
SELF CUP PRODUCTS AND THE THETA CHARACTERISTIC TORSOR

BJORN POONEN AND ERIC RAINS

Abstract. We give a general formula relating self cup products in cohomology to con-
necting maps in nonabelian cohomology, and apply it to obtain a formula for the self cup
product associated to the Weil pairing.

1. Introduction

We prove a general statement about cohomology, Theorem 2.5, that reinterprets the self
cup product map

H1(M)→ H2(M ⊗M)

x 7→ x ∪ x
as the connecting map of cohomology for a certain sequence

1→M ⊗M → U M →M → 1

involving a canonical nonabelian central extension U M . The proof of Theorem 2.5 can be
read with group cohomology in mind, but we prove it for an arbitrary site since later we
need it for fppf cohomology. The sheaf U M has other properties as well: for example, there
is a map M → (U M)ab that is universal for quadratic maps from M to a (variable) abelian
sheaf.
As an application of Theorem 2.5, we answer a question of B. Gross, who asked when the

self cup product associated to the Weil pairing on the 2-torsion of the Jacobian A := JacX
of a curve X is 0. The Weil pairing

e2 : A[2]× A[2]→ Gm

induces a symmetric bilinear pairing

〈 , 〉 : H1(A[2])× H1(A[2])→ H2(Gm).

We prove the identity
〈x, x〉 = 〈x, cT 〉, (1)

where cT is a particular canonical element of H1(A[2]). Namely, cT is the class of the torsor
under A[2] parametrizing the theta characteristics on X.
We have been vague about the �eld of de�nition of our curve; in fact, it is not too much

harder to work over an arbitrary base scheme. (See Theorem 3.9.) Moreover, we prove a
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version with Jacobians replaced by arbitrary abelian schemes A, in which cT is replaced by
an element cλ ∈ H1(Â[2]). (See Theorem 3.4.)
With an eye towards applications of these theorems, we give many criteria for the vanishing

of cλ and cT , some of which generalize earlier results of M. Atiyah and D. Mumford: see
Proposition 3.6 and Remark 3.10. We also give an example over Q3 for which cT 6= 0, and
an example over Q for which cT is nonzero but locally trivial.
As further motivation, some of our results, namely Proposition 2.9, Proposition 3.6, and

Theorem 3.9, are used in [PR12] to study the distribution of Selmer groups.

2. Some homological algebra

2.1. A tensor algebra construction. We will de�ne a functor U from the category of
Z-modules to the category of groups, the goal being Theorem 2.5. Let M be a Z-module.
Let TM =

⊕
i≥0 T

iM be the tensor algebra. Then T≥nM =
⊕

i≥n T
iM is a 2-sided ideal of

TM . Let T<nM be the quotient ring TM/T≥nM . Let UM be the kernel of (T<3M)× →
(T<1M)× = Z× = {±1}. The grading on TM gives rise to a �ltration of UM , which yields
the following central extension of groups

1→M ⊗M → UM
π→M → 1. (2)

Elements of UM may be written as 1 +m+ t where m ∈M and t ∈M ⊗M , and should be
multiplied as follows:

(1 +m+ t)(1 +m′ + t′) = 1 + (m+m′) + ((m⊗m′) + t+ t′).

The surjection UM → M admits a set-theoretic section s : M → UM sending m to 1 + m.
If m,m′ ∈M , then

s(m) s(m′) s(m+m′)−1 = m⊗m′ (3)

in M ⊗M ⊆ UM .
A simple computation veri�es the following universal property of UM :

Proposition 2.1. The map s : M → UM is universal for set maps σ : M → G to a group
G such that (m,m′) 7→ σ(m)σ(m′)σ(m + m′)−1 is a bilinear function from M ×M to an
abelian subgroup of G.

A quadratic map q : M → G is a set map between abelian groups such that (m,m′) 7→
q(m + m′) − q(m) − q(m′) is bilinear. (Perhaps �pointed quadratic map� would be better
terminology; for instance, the quadratic maps q : Q → Q are the polynomial functions of
degree at most 2 sending 0 to 0.) Proposition 2.1 implies:

Corollary 2.2. The map M → (UM)ab is universal for quadratic maps from M to an
abelian group. The map M → (UM)ab ⊗ F2 is universal for quadratic maps from M to an
abelian group such that the image is killed by 2.

Remark 2.3.
(a) The commutator [1 + m + t, 1 + m′ + t] equals m ⊗m′ −m′ ⊗m, so we have an exact

sequence of abelian groups

0→ S2M → (UM)ab →M → 0,
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where SM =
⊕

n≥0 S
nM is the symmetric algebra. In particular,

(UM)ab ' ker
(
(S<3M)× → (S<1M)×

)
.

(b) Similarly, if 2M = 0, then (1 +m+ t)2 = 1 +m⊗m, so we obtain an exact sequence of
F2-vector spaces

0→
∧2

M → (UM)ab ⊗ F2 →M → 0,

and
(UM)ab ⊗ F2 ' ker

(
(
∧<3

M)× → (
∧<1

M)×
)
.

2.2. Sheaves of groups. In the rest of Section 2, C is a site. Let GpC be the category
of sheaves of groups on C, and let AbC be the category of sheaves of abelian groups on C.
For M ∈ AbC, write Hi(M) for Exti(Z,M), where Z is the constant sheaf; in other words,
Hi(−) is the ith right derived functor of Hom(Z,−) on AbC. For M ∈ GpC, de�ne H0(M) as
Hom(Z,M) and de�ne H1(M) in terms of torsors as in [Gir71, �III.2.4]. The de�nitions are
compatible for M ∈ AbC and i = 0, 1 [Gir71, Remarque III.3.5.4].

Remark 2.4. The reader may prefer to imagine the case for which sheaves are G-sets for
some group G, abelian sheaves are ZG-modules, and Hi(M) is just group cohomology.

All the constructions and results of Section 2.1 have sheaf analogues. In particular, for
M ∈ AbC we obtain U M ∈ GpC �tting in exact sequences

1→M ⊗M → U M →M → 1 (4)

0→ S2M → (U M)ab →M → 0, (5)

and, if 2M = 0,

0→
∧2

M → (U M)ab ⊗ F2 →M → 0. (6)

2.3. Self cup products.

Theorem 2.5. For M ∈ AbC, the connecting map H1(M) → H2(M ⊗M) induced by (4)
(see [Gir71, �IV.3.4.1]) maps each x to x ∪ x.

Proof. Let x ∈ H1(M) = Ext1(Z,M). Let

0→M → X
α→ Z→ 0 (7)

be the corresponding extension. Let X1 := α−1(1), which is a sheaf of torsors under M .
We will construct a commutative diagram

1 // M ⊗M // U M
π // M // 1

1 // M ⊗M // G
δ //

OO

��

G′ //

OO

��

1

0 // M ⊗M // X ⊗M ε // M // 0

(8)

of sheaves of groups, with exact rows. The �rst row is (4). The last row, obtained by
tensoring (7) with M , is exact since Z is �at. Let G be the sheaf of (u, t) ∈ U M ⊕ (X ⊗M)
such that π(u) = ε(t) in M . The vertical homomorphisms emanating from G are the two
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projections. Let δ : G→ U X send (u, t) to u−t. Then ker δ = M⊗M , embedded diagonally
in G. Let G′ = δ(G). Explicitly, if e is a section of X1, then G′ consists of sections of U X
of the form 1 +m− e⊗m+ t with m ∈ M and t ∈ M ⊗M . The vertical homomorphisms
emanating from G′ are induced by the map G→M sending (u, t) to π(u) = ε(t).
A calculation shows that 1 +X1 +M ⊗M is a right torsor X ′ under G′, corresponding to

some x′ ∈ H1(G′). Moreover, U X → X restricts to a torsor map X ′ → X1 compatible with
G′ →M , so H1(G′)→ H1(M) sends x′ to x.
By [Gir71, �IV.3.4.1.1], the commutativity of (8) shows that the image of x under the

connecting map H1(M)→ H2(M ⊗M) from the �rst row, equals the image of x′ under the
connecting map H1(G′) → H2(M ⊗M) from the second row, which equals the image of x
under the connecting homomorphism H1(M) → H2(M ⊗M) from the third row. This last
homomorphism is y 7→ x∪y, so it maps x to x∪x (cf. [Yon58], which explains this de�nition
of x ∪ y for extensions of modules over a ring). �

Example 2.6. If M = Z/2Z, then (4) is the sequence of constant sheaves

0→ Z/2Z→ Z/4Z→ Z/2Z→ 0,

which induces the Bockstein morphism H1(X,Z/2Z)→ H2(X,Z/2Z). So Theorem 2.5 recov-
ers the known result that for any topological space X, the self-cup-product H1(X,Z/2Z)→
H2(X,Z/2Z) is the Bockstein morphism. (See properties (5) and (7) of Steenrod squares in
Section 4.L of [Hat10].)

Remark 2.7. In group cohomology, if we represent a class in H1(M) by a cochain ζ, then
one can check that the coboundary of s ◦ ζ equals the di�erence of ζ ∪ ζ and the image of ζ
under the connecting map. A similar argument using �ech cochains gives an alternate proof
of the general case of Theorem 2.5, as we now explain.
By [Gir71, Théorème 0.2.6], we may replace C by a site with one having an equivalent topos

in order to assume that C has �nite �ber products, and in particular, a �nal object S. Then
the natural map Ȟ

1
(M)→ H1(M) is an isomorphism [Gir71, Remarque III.3.6.5(5)], so any

x ∈ H1(M) is represented by a 1-cocycle m for some covering (S ′i → S)i∈I . For simplicity, let
us assume that the covering consists of one morphism S ′ → S (the general case is similar).
Let S ′′ = S ′ ×S S ′, and S ′′′ = S ′ ×S S ′ ×S S ′. Let π23, π13, π12 : S ′′′ → S ′′ be the projections.
So m ∈ M(S ′′) satis�es π∗13m = π∗12m + π∗23m. Applying the section M → U M yields a 1-
cochain 1+m ∈ (U M)(S ′′). Its 2-coboundary in (M⊗M)(S ′′′) ⊆ (U M)(S ′′′) represents the
image of x under the connecting map H1(M)→ H2(M ⊗M) [Gir71, Corollaire IV.3.5.4(ii)].
On the other hand, the de�nition of the 2-coboundary given in [Gir71, Corollaire IV.3.5.4]
together with (3) shows that it is π∗12m⊗ π∗23m ∈ (M ⊗M)(S ′′′), whose class in H2(M ⊗M)
represents x ∪ x, by de�nition.

Let M,N ∈ AbC. Let β ∈ H0(Hom(M ⊗M,N)). (The bold face in Hom, Ext, etc.,
indicates that we mean the sheaf versions.) Using β, construct an exact sequence

0→ N → Uβ →M → 0 (9)

as the pushout of (4) by β : M ⊗M → N .
If β is symmetric, then Uβ is abelian, and we let εβ be the class of (9) in Ext1(M,N). If

β is symmetric and Ext1(M,N) = 0, then applying Hom(−, N) to (5) yields

0→ Hom(M,N)→ Hom((U M)ab, N)→ Hom(S2M,N)→ 0
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and a connecting homomorphism sends β ∈ H0(Hom(S2M,N)) to an element cβ ∈ H1(Hom(M,N)).

Corollary 2.8. Then the following maps H1(M)→ H2(N) are the same, when de�ned:

(a) The composition

H1(M)
∆−→ H1(M)× H1(M)

∪−→ H2(M ⊗M)
β−→ H2(N).

(b) The connecting homomorphism H1(M)→ H2(N) associated to (9).
(c) The pairing with εβ under the Yoneda product

Ext1(M,N)× H1(M)→ H2(N)

(if β is symmetric).
(d) The pairing with cβ under the evaluation cup product

H1(Hom(M,N))× H1(M)→ H2(N)

(if β is symmetric and Ext1(M,N) = 0).

Proof. Theorem 2.5 and functoriality implies the equality of (a) and (b). Standard homo-
logical algebra gives equality of (b), (c), and (d). �

2.4. Commutator pairings.

Proposition 2.9. Let 1→ A→ B
ρ→ C → 1 be an exact sequence in GpC, with A central in

B, and C abelian. Let q : H1(C)→ H2(A) be the connecting map. Given c1, c2 ∈ C, we can
lift them locally to b1, b2 and form their commutator [b1, b2] := b1b2b

−1
1 b−1

2 ∈ A; this induces a
homomorphism [ , ] : C⊗C → A. For γ1, γ2 ∈ H1(C), we have that q(γ1 +γ2)−q(γ1)−q(γ2)
equals the image of −γ1 ∪ γ2 under the homomorphism H2(C ⊗C)→ H2(A) induced by [ , ].

Proof. That the commutator induces a homomorphism is a well-known simple computation.
Pulling back 1 → A3 → B3 → C3 → 1 by the homomorphism C2 → C3 sending (c1, c2) to
(c1, c2, c1 + c2) and then pushing out by the homomorphism A3 → A sending (a1, a2, a3) to
a3 − a2 − a1 yields an exact sequence 1→ A→ Q→ C2 → 1. Here Q = B′/B′′ where B′ is
the subgroup sheaf of (b1, b2, b3) ∈ B3 satisfying ρ(b3) = ρ(b1)+ρ(b2), and B′′ is the subgroup
sheaf of B3 generated by sections (a1, a2, a3) ∈ A3 with a3 = a1 +a2. The surjection Q→ C2

admits a section σ : C2 → Q de�ned locally as follows: given (c1, c2) lifting to (b1, b2) ∈ B2,
send it to the image of (b1, b2, b1b2) in Q (this is independent of the choice of lifts, since we
work modulo B′′). A calculation shows that

σ((c′1, c
′
2)) σ((c1, c2) + (c′1, c

′
2))−1 σ((c1, c2)) = [c′1, c

−1
2 ] = −[c′1, c2] (10)

in A, and the three factors on the left may be rotated since the right hand side is central in
Q. Proposition 2.1 and (10) yield the middle vertical map in the commutative diagram

1 // C2 ⊗ C2 //

��

U (C2) //

��

C2 // 1

1 // A // Q // C2 // 1

(11)

with exact rows, and the left vertical map sends (c1, c2)⊗(c′1, c
′
2) to −[c′1, c2]. The connecting

map for the �rst row sends (γ1, γ2) ∈ H1(C2) to (γ1, γ2) ∪ (γ1, γ2) ∈ H2(C2 ⊗ C2), by
Theorem 2.5. The connecting map for the second row is a composition H1(C2)→ H1(C3)→
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H2(A3) → H2(A), so it maps (γ1, γ2) to q(γ1 + γ2) − q(γ1) − q(γ2). Finally, the left vertical
map sends (γ1, γ2)∪ (γ1, γ2) ∈ H2(C2 ⊗C2) to the image of −γ1 ∪ γ2 under the commutator
pairing H2(C ⊗C)→ H2(A). So compatibility of the connecting maps yields the result. �

Remark 2.10. Yu. Zarhin [Zar74] proved Proposition 2.9 in the special case of group coho-
mology, by an explicit calculation with cocycles. Using the approach of Remark 2.7, that
argument can be adapted to give a second proof of Proposition 2.9 in the general case.

3. Abelian schemes

3.1. The relative Picard functor. Let A → S be an abelian scheme. Let PicA/S be its
relative Picard functor on the big fppf site of S. Trivialization along the identity section
shows that PicA/S(T ) ' Pic(A ×S T )/PicT for each S-scheme T (see Proposition 4 on
page 204 of [BLR90]). We generally identify line sheaves with their classes in Pic. For an
S-scheme T and a ∈ A(T ), let

τa : AT → AT

x 7→ a+ x

be the translation-by-a morphism. Given a line sheaf L on A, the theorem of the square
implies that

φL : A→ PicA/S (12)

a 7→ τ ∗aL ⊗L −1

is a homomorphism. If we vary the base and vary L , we obtain a homomorphism of fppf-
sheaves

PicA/S → Hom(A,PicA/S)

L 7→ φL .

Its kernel is denoted Pic0
A/S. Using the fact that PicA/S is an algebraic space, and the fact

thatPic0
A/S is an open subfunctor ofPicA/S (which follows from [SGA 6, Exposé XIII, Théorème 4.7]),

one can show that Pic0
A/S is another abelian scheme Â over S [FC90, p. 3]. The image of

φL is contained in Â, so we may view φL as a homomorphism A→ Â. Moreover, φL equals
its dual homomorphism φ̂L . In fact, we have the following exact sequence of fppf-sheaves,

0→ Â→ PicA/S → Homself-dual(A, Â)→ 0, (13)

in which the surjectivity of the last map L 7→ φL is [DP94, Proposition 1.2].

Remark 3.1. Let k be a �eld, let ks be a separable closure contained in an algebraic closure
k, and let Gk = Gal(ks/k). For an abelian variety A over k, the group Homself-dual(A, Â)

of global sections of Homself-dual(A, Â) may be identi�ed with the Gk-invariant subgroup of
the Néron-Severi group NSAks . (For the case k = k see [Mum70], in particular Corollary 2
on page 178 and Theorem 2 on page 188 and the remark following it. The general case
follows because any homomorphism de�ned over k is in fact de�ned over ks, since it maps
the Zariski-dense set of prime-to-(char k) torsion points in A(ks) to points in Â(ks).)

For any homomorphism of abelian schemes λ : A→ B, let A[λ] := kerλ.
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3.2. Symmetric line sheaves. Multiplication by an integer n on A induces a pullback
homomorphism [n]∗ : PicA/S → PicA/S. Let PicSym

A/S be the kernel of [−1]∗− [1]∗ on PicA/S.

More concretely, because A→ S has a section, we have PicSym
A/S(T ) = PicSym(A×S T )/PicT

for each S-scheme T , where PicSym(A×S T ) is the group of isomorphism classes of symmetric
line sheaves on A ×S T . Since [−1]∗ acts as −1 on Â and as +1 on Homself-dual(A, Â), and
since multiplication-by-2 on Â is surjective, the snake lemma applied to [−1]∗ − [1]∗ acting
on (13) yields an exact sequence

0→ Â[2]→ PicSym
A/S → Homself-dual(A, Â)→ 0. (14)

3.3. The Weil pairing. We recall some facts and de�nitions that can be found in [Pol03,
�10.4], for example. (In that book, S is Spec k for an algebraically closed �eld k, but the
arguments there apply also to T -valued points of abelian schemes over an arbitrary base
scheme S, functorially in the S-scheme T , so by Yoneda's lemma they yield the desired
results over S.) Given an abelian scheme A over S, there is a Weil pairing

e2 : A[2]× Â[2]→ Gm. (15)

For any homomorphism λ : A→ Â, de�ne eλ2 : A[2]× A[2]→ Gm by eλ2(x, y) = e2(x, λy). If
L ∈ PicA/S(S), let eL

2 = eφL
2 ; this is an alternating bilinear pairing, and hence it is also

symmetric.

3.4. Quadratic re�nements of the Weil pairing.

Proposition 3.2. There is a (not necessarily bilinear) pairing of fppf sheaves

q : A[2]×PicSym
A/S → µ2 ⊂ Gm

such that:

(a) The pairing is additive in the second argument: q(x,L ⊗L ′) = q(x,L )q(x,L ′).
(b) The restriction of q to a pairing

q : A[2]× Â[2]→ Gm

is the Weil pairing e2. In particular, this restriction is bilinear.
(c) In general, q(x+ y,L ) = q(x,L )q(y,L )eL

2 (x, y).

Proof. This is essentially proved in [Pol03, �13.1]. The book [Pol03] assumes that S = Spec k
for an algebraically closed �eld k, but again (as in Section 3.3) the arguments there apply
to scheme-valued points in the general case, so Yoneda's lemma completes the proof. �

We can summarize Proposition 3.2 in the commutative diagram

0 // Â[2] //

e2 o
��

PicSym
A/S

//

q

��

Homself-dual(A, Â) //

e•2
��

0

0 // Hom(A[2],Gm) // Hom((U A[2])ab ⊗ F2,Gm) // Hom(
∧2

A[2],Gm) // 0,

(16)
which we now explain. The top row is (14). The bottom row is obtained by applying
Hom(−,Gm) to (6) forM = A[2], and using Ext1(A[2],Gm) = 0. The vertical maps are the
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map y 7→ e2(−, y), the map sending L to the homomorphism (U A[2])ab ⊗ F2 → Gm corre-
sponding to q(−,L ) (see Corollary 2.2), and the map λ 7→ eλ2 , respectively. Commutativity
of the two squares are given by (b) and (c) in Proposition 3.2, respectively.
The top row of (16) gives a homomorphism

Homself-dual(A, Â)→ H1(Â[2])

λ 7→ cλ. (17)

By de�nition, cλ may be interpreted geometrically as the class of the torsor under Â[2] that
parametrizes symmetric line sheaves L with φL = λ (cf. [Pol03, �13.5]). Thus cλ is the
obstruction to �nding L ∈ PicSym A with φL = λ.

Remark 3.3. The map H1(Â[2])→ H1(Â) sends cλ to the element called cλ in [PS99, �4]. If
k is a global �eld and S = Spec k, then this and [PS99, Corollary 2] imply that our cλ lies
in the 2-Selmer group of Â.

Theorem 3.4. For any λ ∈ Homself-dual(A, Â) and any x ∈ H1(A[2]), we have

x ∪
eλ2

x = x ∪
e2
cλ (18)

in H2(Gm), where the cup products are induced by the pairings underneath.

Proof. The rightmost vertical map in (16) maps λ to eλ2 . These are mapped by the horizontal
connecting homomorphisms to cλ ∈ H1(Â[2]) and ceλ2 ∈ H1(Hom(A[2],Gm)), which are
identi�ed by the leftmost vertical map e2. Apply Corollary 2.8 with M = A[2], N = Gm,
and β = eλ2 , using Ext1(A[2],Gm) = 0: map (a) gives the left hand side of (18) and map (d)
gives the right hand side of (18) (written backwards) because of the identi�cation of cλ with
ceλ via e2. �

3.5. Criteria for triviality of the obstruction. The following lemma serves only to prove
Proposition 3.6(a) below.

Lemma 3.5. Let k be a �eld, and let G be a �nite cyclic group.

(a) Let A be a �nite-dimensional kG-module. Let A∗ := Homk(A, k) be the dual representa-
tion, and let AG be the subspace of G-invariant vectors. Then dimAG = dim(A∗)G.

(b) If 0 → A → B → C → 0 is an exact sequence of �nite-dimensional kG-modules, and
the surjection B∗ → A∗ admits a section as G-sets, then the connecting homomorphism
CG → H1(G,A) is 0.

Proof.

(a) Let g be a generator of G. If M is a matrix representing the action of g on A, the
action of g−1 on A∗ is given by the transpose M t. Then dimAG = dim ker(M − 1) =
dim ker(M t − 1) = dim(A∗)G, where the middle equality uses the fact that a matrix has
the same rank as its transpose.

(b) The section gives the 0 at the right in

0→ (C∗)G → (B∗)G → (A∗)G → 0.
8



Taking dimensions and applying (a) yields dimBG = dimAG + dimCG. This together
with the exactness of

0→ AG → BG → CG → H1(G,A)

implies that the connecting homomorphism CG → H1(G,A) is 0. �

Proposition 3.6. Let λ : A → Â be a self-dual homomorphism of abelian varieties over a
�eld k. Suppose that at least one of the following hypotheses holds:

(a) char k 6= 2 and the image G of Gk → AutA[2](ks) is cyclic.
(b) k is a perfect �eld of characteristic 2.
(c) k is R or C.
(d) k is a nonarchimedean local �eld of residue characteristic not 2, and A has good reduction

(i.e., extends to an abelian scheme over the valuation ring of k).
(e) k is a �nite �eld.
(f) λ(A[2]) is an étale group scheme of rank at most 4.

Then cλ = 0.

Proof.

(a) Apply Lemma 3.5(b) to the bottom row of (16), viewed as a sequence of F2G-modules;
it applies since the dual sequence is (6) for M := A[2], and the section s of Section 2.1
yields a G-set section A[2]→ (U A[2])ab ⊗ F2. Thus the top horizontal map in

H0(G,Hom(
∧2

A[2],Gm)) // H1(G, Â[2])

��

H0(Gk,Hom(
∧2

A[2],Gm))
δ // H1(Gk, Â[2])

is 0. Thus δ = 0. Now (16) shows that cλ = δ(eλ2) = 0.
(b) Let M := A[2], and let M∨ := Hom(M,Gm) = Â[2] be its Cartier dual. The bottom

row of (16) yields an exact sequence

H0(Hom((U M)ab ⊗ F2,Gm))→ H0(Hom(
∧2

M,Gm))
δ→ H1(M∨). (19)

It su�ces to prove that δ = 0, or that the �rst map is surjective. Equivalently, by the
universal property of (U M)ab ⊗ F2, we need each alternating pairing b : M ×M → µ2

to be q(x+ y)− q(x)− q(y) for some quadratic map q : M → µ2.
In fact, we will prove this for every �nite commutative group scheme M over k with

2M = 0. Since k is perfect, there is a canonical decompositionM = Mel⊕Mle⊕Mll into
étale-local, local-étale, and local-local subgroup schemes. ThenM∨ = (Mle)

∨⊕ (Mel)
∨⊕

(Mll)
∨. The homomorphismM →M∨ induced by the alternating pairing must mapMel

to (Mle)
∨, and Mle to (Mel)

∨, and Mll to (Mll)
∨. In particular, b = be + bll where be and

bll are alternating pairings on Mel⊕Mle and Mll, respectively. The pairing be necessarily
has the form

(mel,mle), (m
′
el,m

′
le) 7→ B(mel,m

′
le)B(m′el,mle)

for some bilinear pairing B : Mel ×Mle → µ2. Then be comes from the quadratic map
(mel,mle) 7→ B(mel,mle).

9



It remains to consider the case M = Mll. Then M∨(ks) = 0. By [Mil06, Proposi-
tion III.6.1 and the paragraph preceding it], H1(M∨) = H1(Gk,M

∨(ks)) = H1(Gk, 0) = 0,
so δ = 0.

(c) Follows from (a).
(d) The assumptions imply k(A[2]) is unrami�ed over k (see [ST68, Theorem 1], for example),

so (a) applies.
(e) Follows from (a) and (b).

(f) By de�nition of eλ2 , the right kernel of e
λ
2 contains the kernel K of A[2]

λ
� λ(A[2]). Since

eλ2 is alternating, the left kernel of eλ2 contains K too. Thus eλ2 induces a nondegenerate
alternating pairing

e′ : λ(A[2])× λ(A[2])→ Gm.

In particular, the étale group scheme λ(A[2]) has square order, which by assumption is
1 or 4. Let

q′ : λ(A[2])→ Gm

be the morphism taking 0 to 1 and all other ks-points of λ(A[2]) to −1. Then q′ is a
quadratic form satisfying the identity q′(x+ y)− q′(x)− q′(y) = e′(x, y). Now q := q′ ◦ λ
is a quadratic form on A[2] re�ning eλ2 , so cλ = 0. �

3.6. Formula for the obstruction in the case of a line sheaf on a torsor. Let P be
a torsor under A. For a ∈ A(S), let τa : P → P be the translation. Also, for x ∈ P (S),
let τx : A → P be the torsor action. The maps τ ∗x for local choices of sections x induce
a well-de�ned isomorphism Pic0

P/S ' Pic0
A/S since any τ ∗a is the identity on Pic0

A/S. Let
L ∈ PicP/S(S). Generalizing (12), we de�ne

φL : A→ Pic0
P/S ' Pic0

A/S

a 7→ τ ∗aL ⊗L −1.

We may view φL as an element of Homself-dual(A, Â). If x ∈ P (S), then φτ∗xL = φL .

Proposition 3.7. Let P be a torsor under A, equipped with an order-2 automorphism ι : P →
P compatible with [−1] : A → A. The �xed locus P ι of ι is a torsor under A[2]; let c ∈
H1(A[2]) be its class. Let L ∈ PicP/S(S) be such that ι∗L ' L , and let λ = φL : A→ Â.

Then cλ = λ(c) in H1(Â[2]).

Proof. If x is a section of P ι, then [−1]∗τ ∗xL ' τ ∗x ι
∗L ' τ ∗xL , so we obtain a map

γ : P ι → PicSym
A/S

x→ τ ∗xL .

For sections a ∈ A[2] and x ∈ P ι, we have

γ(a+ x) = τ ∗a+xL = τ ∗a (τ ∗xL ) = φτ∗xL (a)⊗ τ ∗xL = λ(a)⊗ γ(x)

in PicSym
A/S . In other words, γ is a torsor map (with respect to λ : A[2] → Â[2]) from the

torsor P ι (under A[2]) to the torsor (under Â[2]) of line sheaves in PicSym
A/S with Néron-Severi

class λ. Taking classes of these torsors yields λ(c) = cλ. �
10



3.7. Application to Jacobians. Let X → S be a family of genus-g curves, by which
we mean a smooth proper morphism whose geometric �bers are integral curves of genus g.
(If g 6= 1, then the relative canonical sheaf or its inverse makes X → S projective: see
Remark 2 on page 252 of [BLR90].) By the statement and proof of Proposition 4 on page
260 of [BLR90],

(1) There is a decomposition of functors PicX/S '
∐

n∈Z PicnX/S.
(2) The subfunctor Pic0

X/S is (represented by) a projective abelian scheme A over S.
(3) The subfunctor Picg−1

X/S is (represented by) a smooth projective scheme P over S, a
torsor under A. (If g = 1, then P = A.)

(4) The scheme-theoretic image of the �summing� map Xg−1 → P is an e�ective relative
Cartier divisor on P (take this to be empty if g = 0). Let Θ be the associated line
sheaf on P .

(5) The homomorphism λ := φΘ : A→ Â is an isomorphism.
(6) De�ne ι : P → P by F 7→ ωX/S⊗F−1; then ι∗Θ ' Θ. (To prove this, one can reduce

to the case where S is a moduli scheme of curves with level structure, and then to
the case where S is the spectrum of a �eld, in which case it is a consequence of the
Riemann-Roch theorem.)

De�nition 3.8. The theta characteristic torsor T is the closed subscheme of P = Picg−1
X/S

parametrizing classes whose square is the canonical class ωX/S ∈ Pic2g−2
X/S (S).

Equivalently, T = P ι. Let cT ∈ H1(A[2]) be the class of this torsor.

Theorem 3.9. Let X → S be a family of genus-g curves, and let A, λ, cT be as above. Then
cλ = λ(cT ) in H1(Â[2]), and for any x ∈ H1(A[2]) we have

x ∪
eλ2

x = x ∪
eλ2

cT (20)

in H2(Gm).

Proof. Proposition 3.7 with P = Picg−1
X/S and L = Θ yields cλ = λ(cT ). So (18) in Theo-

rem 3.4 becomes (20). �

Remark 3.10. If S = Spec k for a �eld k of characteristic not 2, and the action of Gk on
A[2](ks) factors through a cyclic quotient, then Proposition 3.6(a) gives cλ = 0, so cT = 0,
recovering the result of M. Atiyah [Ati71, �5] that under these hypotheses X has a rational
theta characteristic.
Similarly, if S = Spec k for a perfect �eld k of characteristic 2, then Proposition 3.6(b)

gives cλ = 0, so cT = 0. In fact, the proof produces a canonical k-point of T . This generalizes
an observation of Mumford [Mum71, p. 191] that a curve over an algebraically closed �eld
of characteristic 2 has a canonical theta characteristic.
Additional criteria for the existence of a rational theta characteristic are given in [Sha13].

3.8. Hyperelliptic Jacobians.

Proposition 3.11. If E is an elliptic curve, then x ∪
eλ2

x = 0 for all x ∈ H1(E[2]). The same

holds for the Jacobian of any hyperelliptic curve X if it has a rational Weierstrass point or
its genus is odd. In particular, this applies to y2 = f(x) with f separable of degree n 6≡ 2
(mod 4) over a �eld of characteristic not 2.

11



Proof. For an elliptic curve E, the trivial line sheaf OE is a theta characteristic de�ned over
k. Now suppose that X is a hyperelliptic curve of genus g, so it is a degree-2 cover of a
genus-0 curve Y . The class of a point in Y (ks) pulls back to a k-point of Pic2

X/k, and if g is
odd, multiplying by (g − 1)/2 gives a k-point of T . On the other hand, if X has a rational
Weierstrass point P , then O((g−1)P ) is a theta characteristic de�ned over k. So T is trivial
in all these cases. Now apply Theorem 3.9. �

Example 3.12. Suppose thatX is a genus 2 curve, the smooth projective model of y2 = f(x)
where f is a degree-6 separable polynomial over a �eld k of characteristic not 2. Let ∆ be
the set of zeros of f in ks. As explained in [Mum71, p. 191], the group A[2] and its torsor T
can be understood explicitly in terms of ∆. Namely, for m ∈ Z/2Z, let Wm be the quotient
of the sum-m part of the permutation module F∆

2 ' F2g+2
2 by the diagonal addition action of

F2. Then the Gk-module A[2] may be identi�ed with W0, and its torsor T may be identi�ed
with W1. Using this, one can show:
(a) For f(x) = (x2 + 1)(x2 − 3)(x2 + 3) over Q3, we have cT 6= 0.
(b) For f(x) = x6 + x+ 6 over Q, we have

0 6= cT ∈X1(Q, A[2]) := ker

(
H1(Q, A[2])→

∏
p≤∞

H1(Qp, A[2])

)
.

(Proof: The discriminant of f is −`, where ` is the prime 362793931. For p /∈ {2, `},
the element cT maps to 0 in H1(Qp, A[2]) by Proposition 3.6(c,d), and f(x) has a zero
in each of Q2 and Q`, so the same is true at those places. On the other hand, the Galois
group of f over Q is S6, so cT 6= 0.)
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