adjoint. From squaring and
linear combinations we can define the Jordan product

a ○ b =
1

2
((a + b)2 − a2 − b2) =

1

2
(ab + ba).

This product is commutative. It is not associative, but it is
power-associative: any way of parenthesizing a product of copies
of the same observable gives the same result.



Jordan, von Neumann and Wigner turned these ideas into a
definition:

A Euclidean Jordan algebra is a real vector space with a bilinear,
commutative and power-associative product satisfying

a21 +⋯ + a2n = 0 Ô⇒ a1 = ⋯ = an = 0

for all n.



Jordan, von Neumann and Wigner proved:

Theorem. Every finite-dimensional Euclidean Jordan algebra is
isomorphic to a direct sum of ones on this list:

▸ hn(R): n × n self-adjoint real matrices with
a ○ b = 1

2(ab + ba).

▸ hn(C): n × n self-adjoint complex matrices with
a ○ b = 1

2(ab + ba).

▸ hn(H): n × n self-adjoint quaternionic matrices with
a ○ b = 1

2(ab + ba).

▸ hn(O): n × n self-adjoint octonionic matrices with
a ○ b = 1

2(ab + ba), where n ≤ 3.

▸ The spin factor R⊕Rn, with

(t, x⃗) ○ (t ′, x⃗ ′) = (tt ′ + x⃗ ⋅ x⃗ ′, tx⃗ ′ + t ′x⃗).



What about the spin factors?

Every Euclidean Jordan algebra J comes with a cone of
nonnegative elements:

J+ = {a21 +⋯ + a2n ∶ ai ∈ J}

For the spin factor R⊕Rn this cone is isomorphic to the future
cone in (n + 1)-dimensional Minkowski spacetime!

Every Euclidean Jordan algebra automatically comes with a
determinant function det∶ J → R that vanishes on the boundary of
J+. For the spin factor this is the Minkowski metric!

det(t, x⃗) = t2 − x⃗ ⋅ x⃗



So, spin factors are not only algebras of observables. They are also
Minkowski spacetimes!

Jordan algebras of 2× 2 self-adjoint matrices are isomorphic to spin
factors:

h2(R) ≅ R⊕R2 ≅ 3d Minkowski spacetime
h2(C) ≅ R⊕R3 ≅ 4d Minkowski spacetime
h2(H) ≅ R⊕R5 ≅ 6d Minkowski spacetime
h2(O) ≅ R⊕R9 ≅ 10d Minkowski spacetime

det(
t + x y
y∗ t − x

) = t2 − x2 − ∣y ∣2

How can we understand this?



A Euclidean Jordan algebra does not merely describe observables.
It also describes states.

Any Euclidean Jordan algebra automatically comes with a trace
tr∶ J → R. An element s ∈ J+ with tr(s) = 1 is called a state.

Given a state s and an observable a, the expected value of a in
the state s is tr(s ○ a).

A projection p ∈ J is an element with p2 = p. A projection p with
tr(p) = 1 is a state called a pure state.

For J = hn(C), all this is familiar. Here a state is just a density
matrix: a non-negative self-adjoint matrix with trace 1.



▸ The space of pure states for hn(R) is RPn−1.

▸ The space of pure states for hn(C) is CPn−1.

▸ The space of pure states for hn(H) is HPn−1.

▸ The space of pure states for hn(O) is OPn−1 (for n ≤ 3).

▸ The space of pure states for R⊕Rn is Sn−1.

A picture of the spin factor R⊕Rn for n = 2:

J+

←Ð det = 0

←Ð states, with pure states in blue



So:

▸ h2(R) ≅ R⊕R2 has RP1 ≅ S1 as its set of pure states.

▸ h2(C) ≅ R⊕R3 has CP1 ≅ S2 as its set of pure states.

▸ h2(H) ≅ R⊕R5 has HP1 ≅ S4 as its set of pure states.

▸ h2(O) ≅ R⊕R9 has OP1 ≅ S8 as its set of pure states.

A chiral spinor in 3, 4, 6 or 10-dimensional spacetime is described
by a real, complex, quaternionic or octonionic qubit.



In physics, observables should generate symmetries.

Of the Euclidean Jordan algebras on the list, only hn(C) can be
made into a Lie algebra that acts nontrivially as derivations of the
Jordan product:

a,b ∈ hn(C) Ô⇒ {a,b} ∶= i(ab − ba) ∈ hn(C)

{a,b ○ c} = {a,b} ○ c + b ○ {a, c}

▸ John Baez, Getting to the bottom of Noether’s theorem.

Thus hn(C) is favored. But hn(R) and hn(H) actually do play a
role in ordinary quantum mechanics:

▸ John Baez, Division algebras and quantum theory.

https://arxiv.org/abs/2006.14741
https://arxiv.org/abs/1101.5690


WHAT ABOUT h2(O) AND h3(O)?

Amazingly, these Jordan algebras are connected to the Standard
Model:

▸ Michel Dubois-Violette, Exceptional quantum geometry and
particle physics.

▸ Ivan Todorov and Michel Dubois-Violette, Exceptional
quantum geometry and particle physics II.

▸ Ivan Todorov and Michel Dubois-Violette, Deducing the
symmetry of the standard model from the automorphism and
structure groups of the exceptional Jordan algebra.

https://arxiv.org/abs/1604.01247
https://arxiv.org/abs/1604.01247
https://arxiv.org/abs/1808.08110
https://arxiv.org/abs/1808.08110
https://arxiv.org/abs/1806.09450
https://arxiv.org/abs/1806.09450
https://arxiv.org/abs/1806.09450


Remember from my last talk: choosing a unit imaginary octonion
i ∈ O gives an inclusion

C↪ O

and thus a splitting

O = C⊕C⊥

and a complex structure on C⊥, from left multiplication by i .

It also gives an inclusion

h2(C) ↪ h2(O)

and a splitting

h2(O)
´¹¹¹¹¸¹¹¹¹¹¶
10d

= h2(C)
´¹¹¹¹¸¹¹¹¹¶

4d

⊕ C⊥
±
6d



h2(O) naturally has the structure of both a 10d Minkowski
spacetime:

det(
t + x y
y∗ t − x

) = t2 − x2 − ∣y ∣2

and a 10d Euclidean space:

1

2
tr((

t + x y
y∗ t − x

) ○ (
t + x y
y∗ t − x

)) = t2 + x2 + ∣y ∣2

det and tr can both be defined in terms of ○. Thus, the
automorphism group of the Jordan algebra h2(O) must be
contained in

O(9,1) ∩O(10) = O(9)

This resolves the “Euclidean or Minkowskian?” puzzle from last
time.



More simply, since h2(O) ≅ R⊕R9 with Jordan product

(t, x⃗) ○ (t ′, x⃗ ′) = (tt ′ + x⃗ ⋅ x⃗ ′, tx⃗ ′ + t ′x⃗)

the automorphism group of h2(O) is exactly O(9).



The double cover of the identity component of O(9) is Spin(9).

The subgroup of Spin(9) preserving h2(C) ⊂ h2(O) is

(Spin(3) × Spin(6))/Z2 ≅ (SU(2) × SU(4))/Z2

This contains a copy of the true gauge group of the Standard
Model!



The double cover of the identity component of O(9) is Spin(9).

The subgroup of Spin(9) preserving h2(C) ⊂ h2(O) is

(Spin(3) × Spin(6))/Z2 ≅ (SU(2) × SU(4))/Z2

This contains a copy of the true gauge group of the Standard
Model!

Remember from last time: there is a 3-1 homomorphism

U(1) × SU(2) × SU(3)
φ
Ð→ SU(2) × SU(4)

(α,g ,h) ↦ (g , (
αh 0
0 α−3 ))



The double cover of the identity component of O(9) is Spin(9).

The subgroup of Spin(9) preserving h2(C) ⊂ h2(O) is

(Spin(3) × Spin(6))/Z2 ≅ (SU(2) × SU(4))/Z2

This contains a copy of the true gauge group of the Standard
Model!

There is thus a 6-1 homomorphism

U(1) × SU(2) × SU(3) → (SU(2) × SU(4))/Z2



The double cover of the identity component of O(9) is Spin(9).

The subgroup of Spin(9) preserving h2(C) ⊂ h2(O) is

(Spin(3) × Spin(6))/Z2 ≅ (SU(2) × SU(4))/Z2

This contains a copy of the true gauge group of the Standard
Model!

There is thus an inclusion

U(1) × SU(2) × SU(3)

Z6
↪ (SU(2) × SU(4))/Z2



The double cover of the identity component of O(9) is Spin(9).

The subgroup of Spin(9) preserving h2(C) ⊂ h2(O) is

(Spin(3) × Spin(6))/Z2 ≅ (SU(2) × SU(4))/Z2

This contains a copy of the true gauge group of the Standard
Model!

This gives an inclusion

S(U(2) ×U(3)) ↪ (SU(2) × SU(4))/Z2



So: S(U(2) ×U(3)) acts as Jordan algebra automorphisms of
h2(O) preserving h2(C).

Put more dramatically: the true gauge group of the Standard
Model acts as symmetries of an octonionic qubit, and preserves the
subalgebra of observables of a complex qubit.

That sounds impressive, but it leaves open two big questions:

A. While Spin(9) acts on h2(O), the automorphism group of
h2(O) is actually O(9). Why work with Spin(9)?

B. (Spin(3) × Spin(6))/Z2 is the subgroup of Spin(9) preserving
h2(C). What picks out the smaller subgroup S(U(2) ×U(3))?

Both questions can be answered with the help of h3(O).



h3(O) is the Jordan algebra of observables of an “octonionic
qutrit”:

h3(O) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎛
⎜
⎝

α z y∗

z∗ β x
y x∗ γ

⎞
⎟
⎠
∶ α,β, γ ∈ R, x , y , z ∈ O

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

The automorphism group of h3(O) is the 52-dimensional compact
Lie group F4.

F4 cannot act on O3 in any nontrivial way: its smallest nontrivial
representation is 26-dimensional. There is thus no “Hilbert space”
picture of the octonionic qutrit.



Pick any copy of h2(O) sitting inside h3(O) as a Jordan
subalgebra, e.g.:

h2(O) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎛
⎜
⎝

0 0 0
0 β x
0 x∗ γ

⎞
⎟
⎠
∶ β, γ ∈ R, x ∈ O

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

The subgroup of F4 preserving this is Spin(9).

This answers question A: “why Spin(9) instead of O(9)?”

Don’t work with automorphisms of h2(O), which form the
group O(9). Work with automorphisms of h3(O) that map
h2(O) ⊂ h3(O) to itself. These form the group Spin(9).



Why do we get Spin(9)?

As representations of Spin(9) we have

h3(O) ≅ R⊕ h2(O) ⊕O2

⎛
⎜
⎝

α z y∗

z∗ β x
y x∗ γ

⎞
⎟
⎠
= (

α ψ�

ψ v
) z→ (α, v , ψ)

Here Spin(9) acts on R trivially, on O2 via the real spinor
representation, and on h2(O) as before: it’s (9+1)d spacetime, or
10d space.

The Jordan product on h3(O) can be described using
Spin(9)-invariant operations on R, O2 and h2(O). Only Spin(9)
preserves all these operations.



Now we can answer question B: “what picks out the Standard
Model gauge group as a subgroup of Spin(9)?”

▸ First, choose a copy of h2(O) in h3(O). The subgroup of F4

preserving this is Spin(9).

▸ Next, choose a unit imaginary octonion i ∈ O. The subgroup
of F4 preserving all the structure this puts on h3(O) is

SU(3) × SU(3)

Z3

▸ The subgroup of F4 preserving all the above structure is the
true gauge group of the Standard Model:

U(1) × SU(2) ×U(3)

Z6
=
SU(3) × SU(3)

Z3
∩ Spin(9)



In short, the true gauge group of the Standard Model consists of
precisely the symmetries of an octonionic qutrit that

1. preserve all the structure arising from a choice of unit
imaginary octonion i ∈ O

and

2. restrict to give symmetries of an octonionic qubit.

But let’s see how this works in more detail.



If we choose a unit imaginary octonion i ∈ O, we get an inclusion
C↪ O and thus an inclusion

h3(C) ↪ h3(O)

and a splitting

h3(O) = h3(C) ⊕ h3(C)⊥

where

h3(C)⊥ = {a ∈ h3(O) ∶ tr(a ○ x) = 0 for all x ∈ h3(C)}

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎛
⎜
⎝

0 z y∗

z∗ 0 x
y x∗ 0

⎞
⎟
⎠
∶ x , y , z ∈ C⊥ ⊂ O

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

gets a complex structure from left multiplication by i .



Theorem. For any choice of unit imaginary octonion i ∈ O, the
subgroup of F4 that preserves the resulting splitting

h3(O) = h3(C) ⊕ h3(C)⊥

and complex structure on h3(C)⊥ is isomorphic to

SU(3) × SU(3)

Z3

Proof. This follows, with some work, from Theorem 2.12.2 in

▸ Ichiro Yokota, Exceptional Lie groups.

But let’s see how (SU(3) × SU(3))/Z3 acts.

https://arxiv.org/abs/0902.0431


C⊥ ⊂ O is a 3d complex vector space. Choosing an isomorphism
C⊥ ≅ C3 we get

h3(C)⊥ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎛
⎜
⎝

0 z y∗

z∗ 0 x
y x∗ 0

⎞
⎟
⎠
∶ x , y , z ∈ C⊥ ⊂ O

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

≅ {(x , y , z) ∶ x , y , z ∈ C⊥}

≅ M3(C)

where M3(C) is the space of 3 × 3 complex matrices.

We thus get an isomorphism

h3(O) = h3(C) ⊕ h3(C)⊥

≅ h3(C) ⊕M3(C)



We thus can think of an element of h3(O) as a pair

(X ,M) ∈ h3(C) ⊕M3(C)

(g ,h) ∈ SU(3) × SU(3) acts on such pairs as follows:

(g ,h)(X ,M) = (gXg �,hMg �
)

(e2πi/3, e2πi/3) ∈ SU(3) × SU(3) acts trivially.

We thus get a representation of (SU(3) × SU(3))/Z3 on h3(O)
that preserves:

▸ the splitting h3(O) = h3(C) ⊕ h3(C)⊥ (obvious)

▸ the complex structure on h3(C)⊥ (obvious)

▸ the Jordan product on h3(O) (a calculation: see Yokota).



The two SU(3)’s in (SU(3) × SU(3))/Z3 act very differently on
h3(O).

The second SU(3) becomes the strong force SU(3): it acts
separately on each matrix entry

⎛
⎜
⎝

α z y∗

z∗ β x
y x∗ γ

⎞
⎟
⎠

as octonion automorphisms that preserve i ∈ O.

The first SU(3) acts to mix up the matrix entries, and only the
electroweak group (U(1) × SU(2))/Z2 ⊂ SU(3) preserves

h2(O) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎛
⎜
⎝

0 0 0
0 β x
0 x∗ γ

⎞
⎟
⎠
∶ β, γ ∈ R, x ∈ O

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

⊂ h3(O)



Using this idea one can show:

Theorem. Choose a unit imaginary octonion i ∈ O, giving a
Jordan subalgebra

h3(C) ⊂ h3(O)

Also choose a Jordan subalgebra

h2(O) ⊂ h3(O)

The group of automorphisms of the Jordan algebra h3(O) that
preserve

▸ the splitting h3(O) = h3(C) ⊕ h3(C)⊥

▸ the complex structure on h3(C)⊥

▸ the Jordan subalgebra h2(O)
is isomorphic to the true gauge group of the Standard Model,
S(U(2) ×U(3)).



Summary and Speculations

The true gauge group of the Standard Model consists of the
automorphisms of h3(O) that

1. preserve all the structure coming from a unit imaginary
octonion i ∈ O

and

2. preserve a copy of h2(O) in h3(O).

These symmetries simultaneously act as symmetries of:

▸ an octonionic qutrit: h3(O)
▸ an octonionic qubit: h2(O)
▸ a complex qutrit: h3(C)
▸ a complex qubit: h2(C).

Maybe this is all just a coincidence. Maybe not!



If an “octonionic qutrit” is relevant to physics, what is it? h3(O)
acts as operators on O3. But F4 does not act on O3, only on
h3(O) (observables) and OP2 (pure states).

The “octonionic qubit” is less mysterious. The Standard Model
gauge group

S(U(2) ×U(3)) ⊂ Spin(9) ⊂ F4

acts on h3(O), but also on h2(O). It also acts on O2 via the
spinor representation of Spin(9). This is our octonionic qubit.



S(U(2) ×U(3)) is precisely the subgroup of Spin(9) whose action
on O2 commutes with right multiplication by i ∈ O:

▸ Kirill Krasnov, SO(9) characterisation of the Standard Model
gauge group.

S(U(2) ×U(3)) acts on O2 with this complex structure precisely
as it does on the left-handed fermions in one generation.

So, the left-handed fermions in one generation can be seen as an
octonionic qubit with a certain complex structure — but the
octonionic qutrit remains mysterious.

https://arxiv.org/abs/1912.11282
https://arxiv.org/abs/1912.11282

