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1. INTRODUCTION

Let IF, be a finite field of ¢ = p® elements. Let X be a smooth quasi-projective subscheme
of P" of dimension m > 0 over F,. N. Katz asked for a finite field analogue of the Bertini
smoothness theorem, and in particular asked whether one could always find a hypersurface
H in P" such that H N X is smooth of dimension m — 1. A positive answer was proved in
[Gab01] and [Poo04] independently. The latter paper proved also that in a precise sense, a
positive fraction of hypersurfaces have the required property.

The classical Bertini theorem was extended in [Blo70,KA79] to show that the hypersurface
can be chosen so as to contain a prescribed closed smooth subscheme Z, provided that the
condition dim X > 2dim Z is satisfied. (The condition arises naturally from a dimension-
counting argument.) The goal of the current paper is to prove an analogous result over
finite fields. In fact, our result is stronger than that of [KA79| in that we do not require
Z C X, but weaker in that we assume that Z N X be smooth. (With a little more work and
complexity, we could prove a version for a non-smooth intersection as well, but we restrict
to the smooth case for simplicity.) One reason for proving our result is that it is used by
[SS07].

Let S = Fy[xo, ..., x,] be the homogeneous coordinate ring of P". Let S; C S be the F,-
subspace of homogeneous polynomials of degree d. For each f € Sy, let H; be the subscheme
Proj(S/(f)) € P™. For the rest of this paper, we fix a closed subscheme Z C P". For d € Z>,,
let I; be the F,-subspace of f € Sy that vanish on Z. Let Ihomog = U s la- We want to
measure the density of subsets of Ijomog, but under the definition in [Poo04], the set Thomog
itself has density 0 whenever dim Z > 0; therefore we use a new definition of density, relative
t0 Thomog- Namely, we define the density of a subset P C Iiomeg by

L # (PN
pz(P) = (}ggo B

if the limit exists. For a scheme X of finite type over F,, define the zeta function [Weid9)

closed Pe X

the product and sum converge when Re(s) > dim X.
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Theorem 1.1. Let X be a smooth quasi-projective subscheme of P of dimension m > 0
over F,. Let Z be a closed subscheme of P". Assume that the scheme-theoretic intersection
V=7 N X is smooth of dimension £. (If V is empty, take { = —1.) Define
P :={f € Iomog : Hf N X is smooth of dimension m —1}.
(i) If m > 2¢, then
m+1 1
pz(P) = sS4 ; = :
vim =10 Cx(m+1)  Cv(m—10) (x—v(m+1)
In this case, in particular, for d > 1, there exists a degree-d hypersurface H contain-

ing Z such that H N X 1is smooth of dimension m — 1.
(i) If m < 20, then uyz(P) = 0.

The proof will use the closed point sieve introduced in [Poo04]. In fact, the proof is parallel
to the one in that paper, but changes are required in almost every line.

2. SINGULAR POINTS OF LOW DEGREE
Let Z; C Opx be the ideal sheaf of Z, so I; = H°(P",Z(d)). Tensoring the surjection
0%t — 0
(an---afn) '_>x0f0+"'+xnfn

with Z, twisting by O(d), and taking global sections shows that S;11; = I, for d > 1. Fix
¢ such that Sy = I for all d > c.
Before proving the main result of this section (Lemma [2.3), we need two lemmas.

Lemma 2.1. Let Y be a finite subscheme of P". Let

¢d: Id = HO(Pn,Iz(d>> — H0<Y,IZ . Oy(d>>
be the map induced by the map of sheaves Ty, — L, - Oy on P". Then ¢4 is surjective for
d > c+dim H(Y, Oy),

Proof. The map of sheaves Opn — Oy on P" is surjective so Z; — Z - Oy is surjective too.
Thus ¢4 is surjective for d > 1.

Enlarging I, if necessary, we can perform a linear change of variable to assume ¥ C A" :=
{zo # 0}. Dehomogenization (setting zo = 1) identifies S; with the space S/ of polynomials
in F,[z1,...,x,] of total degree < d, and identifies ¢4 with a map

Icli — B = HO(]PWL,IZ . Oy)
By definition of ¢, we have S11; = I}, for d > c. For d > ¢, let By be the image of I}, in B,
so S1B4 = Bgy1 for d > c. Since 1 € 57, we have I C I, so
BCch+1 g Tt
But b := dim B < o0, so B; = Bj4; for some j € [c,c+ b]. Then
Bjy2 = S1Bj1 = 81B; = Bj1.

Similarly B; = Bj11 = Bj;2 = ..., and these eventually equal B by the previous paragraph.
Hence ¢, is surjective for d > j, and in particular for d > ¢+ b. O
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Lemma 2.2. Suppose m C Oy is the ideal sheaf of a closed point P € X. Let Y C X be
the closed subscheme whose ideal sheaf is m*> C Ox. Then for any d € Zs.

(m—£)deg P ,
0 _Ja , WPEV,
#H"(Y,Z; - Oy(d)) = {q(erl)degP7 if P¢vV.

Proof. Since Y is finite, we may now ignore the twisting by O(d). The space H°(Y, Oy ) has
a two-step filtration whose quotients have dimensions 1 and m over the residue field s of
P. Thus #H(Y,Oy) = (#k)™+ = ¢m*tDdeeP [f P ¢ V (or equivalently P € Z), then
H°(Y, Ozny) has a filtration whose quotients have dimensions 1 and ¢ over &; if P ¢ V', then
H°(Y, Ozny) = 0. Taking cohomology of

0—>IZ'OY—>OY—>OZQY—)0
on the O-dimensional scheme Y yields
#HO(Y, Oy)
#HO(Y, Ozny)
B {q(m—I—l degP/q E—H)degP’ if Pe V,
| gt des?, if P¢V.

#H(Y,Iz-Oy) =

O

If U is a scheme of finite type over [Fy, let U, be the set of closed points of U of degree
< r. Similarly define Us,.

Lemma 2.3 (Singularities of low degree). Let notation and hypotheses be as in Theorem
and define

Pr:={f € Ihomog : Hf N X is smooth of dimension m —1 at all P € X, }.

Then
1z(P,) = H (1 _ q—(m—f)degP) ) H (1 _ q—(m+1)degP) '

PeVe, Pe(X—V)<r

Proof. Let X, = {Py,...,Ps}. Let m; be the ideal sheaf of P, on X. let Y; be the closed
subscheme of X with ideal sheaf m? C Oy, and let Y = |JY;. Then H; N X is singular at
P; (more precisely, not smooth of dimension m — 1 at P;) if and only if the restriction of f
to a section of Oy, (d) is zero.

By Lemma[2.1] yi7(P) equals the fraction of elements in H°(Zz - Oy (d)) whose restriction
to a section of Oy, (d) is nonzero for every i. Thus

H #H(Y;,Zz - Oy,) — 1
. #HOY;,Z; - Oy,)

_ H (1 . q—(m—ﬁ)degP) . H (1 . q—(m+1)degP) :

P€V<r PE(X—V)<T

by Lemma [2.2] O




Corollary 2.4. If m > 20, then

: _ v(m+1)
o w2 (P) = v D) G m = )

Proof. The products in Lemma are the partial products in the definition of the zeta
functions. For convergence, we need m — ¢ > dim V' = {, which is equivalent to m > 2¢. [

Proof of Theorem[1.1)(ii). We have P C P,. By Lemma [2.3]

< H f(m £) degP)’

PeV,

which tends to 0 as 7 — oo if m < 2¢. Thus pz(P) = 0 in this case. U

From now on, we assume m > 2/.

3. SINGULAR POINTS OF MEDIUM DEGREE

Then the fraction of

+1
fel such that H; N X is not smooth of dzmenszon m—1 at P equals

g mhe ifPeV,
q—(m—l-l)e’ ifP §é V.

Proof. This follows by applying Lemma [2.1] to the YV in Lemma [2.2] and then applying
Lemma 2.2 O

Define the upper and lower densities 7i,(P), p1,(P) of a subset P C Ilhomog as piz(P) was
defined, but using lim sup and lim inf in place of lim.

Lemma 3.2 (Singularities of medium degree). Define

. d —
Qmedium U{ fely: there erists P € X withr < degP < ‘
o m+ 1

such that Hy N X is not smooth of dimension m — 1 at P }.
Then lim, o i, (Qmedium) = (.
Proof. By Lemma we have

Q;nedium NI o 3
#( d) < Z q (m E)degP+ Z q (m+1) deg P

Ji >~
# d pPeZ 4 PeX—-Z7
—c d—c
r<deg P< =5 r<deg P< =5
§ : —(m—¥£)deg P § : —(m+1) deg P
PEZZT‘ PE(X—Z)ZT

Using the trivial bound that an m-dimensional variety has at most O(¢°") closed points of

degree e, as in the proof of [Poo04, Lemma 2.4], we show that each of the two sums converges

to a value that is O(¢™") as r — oo, under our assumption m > 2(. 0
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4. SINGULAR POINTS OF HIGH DEGREE

Lemma 4.1. Let P be a closed point of degree e in P — Z. For d > c, the fraction of f € I
that vanish at P is at most ¢~ ™"(d=¢e),

Proof. Equivalently, we must show that the image of ¢4 in Lemma for Y = P has F-
dimension at least min(d — ¢, e). The proof of Lemma shows that as d runs through the
integers c¢,c + 1,..., this dimension increases by at least 1 until it reaches its maximum,

which is e. U
Lemma 4.2 (Singularities of high degree off V). Define

e U{f €ly:3dP e (X—V)>£zl;+c1 such that Hy N X is not smooth of dimension m —1 at P}
d>0

Then Tiz(Qx%y) = 0.

Proof. 1t suffices to prove the lemma with X replaced by each of the sets in an open covering
of X — V, so we may assume X is contained in A" = {zq # 0} C P", and that V = (.
Dehomogenize by setting xy = 1, to identify I, C S; with subspaces of I, C S, C A :=

Folz1, ... 2,
Given a closed point z € X, choose a system of local parameters t;,...,t, € A at z on
A" such that t,,,1 = t0 = -+ =t, = 0 defines X locally at x. Multiplying all the ¢; by an

element of A vanishing on Z but nonvanishing at x, we may assume in addition that all the
t; vanish on Z. Now dt;,...,dt, are a Opn ,-basis for the stalk Q}M/]Fq’x. Let Oq,...,0, be
the dual basis of the stalk Tan/r, . of the tangent sheaf. Choose s € A with s(z) # 0 to clear
denominators so that D, := s0; gives a global derivation A — A for i = 1,...,n. Then there
is a neighborhood N, of x in A™ such that N, N {t,11 = tpyo =+ =1t, =0} = N, N X,
Q}Vx/Fq =@ ,0p,dt;, and s € O(N,)*. We may cover X with finitely many N, so we may
reduce to the case where X C N, for a single x. For f € I, ~ I;, Hy N X fails to be smooth
of dimension m — 1 at a point P € U if and only if f(P) = (D1f)(P) =--- = (D f)(P) =0.
Let 7 = max;(degt;), v = [(d —7)/p], and n = [d/p]. Uf fo€ [}, s €5, ..., g € 5,
and h € I, are selected uniformly and independently at random, then the distribution of

f=fo+giti+--+ g0ty +h°
is uniform over I}, because of fy. We will bound the probability that an f constructed in
this way has a point P € X>d;cl where f(P) = (D1f)(P) = -+ = (D f)(P) = 0. We
m+

have D, f = (D;fy) + ¢¥s for i = 1,...,m. We will select fo, g1, ..., gm,h one at a time. For
0 <17 < m, define

Claim 1: For 0 < i < m — 1, conditioned on a choice of fy,g1,...,g; for which dim(W;) <
m — 1, the probability that dim(W;;1) <m —i—11is 1 —o(1) as d — oo. (The function of
d represented by the o(1) depends on X and the D;.)

Proof of Claim 1: This is completely analogous to the corresponding proof in [Poo04].

Claim 2: Conditioned on a choice of fy, g1, ..., gm for which W, is finite, Prob(H; N W,, N
X e =0)=1-0(1) as d = .
m-+1



Proof of Claim 2: By Bézout’s theorem as in [Ful84) p. 10], we have #W,, = O(d™). For
a given point P € W,,, the set H" of h € I;] for which Hy passes through P is either ()
or a coset of ker(eVp I} — k(P)), where /{(P) is the residue field of P, and evp is the

+17 implies #Hbad/#l’ <qvV

where v = min (77, ¢). Hence
Prob(H; N W, N X>fv,;+c1 #0) < H#W,qg™" =0(d™q™") = o(1)
as d — oo, since v eventually grows linearly in d. This proves Claim 2.
End of proof: Choose f € I; uniformly at random. Claims 1 and 2 show that with probability

171 —o(1))- (1 —o(1)) =1 —o0(1) as d — oo, dimW; = m — i for i = 0,1,...,m and
Hn Wy, N X, ae = 0. But Hf N W, is the subvariety of X cut out by the equations

m+1
f(P) = (Dif)(P) = -+ = (Dnf)(P) =0, s0 HrNW,, N X_a. is exactly the set of
m+
points of Hy N X of degree > :;Cl where Hy N X is not smooth of dimension m — 1. Thus
hlgh
Rz(Qx%y) = 0. O

Lemma 4.3 (Singularities of high degree on V'). Define
Qv U{ fely: 3P € V_ac such that Hy N X is not smooth of dimension m —1 at P }.

m+1
d>0
Then Tiy(Q)E") = 0.

Proof. As before, we may assume X C A" and we may dehomogenize. Given a closed point
x € X, choose a system of local parameters ¢y, . .. ,tn € A at x on A" such that tm+1 =tmio =

=t, = 0 defines X locally at z, and t; = t; = =tmrt =tmt1 = timao = =t,=0
deﬁnes V locally at x. If m,, is the 1dea1 sheaf of w on IP’” then 7y — % is surjectlve SO we
may adjust tq,...,t,_¢ to assume that they vanish not only on V' but also on /.

Define 0; and D; as in the proof of Lemma 4.2l Then there is a neighborhood N, of x
in A" such that N, N {t;s1 =tmio = =t, =0} = N, N X, Q}Vx/]Fq = @& ,0p,dt;, and
s € O(N,)*. Again we may assume X C N, for a single z. For f € I, ~ I;, Hy N X fails
to be smooth of dimension m — 1 at a point P € V if and only if f(P) = (D1 f)(P)=---=
(D f)(P) =

Again let 7 = max;(degt;), v = [(d — 7)/p), and n = [d/p]|. If fo € [}, g1 € S, ...,
gey1 € ., are chosen uniformly at random, then

f=fo+glti+--+ g/ ten

is a random element of 1)}, since £ +1 < m — (.
Fori=0,...,¢+ 1, the subscheme

depends only on the choices of fy, g1,...,9;- The same argument as in the previous proof
shows that for ¢ =0, ..., ¢, we have

Prob(dimW; < ¢ —1i) =1 —o(1)

as d — oco. In particular, W, is finite with probability 1 — o(1).
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To prove that EZ(Q}‘I,igh) = 0, it remains to prove that conditioned on choices of fy, g1,..., gs

making dim W, finite,

PrOb(Wg+1 N V>d;+c1 = @) =1- O(].)
By Bézout’s theorem, #W, = O(d*). The set H"* of choices of gy41 making Dy, f vanish
at a given point P € W, is either empty or a coset of ker(evp : S — k(P)). Lemma 2.5 of
[Poo04] implies that the size of this kernel (or its coset) as a fraction of #5/ is at most ¢~

where v := min (7, :1101) Since #W,q" = o(1) as d — oo, we are done. O

5. CONCLUSION
Proof of Theorem[1.1)(i). We have
medium high high
PCP, CPUQMM QR UQy™,
50 fiz(P) and p, (P) each differ from pz(P,) by at most 7i ( Q™) 474 ( e )47, ().
Applying Corollary [2.4] and Lemmas [3.2 and [£.3] we obtain

#a(P) = i pa(Pr) = @(mg—V(g&(lr)n 1)
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