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Abstract. We construct a tower of function fields F0 ⊂ F1 ⊂ . . . over a finite field such
that every place of every Fi ramifies in the tower and lim genus(Fi)/[Fi : F0] <∞. We also
construct a tower in which every place ramifies and limNFi

/[Fi : F0] > 0, where NFi
is the

number of degree-1 places of Fi. These towers answer questions posed by Stichtenoth at
Fq7.

1. Introduction

Let q be a prime power, and let Fq be a finite field of size q. By a function field over
Fq, we mean a finitely generated extension K/Fq of transcendence degree 1 in which Fq is
algebraically closed. By an extension of function fields K ′/K, we mean a finite separable
extension such that K and K ′ are function fields over the same Fq. Let gK be the genus of
K. Let NK be the number of degree-1 places of K (the number of Fq-rational points on the
corresponding curve). A tower of function fields over Fq is a sequence of extensions of such
function fields

K0 ⊂ K1 ⊂ K2 ⊂ . . .

such that gi := gKi
→ ∞ as i → ∞. Define Ni = NKi

, and di = [Ki : K0]. Since Ni/di
is decreasing while (gi − 1)/di is increasing (Hurwitz), limNi/di and lim gi/di exist. (The
latter can be ∞.)

The Weil bound NK ≤ q + 1 + 2gK
√
q implies

limNi/gi ≤ 2
√
q.

This was improved by Drinfeld and Vladut [4] (following Ihara [19]) to

limNi/gi ≤
√
q − 1.

Ihara also showed that, for any square q, there are towers of Shimura curves with limNi/gi =√
q − 1 [15, 16, 17, 18, 19]. Subsequent authors have given further constructions of ‘asymp-

totically good’ towers, i.e., towers with limNi/gi > 0 [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36].

Every known asymptotically good tower has two special properties: there is some place
of some Ki which splits completely in the tower, and there are only finitely many places of
K0 which ramify in the tower. (We say that a place of Ki splits completely in the tower if it
splits completely in Kj/Ki for every j ≥ i. We say that a place of K0 ramifies in the tower if
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there exists i such that it ramifies in Ki/K0.) But it is difficult to study asymptotically good
towers directly since one must control both the genus and the number of rational places.
With this as motivation, Stichtenoth posed the following two questions in his talk at Fq7
(the Seventh International Conference on Finite Fields and Their Applications):

Question 1.1. If limNi/di > 0, must some Ki have a place that splits completely in the
tower?

Question 1.2. If lim gi/di <∞, must only finitely many places of K0 ramify in the tower?

Our Theorems 1.3 and 1.4 imply negative answers to these two questions. Call a tower
K0 ⊂ K1 ⊂ . . . of function fields over Fq everywhere ramified if for each place P of each Ki,
there exists j > i such that P ramifies in Kj/Ki.

Theorem 1.3. Given a function field K0 over Fq with a rational place, there exists an
everywhere ramified tower K0 ⊂ K1 ⊂ . . . such that limNi/di > 0.

Theorem 1.4. Given a function field K0 over Fq, there exists an everywhere ramified tower
K0 ⊂ K1 ⊂ . . . such that lim gi/di <∞.

2. Proof of Theorem 1.3

Lemma 2.1. Let K be a function field over Fq. Then there is a nontrivial extension K ′/K
in which all rational places of K split completely.

Proof. Weak approximation (or Riemann-Roch) gives f ∈ K∗ having a zero at each rational
place of K and a simple pole at some other place of K. Adjoin a root of yq−y = f to obtain
K ′. Then K ′/K is totally ramified above the simple pole of f , so K ′ is another function
field over Fq and [K ′ : K] = q > 1. �

Lemma 2.2. Let K be a function field over Fq with NK > 0, and let P be a place of K. For
any ε > 0, there is an extension L/K such that NL/NK > (1− ε)[L : K] and P ramifies in
L/K.

Proof. We first reduce to the case where 1/NK < ε. Repeated application of Lemma 2.1
yields K ′/K such that 1/([K ′ : K]NK) < ε and all rational places of K split completely.
Then NK′ = [K ′ : K]NK . Pick a place P ′ of K ′ above P . If we could find L/K ′ satisfying
the conditions of the lemma for (K ′, P ′), then

NL

NK

=
NL

NK′

NK′

NK

> (1− ε)[L : K ′][K ′ : K] = (1− ε)[L : K],

so L/K would work for (K,P ). Thus, renaming K ′ as K, we may assume 1/NK < ε.
Weak approximation gives f ∈ K∗ having a simple pole at P and zeros at all rational

places not equal to P . Adjoin a root of yq − y = f to obtain L. Then P ramifies in L/K,
but all other rational places of K split completely, so NL ≥ (NK − 1)q. Thus NL/NK ≥
q(1− 1/NK) > [L : K](1− ε). �

Proof of Theorem 1.3. Fix a sequence of positive numbers εm → 0 such that
∏∞

m=1(1− εm)
converges to a positive number. In our proof we will apply Lemma 2.2 infinitely often, using
ε1 in the first application, ε2 in the second application, and so on.

Let P0, P1, . . . be an enumeration of the places of K0 (of all degrees). Given Ki, we
construct Ki+1 in stages so that all places of Ki lying above P0, . . . , Pi ramify in Ki+1/Ki.

2



Namely, if Q1, . . . , QI are all the places of Ki lying above P0, . . . , Pi, we set Ki,0 = Ki and
then for j = 1, . . . , I in turn, apply Lemma 2.2 with the first unused εm to find Ki,j/Ki,j−1
in which some place of Ki,j−1 above Qj ramifies and NKi,j

/NKi,j−1
> (1− εm)[Ki,j : Ki,j−1].

Finally, set Ki+1 = Ki,I .
If R is a place of some Kr, then R lies over some Pj of K0. By construction, for all

i ≥ max{j, r}, all places of Ki above R ramify in Ki+1/Ki. Thus R is ramified in Ki+1/Kr.
The inequality in Lemma 2.2 guarantees that the value of N/d for Ki,j is at least 1− εm

times the value of N/d for Ki,j−1. Thus Ni/di is at least
(∏

m≤M(1− εm)
)
N0/d0, if M is the

number of applications of Lemma 2.2 used in the construction up to Ki. Since N0/d0 > 0
and

∏∞
m=1(1− εm) converges, the decreasing sequence Ni/di is bounded below by(

∞∏
m=1

(1− εm)

)
N0/d0,

which is positive. So Ni/di has a positive limit. Finally, Ni →∞ implies gi →∞. �

Remark 2.3. A slight modification of the argument shows that, given K0, we can construct
an everywhere ramified tower in which Ni/di converges to any prescribed value less than N0.
This is because weak approximation lets us prescribe the ramification and splitting of any
finite number of places at each step.

3. Proof of Theorem 1.4

Let p be the characteristic of Fq.

Lemma 3.1. Let K be a function field over Fq of genus > 1, and let P be a place of K.
Then there exist unramified extensions K ′/K of arbitrarily high genus such that for some
place Q of K ′ lying over P , the residue field extension for Q/P is trivial.

Proof. Let C be the smooth, projective, geometrically integral curve with function field K.
Let J be the Jacobian of C. There exists a degree-1 divisor D on C [32, V.1.11]. Use D to
identify C with a closed subvariety of J .

The place P corresponds to a Galois conjugacy class of points in C(Fqf ), where Fqf is
the residue field. Choose P0 in this conjugacy class. Choose n ∈ Z>0 such that n ≡ 1
(mod p ·#J(Fqf )). Then the multiplication-by-n map [n] : J → J is étale, and maps P0 to
itself. Let C ′ = [n]−1C, so C ′ is an étale cover of C. Then C ′ corresponds to a function
field K ′ that is unramified over K. Also P0 ∈ C ′(Fqf ) represents a place Q of K ′ lying over
P , having the same residue field as P . By choosing n large, we can make gK′ as large as
desired, by the Hurwitz formula. �

Lemma 3.2. Let K be a function field over Fq of genus > 1, let P be a place of K, and let
ε > 0. Then there exists an extension L/K with (gL − 1)/(gK − 1) < (1 + ε)[L : K] such
that P ramifies in L/K.

Proof. Let f be the degree of P over Fq. For an unramified extension K ′/K, we have
(gK′ − 1)/(gK − 1) = [K ′ : K] by Hurwitz. By applying Lemma 3.1, we may replace (K,P )
by some (K ′, Q) in order to assume that gK is arbitrarily large, without changing f .

When gK is sufficiently large, an easy estimate (e.g. cf. [32, V.2.10]) based on the Weil
bounds implies there exist places Q,Q′ of K of degrees d, d + f respectively, where d is the
smallest integer >

√
gK and not equal to f . Choose a prime ` - p ·#G, where G is the group
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of degree-zero divisor classes of K. Then every element of G, and in particular [Q′−Q−P ],
is divisible by `. Thus, there exists a divisor D of degree 0 and an element h of K such that
(h) = Q′ −Q− P − `D. Let L = K(h1/`), so [L : K] = `. Hurwitz gives

2gL − 2 = `(2gK − 2) + (`− 1)((d + f) + d + f),

so
gL − 1

[L : K](gK − 1)
= 1 +

`− 1

`

(
d + f

gK − 1

)
= 1 + O(g

−1/2
K ).

The O(g
−1/2
K ) term will be < ε if gK is sufficiently large. �

Proof of Theorem 1.4. Given K0, let K1/K0 be an extension with g1 > 1. Just as Lemma 2.2
let us prove Theorem 1.3, Lemma 3.2 now lets us construct an everywhere ramified tower
K1 ⊂ K2 ⊂ . . . such that at the ith step the value of (gi−1)/di increases by a factor at most
1 + εi for a prescribed εi > 0. By choosing εi so that

∏
(1 + εi) converges, we obtain such a

tower with lim(gi − 1)/di <∞. Since di →∞, this limit equals lim gi/di. �

4. Question

Can one combine Theorems 1.3 and 1.4? In particular, does there exist an everywhere
ramified tower in which both limNi/di > 0 and lim gi/di <∞?
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