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An open problem

Is there a rectangular box such that the lengths of the edges,
face diagonals, and long diagonals are all rational numbers?

No one knows.
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Equivalently, are there rational points (x , y , z , p, q, r , s) with
positive coordinates on the variety defined by

x2 + y2 = p2

y2 + z2 = q2

z2 + x2 = r2

x2 + y2 + z2 = s2 ?

One of the hopes of arithmetic geometry is that geometric
methods will give insight regarding the rational points.
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Affine varieties

I Affine space An is such that An(L) = Ln for any field L.

I An affine variety X over a field k is given by a system of
multivariable polynomial equations with coefficients in k

f1(x1, . . . , xn) = 0

...

fm(x1, . . . , xn) = 0.

For any extension L ⊇ k, the set of L-rational points
(also called L-points) on X is

X (L) := {~a ∈ Ln : f1(~a) = · · · = fm(~a) = 0}.



Introduction to
rational points

Bjorn Poonen

Varieties

An open problem

Affine varieties

Projective varieties

Guiding problems

Dimension etc.

Curves

Genus

Classification

Genus ≥ 2

Genus 1

Genus 0

Counting points

Height

Curves

Hypersurfaces

Projective varieties

If L is a field, the multiplicative group L× acts on Ln+1−{~0}
by scalar multiplication, and we may take the set of orbits.

I Projective space Pn is such that

Pn(L) =
Ln+1 − {~0}

L×

for every field L. Write (a0 : · · · : an) ∈ Pn(L) for the
orbit of (a0, . . . , an) ∈ Ln+1 − {~0}.

I A projective variety X over k is defined by a polynomial
system ~f = 0 where ~f = (f1, . . . , fm) and the
fi ∈ k[x0, . . . , xn] are homogeneous.
For any field extension L ⊇ k, define

X (L) := {(a0 : · · · : an) ∈ Pn(L) : ~f (~a) = 0}.
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Guiding problems of arithmetic geometry

Given a variety X over Q, can we

1. decide if X has a Q-point?

2. describe the set X (Q)?

I The first problem is well-defined. Tomorrow’s lecture on
Hilbert’s tenth problem will discuss weak evidence to
suggest that it is undecidable.

I The second problem is more vague. If X (Q) is finite,
then we can ask for a list of its points. But if X (Q) is
infinite, then it is not always clear what constitutes a
description of it.

The same questions can be asked over other fields, such as

I number fields (finite extensions of Q), or

I function fields (such as Fp(t) or C(t)).
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Dimension, smoothness, irreducibility

I Let X be a variety over a subfield of C. Its dimension
d = dim X can be thought of as the complex dimension
of the complex space X (C).

I If there are no singularities, X (C) is a d-dimensional
complex manifold, and X is called smooth in this case.

I Call X geometrically irreducible if X is not a union of
two strictly smaller closed subvarieties, even when
considered over C. (“Geometric” refers to behavior over
C or some other algebraically closed field.)
Example: The affine variety x2 − 2y2 = 0 over Q is not
geometrically irreducible.

I From now on, varieties will be assumed smooth,
projective, and geometrically irreducible.

Much is known about the guiding problems in the case of
curves (d = 1). We will discuss this next, because it helps
motivate the conjectures in the higher-dimensional case.
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Genus of a curve

Let X be a curve over C. The genus g ∈ {0, 1, 2, . . .} of X
is a geometric invariant that can be defined in many ways:

I The compact Riemann surface X (C) is a g -holed torus
(topological genus).

I g is the dimension of the space H0(X ,Ω1) of
holomorphic 1-forms on X (geometric genus).

I g is the dimension of the sheaf cohomology group
H1(X ,OX ) (arithmetic genus).
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Classification of curves over C: moduli spaces

Curves of genus g over C are in bijection with the complex
points of an irreducible variety Mg , called the moduli space
of genus-g curves.

g moduli space Mg

≥ 2 variety of dimension 3g − 3
1 ←→ A1 (parameterizing elliptic curves by j-invariant)
0 • point (representing P1)
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Classification of curves over C: the trichotomy

I The value of g influences many geometric properties of
X :

g curvature canonical bundle Kodaira dim

≥ 2 negative deg K > 0 κ = 1
(K ample) (general type)

1 zero K = 0 κ = 0

0 positive deg K < 0 κ = −∞
(anti-ample, Fano)

I Surprisingly, if X is over a number field k, then g
influences also the set of rational points. Roughly, the
higher g is in this trichotomy, the fewer rational points
there are.

I Generalizations to higher-dimensional varieties will
appear in Caporaso’s lectures.
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Genus ≥ 2

Theorem (Faltings 1983, second proof by Vojta 1989)

Let X be a curve of genus ≥ 2 over a number field k.
Then X (k) is finite (maybe empty).

I Both proofs give, in principle, an upper bound on
#X (k) computable in terms of X and k. But they are
ineffective in that they cannot list the points of X (k),
even in principle.

I The question of how the upper bound depends on X
and k will be discussed in Caporaso’s lecture on
uniformity of rational points today.

I There exist a few methods (not based on the proofs of
Faltings and Vojta) that in combination often succeed
in determining X (k) for individual curves of genus ≥ 2:

1. the p-adic method of Chabauty and Coleman.
2. the Brauer-Manin obstruction, which for curves can be

understood as a “Mordell-Weil sieve”.
3. descent, to replace the problem with the analogous

problem for a finite collection of finite étale covers of X .
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Genus 1

Let X be a curve of genus 1 over a number field k.

I It may happen that X (k) is empty.

I If X (k) is nonempty, then X is an elliptic curve, and the
Mordell-Weil theorem states that X (k) has the
structure of a finitely generated abelian group. This will
be discussed further in Rubin’s lectures.

I In any case, there will exist a finite extension L ⊇ k
such that X (L) is infinite. (A generalization of this
property to higher-dimensional varieties will appear in
Hassett’s lecture on potential density.)

I But even when X (L) is infinite, it is “sparse” in a sense
to be made precise later, when we discuss counting
points of bounded height.
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Genus 0: existence of rational points

Let X be a curve of genus 0 over a number field k.

I There is a simple test to decide whether X has a
k-point.

I For example, if k = Q, one has

X (Q) 6= ∅ ⇐⇒ X (R) 6= ∅, and
X (Qp) 6= ∅ for all primes p.

(This is an instance of the Hasse principle, to be
discussed further in the lectures by Wooley and Harari.)

I The conditions about Qp-points mean concretely that
there are no obstructions to rational points arising from
considering equations modulo various integers. We will
make this even more concrete on the next slide.
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Genus 0: existence of rational points (continued)

Every genus-0 curve over Q is isomorphic to a conic in P2

given by an equation

ax2 + by2 + cz2 = 0

where a, b, c ∈ Z are squarefree and pairwise relatively prime.

Theorem (Legendre)

This curve has a rational point if and only if

1. a, b, c do not all have the same sign, and

2. the congruences

as2 + b ≡ 0 (mod c)

bt2 + c ≡ 0 (mod a)

cu2 + a ≡ 0 (mod b)

have solutions s, t, u ∈ Z.
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Genus 0: parameterization of rational points

I If X (k) is nonempty, then X ' P1 over k. In other
words, X (k) can be parameterized by rational functions.

I For example, suppose X is the affine curve x2 + y2 = 1
over Q. Drawing a line of variable rational slope t
through (−1, 0) and computing its second intersection
point with X leads to

X (Q) =

{(
1− t2

1 + t2
,

2t

1 + t2

)
: t ∈ Q

}
∪ {(−1, 0)}.



Introduction to
rational points

Bjorn Poonen

Varieties

An open problem

Affine varieties

Projective varieties

Guiding problems

Dimension etc.

Curves

Genus

Classification

Genus ≥ 2

Genus 1

Genus 0

Counting points

Height

Curves

Hypersurfaces

Counting rational points of bounded height

How do we measure X (Q) when it is infinite?

I If X is affine, we can count for each B > 0 the (finite)
number of points in X (Q) whose coordinates have
numerator and denominator bounded by B in absolute
value, and see how this count grows as B →∞.

I Similarly, if X ⊆ Pn is projective, we define

NX (B) := #{(a0 : · · · : an) ∈ X (Q) : ai ∈ Z,max |ai | ≤ B}

and ask about the asymptotic growth of NX (B) as
B →∞. The measure max |ai | of a point (a0 : · · · : an)
with ai ∈ Z is the first example of height, which will be
developed further in the lectures by Silverman.
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Counting points on curves

Let X be a genus-g curve over Q with at least one Q-point.

g NX (B) up to a factor (c + o(1)) for some c > 0

≥ 2 1 (eventually constant, by Faltings)

1 (log B)r/2 where r := rank X (Q)

0 Ba where a > 0 depends on how X is
embedded in projective space.

Example:
For the genus-0 curve X = P1 (embedded in itself),

NX (B) ≈ 12

π2
B2.

One method for bounding NX (B) for a higher-dimensional
variety X is to view X as a family of curves {Yt}. For this
one wants a bound on NYt (B) that is uniform in t (work of
Bombieri, Pila, Heath-Brown, Ellenberg, Venkatesh,
Salberger, Browning).
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Counting points on hypersurfaces

Let X be a degree-d hypersurface f (x0, . . . , xn) = 0 in Pn

over Q.

I The number of (a0 : · · · , an) ∈ Pn(Q) with ai ∈ Z and
max |ai | ≤ B is of order Bn+1. For each such
~a = (a0, . . . , an+1), the value f (~a) is of size O(Bd). If
we use the heuristic that a number of size O(Bd) is 0
with probability 1/Bd , we predict that

NX (B) ∼ Bn+1−d .

I Warning: this conclusion is sometimes false!.

I Interestingly, the sign of n + 1− d determines also
whether the canonical bundle of X is ample.

I The circle method, to be discussed in Wooley’s lectures,
proves results along these lines when n� d .

I In the “Fano” case n + 1− d > 0 (i.e., −K ample),
these heuristics lead to examples of the Manin
conjecture, to be discussed in Heath-Brown’s lectures.
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Back to the box

I The system

x2 + y2 = p2

y2 + z2 = q2

z2 + x2 = r2

x2 + y2 + z2 = s2

defines a surface of general type in P6 (van Luijk).
I Various heuristics suggest that there are no rational

points with positive coordinates.
I But techniques to prove such a claim have not yet been

developed.


	Varieties
	An open problem
	Affine varieties
	Projective varieties
	Guiding problems
	Dimension etc.

	Curves
	Genus
	Classification
	Genus 2
	Genus 1
	Genus 0

	Counting rational points of bounded height
	Height
	Curves
	Hypersurfaces


