
UNIFORM FIRST-ORDER DEFINITIONS IN FINITELY GENERATED
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BJORN POONEN

Abstract. We prove that there is a first-order sentence in the language of rings that is true
for all finitely generated fields of characteristic 0 and false for all fields of characteristic > 0.
We also prove that for each n ∈ N, there is a first-order formula ψn(x1, . . . , xn) that when
interpreted in a finitely generated field K is true for elements x1, . . . , xn ∈ K if and only if
the elements are algebraically dependent over the prime field in K.

1. Introduction

1.1. Theorems for finitely generated fields. It is important, especially when trying to
transfer results from one structure to another, to know whether a property can be expressed
by the truth of a first-order sentence. For example, it is a basic theorem of model theory
that a first-order sentence in the language of rings true for one algebraically closed field of
characteristic 0 is true for all algebraically closed fields of characteristic 0; it is because of this
that many theorems proved for C using analytic methods are known to hold for arbitrary
algebraically closed fields of characteristic 0.

But many properties have no such simple first-order characterizations. Characterizing
characteristic 0 fields among all fields with a single sentence is a typical impossible task:
compactness shows that for every sentence φ valid for an algebraically closed field of char-
acteristic 0, there is a number p0 such that φ holds also for every algebraically closed field
of characteristic ≥ p0.

Similarly, one cannot detect whether elements t1, . . . , tn are algebraically dependent over
the prime subfield by means of a single formula with n free variables. When n = 1, this
would amount to defining the relative algebraic closure k of the prime field in K uniformly,
but if K = C, then every definable subset of K is either finite or cofinite, while k = Q is
neither.

We focus our attention on finitely generated fields, i.e., fields that are finitely generated
over the prime subfield. Our main theorems show that the arithmetic of these fields is rich
enough that the previously impossible tasks become possible.

Before giving these theorems, we fix a few conventions. A formula is a first-order formula
in the language of rings. If φ is a sentence (a formula with no free variables) and K is a
field, then K |= φ is the statement that φ is true for K. A definable subset is one defined by
a formula without constants. The prime subfield F of a field K is its minimal subfield (either
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Q or Fp for some prime p). When discussing a finitely generated field K, we will always use
k to denote the field of constants, defined as the (relative) algebraic closure of F in K.

Theorem 1.1. There is a sentence that is true for all finitely generated fields of character-
istic 0, and false for all fields of characteristic > 0.

Theorem 1.2. There exists a formula φ(t) that when interpreted in an infinite finitely
generated field K is true if and only if t ∈ F.

The hypothesis in Theorem 1.2 that K is infinite is necessary, because there is no uniform
definition of Fp in Fp2 [CvdDM92].

Theorem 1.3. There exists a formula ψ(t) that when interpreted in a finitely generated field
K is true if and only if t ∈ k.

Theorem 1.4. For each n ∈ N, there exists a formula ψn(t1, . . . , tn) that when interpreted
in a finitely generated field K is true if and only if t1, . . . , tn are algebraically dependent over
k (or equivalently, over F).

Remark 1.5. The n = 1 case of Theorem 1.4 is Theorem 1.3.

Remark 1.6. Using different methods, it is possible to prove geometric analogues of these
results, for function fields over algebraically closed and other “large” fields. These will appear
in a future joint paper with F. Pop.

Remark 1.7. Our results give also a proof of the undecidability of the first-order theory of
any infinite finitely generated field: see Remark 5.2.

1.2. Questions about the richness of the arithmetic of finitely generated fields.
The sentence of Theorem 1.1 defines the class of characteristic 0 finitely generated fields
among all finitely generated fields. Can any “reasonable” class of infinite finitely generated
fields be distinguished by a single sentence?

E. Hrushovski suggested the following definition of “reasonable”. Fix any natural bijection
between the set of (r, f1, . . . , fm) with r ∈ N and f1, . . . , fm ∈ Z[x1, . . . , xr] and a recursive
subset A ⊆ N, such as the one sending (r, f1, . . . , fm) to the concatenation of the ASCII
symbols of the characters in the TEX code for (r, f1, . . . , fm). There is an algorithm for
testing whether an ideal (f1, . . . , fm) ⊆ Z[x1, . . . , xr] is prime [Asc04, p. 432] and of infinite
index; i.e., the set of a ∈ A corresponding to (r, f1, . . . , fm) with this property is a recursive
subset B. We have a surjection

κ : B → {isomorphism classes of infinite finitely generated fields}
sending an a ∈ B corresponding to (r, f1, . . . , fm) to the fraction field of Z[x1, . . . , xr]/(f1, . . . , fm).
Call a set S of isomorphism classes of infinite finitely generated fields reasonable if {a ∈ B :
κ(a) ∈ S} is a first-order definable subset in (N,+, ·). If φ is a sentence, the set of iso-
morphism classes of infinite finitely generated fields K such that K |= φ is a reasonable
set.

Question 1.8. Does every reasonable set of isomorphism classes of infinite finitely generated
fields arise from a sentence φ as above?

For example, the set of (isomorphism classes of) function fields of smooth projective Q-
varieties having a rational point is a reasonable set, so a positive answer to Question 1.8 would
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say in particular that there is a sentence that is true for these infinite finitely generated fields
and no others. Also, any single isomorphism class forms a reasonable set, so a positive answer
to Question 1.8 would imply a positive answer to the following, which obviously holds for
finite fields:

Question 1.9. Is it true that for every finitely generated field K, there is a sentence φK
that is true for K and false for all finitely generated fields L 6' K?

The theory Th(K) of a field K is the set of sentences φ such that K |= φ. Fields K and L
are elementarily equivalent (and we then write K ≡ L) if Th(K) = Th(L). A positive answer
to Question 1.9 would imply a positive answer to the following question, which was raised
by G. Sabbagh in a special case and formulated explicitly by F. Pop [Pop02].

Question 1.10. Is it true that whenever K and L are finitely generated fields and K ≡ L,
we have K ' L?

Note added: Thomas Scanlon has announced a positive answer to Question 1.9, by building
on the results of this paper.

1.3. Structure of this paper. Section 2 describes earlier work that will be useful to us.
Section 3 shows how to define the field of constants in a finitely generated field of charac-
teristic 0. Section 4 shows how to define the family of relatively algebraically closed global
function fields in a finitely generated field of characteristic > 0: this is by far the hardest
part of the paper. Section 5 combines the results obtained so far to prove the main theorems.
Finally, Section 6 shows that the formulas promised by the main theorems cannot be purely
existential.

2. Previous work

Definition 2.1. The Kronecker dimension of a finitely generated field K is

KrdimK :=

{
trdeg(K/Fp), if charK = p > 0

trdeg(K/Q) + 1, if charK = 0.

A global field is a finitely generated field K with KrdimK = 1; such a field is either a number
field (finite extension of Q) or a global function field (function field of a curve over a finite
field).

R. Rumely [Rum80], building on the work of J. Robinson, proved Theorems 1.1, 1.2 and
1.3 (and hence also Theorem 1.4) in the case of global fields. We record some of his results
in the following theorem.

Theorem 2.2.

(1) There is a sentence that is true for all number fields and false for all global function
fields.

(2) There is a formula that for any global field defines the prime subfield.
(3) There is a formula that for any number field defines the subset Z.
(4) There is a formula that for any number field defines the subset N.
(5) There is a formula that for any global function field defines the constant field.
(6) There is a formula with a parameter x that for all global function fields defines the

ring F[x] in K. (See [Rum80, p. 211].)
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(7) There is a formula with a parameter x that for all global function fields defines the
ring k[x] in K.

(8) There are formulas with a parameter x that for any global field K and x ∈ K − k
defines a model of (N,+, ·) in K consisting of the powers of x.

We will also need the following result proved by Pop using the recently proved connection
between isotropy of Pfister forms and cohomological dimension: see also Proposition A.3.

Theorem 2.3 ([Pop02]). For each n ∈ N, there is a sentence σn that for a finitely generated
field K holds if and only if KrdimK = n.

It follows from these results that Question 1.9 has a positive answer for any finitely gen-
erated K with KrdimK ≤ 1.

The paper [Pop02] also answered Question 1.10 and its geometric analogue in the case
where one of the finitely generated fields is a function field of general type.

3. Defining constants in characteristic 0

Definition 3.1. Suppose P (the parameter space) is a definable subset of KN , and D is a
definable subset of KM × P . For each ~p ∈ P , we get a subset S~p := {~a ∈ KM : (~a, ~p) ∈ D}.
Any family of subsets of KM that equals {S~p : ~p ∈ P} for some such P and D will be called
a definable family of subsets.

If X is a variety over a field K, and L is a field extension of K, we let XL denote X ×K L.

Lemma 3.2. Given a finitely generated field K of characteristic 0, with field of constants
k, there exists an elliptic curve E over Q such that E(Q) is infinite and E(K) = E(k).

Proof. This is a special case of [MB05, Lemma 11.1(i)]. �

The idea behind the following two proofs is contained in the proof of [Den78, Lemma
3.4(iii)] and [KR95, Proposition 3]: see also [MB05, Lemma 11.1(ii)].

Lemma 3.3. Let E be an elliptic curve over Qp. Equip E(Qp) with the p-adic topology. The
closure of any infinite subgroup of E(Qp) is an open neighborhood of the identity O ∈ E(Qp).

Proof. By the theory of formal groups, E(Qp) contains a finite-index subgroup that is iso-
morphic as a topological group to Zp. The result for infinite subgroups of E(Qp) now follows
from the corresponding result for Zp. �

Lemma 3.4. There exists a definable family F1 of subsets of K, defined by a formula inde-
pendent of K, such that if K is a finitely generated field of characteristic 0, some S ∈ F1 is
a subset of k such that for each finite prime p, the intersection S ∩Q is p-adically dense in
Qp.

Proof. For each (a, b) ∈ K2, consider the subset

Sa,b := {x/y : x ∈ K, y ∈ K∗, and y2 = x3 + ax+ b}.
of K. These subsets form a definable family F0.

Now suppose that K is a finitely generated field of characteristic 0. Let a, b be the elements
of Q defining the elliptic curve E of Lemma 3.2. Then E(K) = E(k), so Sa,b ⊆ k. Applying
Lemma 3.3 to the infinite group E(Q) shows that E(Q) is p-adically dense in a neighborhood
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of O in E(Qp). Since the rational function x/y on E is a uniformizing parameter at O, it is
a local diffeomorphism between a neighborhood of O in E(Qp) and a neighborhood of 0 in
Qp. Thus the p-adic closure of Sa,b ∩Q contains a neighborhood of 0 in Qp.

Finally, for each (a, b), let Ta,b be the set of ratios of nonzero elements of Sa,b. The subsets
Ta,b form a definable family F1 having the required property. �

Lemma 3.5. Let K be a finitely generated field of characteristic 0 with
√
−1 ∈ K. Let S be

as in Lemma 3.4. Then k is the set of t ∈ K such that for all s1, s2, s3 ∈ S, the Pfister form
〈〈s1, s2, t− s3〉〉 over K represents 0.

Proof. Suppose t ∈ k and s1, s2, s3 ∈ S. Then s1, s2, t− s3 ∈ k. The form 〈〈s1, s2, t− s3〉〉 is
of rank > 4, and k is a totally complex number field, so 〈〈s1, s2, t− s3〉〉 represents 0 over k,
and hence also over K.

Now suppose t /∈ k. Let V be an integral k-variety with function field K. Replacing V
by an open subset, we may assume t is regular on V . Since t /∈ k, the map t : V → A1

k is
dominant. Since char k = 0, we may shrink V further to assume that t is smooth. Since
t is dominant, some s3 ∈ S ⊆ A1(k) is in the image of t. Choose a closed point v ∈ V at
which t− s3 vanishes. Then t− s3 is part of a system of local parameters at v. Let ` be the
residue field of v, so ` is a number field. Choose a prime p of Q that splits completely in `.
Choose a, b ∈ Qp such that 〈〈a, b〉〉 has no nontrivial zero. Approximate a, b p-adically by
s1, s2 ∈ S∩Q, closely enough that 〈〈s1, s2〉〉 still has no nontrivial zero over Qp. Since ` injects
into Qp, 〈〈s1, s2〉〉 has no nontrivial zero over `. Lemma A.5 implies that 〈〈s1, s2, t− s3〉〉 has
no nontrivial zero over K. �

Lemma 3.6. There exists a definable family F2 of subsets of K, defined by a formula in-
dependent of K, such that if K is a finitely generated field of characteristic 0, one of the
subsets in F2 is the field of constants k.

Proof. Let F1 be as in Lemma 3.4. For each S ∈ F1, consider

AS := {t ∈ K : (∀s1, s2, s3 ∈ S) 〈〈s1, s2, t− s3〉〉 represents 0 over K(
√
−1)}.

The family F2 of such subsets is a definable family defined by a formula independent of K.
Now suppose K is a finitely generated field of characteristic 0. If S is the infinite subset

of k promised by Lemma 3.4, then Lemma 3.5 implies that

AS = K ∩ (constant subfield of K(
√
−1)) = k.

�

Lemma 3.7. There is a formula φ(x) that when interpreted in a finitely generated field of
characteristic 0 defines its field of constants, and that when interpreted in a finitely generated
field of characteristic > 0 defines the empty set.

Proof. Let F2 be as in Lemma 3.6, so k ∈ F2. We can find a definable subfamily F3 ⊆ F2

consisting of the sets in F2 that are fields. All these fields are finitely generated, so we
may apply Theorem 2.3 with n = 1 and then Theorem 2.2(1) to find a definable subfamily
F4 ⊆ F3 consisting of the sets of F3 that are number fields. The union ` of the sets in F4 is
a subset of K definable by a formula independent of K.

If K is a finitely generated field of characteristic 0, each set in F4 is a subfield of k, and
k ∈ F4, so ` = k. On the other hand, if K is a finitely generated field of characteristic p > 0,
then F4 is empty, so ` = ∅. �
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4. Defining subfields of transcendence degree 1 over finite fields

For this section, we fix the following notation:

• K is a finitely generated field of characteristic p > 0.
• k is the field of constants of K.
• L is the set of subfields L ⊆ K such that L is relatively algebraically closed in K and

trdeg(L/k) = 1.

Moreover, we use the following notation for the rest of the paper: let d = 3 if char k = 2 and
d = 2 otherwise.

Our goal in this section is to construct a definable family of subsets of K consisting of the
fields in L. We will mainly try to follow the constructions of the previous section used to
define the collection of number fields in K in the characteristic 0 case, but more elaborate
arguments will be needed, since certain steps fail. For instance, the analogue of Lemma 3.3
for local fields of characteristic p is false.

4.1. Nearly prime generalized Mersenne numbers. Let E be an ordinary elliptic curve
over a finite field Fq. We would like to find primes ` such that #E(Fq`) is close to being
prime. Let R = EndFq E. Let N : R⊗Q→ Q be the norm map. Let F ∈ R be the q-power
Frobenius endomorphism. Then #E(Fq`) = N(F ` − 1) (whereas Mersenne numbers are
numbers of the form 2` − 1).

For an integer n, define Ψ(n) :=
∑

p|n
1
p
, where the sum is over the distinct prime divisors

p of n. We consider n to be nearly prime if Ψ(n) is small. (Perhaps a better name would be
“not too composite”.)

Lemma 4.1. For any ordinary elliptic curve E over Fq,

lim inf
`→∞

Ψ

(
#E(Fq`)
#E(Fq)

)
= 0.

Proof. Let O be the ring of integers of R⊗Q. Define

e` :=
#E(Fq`)
#E(Fq)

= N

(
F ` − 1

F − 1

)
.

If ` and m are distinct primes, then the ideal (x` − 1, xm − 1) in Z[x] equals (x − 1),
since reducing one generator modulo the other iteratively amounts to running the Euclidean

algorithm on the exponents. Thus the ideals
(
F `−1
F−1

)
and

(
Fm−1
F−1

)
of O are coprime. There

are at most two prime ideals of O above a given prime of Z, so each prime of Z divides at
most two of the e`. Hence

(1)
∑
`≤B

Ψ(e`) ≤ 2Ψ

(∏
`≤B

e`

)
.

Since e` ≤ #E(Fq`) = q`(1 + o(1)) as ` → ∞, we have
∏

`≤B e` = qO(B2) as B → ∞. In

particular
∏

`≤B e` has at most O(B2) distinct prime factors. Thus

(2) Ψ

(∏
`≤B

e`

)
≤

O(B2)∑
j=1

1

j
= O(logB).
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Combining equations (1) and (2) yields∑
`≤B

Ψ(e`) = O(logB).

If π(B) is the number of primes ≤ B, then some term Ψ(e`) on the left is bounded by
O(logB)/π(B), which tends to 0 as B →∞. �

Remark 4.2. The conclusion of Lemma 4.1 holds also for supersingular E, but we do not
need this.

Lemma 4.3. Let E be an ordinary elliptic curve over Fq. Fix ` ∈ Z≥1. The probability that
a random element of E(Fq`) generates E(Fq`)/E(Fq) as an R-module is at least 1 − 2Ψ(n)
where n := #E(Fq`)/#E(Fq).

Proof. We continue to let R = EndFq E. Since E is ordinary, [Len96, Theorem 1(a)] gives
an isomorphism of R-modules ι : E(Fq`) → R/(F ` − 1)R. If P ∈ E(Fq`) does not generate
E(Fq`)/E(Fq) as an R-module, then the R-submodule of E(Fq`) generated by P and E(Fq)
must correspond under ι to a proper ideal of R′ := R/(F ` − 1)R, and hence be contained in
a maximal ideal m of R′ of residue characteristic dividing n. If m1, . . . ,mr are the maximal
ideals of residue characteristic p, then m1 ∩ · · · ∩ mr is of index at least pr in R′, but it
contains pR′ which has index at most (R : pR) = p2, so r ≤ 2. The probability that ι(P )
lies in a given m of residue characteristic p is at most 1/p, so the probability that ι(P ) lies
in some m of residue characteristic dividing n is at most

∑
p|n

2
p

= 2Ψ(n). �

4.2. More elliptic curve lemmas.

Lemma 4.4. For any finite field k, there exists an ordinary elliptic curve over k.

Proof. Let p = char k. If p ≥ 5, then apart from 0 and 1, there are at most (p− 1)/2 values
of λ ∈ Fp for which y2 = x(x−1)(x−λ) is supersingular [Sil92, V.4.1(b)], so for some λ ∈ Fp,
this curve is ordinary. For p = 3, the curve y2 = x3 + x2 − x is ordinary. For p = 2, the
curve y2 + xy = x3 + 1 is ordinary. �

Lemma 4.5. There is a universal constant c ∈ R>0 such that the following holds. Let E
be an elliptic curve over a finite field Fq in Weierstrass form. Let z be the rational function
y/x on E. Let G be a subgroup of E(Fq). If (E(Fq) : G) < cq1/2,

{z(g1) + z(g2) : gi ∈ G− {poles of z}} = Fq.

Proof. Fix t ∈ Fq, and define a curve

X := {(P1, P2) ∈ (E − {poles of z})2 : z(P1) + z(P2) = t}.

Let X be the Zariski closure of X in E × E. Let Xsmooth be the smooth locus of X, and

X
smooth

the smooth locus of X. If we use w = 1/z as a uniformizer at the identity O of E,
then we obtain a system of local parameters w1, w2 at (O,O) ∈ E×E, and the local equation
of X there is 1/w1 + 1/w2 = t, which after clearing denominators is w2 + w1 = tw1w2; thus

(O,O) ∈ Xsmooth
. Let g ≥ 1 be a universal upper bound (independent of q, E, t) for the

geometric genus of the geometric components of the normalization X̂ of X, and let r be a
universal upper bound for the number of Fq-points in X̂ −Xsmooth. Define c := 1/(2g + r).
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The separable isogeny F − 1: E → E factors through E � E ′ := E/G so we get the
homomorphism φ in the commutative diagram

E
F−1 //

����

E

����
E ′

φ

77

F−1
// E ′.

The lower right triangle now shows that G = φ(E ′(Fq)). Let δ := deg φ = (E(Fq) : G) ≤
cq1/2.

Let X ′ = (φ, φ)−1(X) ⊂ E ′ × E ′. Let X
′

= (φ, φ)−1(X). Its smooth locus (X
′
)smooth

equals (φ, φ)−1(X
smooth

). Then (O,O) ∈ (X
′
)smooth(Fq), so the irreducible component of X

′

containing (O,O) is geometrically irreducible. Thus the dense open subset X ′smooth of X
′

also has a geometrically irreducible component C ′. Since C ′ is finite étale of degree at most
δ over Xsmooth, it is a curve of geometric genus at most g′ := δ(g − 1) + 1 ≤ cq1/2g with at
most r′ := δr ≤ cq1/2r geometric points removed. By the Weil conjectures

#C ′(Fq) ≥ q + 1− 2g′q1/2 − r′ > q − 2cgq − crq1/2 ≥ q(1− (2g + r)c) = 0.

In particular, there exists a point (P1, P2) ∈ C ′(Fq). For i = 1, 2, define gi := φ(Pi) ∈
φ(E ′(Fq)) = G. By definition of C ′, we have z(g1) + z(g2) = t. �

Lemma 4.6. Let E be an ordinary elliptic curve over a finite field Fq. Let R = EndFq(E).
Let W be a geometrically integral Fq-variety with a smooth morphism π = (π1, π2) : W →
A1 × E. For some prime ` > 3, there exists w ∈ W (Fq`) such that π1(w) = z(Q1) + z(Q2)
for some Q1, Q2 ∈ R · π2(w).

Proof. Let S1 := π(W (Fq`)). Let S2 be the set of (t, P ) ∈ (A1 × E)(Fq`) such that t =
z(Q1) + z(Q2) for some Q1, Q2 ∈ R · P . We need to show that S1 and S2 intersect, so it will
suffice to prove that

(3) #S1 + #S2 > #(A1 × E)(Fq`)
for some prime ` > 3.

By the Weil conjectures, #W (Fq`) = q`(dimW )(1 + o(1)) as ` → ∞. Let b be a bound
on the number of components of the geometric fibers of W → A1 × E; then each fiber of
W (Fq`)→ (A1 × E)(Fq`) has size at most (b+ o(1))q`(dimW−2). Dividing, we obtain

(4) #S1 ≥
(

1

b
− o(1)

)
q2`.

By Lemma 4.1, we can find infinitely many primes ` such that the integer n := #E(Fq`)/#E(Fq)
satisfies Ψ(n) ≤ 1

4b
; we assume from now on that ` satisfies this. By Lemma 4.3, the

probability that a random P ∈ E(Fq`) generates E(Fq`)/E(Fq) as an R-module is at least
1 − 2Ψ(n) ≥ 1 − 1

2b
. In this case, G := R · P has index at most #E(Fq) in E(Fq`), so for

`� 1, Lemma 4.5 applied to E over Fq` implies that

{z(g1) + z(g2) : gi ∈ G− {poles of z}} = Fq` .
Thus

(5) #S2 ≥
(

1− 1

2b

)
#E(Fq`) ·#Fq` =

(
1− 1

2b
− o(1)

)
q2`.
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Finally,

(6) #(A1 × E)(Fq`) = (1 + o(1)) q2`.

Combining (4), (5), and (6) gives (3) if ` is large enough. �

Suppose L ∈ L. (Recall that L was defined at the beginning of Section 4.) Let E be an
elliptic curve over k in Weierstrass form. For u ∈ L − k, define a degree-2 étale L-algebra
Lu := L ⊗k(u) k(E) where the homomorphism k(u) → k(E) sends u to the coordinate
function x ∈ k(E) for a fixed Weierstrass model, and let Eu be the “quadratic twist” elliptic
curve over L obtained by twisting EL by the nontrivial automorphism of Lu/L and the
multiplication by −1 map [−1] : EL → EL. (For instance, if char k 6= 2 and the Weierstrass
model is y2 = f(x), then Eu is f(u)y2 = f(x). The reason we do not restrict attention to
such concrete models is that we want everything we say to hold whether or not char k = 2.)
Define Ku := K ⊗k(u) k(E) similarly. So we have inclusions k(E) ⊆ Lu ⊆ Ku.

Let σ be the nontrivial element of Aut(Ku/K). (We write Aut instead of Gal only because
we do not know yet whether Ku is a field.) The restriction of σ to k(E) is the nontrivial
element of Gal(k(E)/k(u)) induced by [−1] : E → E. By definition of the twist Eu, we may
identify Eu(K) with

E(Ku)
σ=−1 := {P ∈ E(Ku) : σP = −P}.

Because the x-coordinate map EL → P1 is invariant under the [−1] map on EL, it induces
an x-coordinate on a Weierstrass model of Eu, and the inclusion Eu(K) ↪→ E(Ku) respects
x-coordinates.

Restricting a morphism ρ : E → E to the generic point of E gives a point ρ̄ ∈ E(k(E)) ⊆
E(Lu) ⊆ E(Ku). If φ ∈ k(E), then φ(ρ̄) (if defined) is an element of k(E) whose value at
a point P ∈ E(k) equals φ(ρ(P )) (if both are defined). If moreover ρ ∈ Endk E, then ρ
commutes with [−1] on E, so σ(ρ̄) = −ρ̄, so

ρ̄ ∈ E(Lu)
σ=−1 ⊆ E(Ku)

σ=−1.

Lemma 4.7. For any L ∈ L and elliptic curve E over k, there exists u ∈ L − k such that
Lu and Ku are fields and Eu(K) = Eu(L).

Proof. Let V be an integral L-variety with function field K. Let A be the Albanese variety
of V . Let A1, . . . , An be the distinct L-simple abelian varieties appearing in a decomposition
of A up to isogeny. Choose a nontrivial place v of L at which all the Ai have good reduction,
and choose u so that v(u) = −1. Since v(u) is negative and odd, v totally ramifies in Lu/L;
in particular Lu is a field. Since L is relatively algebraically closed in K, the algebra Ku is
a field too.

Now Eu is a twist of E by a quadratic extension Lu/L in which v ramifies, so Eu has
bad reduction at v. Hence Eu is not isogenous to any Ai. Therefore every morphism
A → Eu is constant. So every L-rational map V 99K Eu is constant. In other words,
Eu(K) = Eu(L). �

4.3. Defining subfields of transcendence degree 1.

Lemma 4.8. Suppose L ∈ L. Suppose that E is an ordinary elliptic curve over k. Choose
u ∈ L−k as in Lemma 4.7. Let U1 = x(Eu(K))−{0}. Let U2 be the set of u2 ∈ K expressible
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as z(Q1) + z(Q2) for some Q1, Q2 ∈ E(Ku)− {poles of z} with x(Q1), x(Q2) ∈ U1. Suppose
c ∈ k× − k×d. For t ∈ K, we have t ∈ L if and only if for all u1 ∈ U1 and u2 ∈ U2

〈〈t− u2, u−11 〉〉d ⊗ 〈1,−c〉d

has a nontrivial zero over K.

Proof. Suppose t ∈ L. By choice of u, we have Eu(K) = Eu(L), so U1 ⊆ L. The conditions
x(Q1), x(Q2) ∈ U1 imply Q1, Q2 ∈ E(Lu), so each u2 ∈ U2 is algebraic over L, and hence in
L. Then Proposition A.3 implies that 〈〈t − u2, u−11 〉〉d ⊗ 〈1,−c〉d has a nontrivial zero over
L, and hence also over K.

Now suppose t ∈ K − L. Thus t is transcendental over L. All fields below will be viewed
as subfields of Ku. We have k(E) ⊆ Lu ⊆ Ku. Then k(E)(t) ⊆ Ku is the function field
of A1 × E over k. Let M0 ⊆ Ku be a purely transcendental extension of k(E)(t) such
that [Ku : M0] < ∞. Let M be the relative separable closure of M0 in Ku. Since Lu/L
is ramified somewhere, each of k, Lu, Ku is relatively algebraically closed in the next, so
k is relatively algebraically closed in M . So there is a geometrically integral k-variety W
with function field M . Shrinking W , we may assume that the rational map W 99K A1 × E
corresponding to the extension M over k(E)(t) is a smooth morphism π = (π1, π2) whose
image is disjoint from A1 × E[2]. Let `, w, Q1, Q2 be as provided by Lemma 4.6 (with
Fq = k). Let (τ, P ) = π(w) ∈ (A1 × E)(Fq`). Thus τ = z(Q1) + z(Q2), and for i = 1, 2
we have Qi = ρi(P ) for some ρi ∈ R := Endk(E). Let η be a separable endomorphism
of E killing P : for instance, we could take η = F ` − 1. As explained before Lemma 4.7,
η̄ ∈ E(Ku)

σ=−1, so u1 := x(η̄) ∈ k(E) ⊆ Ku. Also, the element u2 := z(ρ̄1) + z(ρ̄2) is in
U2. Since P /∈ E[2], the rational function u1 on E has a simple pole at P . The value of
the rational function t − u2 on A1 × E at (τ, P ) is τ − (z(ρ1(P )) + z(ρ2(P ))) = 0. Thus
t − u2, u

−1
1 are a system of local parameters at (τ, P ) on A1 × E. We pull them back to

W . Since W → A1 × E is smooth, we can extend this pair to a system of local parameters
at w on W . Since the residue field of w is Fq` with ` prime to d, the form 〈1,−c〉d has no
nontrivial zero over Fq` . By Lemma A.5, the form

Q := 〈〈t− u2, u−11 〉〉d ⊗ 〈1,−c〉d

has no nontrivial zero over M . By Corollary A.2, Q has no nontrivial zero over Ku, so it has
no nontrivial zero over K. �

Lemma 4.9. There exists a definable family of subsets of K, defined by a formula indepen-
dent of K, such that if K is a finitely generated field of characteristic p > 0 and K contains
a primitive cube root of 1 if p = 2, then all L ∈ L belong to the family.

Proof. For each elliptic curve E over K and u, c ∈ K, let U1 and U2 be as in Lemma 4.8
(there we assumed we assumed u /∈ k, but the same formulas define something for any u),
and define SE,u,c to be the set of t ∈ K such that for all u1 ∈ U1 and u2 ∈ U2,

〈〈t− u2, u−11 〉〉d ⊗ 〈1,−c〉d

has a nontrivial zero over K. We can quantify over E by quantifying over the vector of
coefficients ~a = (a1, a2, a3, a4, a6) of a Weierstrass equation subject to the nonsingularity
constraint ∆(a1, . . . , a6) 6= 0. Thus {SE,u,c} is a definable family.
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Given L ∈ L, choose an ordinary E over k as in Lemma 4.4, and choose u ∈ L− k as in
Lemma 4.7. Also we can choose c ∈ k×−k×d since either #k is odd and d = 2, or #k is even
and d = 3 and k contains a primitive cube root of 1. Then SE,u,c = L by Lemma 4.8. �

Proposition 4.10. There exists a definable family of subsets of K, defined by a formula
independent of K, such that if K is a finitely generated field of characteristic p > 0, the
subsets in the family are exactly those in L.

Proof. Let K ′ = K(ζ) where ζ2 + ζ + 1 = 0. Take the family of Lemma 4.9 for K ′, and
intersect each set with K. Using Theorem 2.3, retain only the sets in the family that are
fields of Kronecker dimension 1. �

5. Proofs of theorems

Proof of Theorem 1.1. Using Lemma 3.7 and Theorem 2.2(3), we can find a formula defining
a set S such that whenever K is finitely generated and of characteristic 0, we get S = Z.
Use the sentence that says that S is closed under addition and S 6= 2S and 2 6= 0. This
sentence is true for S = Z, but false for any subset of a field of positive characteristic. �

Now that Theorem 1.1 is proved, we may handle the characteristic 0 and > 0 cases
separately in proving Theorems 1.2, 1.3, and 1.4.

Proof of Theorem 1.2. If charK = 0, combine Lemma 3.7 with Theorem 2.2(2). If charK >
0, use Theorem 2.2(2) to take the prime subfield of each member of the family given by
Proposition 4.10, and take their intersection: this works as long as the family is nonempty,
which holds since K is infinite. �

Proof of Theorem 1.3. If charK = 0, use Lemma 3.7. If charK > 0, the field k is the set of
elements belonging to the field of constants of each relatively algebraically closed subfield of
transcendence degree 1: this is uniformly definable by Theorem 2.2(5) and Proposition 4.10.

�

Remark 5.1. Using Proposition 4.10 and the theorems just proved, we can also extend other
results in [Rum80] to the finitely generated case. For instance, there is a formula φ(x, y)
such that when K is an infinite finitely generated field of characteristic > 0 and x ∈ K, we
have {y ∈ K : φ(x, y)} = F[x]. The same can be done for k[x] in place of F[x].

Remark 5.2. Combining our extensions of the results in [Rum80] with the undecidability of
the first-order theory of (N,+, ·) (see [EFT94, Theorem X.6.9], for instance), we get also the
undecidability of the first-order theory of any infinite finitely generated field.

Most of the remaining work in proving Theorem 1.4 is contained in the following lemma,
whose proof is very close to that of Fact 1.3(3) in [Pop02].

Lemma 5.3. For each n ∈ N, there exists a formula φn(t1, . . . , tn) in the language of fields
augmented by a predicate for a subfield such that the following holds. Let K be a finitely
generated extension of a global field L, and assume L is relatively algebraically closed in K.
Then elements t1, . . . , tn ∈ K are algebraically dependent over L if and only if φn(t1, . . . , tn)
holds over K with the predicate corresponding to L.
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Proof. The elements t1, . . . , tn are algebraically dependent over L if and only if they are
algebraically dependent over L(

√
−1), so by replacing K,L by K(

√
−1), L(

√
−1), we may

reduce to the case that
√
−1 ∈ L. Similarly we may assume that L contains ζ satisfying

ζ2 + ζ + 1 = 0.
It will suffice to show that t1, . . . , tn are algebraically dependent over L if and only if for

all a, b, c1, . . . , cn ∈ L, the form

q := 〈〈t1 − c1, . . . , tn − cn, a〉〉d ⊗ 〈1,−b〉d
has a nontrivial zero.

If t1, . . . , tn are algebraically dependent over L and a, b, c1, . . . , cn ∈ L, then q has a non-
trivial zero by Proposition A.3.

Now suppose t1, . . . , tn are algebraically independent over L. Extend to a transcendence
basis t1, . . . , tN of K over L. Let M be the maximal separable extension of L(t1, . . . , tN) in K.
Choose a smooth integral L-variety W with function field M . Shrinking W , we may assume
that τ := (t1, . . . , tN) : W → AN

L is an étale morphism. Choose c := (c1, . . . , cN) ∈ AN(L) in
the image of τ , and let w ∈ W be a closed point in the fiber τ−1(c). Then t1−c1, . . . , tN−cN
are a system of local parameters at w on W . Let L′ be the residue field of w, so L′ is a finite
extension of L. Choose a nonarchimedean place p of L that splits completely in L′, so L′

injects into the completion Lp. Choose a p-adic unit b ∈ L whose residue is not a d-th power,
and choose a ∈ L of p-adic valuation 1. By Lemma A.4, 〈〈a〉〉d ⊗ 〈1,−b〉d has no nontrivial
zero over Lp ⊃ L′. By Lemma A.5, q has no nontrivial zero over M . By Corollary A.2, it
also has no nontrivial zero over K. �

Proof of Theorem 1.4. We may assume n ≥ 1. If charK = 0, Lemma 5.3 does the job. If
charK > 0, we have that t1, . . . , tn are algebraically dependent if either t1 ∈ k or there exists
L ∈ L such that t1 ∈ L and t2, . . . , tn are algebraically dependent over L: this is uniformly
definable by a formula, by Theorem 1.3, Proposition 4.10, and Lemma 5.3. �

6. Negative results for existential definitions

In this section, we show that existential formulas cannot satisfy the requirements of The-
orems 1.1, 1.2, 1.3, 1.4.

Given an existential formula, we can convert each polynomial inequality f(x1, . . . , xn) 6= 0
to (∃y)f(x1, . . . , xn)y = 1 and convert each disjunction of polynomial equalities f = 0∨g = 0
to fg = 0. Thus we need only consider formulas given as a conjunction of polynomial
equalities, preceded by existential quantifiers.

The following gives a negative result for Theorem 1.1.

Proposition 6.1. There is no existential sentence that is true for Q and false for Fp for all
primes p.

Proof. If a closed subscheme V of An
Z has a Q-point P , then it has an Fp-point for any p not

dividing the denominators of the coordinates of P . �

Remark 6.2. The sentence ∃x∃y(x2+y2+1 = 0) is true for every field of positive characteris-
tic, but false for Q. On the other hand, any sentence true for a family of fields with infinitely
many distinct characteristics must also hold for some number field: take an ultraproduct,
pass to a finitely generated subfield, and specialize.
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The following gives a negative result for Theorem 1.2.

Proposition 6.3. There is no existential formula that defines the prime field F in every
infinite finitely generated field K.

Proof. Suppose such a formula exists. Then there is a closed subscheme V of An
Z such that

if π : V → A1
Z is the projection onto the first coordinate, π(V (K)) = F for every infinite

finitely generated field K. The morphism π must be dominant, since otherwise #π(V (K))
would be bounded for all finitely generated K of sufficiently large characteristic, while #F
is unbounded.

Choose an irreducible component V0 of V that dominates A1
Z. Take K to be the function

field of V0. The value of π at the tautological point of V0(K) is not in F, contradicting the
assumption on V . �

The following gives a negative result for Theorem 1.3, and hence also for the more general
Theorem 1.4.

Proposition 6.4. For each fixed p ≥ 0, there is no existential formula that defines the field
of constants for all finitely generated fields of characteristic p.

Proof. Repeat the proof of Proposition 6.3, observing that the size of the field of constants
is unbounded, even when we fix the characteristic. �

Appendix A. Diagonal forms

Let d be a positive integer. and let a1, . . . , an be elements of a field K. Then 〈a1, . . . , an〉d
denotes the diagonal form

a1x
d
1 + · · ·+ anx

d
n ∈ K[x1, . . . , xn].

Define the tensor product of two such forms 〈a1, . . . , am〉d and 〈b1, . . . , bn〉d to be the diagonal
form in mn variables whose coefficients are the products aibj. Finally, define

〈〈a〉〉d := 〈1, a, . . . , ad−1〉d
〈〈a1, . . . , an〉〉d := 〈〈a1〉〉d ⊗ · · · ⊗ 〈〈an〉〉d,

so 〈〈a1, . . . , an〉〉d is a diagonal degree-d form in dn variables. If d = 2, then 〈〈a1, . . . , an〉〉d
is called a Pfister form.

Proposition A.1. Let q(x1, . . . , xn) be a homogeneous form over a field K, and let L be a
finite extension of K. Suppose that either deg q = 2 and [L : K] is odd, or deg q = 3 and
[L : K] = 2. If q has a nontrivial zero over L, then q has a nontrivial zero over K.

Proof. This is well known: see [Lan02, Chapter V, Exercise 28]. �

Corollary A.2. Let K be a field. Let d = 3 if charK = 2, and d = 2 otherwise. Let
q(x1, . . . , xn) be a homogeneous form of degree d over K. Let L be a purely inseparable
extension of K. If q has a nontrivial zero over L, then q has a nontrivial zero over K.

Proof. If q has a nontrivial zero over L, the coordinates of this zero generate a finite purely
inseparable extension of K. By induction, we reduce to the case [L : K] = p, where
p := charK. Now the result follows from Proposition A.1. �
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Proposition A.3. Let k be a separably closed field, a finite field, or a number field; define ε
to be 0, 1, or 2, respectively. Let d = 3 if char k = 2, and d = 2 otherwise. If k is a number
field, assume that

√
−1 ∈ k. Let K be a finitely generated extension of k of transcendence

degree r. If n ≥ r + ε and m ≥ 2 then for all a1, . . . , an, b1, . . . , bm ∈ K, the form

〈〈a1, . . . , an〉〉d ⊗ 〈b1, . . . , bm〉d

has a nontrivial zero over K.

Proof. The separably closed case reduces to the algebraically closed case by Corollary A.2.
If k is algebraically closed or finite, then k is a Cε field in the sense of [Lan52], and K is a
Cr+ε field, so the result follows. If k is a number field, use [Pop02, Fact 1.3(1)]. �

Lemma A.4. Let K be a field with discrete valuation v : K× � Z. Let O be the valuation
ring, let π ∈ K be such that v(π) = 1, and let k = O/(π). Let d ∈ Z≥2. Let q be a diagonal
degree-d form over O whose reduction modulo π has no nontrivial zero over k. Then the
form q′ := q ⊗ 〈〈π〉〉d has no nontrivial zero over K.

Proof. Write

q′ = q(~x0) + πq(~x1) + · · ·+ πd−1q(~xd−1).

If the coordinates of ~x0 are in O and not all in πO, then v(q(~x0)) = 0, since q has no
nontrivial zero in k. More generally, if ~x0 is nonzero, it is a power of π times such a primitive
vector, so v(q(~x0)) ≡ 0 (mod d). Similarly, if ~xi is nonzero, then v(πiq(~xi)) ≡ i (mod d).
Since these valuations are distinct (when not +∞), the form q′ has no nontrivial zero over
K. �

The following is close to results used in [Pop02].

Lemma A.5. Let k be a field, and let V be an integral k-variety with function field K.
Suppose that v is a regular point on V , and that t1, . . . , tm are part of a system of local
parameters at v. Let d ∈ Z≥2. Let q be a diagonal degree-d form over k having no nontrivial
zero in the residue field of v. Then q ⊗ 〈〈t1, . . . , tm〉〉d has no nontrivial zero over K.

Proof. We may assume that t1, . . . , tm is a complete system of local parameters (i.e., m =
codim v). For 0 ≤ j ≤ m, put Yj := SpecOV,v/(t1, . . . , tj), let vj be the generic point of Yj,
and let kj be the residue field of vj. Thus vm = v and k0 = K. For 0 < j ≤ m, the local
ring of Yj−1 at vj is a discrete valuation ring in which the image of tj is a uniformizer.

We prove by (descending) induction that for j = m,m − 1, . . . , 0, the form qj := q ⊗
〈〈tj+1, . . . , tm〉〉d has no nontrivial zero over kj. The case j = m is given, and Lemma A.4
applied to the local ring of Yj−1 at vj, the form qj and the uniformizer tj provides the
inductive step.

Taking j = 0 gives the result. �
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