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1. Introduction

The main result of this paper is that, in a precise sense, a positive proportion of all
hypersurfaces in Pn of degree d defined over Q are everywhere locally solvable, provided
that n, d ≥ 2 and (n, d) 6= (2, 2). This result is motivated by a conjecture discussed in detail
below about the proportion of hypersurfaces as above that are globally solvable, i.e., have a
rational point.

2. A conjecture

Fix n, d ≥ 2. Let Z[x0, . . . , xn]d denote the set of homogeneous polynomials in Z[x0, . . . , xn]
of degree d. Let m =

(
n+d
d

)
denote the number of monomials in x0, . . . , xn of degree d. Define

the height h(f) of f ∈ Z[x0, . . . , xn]d as the maximum of the absolute values of the coefficients
of f . Let MQ be the set of places of Q, and let Qv be the completion of Q at the place v.
Define

Ntot(H) = #{ f ∈ Z[x0, . . . , xn]d : h(f) ≤ H } = (2bHc+ 1)m ,

N(H) = #{ f ∈ Z[x0, . . . , xn]d : h(f) ≤ H, and ∃x ∈ Zn+1 \ {0} with f(x) = 0 },
Nloc(H) = #{ f ∈ Z[x0, . . . , xn]d : h(f) ≤ H, and ∀v ∈MQ,∃x ∈ Qn+1

v \ {0} with f(x) = 0 }.

The limit of N(H)/Ntot(H) as H →∞, if it exists, will be called the proportion of globally
solvable hypersurfaces. Similarly, the limit of Nloc(H)/Ntot(H) will be called the proportion
of locally solvable hypersurfaces.

Remark 2.1.

(1) Restricting the set of f ’s to those such that f = 0 defines a smooth geometrically
integral hypersurface in Pn does not change the values of these limits, since the f ’s
that violate these conditions correspond to integer points on a Zariski closed subset
of positive codimension in some affine space.

(2) A standard argument involving Möbius inversion shows that the values of the limits
do not change if in all our counts we restrict to f ’s whose coefficients are coprime.
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(3) We chose to work over Q to keep statements and proofs simple. In Section 4, we
sketch the changes that would be needed to generalize the results to other number
fields.

Conjecture 2.2.

(i) If d > n+ 1, then N(H)/Ntot(H)→ 0.
(ii) If d < n + 1 and (d, n) 6= (2, 2), then N(H)/Ntot(H) → c for some real c > 0

(depending on d and n). Moreover, c =
∏

v∈MQ
cv, where cv is the proportion of

polynomials in Z[x0, . . . , xn]d with a nontrivial zero over Qv.

In the case d = n + 1, we do not know what to expect. As a special case, if you write
down a plane cubic, how likely is it to have a rational point?

Remark 2.3. Each local proportion cv exists, since if we define Zv = {x ∈ Qv : |x|v ≤ 1 }
and normalize Haar measure (Lebesgue measure if v = ∞) on the space Zm

v parametrizing
homogeneous polynomials of degree d in x0, . . . , xn with coefficients in Zv, then cv is the
measure of the v-adically closed subset of Zm

v corresponding to homogeneous polynomials
with a nontrivial zero over Qv.

3. Motivation and evidence

To motivate the first part of the conjecture, consider the set of f ∈ Z[x0, . . . , xn]d of
height at most H having a given zero a ∈ Zn+1 \ {0} with coprime coordinates. This forms
a hyperplane in the parameter space Zm, and contains c(a)Hm−1/φ(a) + O(Hm−2) integer
points of height at most H, where c(a) is the (m− 1)-dimensional volume of the part of the
hyperplane inside [−1, 1]m, and φ(a) is the covolume of the lattice of integer points lying on
the hyperplane. Lemma 3.1 below shows that φ(a) equals the norm of the vector b formed by
the monomials of degree d in the coordinates of a. If we ignore the error term, then we get
that N(H) ≤ Hm−1∑

a c(a)/φ(a), where a ranges over Zn+1\{0}. Now c(a) is bounded, and
it is easy to show that

∑
1/φ(a) converges precisely when d > n+1, so our heuristic predicts

N(H) = O(Hm−1). Since Ntot(H) ∼ (2H)m, this leads to the first part of the conjecture.

Lemma 3.1. Let b be a vector in Rm with coprime integer coordinates and norm |b| =
√
M .

The covolume of the lattice Λ = {x ∈ Zm : 〈x, b〉 = 0 } is
√
M .

Proof. The lattice Γ = {x ∈ Zm : 〈x, b〉 ≡ 0 (mod M) } is the inverse image of MZ under
the surjection Zm → Z mapping x to 〈x, b〉, so Γ has covolume M in Rm. On the other

hand, Γ is the orthogonal direct sum of Λ and Zb, so the covolume of Λ is M/|b| =
√
M . �

Our next proposition will be conditional on cases of the following very general conjecture.

Conjecture 3.2 (Colliot-Thélène). Let X be a smooth, proper, geometrically integral variety
over a number field k. Suppose that X is (geometrically) rationally connected. Then the
Brauer-Manin obstruction to the Hasse principle for X is the only obstruction.

Remark 3.3. Conjecture 3.2 has a long history. In the special case of rational surfaces, it
appeared as Question (k1) on page 233 of [CTS80] (a paper later developed as [CTS87]),
based on evidence eventually published in the papers [CTCS80] and [CTS82]. Theoretical
evidence and some numerical evidence have been gathered since then, in the case of rational
surfaces. The conjecture was generalized to (geometrically) unirational and Fano varieties
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on the first page of [CTSD94]. The full version of Conjecture 3.2 was raised as a question in
lectures by Colliot-Thélène at the Institut Henri Poincaré in Spring 1999, and was repeated
in print on page 3 of [CT03].

Proposition 3.4. Assume Conjecture 3.2. If 2 ≤ d ≤ n, then (Nloc(H)−N(H))/Ntot(H)→
0 as H →∞.

Proof. By Remark 2.1, we may restrict attention to f ’s for which f = 0 defines a smooth,
geometrically integral hypersurface X in Pn. The assumption d ≤ n implies that X is Fano,
hence rationally connected (see Theorem V.2.13 of [Kol96]). If n ≥ 4, then by Corollary A.2
there is no Brauer-Manin obstruction, so Conjecture 3.2 gives the Hasse principle, as desired.
If d = 2, then the Hasse principle holds unconditionally.

It remains to consider the case of cubic surfaces (d = n = 3). Here the Hasse principle
does not always hold. But by [SD93] there is no Brauer-Manin obstruction whenever the
action of Gal(Q/Q) on the 27 lines is as large as possible (namely, the Weyl group W (E6)).
The Galois action on the 27 lines on the generic cubic surface over the purely transcendental
field C(a1, . . . , a20) is W (E6) (this follows from [Tod35]), so the same is true for the generic
cubic surface over Q(a1, . . . , a20), and it then follows by Hilbert irreducibility (see §9.2 and
§13 of [Ser97]) that the same holds for a density 1 set of cubic surfaces over Q. Such cubic
surfaces, under Conjecture 3.2, satisfy the Hasse principle as desired. �

Remark 3.5. For n large compared to d, the conclusion of Proposition 3.4 can be proved
unconditionally by using the circle method.

Part (ii) of Conjecture 2.2 would follow from the conclusion of Proposition 3.4 and the
following result.

Theorem 3.6. If n, d ≥ 2 and (n, d) 6= (2, 2) then Nloc(H)/Ntot(H) → c for some c > 0.
Moreover, c =

∏
cv where cv is as in Conjecture 2.2.

Proof. By Hensel’s Lemma, a hypersurface f = 0 will have a point in Qp if its reduction
modulo p has a smooth point in Fp. If f is absolutely irreducible modulo p and p is sufficiently
large (in terms of n and d), then the existence of a smooth point in Fp is ensured by the
Lang-Weil estimate [LW54]. Lemmas 20 and 21 of [PS99a] will now imply the theorem,
provided that we can show that the space of reducible polynomials is of codimension at least
2 in the space of all polynomials. The lower bound on the codimension follows from the
inequalities ((

n+ r

n

)
− 1

)
+

((
n+ (d− r)

n

)
− 1

)
≤
((

n+ d

n

)
− 1

)
− 2

for 0 < r < d, which hold provided that n, d ≥ 2 and (n, d) 6= (2, 2). (Here r and d − r
represent degrees in a potential factorization.) See also [PS99b] for an exposition of the
application of the density lemmas from [PS99a]. �

Remark 3.7. It follows from Theorem 3.6 and part (i) of Conjecture 2.2 that for each pair
(d, n) with n ≥ 2 and d > n + 1, there are hypersurfaces of degree d in Pn for which the
Hasse principle fails. There does not seem to be an unconditional proof of this statement
yet, for any such (d, n) with n ≥ 3. For results conditional on various conjectures see [SW95]
and [Poo01].
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4. Generalization to number fields

Let k be a number field. A hypersurface can be described by its vector of coefficients,
viewed as a point in Pm−1(k) where m =

(
n+d
d

)
as before. Instead of counting polynomials

with bounded coefficients, we let Ntot(H) be the number of hypersurfaces whose correspond-
ing point in Pm−1(k) has (exponential) Weil height ≤ H. There is no longer an exact formula
for Ntot(H), but its asymptotics are given by Schanuel’s Theorem (see [Ser97, §2.5] for an
exposition). We define N(H) and Nloc(H) in a similar way. In the special case k = Q,
these definitions do not agree with the earlier ones (since we are now counting hypersurfaces
instead of polynomials), but the ratios of interest have the same limit, by Remark 2.1(2).

The statement of Conjecture 2.2 remains unchanged, except that the cv will now be de-
fined by counting hypersurfaces, and the constant c will depend on k as well as d and n.
The statement and proof of Proposition 3.4 remain valid over number fields. Finally, the
statement and proof of Theorem 3.6 also generalize to number fields in a straightforward
way, although the proof is somewhat tedious, since it requires generalizing the statements
and proofs Lemmas 20 and 21 of [PS99a].

Appendix A. The Brauer-Manin obstruction for complete intersections of
dimension ≥ 3 (by Jean-Louis Colliot-Thélène)

It seems that a full proof of the following proposition has never before appeared in print,
though a sketch can be found in §2 of [SW95]. Let Hi below denote étale cohomology (or
profinite group cohomology) unless otherwise specified, and let BrX denote the cohomolog-
ical Brauer group H2(X,Gm) of a scheme X.

Proposition A.1. Let k be a field of characteristic 0. Let X be a smooth complete inter-
section in Pn

k satisfying dimX ≥ 3. Then the natural map Br k → BrX is an isomorphism.

Proof. Let k denote an algebraic closure of k, let G = Gal(k/k), and let X = X ×k k. Let
p : X → Spec k denote the structure map. In the Leray spectral sequence

Ep,q
2 := Hp(k,Rqp∗Gm)) =⇒ Ep+q := Hp+q(X,Gm),

the étale sheaf Rqp∗Gm on Spec k corresponds to the G-module Hq(X,Gm). A smooth com-
plete intersection of positive dimension is geometrically connected [Har77, Exercise III.5.5(b)],

so H0(X,Gm) = k
×

, and [BLR90, p. 203] shows that H1(X,Gm) = H1
Zariski(X,Gm) =: PicX.

Thus the exact sequence

E1,0
2 → E1 → E0,1

2 → E2,0
2 → ker

(
E2 → E0,2

2

)
→ E1,1

2

from the spectral sequence becomes

0→ PicX →
(
PicX

)G → Br k → ker
(
BrX → BrX

)
→ H1(k,PicX).

It remains to prove that PicX →
(
PicX

)G
is an isomorphism, that H1(k,PicX) = 0, and

that BrX = 0.
For smooth complete intersections of dimension ≥ 3 in Pn, M. Noether proved that the

restriction map PicPn → PicX is an isomorphism (see Corollary 3.3 on p. 180 of [Har70]
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for a modern proof). The commutative square

PicPn //

*
��

PicX� _

��

PicPn ∼ // PicX

shows that the injections

PicX ↪→
(
PicX

)G
↪→ PicX

are isomorphisms, and that H1(k,PicX) = H1(G,Z) = Homconts(G,Z) = 0.
Finally we need to show that if Y is a complete intersection of dimension ≥ 3 in Pn over

an algebraically closed field L of characteristic 0, then BrY = 0. For each prime `, the
Kummer sequence yields the exact rows of the diagram

0 −−−→ Pic(Pn)/` −−−→ H2(Pn,Z/`Z)y y
0 −−−→ Pic(Y )/` −−−→ H2(Y,Z/`Z) −−−→ (BrY )[`] −−−→ 0,

where for any abelian group A, the notation A/` denotes A/`A, and A[`] is the kernel of
multiplication-by-` on A. The top horizontal injection Pic(Pn)/`→ H2(Pn,Z/`Z) is an iso-
morphism since both groups are of rank 1 over Z/`Z. The right vertical map H2(Pn,Z/`Z)→
H2(Y,Z/`Z) is an isomorphism by a version of the Weak Lefschetz Theorem: see Corol-
lary B.6 in Appendix B of this paper. The diagram then implies that (BrY )[`] = 0. This
holds for all `, and BrY is torsion [Gro68, Proposition 1.4], so BrY = 0. �

Corollary A.2. If in addition, k is a number field, then the Brauer-Manin obstruction for
X is vacuous.

Proof. This follows from Proposition A.1, since the elements of BrX coming from Br k do
not give any obstruction to rational points. �

Appendix B. Applications of the Weak Lefschetz Theorem (by Nicholas
M. Katz)

We work over an algebraically closed field k. Take as ambient space any separated V/k of
finite type which is smooth, and everywhere of dimension N (i.e., each connected component
of V has the same dimension N). In V , we are given a certain number r ≥ 1 of closed
subschemes Hi, each of which has the property that its complement V −Hi is affine. Define
the closed subscheme X of V to be the intersection of the Hi. Its complement V − X is
covered by r affine open sets, each of dimension (at most) N , namely the V −Hi.

Lemma B.1. The scheme V −X has cohomological dimension at most N + r− 1, i.e., for
any constructible torsion sheaf F on V −X, we have Hi(V −X,F) = 0 for i ≥ N + r.

This is a special case of

Lemma B.2. If a separated k-scheme W/k of finite type is the union of r affine opens Ui,
each of dimension at most N , then W has cohomological dimension at most N + r − 1.
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Proof. For r = 1, this is just the Lefschetz affine theorem [SGA4 III, Exposé XIV, Corol-
laire 3.2]. For general r, one proceeds by induction on r, writing W as the union of the two
open sets A := Ur and B :=

⋃
i<r Ui. Then A ∩ B is the union of r − 1 affines, and we use

the long exact sequence

. . .→ Hi(A ∪B,F)→ Hi(A,F)⊕ Hi(B,F)→ Hi(A ∩B,F)→ . . .

to get the assertion. �

Suppose now that ` is a prime number invertible in the field k, and that F is a Z/`Z sheaf
on V whose restriction to V −X is lisse, for instance Z/`Z itself. Because V −X is smooth,
everywhere of dimension N , the Poincare dual of Lemma B.1 is the vanishing of compact
cohomology up through dimension N − r:

Lemma B.3. For any integer i ≤ N − r, we have Hi
c(V −X,F) = 0.

Now use the excision sequence (this is why we need F to be a sheaf on V ) in compact
cohomology

. . .→ Hi
c(V −X,F)→ Hi

c(V,F)→ Hi
c(X,F)→ . . .

to conclude

Theorem B.4. For any integer i < N − r, the restriction map

Hi
c(V,F)→ Hi

c(X,F)

is an isomorphism. For i = N − r, this map is injective.

Corollary B.5. If V/k is in addition assumed proper, then we have the same result for
non-compact cohomology: For any integer i < N − r, the restriction map

Hi(V,F)→ Hi(X,F)

is an isomorphism. For i = N − r, this map is injective.

As a special case of Corollary B.5, we get

Corollary B.6. Suppose X is a closed subscheme of projective space PN which is defined
by the vanishing of N − d homogeneous forms. Then for i < d, the restriction map

Hi(PN ,Z/`Z)→ Hi(X,Z/`Z)

is an isomorphism. For i=d, this map is injective.

Remark B.7. In Corollary B.6, it is enough if X is defined set-theoretically by the vanishing
of N − d homogeneous forms, since X and Xred have the same étale cohomology.
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