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ABSTRACT

Let E be an elliptic curve over a field k. Let R := End E. There is a functor .#ompg(—, E)
from the category of finitely presented torsion-free left R-modules to the category of
abelian varieties isogenous to a power of E, and a functor Hom(—, F) in the opposite
direction. We prove necessary and sufficient conditions on E for these functors to be
equivalences of categories. We also prove a partial generalization in which F is replaced
by a suitable higher-dimensional abelian variety over .

1. Introduction

Let E be an elliptic curve over a field k. Let R := End E. We would like to classify all abelian
varieties isogenous to a power of E. There is a functor #omp(—, E) that takes as input a finitely
presented (f.p.) left R-module M and produces a commutative group scheme. (This functor
appears in articles by Giraud [Gir68) §1] and Waterhouse [Wat69, Appendix], and is attributed
by the former to Serre and Tate; we will give a self-contained exposition in Section ) We will
prove that when restricted to torsion-free modules, it becomes a fully faithful functor of additive
categories

HAomp(—, E): {f.p. torsion-free left R-modules}°PP (1)

— {abelian varieties isogenous to a power of E'}.
In the other direction, we have a functor

Hom(—, E): {abelian varieties isogenous to a power of E'} (2)
— {f.p. torsion-free left R-modules}°"?

that provides the inverse on the essential image of . These are useful because the modules can
be classified for each possible R.

We find necessary and sufficient conditions on F for and ([2) to be equivalences of categories.
For simplicity, in this introduction we state the answer only for elliptic curves over finite fields.

THEOREM 1.1. Let E be an elliptic curve over a finite field k = F,. Let R:= End E. Let m € R
be the g-power Frobenius endomorphism. Then and are equivalences of categories if and
only if one of the following holds:
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— F is ordinary and Z[r| = R;
— FE is supersingular, k =T, and Z[r| = R; or

— E is supersingular, k = F,2, and R is of rank 4 over Z.

Theorem is close to many results in the literature. Waterhouse in [Wat69] proves many results
relating the isogeny class of an elliptic curve F to the ideal classes of End E, and he also considers
such issues when E is replaced by an abelian variety. An analogue of Theorem with the
functors .#0m and Hom(—, E') replaced by similarly-defined functors ® and Hom(FE, —) is proved
in Serre’s appendix to |[Lau02] in the case where Z[r| is the maximal order in an imaginary
quadratic field (in this case, R = Z[r] necessarily). Other cases are handled in [SM74], [Lan75],
[Sch92], and especially Kani’s work [Kanl1]; although these works do not define the functor #Zom,
they too classify all abelian varieties isogenous to a power of F in the case where E is ordinary
and rk R = 2 (see Theorems 1, 2, and 3 of [Kanll]). In fact, at one point (in the proof of our
Theorem [4.8]fa))), we make use of one of the easier results of [KanI1].

The category of all ordinary abelian varieties over a finite field is equivalent to the category of
Deligne modules [Del69], which are f.p. torsion-free Z-modules provided with an endomorphism
that corresponds to the Frobenius. The ordinary case of Theorem could be deduced from
Deligne’s equivalence. For a prime ground field Fp,, Yu [Yul2, Theorem 3.1] and (in a stronger
form) Centeleghe and Stix [CS15] extended Deligne’s equivalence to a category including most
non-ordinary abelian varieties. For suitable abelian varieties B over IF,, this leads to a classification
of the quotients of powers of B; in particular, when B is simple, these quotients are the abelian
varieties isogenous to a power of B. Centeleghe and Stix did not mention the functor #omg(—, B),
but in Section |8 we prove that a functor they used is isomorphic to #Zomp(—, B). Combining
their work with ours, we can rewrite their classification in terms of the functor J#omp(—, B). In
particular, this yields a second proof of Theorem in the case where the ground field £ is IF,,.
Our first proof, although only for elliptic curves, applies also to non-ordinary elliptic curves over
[F,» for n > 1 and to elliptic curves over infinite fields (see Theorems and for example). It
includes the quaternionic endomorphism case, and also determines exactly when the functors
above give an equivalence.

Let us now outline the rest of the paper. Section 2] introduces notation to be used. If R is the
endomorphism ring of an elliptic curve, then R is Z, an imaginary quadratic order, or a maximal
quaternionic order; Section [3| reviews the classification of f.p. torsion-free left R-modules in each
case, and in a little more generality. Section [4] introduces the two functors above and proves their
basic properties; in particular it is shown that applying s#ompr(—, E) to torsion-free modules
produces abelian varieties isogenous to a power of E. Moreover, Section relates duality of
modules to duality of abelian varieties. Section [5| proves that when F is a supersingular elliptic
curve over [F» with rk End ' = 4, the functors and are equivalences of categories, so that
there is a clean classification of abelian varieties isogenous to a power of E. In preparation for
the other cases, Section |§| defines the notion of a kernel subgroup, and shows that the functors
and are equivalences of categories if and only if every finite subgroup scheme of every power
of E is a kernel subgroup. All this is combined in Section [7, which gives a complete answer to
the question of when and are equivalences of categories. Section |8 contains the argument
involving the work of Centeleghe and Stix for certain abelian varieties of higher dimension over
Fp.
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2. Notation

Let R be a noetherian integral domain. Let K = Frac R. The torsion submodule of an R-module
M is

Miors :={m € M : rm = 0 for some nonzero r € R}.
Call M torsion-free if Myos = 0. Call a submodule N of M (or an injection N — M) saturated
if the cokernel of N — M is torsion-free. Given a f.p. R-module M, define its rank as rk M :=

dimg (K ®g M). The notion of rank extends to f.p. left modules over a subring R in a division
algebra K.
If k is a field, let k be an algebraic closure of k, let k, be the separable closure of k in k, and let
G := Gal(ks/k). If G is a finite group scheme over a field k, its order is #G := dim I'(G, O¢).
Let A be a commutative group scheme over a field k. Then End A denotes its endomorphism
ring as a commutative group scheme over k, i.e., the ring of endomorphisms defined over k; an
analogous convention applies to Hom. If A € End A, then A[A] := ker A denotes the group scheme

kernel of A 2 A. In particular, if n € Zw, then A[n] is the group scheme kernel of A = A. If £ is
a prime not equal to char k, then the f-adic Tate module of A is

Ty A = lim A[E9) (k).

If X is a scheme over a field k of characteristic p > 0, and ¢ is a power of p, let 7x : X — X (@
be the g-power Frobenius morphism; if k£ = F,, then let mx be mx ,: X — X.

Recall that the essential image of a functor F': C — D consists of the objects of D isomorphic
to F'C for some C € C; from now on, we call this simply the image of F.

3. Classifying torsion-free modules

3.1 Dedekind domains

Suppose that R is a Dedekind domain. Finitely presented (henceforth denoted f.p.) torsion-free
R-modules can be completely classified, as is well known [Rei03, Theorem 4.13]. To describe
the result, we need the notion of determinant of a module. Given a torsion-free R-module M
of rank r, its determinant det M := \" M is a f.p. torsion-free R-module of rank 1; sometimes
we identify det M with its class in Pic R. For example, if M = I1 @ --- @ I, where each I; is a
nonzero ideal of R, then rk M = r and

det M ~ [ ®---®1I. ~ I;---I, (the product ideal in R).
R R

THEOREM 3.1.

(a) A fp. R-module is torsion-free if and only if it is projective.

(b) Every f.p. projective R-module is isomorphic to a finite direct sum of invertible ideals.

(¢) The isomorphism type of a f.p. projective R-module is determined by its rank and determinant.
)

(d) Every pair (r,c) € Z~q x Pic R arises as the rank and determinant of a nonzero f.p. projective
R-module M; one representative is M := R"~' @ I where [I] = c.

3.2 Quadratic orders

For a general order in a Dedekind domain, the structure theory of torsion-free f.p. modules is wild.
Fortunately, for quadratic orders there is a theory that is only slightly more complicated than



JORDAN, KEETON, POONEN, RAINS, SHEPHERD-BARRON, AND TATE

that for Dedekind domains. Recall that if Ryax is the ring of integers in a quadratic field K, then
every order in K is of the form Ry := Z + fRyax for a positive integer f called the conductor.
The orders containing Ry are the orders R, for g|f.

THEOREM 3.2. Let R be a quadratic order, i.e., an order in a degree 2 extension K of Q. Let M
be a f.p. torsion-free R-module.

(i) There exists a unique chain of orders Ry C --- C R,, between R and K and invertible ideals
Li,...,I, of Ry,..., R,, respectively, such that M ~ I, ® --- ® I,, as an R-module.

(ii) The I; are not unique, but their product Iy --- I, is an invertible Ry-ideal whose class
[M] € Pic R,, depends only on M.

(iii) The isomorphism type of M is uniquely determined by the chain Ry C --- C R,, and the
class [M] € Pic R,,.

Proof. See [BE60]. For generalizations to other integral domains, see [Bas63, Section 7], [BF65],
[Lev85|, and the survey article [Sal02]. O

3.3 Maximal orders in quaternion algebras

Let B be a quaternion division algebra over Q. Let O be a maximal order in B. Suppose that M
is a f.p. left O-module. The abelian group B ®o M inherits a left B-module structure from B;
it is a free left B-module by [Bou70, II, §7, Théoréme 1]. The nonnegative integer rk M is the
dimension of the left B-vector space B ®» M; then rk M = irkz M. Call M torsion-free if the
natural map M — B ®» M is an injection, or equivalently, if M is torsion-free as a Z-module.

The classification of f.p. torsion-free left O-modules is similar to the classification over a
Dedekind domain, and even simpler in ranks at least 2.

THEOREM 3.3.
(a) A Lp. left O-module is torsion-free if and only if it is projective.

(b) Every f.p. projective left O-module is isomorphic to a finite direct sum of ideals.

(c) A fp. projective left O-module of rank at least 2 is free.

Proof.

(a) See |Rei03l, Corollary 21.5].

(b) This follows from the final statement of [Rei03] Corollary 21.5].

(c) This is a classical result due to Eichler [Eic38]; see also [Shi79, Theorem 3.5]. O

4. Categorical constructions

4.1 A functor to an abelian category

We recall the following general construction (cf. [Gir68|, §1], [Wat69, Appendix], or [Ser85, pp. 50—
51]). Fix an abelian category C, an object E € C, a ring R, and a ring homomorphism R — End E.
For each f.p. left R-module M, choose a presentation

R™— R"— M —0. (3)

If we view R™ and R"™ as spaces of row vectors, then the R-module homomorphism R™ — R"
is represented by right-multiplication by some matrix X € M,, ,(R). Since R acts on E, left-
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multiplication by X defines a morphism E™ — E™, whose kernel we call A:
0—A—E"— E™. (4)
For any C € C, applying Hom(C, —) yields an exact sequence
0— Hom(C, A) — Hom(C, E)" — Hom(C, E)™.
On the other hand, applying Hompg(—, Hom(C, E)) to yields an exact sequence
0— Homp(M,Hom(C, E)) — Hom(C, E)" — Hom(C, E)™.
Comparing the previous two sequences yields an isomorphism
Hom(C, A) ~ Hompg(M,Hom(C, E)),

and it is functorial in C. This gives a presentation-independent description of A up to iso-
morphism as an object of C representing the functor Homp (M, Hom(—, E)): C — Sets. Define
Homp(M, E) = A.

An R-module homomorphism M — M’ induces a homomorphism
Hompg(M', Hom(C, E)) — Hompg (M, Hom(C, E))

for each C € C, functorially in C, so by Yoneda’s lemma it induces also a morphism between the
representing objects #ompr(M', E) — A#Aomp(M, E). Thus we obtain a functor

Stomp(—, E): {f.p. left R-modules}°** — C. (5)
If 0 - My — My — Ms is an exact sequence of f.p. left R-modules, then for each C € C,
0— Hompg (M1, Hom(C, E)) — Homp (M2, Hom(C, E')) — Homp(Ms, Hom(C, E))
is exact. This implies that the sequence of representing objects
0— Homp(My, E) — Homp(Ms, E)— Homp(Ms, E)
is exact. That is, the functor Somp(—, F) is left exact.
Remark 4.1. Following Serre’s appendix to [Lau02], one can also define a functor
—®prE: {f.p. right R-modules} — C.
Namely, given a f.p. right R-module M, choose a presentation
R —R"— M—0,

and define M ®pr F as the cokernel of E™ — E™.

4.2 The functor for an elliptic curve produces abelian varieties

The category of commutative proper group schemes over a field & is an abelian category (the
hardest part of this statement is the existence of cokernels, which is [Gro61), Corollaire 7.4]). From
now on, we assume that C is this category.

PROPOSITION 4.2. Let M be an R-module. Let A := ompr(M, E). For every k-algebra L, we
have A(L) ~ Hompg(M, E(L)).

Proof. Taking L-points of yields an exact sequence
0— A(L)— E(L)" — E(L)™.
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On the other hand, applying Hompg(—, E(L)) to (3) yields an exact sequence
0— Homp(M,E(L)) — E(L)" — E(L)™.
The maps E(L)" — E(L)™ in both sequences are the same, so the result follows. O

PROPOSITION 4.3. Let E be an abelian variety over a field k. Let R be a domain that is f.p.
as a Z-module. Let R — End E be a ring homomorphism. Let M be a f.p. left R-module. Let
A= Hompr(M,E). Then dim A = (rk M )(dim E).

Proof. For any n > 1, the presentation R =% R — R/nR — 0 shows that #omr(R/nR, E) ~ E[n].
If M is torsion, then it is a quotient of (R/nR)™ for some m,n > 1; then A C E[n]™, so A is
finite.

In general, let » = rk M. There is an exact sequence

0—-R -M-—=>T-—0
for some torsion module T’; this yields
0— Homr(T,E) - A— E". (6)

By the previous paragraph, #ompg(T, E) is finite, so dim A < rdim E. There exists a nonzero
p € R such that pT" = 0. Since R is f.p. as a Z-module, it follows that there exists a positive integer
n such that nT = 0. Then R" -5 R factors as R" < M — R", which induces E" — A — E"
whose composition is multiplication by n, which is surjective. Thus A — E” is surjective, so
dimA > rdim E. Hence dim A = rdim F. O

If £ is an elliptic curve, and [ is a subset of End E, let E[I] := (1, ker o

THEOREM 4.4. Let E be an elliptic curve over a field k. Let R be a saturated subring of End E
(saturated as a Z-module). Let M be a torsion-free f.p. left R-module. Let A := Stompr(M, E).
Then

(a) The group scheme A is an abelian variety isogenous to a power of E.

(b) The functor #ompg(—, E) is exact.

(¢) If f: E" — E*® is a homomorphism arising from applying #ompg(—, E) to an R-homomorphism
g: R® — R", then the image of f is isomorphic to #ompg(N, E) for some f.p. torsion-free

R-module N C R". (Moreover, if R = End E, then every homomorphism f: E" — E® arises
from some g.)

(d) IfI is a nonzero left R-ideal, then #omg(R/I, E) ~ E[I| and stomg(I,E) ~ E/E[I].

(e) IfT is an R-module that is finite as a set, then #omp(T, E) is a finite group scheme of order
(#T)Q/ tk R

(f) If n € Z~g, then A[n| ~ H#ompr(M, E[n]), where the latter is defined by using the induced
ring homomorphism R — End Eln].

(g) If ¢ is a prime not equal to char k, then TyA ~ Homp(M,T,E).

Proof.

(a) Let r =rk M = dim A. The proof of Proposition shows that A admits a surjection to E”
with finite kernel, so if A is an abelian variety, it is isogenous to E".
The ring R is either Z, a quadratic order, or a maximal quaternionic order. In the first and
third cases, M is projective of rank r over R (the quaternionic case is Theorem ); in
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other words, M is a direct summand of R™ for some n; thus A is a direct factor of E™, so A
is an abelian variety.

So suppose that R is a quadratic order. Let ¢ be the conductor, i.e., the index of R in its
integral closure. Let £ denote a prime. If £ { ¢, then the semi-local ring R ® Z) is a Dedekind
domain, but a semi-local Dedekind domain is a principal ideal domain, so M ® Zy) is free of
rank 7 over R ® Z(), and M /M is free of rank r over R/(R.

We claim that A is smooth. This is automatic if char ¥ = 0. So suppose that chark =p > 0.
By [Wat69, Theorem 4.2], we have p t ¢, so by the above, M/pM is free of rank r over R/pR.

By Proposition applying Homp (M, —) to
0 — Lie E — E(k[e]/(¢?)) — E(k) — 0
yields
0 — Hompg(M, Lie E) — A(k[e]/(¢*)) — A(k) — 0.
Thus
Lie A ~ Hompg(M, Lie E) ~ Hompg/,gr(M/pM, Lie E) ~ (Lie E)".

In particular, dim Lie A = r, so A is smooth.

Since A is also proper, it is an extension of a finite étale commutative group scheme ® by
an abelian variety B. The constructed surjection A — E” with finite kernel restricts to a
homomorphism B — E" with finite kernel, and it must still be surjective since E” does not

have algebraic subgroups of finite index; thus B is isogenous to E”. Since B (k) is divisible,
the extension splits over k. In particular, for each prime £,

# AR = #E(k)[(]"#[]. (7)
On the other hand, Proposition implies
A(k)[] = Homp(M, E(k)[{]) = Hompr(M/(M, E(K)[/]). (8)
We claim that
#AR)] = #E(K)[(". (9)

If £ 1 c, then M/¢M is free of rank r over R/(R, so (9) holds. Now suppose that ¢|c; in
particular, £ # p. Then R/(R ~ Fye]/(e?). Every (R/¢R)-module is a direct sum of copies of
F, and Fyle]/(e?). Since R is saturated in End E and ¢ # p, the homomorphisms

R End F —
B {(End ) — End E(k)[/]

are injective. On the other hand, #E(k)[{] = ¢ = #(R/(R). The previous three sentences
imply that E(k)[{] is free of rank 1 over R/¢R. The equality #Homp/r(N, R/{R) = #N
holds for N = F, and N = F[e]/(e?), so it holds for every finite (R/¢R)-module N, and in

particular for M/¢M. Thus implies
#A(k)[(] = #(M /M) = ##(R/(R)" = #E(k)[{]";

the middle equality holds since M and R" are torsion-free Z-modules of the same rank. Hence
@D holds for all £.

Comparing and @ shows that #®[¢] = 1 for all £, so ® is trivial. Thus A = B, an abelian
variety.

(b) By Lemma below, it suffices to show that if M — P is an injection of modules with P
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projective, then #omp(P, E) — H#ompr(M, E) is surjective. We have an exact sequence
0 — Homp(P/M,E) — Homp(P, E) — Hompr(M,E).
By (&), #omp(P, E) and #omp(M, E) are abelian varieties, so the image I of #omp(P, E) —
HAomp(M, E) is an abelian subvariety of .#ompr(M, E). By Proposition
dim S#omp(P, F) = dim s#ompr(P/M, E) + dim .#omg(M, E),
so dim [ = dim s#ompr(M, E). Thus I = H#ompr(M, E); i.e., #Homp(P, E) — H#omr(M, E)
is surjective.

(c) Since SHomp(—, E) is exact, it transforms the co-image of ¢ into the image of f. (Co-image
equals image in any abelian category, though the proof above does not need this.)

(d) The proof of [Wat69, Proposition A.2] shows that Jomgr(R/I,E) ~ E[I] (there R is equal
to End E, but this is not used). The proof of [Wat69, Proposition A.3] shows that E/E[I] is
the connected component of .#Zompg (I, E), but #ompg(I, F) is already connected, by @

(e) The function (#1')%/ ™ % of T is multiplicative in short exact sequences. So is # #omp(T, E),
since H#omp(—, E) is exact. Thus we may reduce to the case in which T is simple, i.e.,
T ~ R/I for some maximal ideal I. Then #omg(T,E) = E[I] by (d). We have I D (R for
some prime £. If [ = (R, then E[I] = E[f], which has order 2 = #(R/I)%/ "k £,
Now suppose that I # ¢R. If R has rank 2, then #(R/I) = ¢; if R has rank 4, then #(R/I) = 2.
Choose f € I'\ £R; then f does not kill E[¢], so E[I] € E[¢]. Thus #E[I] < £ = #(R/I)%/ "< E,
Thus # H#omg(T,E) < (#T)% ™F holds for each Jordan-Hélder factor of R/¢R, but for
T = R/(R equality holds, so all the inequalities must have been equalities.

(f) Start with the exact sequence
0— E[n —-ESE.

Given S € C, apply the left exact functors Home (S, —) and then Hompg (M, —); taken for all
S, this produces an exact sequence of representable functors

0 — Homr(M, E[n])) — Homg(M, E) —» Homr(M, E).
Hence s#omp(M, E[n]) ~ A[n].
(g) We have
T, A = lim A[t°] (k)
~ lim Aomp(M, E[¢°])(ks)  (by ()
o~ l'&nHomR(M, E[t°)(ks)) (by Proposition [4.2f with E replaced by E[¢€])
~ Hom (M, Jim B[] (k)

=: HOmR(M, TZE). ]

The following was used in the proof of Theorem (]E[)

LEMMA 4.5. Let C be an abelian category with enough projectives. Let F': C°PP — D be a left
exact functor. Suppose that for each monomorphism M — P with P projective, the morphism
FP — FM is an epimorphism. Then F' is exact.
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Proof. Given A € C, choose an epimorphism P — A with P projective, and let K be the kernel.
The sequence 0 - K — P — A — 0 yields

0—+FA—FP—FK — (R'F)A— (R'F)P =0,
and the hypothesis implies that FP — FK is surjective, so (R'F)A = 0. This holds for all A, so
F is exact. O

Remark 4.6. The hypothesis that R is saturated in Theorem [£.4] cannot be dropped. For example,
if E is an elliptic curve over C with End E = Z[i], and R is the subring Z[2i], then the R-module

Z[i] has a presentation
24
-2

R —~

)

R? *— 7Z[i] — 0,

so by definition,

Homp(Z[i], E) ~ ker <E2 (%_?2) E) ~ Ex E[2),

which is not an abelian variety. Moreover, applying .#ompg(—, E) to the injection Z][] AR yields
a homomorphism E — E x E[2]|, which is not surjective, so #omp(—, E) is not exact. Finally,
Z[i] is isomorphic as R-module to the R-ideal I := 2Z[i], so #ompg(I, E) is not an abelian variety.

4.3 Duality of abelian varieties

Let E be an elliptic curve over a field k. Let R := End E. The Rosati involution, sending
an endomorphism to its dual, is an isomorphism R — RC°PP. If M is a left R-module, then
M* := Homp(M, R) (the group of homomorphisms of left R-modules) is a right R-module: Given

f € M*and r € R, let f-r be the composition M i> R 5 R, where R 5 R is right-multiplication
by 7. In other words, M* is a left R°PP-module, which we may reinterpret as a left R-module by
using the Rosati involution. Moreover, if M is f.p., then it is finite over Z, and then so is M*.
Also, M* is torsion-free.

Given an abelian variety A, let AV be the dual abelian variety. The following lets us understand
the duals of abelian varieties arising from modules.

THEOREM 4.7. Given a f.p. torsion-free left R-module M, we have
Homp(M,E)Y ~ AHomr(M*, E),
functorially in M.
Proof. Let M be a f.p. torsion-free left R-module. Choose a presentation as in ,
R™ R M —0, (10)

in which the first homomorphism is right-multiplication by some X € M,,«,(R) on row vectors.
Apply H#omp(—, E) to obtain

0—A— E" 5 E™,
in which X now acts on the left. Taking dual abelian varieties yields

En X g 4y o, (11)
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where XT e M,,xm(R) is obtained from X by taking the transpose and applying the Rosati
involution entrywise.

On the other hand, applying Hompg(—, R) to (10)) yields an exact sequence of right R-modules
0— M* — R* 5 gm
involving left-multiplication by X on column vectors. This may be reinterpreted via the Rosati
involution as an exact sequence of left R-modules

0—>M*—>R”£>Rm

involving right-multiplication by XT on row vectors. Applying the exact functor #omp(—, E)
yields

+
E™ XS B s Aomp(M*,E) — 0.

Comparing with yields an isomorphism
Homp(M* E) ~ AV = Homp(M, E)". (12)

Given a homomorphism of f.p. torsion-free left R-modules M i> N, we can build a commutative
diagram

R" R™ M 0
[
R R N 0
and apply the constructions above to show that is functorial in M. ]

4.4 The other Hom functor
Under the assumptions of Theorem , we have a functor of additive categories

Homp(—, E): {f.p. torsion-free left R-modules}°PP
— {abelian varieties isogenous to a power of E},
as promised in the introduction. From now on, #ompg(—, F) denotes this functor, restricted to
f.p. torsion-free left R-modules.

Given an abelian variety A over the same field as E, the abelian group Hom(A, F) (the group
of homomorphisms of abelian varieties) is a left (End E)-module, and hence also a left R-module,
and it is f.p. because it is f.p. over Z [Mum?70l p. 178, Corollary 1]. In fact, we get a functor in
the opposite direction:

Hom(—, E): {abelian varieties isogenous to a power of E'}

— {f.p. torsion-free left R-modules}°PP.

For which elliptic curves E are #ompg(—, E) and Hom(—, E) inverse equivalences of categories?
If we start with the R-module R and apply s#ompr(—, E) and then Hom(—, E), we obtain End FE,
so we should have R ~ End E' as R-modules; then the only R-module endomorphisms of End £
are given by multiplication by elements of R, but multiplication by elements of End F also give
endomorphisms, so R = End E. Thus we assume from now on that R = End F.

THEOREM 4.8. Let E be an elliptic curve over a field. Let R := End E. Then
(a) The functor somp(—, E) is fully faithful.

10
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(b) The functor Hom(—, E) on the image of #omp(—, E) is an inverse to #omp(—, E).

(c¢) The image of Fomp(—, E) consists exactly of the products of elliptic curves of the form
Homp (I, E) for a nonzero left R-ideal I.

Proof.

(a) The ring R is Z, a quadratic order, or a maximal quaternionic order. By Theorem
Theorem , or Theorem (]E[), respectively, every f.p. torsion-free left R-module is a
finite direct sum of nonzero left R-ideals. Thus, @ follows if for any two nonzero R-ideals I
and J, the natural map

Hompg(J,I) — Hom(#omp(I, E), #omp(J, E))

is an isomorphism. If R = Z, this is trivial. If R is a quadratic order, this is the elliptic
curve case of the isomorphism given in (48) in [Kanlll Proposition 17]. If R is a maximal
quaternionic order, then by Theorem @ all f.p. torsion-free left R-modules are projective,
i.e., direct summands of f.p. free left R-modules; since #omp(—, E) is fully faithful when
restricted to free modules, it is also fully faithful on projective modules.

(b) Let M be a f.p. torsion-free left R-module. Then
Hom(somp(M, E), E) = Hom(#omr(M, E), #ompr(R, E)) = Homgp(R, M) = M
since E = J#omp(R, E) and #omp(—, E) is fully faithful by (a)).

(c) As remarked in the proof of @, every f.p. torsion-free left R-module is a finite direct sum of
nonzero left R-ideals I. O

5. Maximal abelian varieties over sz

Fix a prime p. Call an abelian variety A over F,2 mazimal if A has the maximum possible number
of F,2-points for its dimension, namely (p + 1)2dimA,

PROPOSITION 5.1. Let A be a g-dimensional abelian variety over Fp2. Let £ be a prime not equal
to p. The following are equivalent:

(a) The abelian variety A is maximal; i.e., #A(F,2) = (p+ 1)%.

(b) The characteristic polynomial of ™4 on Ty A equals (x + p)?9.

(c) We have mq = —p.

(d) We have A(F,2) ~ (Z/(p+ 1)Z)* as abelian groups.

If F is a fixed maximal elliptic curve over F 2, then the following also is equivalent to the above:

p*
(e) The abelian variety A is isogenous to EY.

Proof.

(a)=(b): Let A1,...,A2y € Q be the eigenvalues of 74 acting on TyA. Then |\;| = p and
#A(F,2) =T1(1 = N) =TTI1 — Ai| < (p+1)%; if equality holds, then A; = —p for all i. Thus
the characteristic polynomial is (z + p)29.

(b) =(c): Since 74 is determined by its action on Ty A, which is semisimple [Mum70, pp. 203-206],
we obtain m4 = —p.

(c)=(d): We have
A(Fy2) = ker(ma — 1)(F,) = ker(—p — 1)(F,) = Alp + 1](F,) = (Z/(p + 1)Z2)*.

11
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(d) =(a): Trivial.

(e)<(b): By (a)=(b), the characteristic polynomial of 7 is (z + p)?, so the characteristic
polynomial of mgs is (z + p)?9. Two abelian varieties over a finite field are isogenous if and
only if their characteristic polynomials are equal [Tat66, Theorem 1(c)]. O

LEMMA 5.2. If A and B are maximal abelian varieties over F,

»2, then any homomorphism
Aﬁp — BF,, is the base extension of a homomorphism A — B.

Proof. Any homomorphism respects the p?-power Frobenius endomorphisms (both are equal to
—p), and hence descends to Fpo. ]

Every supersingular elliptic curve over Fp admits a unique model over > that is maximal:
the existence is [BGGP05, Lemma 3.21], and uniqueness follows from Lemma In particular,
maximal elliptic curves over [F 2 exist. If E is any such curve, then E is supersingular, and
Lemma implies that End £ = End EE), which is a maximal order O in a quaternion algebra
over Q ramified at p and co. Also, the kernel of the p-power Frobenius morphism E — E®) is
isomorphic to ay,.

By Proposition @:@, any maximal abelian variety A over [F,» is isogenous to a power
of E. The main result of this section strengthens this as follows:

THEOREM 5.3.

(a) Every maximal abelian variety A over F . is isomorphic to a product of maximal elliptic
curves over F 2.

(b) Fix a maximal elliptic curve E over F 2. Let O := End E. Then the functors #omo(—, E)

and Hom(—, E') are inverse equivalences of categories. Also, the categories involved can be
rewritten so that #omo(—, E) becomes

Homo(—, E): {£.p. projective left O-modules}°*? — {maximal abelian varieties/F,z2}.

(c) Fix a maximal elliptic curve E over F2. Let g > 2. Every g-dimensional maximal abelian
variety over IF» is isomorphic to EY9. In particular, any product of g maximal elliptic curves
over F 2 is isomorphic to any other.

The analogous results hold if maximal is replaced by minimal; i.e., we consider abelian varieties
A over F 2 such that #A(F,2) = (p — 1)24m4,
We need a few lemmas for the proof of Theorem [5.3

LEMMA 5.4. There exists an elliptic curve E over F,, such that Ep , Is maximal.

Proof. There exists an elliptic curve E over [, with p+ 1 points [Wat69, Theorem 4.1(5)(i)]. The
p-power Frobenius endomorphism ng of E satisfies ﬁ% = —p, SO E]FpQ satisfies condition in
Proposition [5.1} O

LeEMMA 5.5. If E and E' are maximal elliptic curves over 2, there exists a separable isogeny
E— F.

Proof. For elliptic curves E and E’, write E ~ E' if there exists an isogeny & — E’ of degree
prime to p. The relation ~ is an equivalence relation: reflexive because of the identity, symmetric
because of the dual isogeny (which has the same degree), and transitive because of composition
of isogenies.

12
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Any isogeny ¢: E — E’ factors as f o A\ where deg f = p™ for some n > 1, and p { deg \.
Here A is separable. On the other hand, f is a factor of [p"], which is purely inseparable if E is
maximal. Thus, assuming that E is maximal, ¢ is separable if and only if p { deg ¢.

Let Ep be the maximal elliptic curve over F,2 in Lemma Since #Eo(Fj2) = #E(F,2),

there exists an isogeny Fy — FE, which factors as Ejy i) Ey A E, where f is a power of the
p-power Frobenius morphism (which goes from Ej to itself since Ey is definable over F,), and A
is separable. By the previous paragraph, p t deg . Thus Ey ~ E. Similarly, Ey ~ E', so E ~ E'.
Thus there exists an isogeny £ — E’ of degree prime to p. Any such isogeny is separable. O

Remark 5.6. Even better, if ' and E’ are maximal elliptic curves over F 2, there exists an isogeny
of l-power degree for any prime ¢ # p: for an argument due to Serre, see [Mes86, p. 223].

LEMMA 5.7. If A is a maximal abelian variety over 2, then every finite étale subgroup scheme
of AF,, is defined over F 2.

Proof. The p?-power Frobenius field automorphism acts on (prime-to-p) torsion points of Aﬁp as
—p, so it preserves any finite subgroup of order prime to p. O

COROLLARY 5.8. If A is a maximal abelian variety over IF2, and G is a nonzero finite étale
subgroup scheme of A, then G contains a subgroup scheme of prime order.

Proof. Choose a prime-order subgroup of G(IF,). The corresponding finite étale subgroup scheme
of G, is defined over > by Lemma O

LEMMA 5.9. Let A be a supersingular abelian variety over a field k of characteristic p. Every
p-power order subgroup scheme G C A is an iterated extension of copies of c,.

Proof. By induction, it suffices to show that if G # 0, then G contains a copy of c),. The a-number
dimy Hom(av,, G) is unchanged by field extension [LO9S8, Section 1.5], so we may assume that
k is algebraically closed. Then A is isogenous to a power E" of a supersingular elliptic curve.
The group scheme E|[p] is an extension of a, by a,, so all Jordan-Hoélder factors of E[p"| are
isomorphic to a,. The image of E[p"V] under the isogeny E” — A contains A[p"] if N is sufficiently
large relative to n, and A[p"] contains G if n is large enough. Thus all Jordan—-Hélder factors of
G are isomorphic to a,. O

LEMMA 5.10. Let E and E' be maximal elliptic curves over F,2. Identify o, with a subgroup
scheme of each. Then each homomorphism E — E’ restricts to a homomorphism o, — o, and
the resulting map

Hom(E,E') — End oy, ~ F 2 (13)

is surjective.

Proof. Since each «, is the kernel of the p-power Frobenius morphism, any homomorphism
E — E' must map a, to a,. If E/ = E, then the resulting ring homomorphism

End £ — End o, ~ sz

is surjective because every ring homomorphism from O to F . is surjective. In the general case,
Lemmaprovides a separable isogeny \: £ — E’; then AMa, # 0,50 {Aoe: e € End E'} surjects

onto End av),. O

LEMMA 5.11. Let E and E' be maximal elliptic curves over 2. Let G’ be a subgroup scheme of
E such that #G is prime. Then every homomorphism h: G — E’ extends to a homomorphism
E— FE'.

13
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Proof. Case 1: #G is a prime £ # p. Then extend G(F,) — E’(F,) to a homomorphism
E[¢)(F,) — E'[¢](F,) and lift it arbitrarily to a Z,-module homomorphism ¢t: TyE — TyE’. Since
the p?-power Frobenius automorphism acts as —p on both sides, ¢ respects the action of ng2'
By Tate’s theorem on homomorphisms [Tat66], ¢ comes from some 7 € Hom(FE, E') ® Zy. Any

7" € Hom(FE, E') congruent to 7 modulo ¢ extends h.

Case 2: #G = p. By Lemma G is the copy of ay, of E (the kernel of the p-power Frobenius
morphism). By Lemma h extends to a homomorphism F — FE'. O

LEMMA 5.12. Let f: X — Y be a homomorphism of commutative group schemes. Let I' be the
graph of f. Then there exists an automorphism of X x Y sending I' to X x {0}.

Proof. Use (x,y) — (x,y — f(x)), which has inverse (z,y) — (z,y + f(z)). O

LEMMA 5.13. Let B be a product Ey x -+ x E, of maximal elliptic curves over Fp2. Let G be a
finite subgroup scheme of B. Then B/G is isomorphic to a product of maximal elliptic curves
over F 2.

P

Proof. First suppose that #G is prime. Let pr;: B — E; denote the jth projection. Then
pr;(G) # 0 for some j, say j = 1. Since #G is prime, pry maps G isomorphically to its image
G1 C Ej. Thus G is the graph of a homomorphism h: Gy — E x - - - X Eg. Applying Lemma [5.11]
to each factor G4 — E; shows that h extends to a homomorphism f: F; — Hj>2 E;. Then G
is contained in the graph of f. By Lemma [5.12] after applying an automorphism of B we may

assume that G C Ey. Then B/G is the product of the maximal elliptic curves E1/G, Es, ..., Ey.

By Corollary and Lemma [5.9] every Jordan—Holder factor of G has prime order, so the
general case follows by induction. O
Proof of Theorem [5.3,

(a) By Proposition [5.1][@)=>(e), A ~ B/G, where B is a product of maximal elliptic curves (in
fact, a power) and G is a finite subgroup scheme of B. Apply Lemma

(b) First let us justify the rewriting of the categories. F.p. torsion-free left O-modules are
projective by Theorem @ By Proposition <:>(]§D, the abelian varieties isogenous to
a power of E are exactly the maximal abelian varieties over IF 2.
By @, every maximal abelian variety is a product of maximal elliptic curves, each of which
is #Homo (1, E) for some left O-ideal I, by the bottom of page 541 in [Wat69]. The result
now follows from 4.8

(c) Combine Theorem and part (]E[)

The same proofs apply in the minimal case. O

Remark 5.14. Because of Lemma Theorem could be deduced also from its analogue
over [F,, that for g > 2, any product of g supersingular elliptic curves over I, is isomorphic to
any other. The latter is a well-known theorem of Deligne, proved in a similar way: see [Ogu79,
Theorem 6.2] and [Shi79, Theorem 3.5].

Remark 5.15. A related result can be found in [Oor75]: Theorem 2 there states that if A is an
abelian variety over an algebraically closed field of characteristic p, and the a-number of A equals
dim A, then A is isomorphic to a product of supersingular elliptic curves.

14
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6. Kernel subgroups

6.1 General properties of kernel subgroups

DEFINITION 6.1. Let A be an abelian variety over a field. Call a subgroup scheme G C A a kernel
subgroup if G = A[I] for some I C End A. (These are called ideal subgroups in [Kanlll p. 302].)

In the definition, we may replace I by the left (End A)-ideal it generates without changing
A[I]. Thus we may always assume that I is a left (End A)-ideal.

PROPOSITION 6.2.

(a) An intersection of kernel subgroups in A is a kernel subgroup.

(b) Let Ay,..., A, be abelian varieties. Suppose that G; C A; for i =1,...,n. Then [[; | G; is
a kernel subgroup of [[;"_, A; if and only if each G; is a kernel subgroup of A;.

(c¢) Let I,...,I, be pairwise coprime 2-sided ideals of End A. Let G; C A[L;] fori=1,...,n.
Then Y ;" | G; is a kernel subgroup if and only if each G; is a kernel subgroup.

Proof.

(a) We have " A[L;] = A]>_ L] for any left ideals I;.

(b) Let A = [[A4; and G = [[G;. Suppose that G = A[I]. For each f € I, the composition
A, — A i> A — A; defines f € End A4;, and G, is the intersection of the kernels of all such f.

Conversely, suppose that G; = A;[I;] for each i. Let I := [] I; denote the set of “diagonal”
endomorphisms (f1,..., fn): A — A with f; € I;. Then G = A[I].

(c) By induction, we may assume n = 2. Since [; and I are coprime 2-sided ideals, we have
A[LI,] = A[lL] & A[I;], and every subgroup scheme H C A[l1I5] decomposes as Hy & Ho,
where H; C A[I;]; namely, H; = H N A[;].

If G1 + G is a kernel subgroup, then so is G; = (G1 + G2) N A[L], by (@)

Conversely, suppose that G; = A[J;] for some left ideal J;. Replace J; by J; + I; to assume
that J; O I;. Let K := Iy J; + I1Jo. We claim that A[K] = G; + Ga. First, InJ; C Jy,
which kills G1; also, I1Jo C I, which kills G;. Thus K kills G7. Similarly, K kills G5. Thus
G1+ G2 C A[K]. On the other hand, if we write A[K| = H; & Hy with H; C A[l;], we will
show that H; C G}, so that A[K] C Gy + G3. Write 1 = e1 + ey with e; € I;. Then the subsets
€1J1 - IQJl - K and €2J1 - IQ kill Hl, SO Jl kills Hl; i.e., H1 - A[Jl] = Gl. Similarly
Hy C Gy. So A[K| C G1 + Gs. Hence G + Go = A[K], a kernel subgroup. O

6.2 Kernel subgroups of a power of an elliptic curve

PROPOSITION 6.3. Let E be an elliptic curve over a field, and let r € Z=g. Let R := End E. For
a subgroup scheme G C E", the following are equivalent:

(i) G is a kernel subgroup.
(i)
(iii) There exists a f.p. torsion-free R-module M such that E" /G ~ s#omp(M, E).
) There exists a submodule M C R" such that applying #ompg(—, E) to

G is the kernel of a homomorphism E" — E° for some s € Zxg.

(iv
0O—-M-—>R —-R/M—0

yields
0—-G—E - E"/G—DO.
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Proof.
(i)=(ii): Suppose that G is a kernel subgroup, say A[I]. Let fi,..., f, be generators for I.

Then G is the kernel of E" — bl (E")™ .
(ii)=-(iii): This is a special case of Theorem [4.4(d]).
(iii)=(iv): If E"/G ~ H#omp(M, E) for some f.p. torsion-free M, then by Theorem [4.8|(a)), the
natural surjection E” — E" /G comes from some injection M — R". Applying #omp(—, E) to
0—-M-—=R —R'/M—=0

yields
0—-H—-E —-E/G
for some H, which must be isomorphic to G.
(iv)=(ii): Choose a surjection h: R® — M. Applying Hompr(—,E) to the composition
I iL» M — R" produces a homomorphism E" — E"/G — E* with kernel G.

(ii)=(i): We may increase s to assume that r|s. Then G is an intersection of s/r endomorphisms
of E", so it is a kernel subgroup by Proposition @ ]

PROPOSITION 6.4. Let E be an elliptic curve. Let R := End E. Then the following are equivalent:

(i) For each r € Zxy, every subgroup scheme of E" is a kernel subgroup.
(ii) For each r € Zx, every finite subgroup scheme of E" is a kernel subgroup.

(iii) The functors #ompg(—, E) and Hom(—, E) are inverse equivalences of categories.

Proof.

(1)=(ii): Trivial.

(ii)=-(iii): Suppose that A is an abelian variety isogenous to E”. Then A ~ E" /G for some
finite subgroup scheme G. By assumption, G is a kernel subgroup. Proposition (i):>(iii) implies
that A is in the image of #omp(—, E). The result now follows from Theorem

(iii)=-(i): Let G be a subgroup scheme of E". Then E" /G is isogenous to E* for some s < r. By
assumption, .#Zompr(—, F) is an equivalence of categories, so E" /G is of the form Jtomp(M, E).
By Proposition iii)=-(i), G is a kernel subgroup. O

In the next few sections, we investigate when it holds that all finite subgroup schemes of
powers of E are kernel subgroups, in order to determine when #omp(—, F) and Hom(—, E) are
inverse equivalences of categories.

6.3 Prime-to-p subgroups

We continue to assume that E is an elliptic curve and R = End E. Let ¢ be a prime not equal to
chark. Let Ry := R ® Zy. The natural map R, — Endz, T;E is injective since an endomorphism
that kills E[¢"] for all n is 0, and has saturated image since an endomorphism that kills E[/]
is equal to ¢ times an endomorphism. Let C' := Endg, T;E, which is the commutant of R, in
Endy, TyE ~ Mjy(Z;). For any elliptic curve, we have rk R € {1,2,4}, so one of the following
holds:

(i) Ry =7y and C = My(Zy);

(i) Ry = C = 7Zy ® Zy, a Zy-algebra that is a saturated rank 2 Z;-submodule of My(Z,) for
some o € My(Zy); or
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(iii) Ry = Ma(Zy) and C = Zy.

(To see that C' = Ry in case , one may argue as follows. By [Mum?70l, Corollary 3 in II1.§19], the
Q-algebra R® Q is semisimple, so R ® Qy is either a degree 2 field extension of @y, or is conjugate
to Q¢ x Qy. In either case, the commutant C ®z, Q; of R ® Q; in M2(Qy) is 2-dimensional. On
the other hand, an algebra generated by one element is commutative, so C contains Ry. Also, Ry
is saturated in My (Z). The previous three sentences imply that C' = Ry.)

Let e € Z~o.
LEMMA 6.5. Every finitely generated left C/{¢C-module injects into a free C/¢¢C-module.

Proof. If C = Zy, this is trivial. For any ring A and positive integer n, the category of A-modules
is equivalent to the category of M, (A)-modules [Lam99, Theorem 17.20], and the equivalence
preserves injections, finite generation, and projectivity [Lam99, Remark 17.23(A)]; applying this
to A =17y/t°7Zy and n = 2 shows that the case C' = Z, implies the case C = Mo (Zy).

Finally, suppose that C' is of rank 2. Then C/¢¢C is free of rank 2 over Z/(°7; say with basis
1, a. For ¢ € C/t¢C, let A(c) be the coefficient of o in ¢. Multiplying any nonzero element of
ker A by « gives an element outside ker A. Therefore the pairing
C/eC x C/°C — ZJI°L
z,y > Axy)
is a perfect pairing. In other words, the Pontryagin dual (C/¢¢C)P is isomorphic to C/¢¢C
as a C/¢¢C-module. If M is a finitely generated C/¢°C-module, there exists a surjection
(C/eeC) — MP for some r € Z~; taking Pontryagin duals yields an injection
M < ((C/eeC) P ~ (C/ecC). O

LEMMA 6.6. The group (TyE)? is free as an Ry-module and as a C-module. The group E[¢¢](ks)?

is free as an R/{°R-module and as a C/{¢C-module.

Proof. Since E[(¢](ks) = T,E/{¢TyE, by Nakayama’s lemma it is enough to check that E[¢](ks)?
is free as an A-module, for A = R/{R and for A = C/(C. Identify E[/](ks)* with F?, so that
A C My(Fy). The case A =y is trivial. If A is Fy @ Fya for some o € Mo(Fy), then every faithful
A-module of dimension 2 over Fy is free. If A = My (Fy), then the free A-module A is a direct
sum of two copies of F7 (the two column spaces). O

LEMMA 6.7. The natural maps
C/t°C — Endg e g E[€°](ks)
R/°R — Endgpec E[€€)(ks)
are isomorphisms.

Proof. The first map is an isomorphism since C' = Endg, TyF and C' and R, are saturated in
EndTyE ~ M3(Z;). Lemma and |[Lam99, Theorem 18.8(3)=-(1)] imply that E[¢¢](ks) is a
generator of the category of finitely generated R/¢¢R-modules, so [Lam99| Proposition 18.17(2)(d)]
yields the second isomorphism. O

Recall that G, = Gal(ks/k). There is a group homomorphism G, — C* since each o € G,
respects the R-action on the groups E[¢¢|(ks) and Ty E.
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PROPOSITION 6.8. Let E be an elliptic curve over a field k. Let £, e, C' be as above. Let G be
a subgroup scheme of E[(¢]" for some r. Then G is a kernel subgroup if and only if G(k;) is a
C/t¢C-submodule of E[¢¢]" (k).

Proof. Suppose that G(k;) is a C/¢¢C-submodule of E[¢¢|" (ks). Let H := E[¢€]"/G. Then H (k) is
a finitely generated C'/¢*C-module. By Lemmal6.5] H (k) injects into a free C//£*C-module, which
in turn injects into E[¢¢]*(ks) for some s. Because of the homomorphisms G, — C* — (C/¢¢C)*,
the C'/¢¢C-module homomorphism H (k) — E[¢€]*(ks) is a Gg-module homomorphism, so it comes
from a homomorphism H — E[¢¢]* of étale group schemes. The composition E[(¢]" — H — E[¢€]*
is given by an s x r matrix N, with entries in Endg e E[(°](ks) = R/(°R (the equality is
Lemma [6.7). Lift N, to N € Mgy, (R). Then G is the intersection of the kernel subgroups E[¢¢]"
and ker(N: E" — E*). By Propositions and G is a kernel subgroup.

Conversely, if G is a kernel subgroup, say the kernel of E” — FE?, then it is also the kernel of
E[t¢]" — E[¢€]*, which is a homomorphism of C'/¢¢C-modules, so G is a C'/¢°C-module. O

The group homomorphism Gy — C* induces algebra homomorphisms Zy[Gx] — C and

PRroOPOSITION 6.9. Let E, k, ¢, R, Ry, C' be as above. The following are equivalent:

(i) The homomorphism F[Gy] — C/LC is surjective.
(ii) The homomorphism Zy¢|Gy| — C' is surjective.

(iii) Every ¢-power order subgroup scheme of E" for every r is a kernel subgroup.

Proof.

(i)=-(ii): Nakayama’s lemma.

(ii)=-(iii): Let G be an ¢-power subgroup scheme of E", say G C E[¢¢]". Then G(ks) is a Zy[G|-
module. Since Zy[Gy] — C is surjective, G(ks) is also a C-module, and hence a C/¢°C-module.
By Proposition G is a kernel subgroup.

(iii)=(i): Suppose that F,[G;] — C/LC is not surjective; let D be the image. The algebra
C/LC is one of Fy, {(&2)} = Fole]/ (), {(29)} = F¢ x Fy, Fpo, or My(Fy). The first is excluded
since it has no nontrivial subalgebras. In the second, third, and fourth cases, D can only be Fy,
and it is easy to find a subspace of F? ~ E[(](ks) that is not a C//¢C-module. In the fifth case, D
is contained in a copy of either {(&%)} or Fro. Now { (&%)} fixes a line in F? not fixed by Ma(Fy).
And Fp2 fixes an Fpe-line in 3, ~ E*[{](ks) that is not fixed by Ma(Fy). Thus in each case, there
is a subgroup scheme of E[f] or E?[{] that is not a C/¢C-module, and hence by Proposition
not a kernel subgroup. O

6.4 p-power subgroups

PROPOSITION 6.10. Let E be an ordinary elliptic curve over a field k of characteristic p. Assume
that End FE # 7 (automatic if k is finite). Then every p-power order subgroup scheme G C E" is
a kernel subgroup.

Proof. The ring R := End F ~ End Er is a quadratic order. Although R is not necessarily
a Dedekind domain, its conductor is prime to p, so it makes sense to speak of the splitting
behavior of (p) in R. In fact, since E is ordinary, (p) splits, say as pq. So E[p] is the direct sum
of group schemes E[p] and E[q], each of order p by Theorem [4.4|f). Since E is ordinary, one of
them, say FE[p], is étale, and the other is connected. For any e € Z>(, we have (p®) = p°q° so
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E[p¢] ~ E[p¢] ® E[q°]. The Jordan-Holder factors of E[p¢] are isomorphic to E[p], so E[p¢] is
étale; similarly E[q¢] is connected. We have G C E[p°]" for some e. By Proposition [6.2)(d), we
may assume that G C E[p¢]” or G C E[q°]".

In the first case, E[p¢|(k®) ~ Z/p°Z, so G is the kernel of a homomorphism E[p¢]" — E[p€]®
given by a matrix in Mx,(Z). Since E[p¢| is a kernel subgroup, so is E[p€]", and so is G, by
Propositions and

In the second case, we take Cartier duals: E[p¢]” — GY. Then GV is the cokernel of some
homomorphism E[p€]® — E[p€]” given by a matrix N € M,x(Z). So G is the kernel of the

homomorphism E[q¢]” — F[q°]® given by the transpose N7 € Mgy,.(Z). Since E[q°] is a kernel
subgroup, so is E[q°]", and so is G, by Propositions @ and O

PRrOPOSITION 6.11. Let E be a supersingular elliptic curve over a field k of characteristic p.

(a) If k =T, then every p-power order subgroup scheme G C E" is a kernel subgroup, and in
fact is a kernel of an endomorphism of E".

(b) If k =F,» and tk R =4 (i.e., #E(F,2) = (p £ 1)), then every subgroup scheme G C E" is a
kernel subgroup.

(c) If k =TF,2 and rk R # 4, then there exists a copy of a, in I/ X I/ that is not a kernel subgroup.

(d) Ifk is Fpa for some a > 3, or if k is infinite, then there exists a copy of oy, in E x E that is
not a kernel subgroup.

Proof. The kernel of g ),: E — E®) ig a,. Suppose that «, C E is a kernel subgroup. By
Proposition [6.3(i)=(iv), o, ~ #omg(R/I, E) for some left R-ideal I. By Theorem [4.4f(¢)),
p=#(R/I1)* ™ £ We have three cases:

— If R =7, this is a contradiction.

— If rk R =2, then #(R/I) =p, so R/I ~T,. Since E is supersingular, p is ramified or inert
in R, and the above implies that p is ramified.

— If tk R = 4, then #(R/I) = p?, so I is the unique ideal of index p? in R, and R/I ~ Fp2.

If J is an R-module with 1?2 C J C R? (here I? means I x I), then R?/.J ~ R/I (since R/I is
a field), and the surjection R? — R2/.J gives rise to an injection o, — E x E. Conversely, any
kernel subgroup ay, C E x E arises from such a J. So such kernel subgroups are in bijection
with PY(R/I). On the other hand, End v, ~ k, so Hom(ev,, E x E) = k%, and the copies of e, in
E x E are in bijection with P!(k). Thus if every a, in E x E is a kernel subgroup, then P}(R/I)
is in bijection with P!(k), so #(R/I) = #k; i.e., k ~ R/I, which is F, or [F,2 as above. This
proves and @

(a) By Lemma E" — E" /G factors as a chain of p-isogenies, each with kernel a,. If we show
that any quotient £/, is isomorphic to E”, then each abelian variety in the chain must be
isomorphic to E", so G is a kernel of an endomorphism of E", as desired.

The group GL,(Z) C GL,(End E) acts on E", and acts transitively on the nonzero elements
of Hom(exp, E”) = F}. Therefore it suffices to consider the quotient E”/cy, in which the o,
is contained in £ x 0 x --- x 0. Now E/oy, = E/E[rg| ~ E, so E" /oy, ~ E".

(b) The abelian variety E”/G is isogenous to a power of E, so by Theorem [5.3|[b)), it is of the
form #omp(M, E). By Proposition [6.3](iii)=(i), G is a kernel subgroup. O
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7. Abelian varieties isogenous to a power of an elliptic curve

Let E be an elliptic curve over k. We break into cases, first according to whether F is ordinary
or supersingular, and next according to rk End E' and #k. By convention, elliptic curves over a
field of characteristic 0 are included among the ordinary curves.

7.1 E is ordinary and rkEnd F =1
THEOREM 7.1. Fix an elliptic curve E over a field k such that End E ~ Z.

(a) The image of #omp(—, E) consists of abelian varieties isomorphic to a power of E.

(b) The functors Fomp(—, E) and Hom(—, E) are inverse equivalences of categories (i.e., every
abelian variety isogenous to a power of E is isomorphic to a power of F) if and only if
chark = 0 and for every prime ¢ the homomorphism Fy[Gy] — End E[(](ks) ~ Ma(F,) is
surjective.

Proof of Theorem [7.1]
(a) Every f.p. torsion-free Z-module is free.

(b) By Proposition Homp(—, E) and Hom(—, ) are equivalences if and only if every finite
subgroup scheme G is a kernel subgroup. By Proposition , we need only consider G of
prime power order.

If chark = p > 0, then #ker g, = p, but #FE[I] is a square for every nonzero ideal I C Z,
so ker g, is not a kernel subgroup. If char & = 0, then apply Proposition (i)@(iii) for
every /. O

Remark 7.2. Surjectivity of Fy[Gr] — Ma(Fy) fails if and only if the image G of G, — GLa(Fy)
is contained in a Borel subgroup or a nonsplit Cartan subgroup, as we now explain. Let A be
the image of F¢[Gy] — Ma(F,). View V := F7 as an A-module. If V is reducible, then surjectivity
fails and G is contained in a Borel subgroup. So suppose that V is irreducible. By Schur’s lemma
[Lan02, XVIL.1.1], End4 V is a division algebra D. But D C Ma(F), so D is F; or Fp. By
Wedderburn’s theorem [Lan02, XVIIL.3.5], A ~ Endp V. If D = Fy, then A = My(Fy), and G is
not contained in a Borel subgroup or a nonsplit Cartan subgroup. If D ~ F2, then dimp V =1,
so A~ EndpV ~ F2, and G is contained in the nonsplit Cartan subgroup A N GLa(Fy).

Ezample 7.3. Let E be the elliptic curve Xo(11) over Q, with equation 32 +y = 23 — 22 — 102 — 20.
As in [Ser72l 5.5.2], the image of Gg — Aut E[5] ~ GL»(F5) is contained in a Borel subgroup, so
by Theorem [7.1|(b) and Remark the functors #omp(—, F) and Hom(—, E) are not inverse
equivalences of categories.

Example 7.4. Let E be the elliptic curve over Q of conductor 37 with equation y? +y = 23 — .
By [Ser72, 5.5.6], the homomorphism Gg — Aut(E[{]) ~ GLa(Fy) is surjective for every prime
£, so by Theorem (]ED, the functors #omp(—, F) and Hom(—, E') are inverse equivalences of

categories.

7.2 FE is ordinary and rkEnd E = 2

Fix an ordinary elliptic curve E over a field k such that rk End E = 2. (These are called CM elliptic
curves in [Kanlll, Section 3].) Then End £ ~ End Er, because if an endomorphism becomes

divisible by a positive integer n over an extension field, it kills E[n], so it is divisible by n already
over k. Let R := End F and K := Frac R.
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If E' is an elliptic curve isogenous to F, then End E’ is another order R’ in K. Let fg be
the conductor of R', i.e., the index of R’ in its integral closure. More generally, if A is an abelian
variety isogenous to E”, then End A is an order in M, (K), and its center Z(End A) is an order
in Z(M,(K)) = K, and we let f4 be the conductor of Z(End A).

THEOREM 7.5. Fix an ordinary elliptic curve E over a field k such that tkEnd E = 2. Let
R :=End E. The image of stomp(—, E) consists of the abelian varieties A isogenous to a power
of E such that fa|fg, i.e., such that R C Z(End A). These are exactly the products of elliptic
curves E' each isogenous to E and satisfying fg/|fE.

Proof. Suppose that ¢: E" — A is an isogeny and fa|fg. Since f4|fg, there is an R-action on A
such that ¢ respects the R-actions. Let G := ker ¢, so G(k;) is an R-module. Write G = @, G,
where Gy is a group scheme of ¢-power order. For ¢ # char k, we are in the case Ry = C of
Section so Gy(ks) is also a C/¢¢C-module for some e, and Proposition shows that Gy
is a kernel subgroup. If chark = p > 0, then G, is a kernel subgroup by Proposition
By Proposition [6.2f(d), G is a kernel subgroup. By Proposition [6.3|i)=>(iii), the abelian variety
A~ E"/G is in the image of Homp(—, F).

Conversely, if A is in the image of #omp(—, E) then by Theorem [4.8|[d), A is a product of
elliptic curves of the form .#omp(I, E). Because the functor #omp(—, F) is fully faithful, if
E' = ompg(I, E) then E’ is isogenous to E and End E’ ~ Endp I, which contains R since R is
commutative. In particular, fg/|fg. Finally, f4 is the least common multiple of the fg/, so fa|fE
too. O

THEOREM 7.6. Fix an ordinary elliptic curve E over a finite field F,. Let R := End . Then
Homp(—, F) and Hom(—, F) are equivalences of categories if and only if Zrg] = R.

Proof. Suppose that Z[rg] = R. If A is isogenous to a power of E, then 74 has the same minimal
polynomial as g, so Z(End A) contains Z[r4]| ~ Z[rg]; i.e., fa|fr is automatic.

On the other hand, if Z[rg] # R, then E is isogenous to an elliptic curve E’ satisfying
End F' = Z[rg/] [Wat69, Theorem 4.2(2)]. Theorem shows that E’ is not in the image of
Homp(—, E), so Hompr(—, F) is not an equivalence of categories. d

We can also give a more general criterion that applies even if k is not finite.

THEOREM 7.7. Fix an ordinary elliptic curve E over a field k such that rk End E = 2. Then
Homp(—, E) and Hom(—, E) are equivalences of categories if and only if for every prime ¢ # char k,
there exists o € Gy, whose action on E[l|(ks) is not multiplication by a scalar.

Proof. By Propositions [6.4)i)« (iii), [6.2](d), and the functors #omp(—, F) and Hom(—, E)
are equivalences if and only if for each ¢ # char k, the homomorphism Fy[Gr] — C/¢C' is surjective.
Since dimp, C'/¢C = 2, surjectivity is equivalent to the image of

F¢[Gr] — C/LC C End E[f](ks) ~ Mo (TFy)
not being Fy. O

Example 7.8. Let E be the elliptic curve y*> = 2® — z over k := Q(v/—1); then j(E) = 1728
and End E = Z[v/—1]. The group Gy acts trivially on E[2](ks), so by Theorem the functors
Homp(—, E) and Hom(—, E) are not inverse equivalences of categories.

Ezample 7.9. Let E be the elliptic curve y? = 23 +22—3x+1 over k := Q(v/—2); then j(E) = 8000
and End F = Z[v/—2]. The field k(E[2]) equals k(1/—1), so the image of Gy in GLy(F2) has order
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2 and hence does not consist of scalars. Now consider a prime £ > 2. Choose a prime p # ¢ such
that p splits in k/Q and (%) = —1. Let ¢ be a Frobenius element of G, at a prime above p. The
image of o in Aut(F[{]) ~ GL2(F,) has nonsquare determinant (p mod ¢), so it is not a scalar.
Thus, by Theorem , the functors #omp(—, E) and Hom(—, E) are inverse equivalences of
categories.

Remark 7.10. If E and E’ are ordinary elliptic curves over an algebraically closed field k and their
endomorphism rings are orders in the same quadratic field, then F and E’ are isogenous. But
over non-algebraically closed fields, this can fail. For example, if F is an ordinary elliptic curve
over a finite field, then its quadratic twist £’ has the same endomorphism ring, but opposite
trace of Frobenius, so F and E’ are not isogenous.

7.3 E is supersingular and k = [,

Fix a supersingular elliptic curve E over F,,. Let R := End E. Let P(z) be the characteristic
polynomial of 7 := . Define f4 as in Section [7.2] In particular, fg is the conductor of R. We
have the following cases:

prime P(x) Z[r] R=EndFE | fp equivalence?
p# 3 (mod 4) 22 +p Z[/—p] VANE] 1 YES
p=3 (mod 4) 2 +p ANE yANE 2 YES
p=3(mod4) o2+p  Z[y=H  Z[™E] |1 NO

p=2 22 £ 2r +2 Z[i] Z[d] 1 YES

p=3 Pa3e+3 [Tz |25 YES

The last column, which indicates when J#omp(—, E') and Hom(—, E) are equivalences of categories,
is explained by the following analogues of Theorems and proved in the same way except

that we use Proposition [6.11](a)) in place of Proposition

THEOREM 7.11. Fix a supersingular elliptic curve E over F),. Let R := End E. The image of
Homp(—, E) consists of the abelian varieties A isogenous to a power of E such that fa|fg, i.e.,
such that R C Z(End A). These are exactly the products of elliptic curves E' each isogenous to
E and satistying fg/|fE.

THEOREM 7.12. Fix a supersingular elliptic curve E over F),. Let R := End E. Then s#ompg(—, E)
and Hom(—, F) are equivalences of categories if and only if Zrg] = R.

7.4 FE is supersingular, k = Fp2, and tk End £ = 4

In this case, £ is a maximal or minimal elliptic curve over F,2. These cases were already handled:
see Theorem [5.3]

7.5 FE is supersingular, k = 2, and rk End E = 2
By Proposition , not every subgroup scheme is a kernel subgroup. By Proposition (iii)@(ii),
the functors #omp(—, E) and Hom(—, F) are not equivalences of categories.

Remark 7.13. These are the cases in which the characteristic polynomial of 7 is one of 2 +px +p?,
2%+ p?, or 2 — px + p?. Hence g = pC for a root of unity ¢ of order 3, 4, or 6, respectively. But
p does not divide the conductor of R, so ( € R. Now ¢ € Aut F/, so E has j-invariant 0 or 1728.
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7.6 E is supersingular and #k > p?

By Proposition @, not every subgroup scheme is a kernel subgroup. By Proposition (iii)@(ii),
the functors #omp(—, E) and Hom(—, F) are not equivalences of categories.

8. A partial generalization to higher-dimensional abelian varieties over [,

Let B be an abelian variety over a prime field IF,,. Let R C End B be the (central) subring Z[F, V]
generated by the Frobenius and Verschiebung endomorphisms. Given a f.p. reflexive R-module
M, let M* := Hompg(M, R); then M* is reflexive too.

As in the case of elliptic curves, we can define functors
Stomp(—, B): {f.p. R-modules}°*® — {commutative proper group schemes over [F,}
and
Hom(—, B): {commutative proper group schemes over F,} — {f.p. R-modules}°P.

The work of Centeleghe and Stix [CS15], combined with some further arguments, allows us to ana-
lyze this higher-dimensional case. The main extra ingredient we supply is that, under appropriate
hypotheses, the functor M +— M* ®pg B implicit in [CS15] is isomorphic to S#omp(—, B).

THEOREM 8.1. Let B be an abelian variety over F),. Let R = Z[F, V] C End B. Then the functors
Homp(—, B) and Hom(—, B) restrict to inverse equivalences of categories

{f.p. reflexive R-modules}°PP =—— {abelian variety quotients of powers of B}

if and only if R = End B. Moreover, in this case, the functor somp(—, B) so restricted is exact,
and it is isomorphic to the functor M — M* ® B.

Proof. If the functors give inverse equivalences as stated, then the argument in the paragraph
before Theorem [.§] proves that R = End B.

Now let us prove the converse. Suppose that R = End B. Then (End B) ® Q is commutative.
This implies that in the decomposition of B into simple factors up to isogeny, no factor is
repeated, and also no factor is associated to the Weil number ,/p, since such a factor would
give a direct factor of (End B) ® Q isomorphic to a quaternion algebra over Q(,/p): see [Wat69,
p. 528, Case 2]. Let w be the set of Weil number conjugacy classes associated to B. Then the
category AV,, of [CS15l 5.1] is the category of abelian variety quotients of powers of B. The ring
R, in [CS15| Definition 2] is R = Z[F, V]. It is Gorenstein by [CS15, Theorem 11(2)]. Reflexive
finitely generated R-modules are the same as f.p. torsion-free R-modules, or equivalently f.p.
R-modules that are free over Z [CS15, Lemma 13]. By |[CS15, Proposition 24], for every prime ¢
the (R ® Zy)-module Ty B (Tate module or contravariant Dieudonné module) is free of rank 1, so
the abelian variety A,, in [CS15, Proposition 21] may be taken to be B by [CS15, Proposition 24].

We now check that if M is a f.p. torsion-free R-module, then the commutative proper
group scheme G := H#omp(M, B) is an abelian variety. It suffices to prove that for every
prime ¢ and n > 0, the homomorphism G[¢"!] 4La [¢"] is surjective. Choose a presentation

re SRV M 0, so G := ker(B? — B?). Both M and M* are reflexive R-modules, so they
are free over Z.
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Suppose that £ £ p. Then
G[("] = (ker(B® — B®))[¢"]
= ker(B°[("] — B[(™))
~ ker(Ty(B®) /t™ — Ty(B*) /™)

— ker(R/E") Y5 (R/€Y))

— ker(Homp(R®, R/¢") s Homp(R®, R/(M))
~ Homp(M,R/(")
~ M*/{" (since Exth(M, R) = 0 by [CS15, Lemma 17])

L7
=M .
2z
Since M* is free over Z, the homomorphism
ef(nJrl)Z ¢ "7
M@ —— — M*
2z 7z

is surjective, so G[¢" 1] 4 G[¢"] is surjective.

Now suppose that ¢ = p. For each commutative group scheme H over F,, let H D denote
its contravariant Dieudonné module. Since the R ® Z,-module T}, B is free of rank 1, we have
B[p"|P ~ R/p" as an R-module. Next,

G[Pn]D = coker <Ba[pn]D - Bb[pn]D)

~ coker <(R/pn)a Tt (R/Pn)b>
= M/p".

Since M is free over Z, the homomorphism M /p" B M /p" 1 is injective, so G[p"]” 5 a [prtP
is injective, so G[p"+!] & G[p"] is surjective.

Thus G is an abelian variety. The proof of Theorem (]ED now shows that #ompg(—, B)
is exact. In particular, if 0 - M — R"™ — R™ is an exact sequence of R-modules, then
B™ — B"™ — #ompr(M,B) — 0 is exact. But M* ® B too is defined as coker(B™ — B"), so
Homp(M,B) ~ M* ®pr B, and this holds functorially in M.

Finally, by [CS15, Theorem 25 and p. 247],
Hom(—, B): AV,, — {f.p. reflexive R-modules}°PP

is an equivalence of categories with inverse functor M — M* ®p B. We may replace the latter
with the isomorphic functor J#omp(—, B). O

Remark 8.2. Over Fyn with n > 1, the functors Jomp(—, B) and Hom(—, B) are sometimes
inverse equivalences of categories, and sometimes not, as we saw already in the case of elliptic
curves: see Theorem [I.1]

ACKNOWLEDGEMENTS

It is a pleasure to thank Everett Howe, Tony Scholl, and Christopher Skinner for helpful discussions.
We thank also the referees for valuable suggestions on the exposition.

24



ABELIAN VARIETIES ISOGENOUS TO A POWER OF AN ELLIPTIC CURVE

REFERENCES

BGGP05 M. H. Baker, E. Gonzalez-Jiménez, J. Gonzalez, and B. Poonen, Finiteness results for modular

Bas63
BF60

BF65

Bou70

CS15

Del69
Eic38
Gir68
Gro61

Kanll
Lam99

Lan02

Lan75

Lau02

Lev85
LO98
Mes86

curves of genus at least 2, Amer. J. Math. 127 (2005), 1325-1387.
H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28.

Z. 1. Borevi¢ and D. K. Faddeev, Integral representations of quadratic rings, Vestik Leningrad
Univ. 15 (1960), no. 19, 52—64.

Z. 1. Borevi¢ and D. K. Faddeev, Representations of orders with a cyclic index, Proc. Steklov
Inst. Math. 80 (1965), 51-65; translated in Algebraic number theory and representations (ed.
D. K. Faddeev), Amer. Math. Society, 56-72, 1968.

N. Bourbaki, Eléments de mathématique. Algebre. Chapitres 1 ¢ 3, Hermann, Paris, 1970.

T. G. Centeleghe and J. Stix, Categories of abelian varieties over finite fields, I: Abelian varieties
over IF,,, Algebra Number Theory 9 (2015), no. 1, 225-265.

P. Deligne, Variétés abéliennes ordinaires sur un corp fini, Invent. Math. 8 (1969), 238-243.
M. Eichler, Uber die Idealklassenzahl hyperkomplexer Systeme, Math. Z. 43 (1938), 481-494.
J. Giraud, Remarque sur une formule de Shimura-Taniyama, Invent. Math. 5 (1968), 231-236.

A. Grothendieck, Techniques de construction et théoremes d’existence en géomtrie algébrique III:
préschemas quotients, Séminaire Bourbaki 13e année, 1960/61, no. 212.

E. Kani, Products of CM elliptic curves, Collect. Math. 62 (2011), 297-339.

T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics 189, Springer-Verlag,
New York, 1999.

S. Lang, Algebra, revised 3rd edition, Graduate Texts in Mathematics 211, Springer-Verlag, New
York, 2002.

H. Lange, Produkte elliptischer Kurven, Nachr. Akad. Wiss. Gottingen Math.-Phys. Ki. IT (1975),
95-108.

K. Lauter, The maximum or minimum number of rational points on genus three curves over finite
fields, with an appendix by J.-P. Serre, Compositio Math. 134 (2002), 87-111.

L. Levy, Modules over Dedekind-like rings, J. Algebra 93 (1985), 1-116.
K.-Z. Li and F. Oort, Moduli of supersingular abelian varieties, Springer-Verlag, 1998.

J.-F. Mestre, La méthode des graphes. Exemples et applications, pp. 217-242 in: Proceedings of
the international conference on class numbers and fundamental units of algebraic number fields
(Katata, 1986), Nagoya Univ., Nagoya, 1986.

Mum70 D. Mumford, Abelian Varieties, Tata Institute of Fundamental Research and Oxford University

Ogu79

Oor75
Rei03
Sal02

Sch92
Ser72
Ser85

Shi79

Press, 1970.

A. Ogus, Supersingular K3 crystals, Journées Géom. Algébr. Rennes 1978, Vol. 11, Astérisque 64,
Soc. Math. France (1979), 3-86.

F. Oort, Which abelian surfaces are products of elliptic curves?, Math. Ann. 214 (1975), 35-47.
I. Reiner, Mazximal Orders, Oxford University Press, 2003.

L. Salce, Warfield domains: module theory from linear algebra to commutative algebra through
abelian groups, Milan J. Math. 70 (2002), 163-185.

C. Schoen, Produkte abelscher Varietdten und Moduln {iber Ordnungen, J. Reine Angew. Math.
429 (1992), 115-123.

J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math.
15 (1972), 259-331.

J.-P. Serre, Rational points on curves over finite fields, Part I: “q large”, lectures given at Harvard
University, September to December 1985, notes taken by Fernando Gouvéa.

T. Shioda, Supersingular K3 surfaces, pp. 564-591 in: Algebraic geometry, Copenhagen 1978 (ed.
K. Lgnsted), Lecture Notes in Math. 732, Springer-Verlag, 1979.

25



ABELIAN VARIETIES ISOGENOUS TO A POWER OF AN ELLIPTIC CURVE

SM74 T. Shioda and N. Mitani, Singular abelian surfaces and binary quadratic forms, pp. 259-287 in:
Classification of Algebraic Varieties and Compact Complexr Manifolds, Lecture Notes in Math.
412, Springer-Verlag, 1974.

Tat66 J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134-144.

Wat69 W. C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. Ecole Norm. Sup. (4) 2 (1969),
521-560.

Yul2 C.-F. Yu, Superspecial abelian varieties over finite prime fields, J. Pure Appl. Algebra 216 (2012),
1418-1427.

Bruce W. Jordan bruce.jordan@baruch.cuny.edu
Department of Mathematics, Baruch College, The City University of New York, One Bernard
Baruch Way, New York, NY 10010-5526, USA

Allan G. Keeton agk®idaccr.org
Center for Communications Research, 805 Bunn Drive, Princeton, NJ 08540-1966, USA

Bjorn Poonen poonen@math.mit.edu
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307,
USA

Eric M. Rains rains@caltech.edu
Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA

Nicholas Shepherd-Barron nicholas.shepherd-barron@kcl.ac.uk
Mathematics Department, King’s College London, Strand, London WC2R, 2LS, United Kingdom

John T. Tate Tate@math.utexas.edu
Mathematics Department, Harvard University, 1 Oxford Street, Cambridge MA 02138-2901, USA

26



	Introduction
	Notation
	Classifying torsion-free modules
	Dedekind domains
	Quadratic orders
	Maximal orders in quaternion algebras

	Categorical constructions
	A functor to an abelian category
	The functor for an elliptic curve produces abelian varieties
	Duality of abelian varieties
	The other Hom functor

	Maximal abelian varieties over Fp2
	Kernel subgroups
	General properties of kernel subgroups
	Kernel subgroups of a power of an elliptic curve
	Prime-to-p subgroups
	p-power subgroups

	Abelian varieties isogenous to a power of an elliptic curve
	E is ordinary and rk End E = 1
	E is ordinary and rk End E = 2
	E is supersingular and k = Fp
	E is supersingular, k = Fp2, and rk End E = 4
	E is supersingular, k = Fp2, and rk End E = 2
	E is supersingular and #k > p2

	A partial generalization to higher-dimensional abelian varieties over Fp
	References

