
THE SET OF NONSQUARES IN A NUMBER FIELD IS DIOPHANTINE

BJORN POONEN

Abstract. Fix a number field k. We prove that k× − k×2 is diophantine over k. This is
deduced from a theorem that for a nonconstant separable polynomial P (x) ∈ k[x], there are
at most finitely many a ∈ k× modulo squares such that there is a Brauer-Manin obstruction
to the Hasse principle for the conic bundle X given by y2 − az2 = P (x).

1. Introduction

Throughout, let k be a global field; occasionally we impose additional conditions on its
characteristic. Warning: we write kn =

∏n
i=1 k and k×n = {an : a ∈ k×}.

1.1. Diophantine sets. A subset A ⊆ kn is diophantine over k if there exists a closed
subscheme V ⊆ An+m

k such that A equals the projection of V (k) under kn+m → kn. The
complexity of the collection of diophantine sets over a field k determines the difficulty of
solving polynomial equations over k. For instance, it follows from [Mat70] that if Z is
diophantine over Q, then there is no algorithm to decide whether a multivariable polynomial
equation with rational coefficients has a solution in rational numbers. Moreover, diophantine
sets can be built up from other diophantine sets. In particular, diophantine sets over k are
closed under taking finite unions and intersections. Therefore it is of interest to gather a
library of diophantine sets.

1.2. Main result. Our main theorem is the following:

Theorem 1.1. For any number field k, the set k× − k×2 is diophantine over k.

In other words, there is an algebraic family of varieties (Vt)t∈k such that Vt has a k-point
if and only if t is not a square. This result seems to be new even in the case k = Q.

Corollary 1.2. For any number field k and for any n ∈ Z≥0, the set k×−k×2n is diophantine
over k.

Proof. Let An = k×− k×2n . We prove by induction on n that An is diophantine over k. The
base case n = 1 is Theorem 1.1. The inductive step follows from

An+1 = A1 ∪ {t2 : t ∈ An and −t ∈ An}. �
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1.3. Brauer-Manin obstruction. The main ingredient of the proof of Theorem 1.1 is the
fact the Brauer-Manin obstruction is the only obstruction to the Hasse principle for certain
Châtelet surfaces over number fields, so let us begin to explain what this means. Let Ωk be
the set of nontrivial places of k. For v ∈ Ωk, let kv be the completion of k at v. Let A be the
adèle ring of k. For a projective k-variety X, we have X(A) =

∏
v∈Ωk

X(kv); one says that

there is a Brauer-Manin obstruction to the Hasse principle for X if X(A) 6= ∅ but X(A)Br = ∅.
See [Sko01, §5.2].

1.4. Conic bundles and Châtelet surfaces. Let E be a rank-3 vector sheaf over a base
variety B. A nowhere-vanishing section s ∈ Γ(B, Sym2 E) defines a subscheme X of PE
whose fibers over B are (possibly degenerate) conics. As a special case, we may take (E , s) =
(L0 ⊕ L1 ⊕ L2, s0 + s1 + s2) where each Li is a line sheaf on B, and the si ∈ Γ(B,L⊗2

i ) ⊂
Γ(B, Sym2 E) are sections that do not simultaneously vanish on B.

We specialize further to the case where B = P1, L0 = L1 = O, L2 = O(n), s0 = 1,
s1 = −a, and s2 = −P̃ (w, x) where a ∈ k× and P̃ (w, x) ∈ Γ(P1,O(2n)) is a separable binary
form of degree 2n. Let P (x) := P̃ (1, x) ∈ k[x], so P (x) is a separable polynomial of degree
2n− 1 or 2n. We then call X the conic bundle given by

y2 − az2 = P (x).

A Châtelet surface is a conic bundle of this type with n = 2, i.e., with degP equal to 3 or 4.
See also [Poo09].

The proof of Theorem 1.1 relies on the Châtelet surface case of the following result about
families of more general conic bundles:

Theorem 1.3. Let k be a global field of characteristic not 2. Let P (x) ∈ k[x] be a noncon-
stant separable polynomial. Then there are at most finitely many classes in k×/k×2 repre-
sented by a ∈ k× such that there is a Brauer-Manin obstruction to the Hasse principle for
the conic bundle X given by y2 − az2 = P (x).

Remark 1.4. Theorem 1.3 is analogous to the classical fact that for an integral indefinite
ternary quadratic form q(x, y, z), the set of nonzero integers represented by q over Zp for
all p but not over Z fall into finitely many classes in Q×/Q×2. J.-L. Colliot-Thélène and
F. Xu explain how to interpret and prove this fact (and its generalization to arbitrary num-
ber fields) in terms of the integral Brauer-Manin obstruction: see [CTX07, §7], especially
Proposition 7.9 and the very end of §7. Our proof of Theorem 1.3 shares several ideas with
the arguments there.

1.5. Definable subsets of kv and their intersections with k. The proof of Theorem 1.1
requires one more ingredient, namely that certain subsets of k defined by local conditions
are diophantine over k. This is the content of Theorem 1.5 below, which is proved in more
generality than needed. By a k-definable subset of knv , we mean the subset of knv defined
by some first-order formula in the language of fields involving only constants from k, even
though the variables range over elements of kv.

Theorem 1.5. Let k be a number field. Let kv be a nonarchimedean completion of k. For
any k-definable subset A of knv , the intersection A ∩ kn is diophantine over k.
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1.6. Outline of paper. Section 2 shows that Theorem 1.5 is an easy consequence of known
results, namely the description of definable subsets over kv, and the diophantineness of the
valuation subring O of k defined by v. Section 3 proves Theorem 1.3 by showing that for
most twists of a given conic bundle, the local Brauer evaluation map at one place is enough
to rule out a Brauer-Manin obstruction. Finally, Section 4 puts everything together to prove
Theorem 1.1.

2. Subsets of global fields defined by local conditions

Lemma 2.1. Let m ∈ Z>0 be such that char k - m. Then k×mv ∩ k is diophantine over k.

Proof. The valuation subring O of k defined by v is diophantine over k: see the first few
paragraphs of §3 of [Rum80]. The hypothesis char k - m implies the existence of c ∈ k× such
that 1 + cO ⊂ k×mv ; fix such a c. The denseness of k× in k×v implies k×mv ∩ k = (1 + cO)k×m.
The latter is diophantine over k. �

Proof of Theorem 1.5. Call a subset of knv simple if it is of one of the following two types:
{~x ∈ knv : f(~x) = 0} or {~x ∈ knv : f(~x) ∈ k×mv } for some f ∈ k[x1, . . . , xn] and m ∈ Z>0.
It follows from the proof of [Mac76, Theorem 1] (see also [Mac76, §2] and [Den84, §2]) that
any k-definable subset A is a boolean combination of simple subsets. The complement of a
simple set of the first type is a simple set of the second type (with m = 1). The complement
of a simple set of the second type is a union of simple sets, since k×mv has finite index in k×v .
Therefore any k-definable A is a finite union of finite intersections of simple sets. Diophantine
sets in k are closed under taking finite unions and finite intersections, so it remains to show
that for every simple subset A of knv , the intersection A∩k is diophantine. If A is of the first
type, then this is trivial. If A is of the second type, then this follows from Lemma 2.1. �

3. Family of conic bundles

Given a k-varietyX and a place v of k, let Hom′(BrX,Br kv) be the set of f ∈ Hom(BrX,Br kv)

such that the composition Br k → BrX
f→ Br kv equals the map induced by the in-

clusion k ↪→ kv. The v-adic evaluation pairing BrX × X(kv) → Br kv induces a map
X(kv)→ Hom′(BrX,Br kv).

Lemma 3.1. With notation as in Theorem 1.3, there exists a finite set of places S of
k, depending on P (x) but not a, such that if v /∈ S and v(a) is odd, then X(kv) →
Hom′(BrX,Br kv) is surjective.

Proof. The function field of P1 is k(x). Let Z be the zero locus of P̃ (w, x) in P1. Let G
be the group of f ∈ k(x)× having even valuation at every closed point of P1 − Z. Choose
P1(x), . . . , Pm(x) ∈ G representing a F2-basis for the image of G in k(x)×/k(x)×2k×. We
may assume that Pm(x) = P (x). Choose S so that each Pi(x) is a ratio of polynomials whose
nonzero coefficients are S-units, and so that S contains all places above 2.

Let κ(X) be the function field of X. A well-known calculation (see [Sko01, §7.1]) shows
that the class of each quaternion algebra (a, Pi(x)) in Brκ(X) belongs to the subgroup BrX,
and that the cokernel of Br k → BrX is an F2-vector space with the classes of (a, Pi(x)) for
i ≤ m− 1 as a basis.
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Suppose that v /∈ S and v(a) is odd. Let f ∈ Hom′(BrX,Br kv). The homomorphism f is
determined by where it sends (a, Pi(x)) for i ≤ m− 1. We need to find R ∈ X(kv) mapping
to f .

Let Ov be the valuation ring in kv, and let Fv be its residue field. For i ≤ m− 1, choose
ci ∈ O×v whose image in F×v is a square or not, according to whether f sends (a, Pi(x)) to 0
or 1/2 in Q/Z ' Br kv. Since v(a) is odd, we have (a, ci) = f((a, Pi(x))) in Br kv.

View P1 − Z as a smooth Ov-scheme, and let Y be the finite étale cover of P1 − Z whose
function field is obtained by adjoining

√
ciPi(x) for i ≤ m − 1 and also

√
P (x). Then the

generic fiber Ykv := Y ×Ov kv is geometrically integral. Assuming that S was chosen to
include all v with small Fv, we may assume that v /∈ S implies that Y has a (smooth) Fv-
point, which by Hensel’s lemma lifts to a kv-point Q. There is a morphism from Ykv to the
smooth projective model of y2 = P (x) over kv, which in turn embeds as a closed subscheme
of Xkv , as the locus where z = 0. Let R be the image of Q under Y (kv) → X(kv), and let
α = x(R) ∈ kv. Evaluating (a, Pi(x)) on R yields (a, Pi(α)), which is isomorphic to (a, ci)
since ciPi(α) ∈ k×2

v . Thus R maps to f , as required. �

Lemma 3.2. Let X be a projective k-variety. If there exists a place v of k such that the
map X(kv)→ Hom′(BrX,Br kv) is surjective, then there is no Brauer-Manin obstruction to
the Hasse principle for X.

Proof. If X(A) = ∅, then the Hasse principle holds. Otherwise, pick Q = (Qw) ∈ X(A),
where Qw ∈ X(kw) for each w. For A ∈ BrX, let evA : X(L)→ BrL be the evaluation map
for any field extension L of k. Let invw : Br kw → Q/Z be the usual inclusion map. Define

η : BrX → Q/Z ' Br kv

A 7→ −
∑
w 6=v

invw evA(Qw).

By reciprocity, η ∈ Hom′(BrX,Br kv). The surjectivity hypothesis yields R ∈ X(kv) giving
rise to η. Define Q′ = (Q′w) ∈ X(A) by Q′w := Qw for w 6= v and Q′v := R. Then
Q′ ∈ X(A)Br, so there is no Brauer-Manin obstruction. �

Proof of Theorem 1.3. Let S be as in Lemma 3.1. Enlarge S to assume that PicOk,S is
trivial. Then the set of a ∈ k× such that v(a) is even for all v /∈ S has the same image in
k×/k×2 as the finitely generated group O×k,S, so the image is finite.

Suppose that a ∈ k× has image in k×/k×2 lying outside this finite set. Then we can fix
v /∈ S such that v(a) is odd. Let X be the corresponding surface. Combining Lemmas 3.1
and 3.2 shows that there is no Brauer-Manin obstruction to the Hasse principle for X. �

4. The set of nonsquares is diophantine

Proof of Theorem 1.1. For each place v of k, define Sv := k× ∩ k×2
v and Nv := k× − Sv. By

Theorem 1.5, the sets Sv and Nv are diophantine over k.
By [Poo09, Proposition 4.1], there is a Châtelet surface

X1 : y2 − bz2 = P (x)

over k, with P (x) a product of two irreducible quadratic polynomials, such that there is a
Brauer-Manin obstruction to the Hasse principle for X1. For t ∈ k×, let Xt be the (smooth
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projective) Châtelet surface associated to the affine surface

Ut : y
2 − tbz2 = P (x).

We claim that the following are equivalent for t ∈ k×:

(i) Ut has a k-point.
(ii) Xt has a k-point.

(iii) Xt has a kv-point for every v and there is no Brauer-Manin obstruction to the Hasse
principle for Xt.

The implications (i) =⇒ (ii) =⇒ (iii) are trivial. The implication (iii) =⇒ (ii) follows
from [CTCS80, Theorem B]. Finally, in [CTCS80], the reduction of Theorem B to Theo-
rem A combined with Remarque 7.4 shows that (ii) implies that Xt is k-unirational, which
implies (i).

Let A be the (diophantine) set of t ∈ k× such that (i) holds. The isomorphism type of Ut

depends only on the image of t in k×/k×2, so A is a union of cosets of k×2 in k×. We will
compute A by using (iii).

The affine curve y2 = P (x) is geometrically integral so it has a kv-point for all places v
outside a finite set F . So for any t ∈ k×, the variety Xt has a kv-point for all v /∈ F . Since
X1 has a kv-point for all v and in particular for v ∈ F , if t ∈

⋂
v∈F Sv, then Xt has a kv-point

for all v.
Let B := A ∪

⋃
v∈F Nv. If t ∈ k× − B, then Xt has a kv-point for all v, and there is a

Brauer-Manin obstruction to the Hasse principle for Xt. By Theorem 1.3, k× − B consists
of finitely many cosets of k×2, one of which is k×2 itself. Each coset of k×2 is diophantine
over k, so taking the union of B with all the finitely many missing cosets except k×2 shows
that k× − k×2 is diophantine. �
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