
p-ADIC INTERPOLATION OF ITERATES

BJORN POONEN

Abstract. Extending work of Bell and of Bell, Ghioca, and Tucker, we prove that for a
p-adic analytic self-map f on a closed unit polydisk, if every coefficient of f(x) − x has
valuation greater than that of p1/(p−1), then the iterates of f can be p-adically interpolated;
i.e., there exists a function g(x, n) analytic in both x and n such that g(x, n) = fn(x)
whenever n ∈ Z≥0.

Inspired by the work of Skolem [Sko34], Mahler [Mah35], and Lech [Lec53] on linear re-
cursive sequences, Bell [Bel08] proved that for a suitable p-adic analytic function f and
starting point x, the iterate-computing map n 7→ fn(x) extends to a p-adic analytic function
g(n) defined for n ∈ Zp. This result, along with its generalization by Bell, Ghioca, and
Tucker in [BGT10, §3] and earlier linearization results by Herman and Yoccoz [HY83, Theo-
rem 1] and Rivera-Letelier [RL03, §3.2], has significance beyond its intrinsic interest, because
of its applications towards the dynamical Mordell–Lang conjecture [Bel06, GT09, BGT10,
BGKT12,BGH+13].

Our main result, Theorem 1, is a variant that is best possible (in a sense explained in
Remark 3). Our proof is new even over Qp, and extends immediately to more general valued
fields. It settles an open question about the case p = 3. The function g we obtain is analytic
in x as well as n.

We now set the notation for our statement. Let p be a prime number. Let K be a field
that is complete with respect to an absolute value | | satisfying |p| = 1/p. Let R be the
valuation ring in K. For f ∈ R[x] := R[x1, . . . , xd], let ‖f‖ be the supremum of the absolute
values of the coefficients of f . The Tate algebra R〈x〉 is the completion of R[x] with respect
to ‖ ‖. More concretely, R〈x〉 is the set of f =

∑
i∈Zd

≥0
fix

i ∈ R[[x]] converging on the closed
unit polydisk; convergence is equivalent to |fi| → 0 as i→∞. For f, g ∈ R〈x〉 and c ∈ R≥0,
the notation f ∈ pcR〈x〉 means ‖f‖ ≤ |p|c, and f ≡ g (mod pc) means ‖f − g‖ ≤ |p|c;
extend componentwise to f, g ∈ R〈x〉d.

Theorem 1. If f ∈ R〈x1, . . . , xd〉d satisfies f(x) ≡ x (mod pc) for some c > 1
p−1 , then there

exists g ∈ R〈x1, . . . , xd, n〉d such that g(x, n) = fn(x) in R〈x〉d for each n ∈ Z≥0.

Our proof will check directly that the Mahler series [Mah58] interpolating the sequence

x, f(x), f(f(x)), . . .

converges to an analytic function. This is the difference operator analogue of proving that a
function φ is analytic by checking that its Taylor series converges to φ.
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Proof. Since f(x) ≡ x (mod pc), we have h(f(x)) ≡ h(x) (mod pc) for any h ∈ R[x]d and
(by taking limits) also for any h ∈ R〈x〉d. In other words, the linear operator ∆ defined by

(∆h)(x) := h(f(x))− h(x)

maps R〈x〉d into pcR〈x〉d. In particular, m applications of ∆ to the identity function yields
∆mx ∈ pmcR〈x〉d. On the other hand, |m!| ≥ p−m/(p−1). Thus the Mahler series

g(x, n) :=
∑
m≥0

(
n

m

)
∆mx =

∑
m≥0

n(n− 1) · · · (n−m+ 1)
∆mx

m!

converges in R〈x, n〉d with respect to ‖ ‖. Let I be the identity operator. If n ∈ Z≥0, then

g(x, n) =
n∑

m=0

(
n

m

)
∆mx = (∆ + I)nx = fn(x). �

Remark 2. The relation g(x, n+ 1) = f(g(x, n)) in R〈x〉d holds for each n in the infinite set
Z≥0, so it is an identity in R〈x, n〉d.

Remark 3. The hypothesis on f holds for K = Qp if f(x) ≡ x (mod p) and p ≥ 3; previously
the conclusion was known only for p ≥ 5 [Bel08; BGT10, §3]. On the other hand, f(x) := −x
is a counterexample for p = 2 [Bel08, §3]. Similarly, the inequality on c in Theorem 1 is best
possible for each p: consider f(x) := ζx where ζ is a primitive pth root of unity in Cp.

Remark 4. Let m be the maximal ideal of R. Let k := R/m. If f(x) mod m = x, so that
f(x) ≡ x (mod pc) holds for some c > 0, then fp(x) ≡ x (mod pc) holds for a larger c,
and by iterating we find r ∈ Z≥0 such that Theorem 1 applies to fpr . More generally, if
f(x) mod m = Ax for some A ∈ GLd(k) of finite order, then there exists s ∈ Z>0 such that
f s satisfies the hypothesis of Theorem 1. This finite order hypothesis is automatic if K is
Qp or Cp since then k is algebraic over Fp and every element of GLd(k) is of finite order.
Cf. [BGT10, §2.2].
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