NERON-TATE PROJECTION OF ALGEBRAIC POINTS
BJORN POONEN

ABSTRACT. Let X be a geometrically irreducible closed subvariety of an abelian variety A
over a number field k£ such that X generates A. Let V be a finite-dimensional subspace
of A(k) ® R, and let 7 : A(k) — V be the orthogonal projection relative to a Néron-Tate
pairing (, ) : A(k) x A(k) — R. For V = A(k) ® R, we prove that 7(X(k)) = A(k) ® Q,

and moreover, there exist ¢,¢’ > 0 such that for any a € A(k) ® Q, {z € X(k) : n(z) =
a and h(z) < ch(a) + ¢ } is Zariski dense in X.

1. INTRODUCTION

Let k be a number field, and let k be its algebraic closure. Let A be an abelian variety
over k, and let X be a geometrically irreducible closed subvariety of A. Several results
describe the location of the rational or algebraic points of X within A. For example, the

“Mordell-Lang conjecture” states that if I' is a finite rank subgroup of A(k) and if X is not
a translate of an abelian subvariety, then X (k) N T is not Zariski dense in X. This version
of the statement was proved by Hindry [Hi], after earlier work of Faltings, Raynaud, Vojta
and others. A generalization to semiabelian varieties was proved by McQuillan [McQ).

If one defines the Néron-Tate canonical height h : A(k) — R associated to a symmetric
ample line sheaf on A, one can also state the “generalized Bogomolov conjecture:” If X
is not a translate of an abelian subvariety by a torsion point, there exists ¢ > 0 such that
{z € X(k): h(x) < €} is not Zariski dense in X. The conjecture was proved by Zhang [Zh1],
using ideas from an important special case (the original Bogomolov conjecture) proved by
Ullmo [Ul] using an equidistribution theorem of Szpiro, Ullmo, and Zhang [SUZ|. There is
also the combined “Mordell-Lang plus Bogomolov” result of [Po] and the further distribution
result of [Zh2]. Moriwaki [Mo],[Mo2] has proved generalizations of most of these statements
with £k replaced by a finitely generated field extension of Q.

Define a Néron-Tate pairing for A to be a bilinear form (, ) : A(k) x A(k) — R such
that (x,z) = h(x) for a height function h as above. We may consider ( , ) also as an inner
product on the vector space A(k)g := A(k) ® R, which is infinite dimensional if dim A > 0.
For any field extension L of k, define also A(L)q := A(L) ® Q and A(L)r := A(L) ® R.

In this article, we study the image of X (k) under the orthogonal projection 7 : A(k) — V
where V is a finite-dimensional subspace of A(k)r. After possibly enlarging k, we have
V C A(k)g, and for our purposes, we lose no information in enlarging V' to A(k)r. Also,
by translating X to assume 0 € X (enlarging k if necessary), and then replacing A by the
image of the Albanese homomorphism Alb X — A, we may reduce to the case in which X

generates A, i.e., in which Alb X — A is surjective, or equivalently, the differences P — @)
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with P,@Q € X (k) generate the group A(k). We make these hypotheses, to simplify the
statement of our result.

Theorem 1. Let X be a geometrically irreducible closed subvariety of an abelian variety
A over a number field k. Assume that X generates A. Let w : A(k) — A(k)r denote the
orthogonal projection relative to a Néron-Tate pairing for A. Then

(a) m(X(k)) = A(k)q.

(b) There exist ¢, > 0 such that for any a € A(k)q,

{x € X(k):n(z) =a and h(x) < ch(a) + '}
1s Zariski dense in X.

Almost in contradiction with Theorem 1 we have the following, which is a formal consequence
of the Mordell-Lang conjecture.

Theorem 2. Let A be an abelian variety over Q with dim A > 0. Then there exists a

nonzero linear functional ™ : A(Q)q — Q such that for every geometrically irreducible closed

subvariety X C A not containing a translate of a positive-dimensional abelian subvariety of
A

)

(a) 7(X(Q)) is a discrete subset of Q in the archimedean topology.

(b) {z € X(Q) : mw(x) =a} is finite for every a € Q.

There is no contradiction, however, since ker 7 in Theorem 2 need not be the orthogonal

complement of a finite-dimensional subspace of A(Q)q.

Remarks.

(1) Borrowing terminology from the field of medical imaging, Theorem 1 implies that X
cannot be recovered from its Néron-Tate CAT scan!

(2) Analogues of Theorems 1 and 2 where the number fields are replaced by any field
finitely generated over Q can be formulated using the height functions defined by
Moriwaki [Mo],[Mo2], and their proofs are the same as in the number field case.

2. PROOFS

Lemma 3. Let X be a geometrically irreducible projective variety over an infinite field k,
with dim X > 1. Then there exists a geometrically irreducible closed curve Y C X such
that the induced morphism AlbY — Alb X is surjective. Moreover, the union of such Y is
Zariski dense in X.

Proof. Let A = Alb X. Choose a prime ¢ not equal to the characteristic of k. Let A[¢] denote

the kernel of multiplication by ¢ on A. For each P € A[(](k), choose a zero-cycle of degree
zero on Xy, representing P. Let S C X (k) be the set of points appearing in these zero-cycles
together with one extra point Q € X (k). Let S be the image of " in X.

The blow-up « : X’ — X at S is projective; embed X’ in some PY. Bertini’s theorem [Da,
p. 249] gives a dense open subset U of the Grassmannian of linear subspaces L C P of
codimension dim X’ — 1 such that any point of U(k) corresponds to L C PV for which
X' N L is geometrically irreducible. Choose such an L, and let Y’ = X’ N L. For dimension
reasons, Y’ meets every exceptional fiber of a. Let Y = «a(Y”). Then Y is a geometrically
irreducible curve passing through the points of S, so the image of AlbY — A contains A[/].
The only abelian subvariety of A containing all £29™4 points of order dividing ¢ is A itself,
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so AlbY — A = Alb X is surjective. (This last trick is due to O. Gabber [Ka].) The final

statement follows, since Y also passes through @ € X (k), which was arbitrary. 0

Remark. Tt follows from [Ka] or alternatively [Po2] that the conclusion of Lemma 3 holds
even if k is a finite field.

Lemma 4. Let A, k, (, ), and w be as in Theorem 1. Then m(A(k)) C A(k)q.

Proof. Given P € A(k), let L be a Galois extension of k such that P € A(L). Any o €
Gal(L/k) acts as an isometry of A(L)g with (, ) and preserves A(k)gr, so 7(°P) = ©(P).
Thus

w(P) = T Z P | € A(k)q.
[L : k] oeGal(L/k)

O

If X is a curve over a perfect field k and n > 1, denote by X the quotient of X™ by
the action of the symmetric group S, permuting the coordinates. Points in X (")(_k:) will be
identified with Gj-stable unordered n-tuples of points in X (k), where Gy := Gal(k/k).

Lemma 5. Let X be a smooth projective geometrically integral curve of genus g > 1 over
F,. Let U be a dense open subset of X Then there exist infinitely many u € U(F,) such
that Gal(F,/F,(u)) acts transitively on the g-tuple corresponding to w.

Proof. For F, O F,, let 0 : X — X denote the r-th power Frobenius morphism. The set
Sy = X(Fpg) — Ud|g7d<gX(Frd) has size 19 + o(r9) as r — oo through powers of ¢, by the
Weil bounds. The map S, — X9 (F,) sending z to the g-tuple {z, 2°,... ,:E"g_l} (on which
Gal(F,/F,) acts transitively) is a g-to-one map, so the image has 79/g + o(r9) points as
r — 0o. By the Weil bounds again, at most O(r9~!) of these lie outside U. Hence there
remain 79 /g + o(r?) points in U(F,) corresponding to desired g-tuples. Finally, 79/g + o(r9)
is unbounded as r — oo. U

Lemma 6. Let f : X — X' be a finite morphism between quasiprojective varieties over a
number field k, and let h and h' denote height functions on X (k) and X'(k), respectively,
defined (up to O(1)) using embeddings of X and X' in projective spaces. Then there exist

constants ¢y, ca > 0 such that h(z) < c1h'(f(x)) + co for all x € X (k).

Proof. If we change the embedding of X, then i and the new height h are bounded by
linear polynomials in each other, since the isomorphisms between the two copies of X are
given locally by rational functions. Hence the question is independent of embeddings. In
particular, we may reduce to the case where X = Spec B is embedded in A™ and X’ = Spec A
is embedded in A" for some m,n > 0. By finiteness, each of the m coordinate functions ¢
on X satisfies a monic polynomial

(1) tr+at" -+ a, =0

with a; € A. For x € X(k), (1) shows that the height of #(x) is bounded by a linear
polynomial in the heights of the a;(f(z)), which in turn are bounded by a linear polynomial
in A'(f(x)). O
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Proof of Theorem 1. By Lemma 4, 7(X(k)) C A(k)q, so it remains to prove that for any
a€ A(k)g, {r € X(k): n(x) = a} is Zariski dense in X.

Lemma 3 lets us reduce to the case where X is a geometrically integral curve. (I learned
this method for reducing to curves from Shou-Wu Zhang.) We may enlarge k in order to
assume that X (k) contains a smooth point Py of X. Translating X and a by —P,, we may
assume that Py = 0 in A. Let J be the Albanese (Jacobian) variety of the normalization X
of X. Then we have a commutative diagram

X 27

L

X — A
where ¢ is a surjection and j is the Abel map sending the point Py € X (k) above P, to
0 € J(k). Choose a quotient abelian variety B of J such that the induced homomorphism

J — A x B is an isogeny. Define (, ); and 7 for J by tensoring the pullbacks of symmetric
ample line sheaves on A and B. Then we have isomorphisms

J(k)q = A(k)q ® B(k)q,
J(k)r = A(k)r ® B(k)g,

respecting the pairings. If we find a Zariski dense set of points S in X (k) with 7;(S) =
{(a,0)} under the isomorphism above, then «(S) is a Zariski dense set of points in X (k)
with 7m(a(5)) = {a}, and the heights of the latter points are bounded by a linear polynomial
in the heights of the former points, as is true for images under any morphism. Hence from
now on, we may assume that X is a geometrically integral smooth projective curve of genus
g > 1 embedded in its Jacobian A by the Albanese map determined by Py € X (k).

Since A(k) is divisible, a € A(k)q is represented by a point in A(k), which we again call
a. Enlarge k to assume that a € A(k). (This changes m as well, but it only makes the
problem harder.) Choose a prime p of good reduction for A, and let F, denote the residue
field. Extend p to a place of k. Let X, @ € A(F,), etc. denote the mod p reductions of
X, a € A(k), etc. Let ¢ denote the birational morphism X9 — A sending {1, .. , g} to
Ty + -+ x,, using the embedding X < A. Let U and V denote dense open subsets of X
and A, respectively, such that ¢ induces an isomorphism U — V. Let @ € U(F,) be one
of the infinitely many points given by Lemma 5, let b = ¢(u) — ga € A(Fq), and lift b to a
torsion point b € A(k).

By choice of U, we can write ga +b = z, + -+ + z, for x; € X (k), which are uniquely
determined up to permutation. Moreover, Gal(k/k(b)) acts transitively on the z;, since the
choice of @ guarantees Galois-transitivity on the reductions. Hence m(x;) = m(z;) for all 7,

and
1Y
:—Z m(ga +b) = a,
93

since m(a) = a and 7w(b) = 0. There were infinitely many choices for @, hence infinitely
many distinct possibilities for b, for b, and for z;. In particular, the x; with 7(z;) = a
are Zariski dense in X. Finally, let E denote the largest open subset of A above which the
summing morphism s : X9 — A is finite, i.e., above which X9 — A is an isomorphism.
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Lemma 6 applied to s '(F) — FE shows that h(z1) is bounded by a linear polynomial in
h(ga +b) = g*h(a). O

Proof of Theorem 2. Let X1, X5,... be a complete list of the countably many possibilities
for X. Choose a flag of subspaces

0=WWcWiclWcC...

of A(Q)q such that dimV,, = n and |JV,, = A(Q)q. Let S, (X;) denote the set of x € X;(Q)

whose image in A(Q)q lies in V,,. The Mordell-Lang conjecture guarantees that S, (Xj;) is
finite for each n > 0 and j > 1. Starting with the zero map my : Vo — Q, by induction on
n > 1, we can define Q-linear maps m, : V,, — Q such that m,|y,_, = m,—; and |m,(z)| > n
for any z in the finite set {J;,, (Sn(X;) — Su-1(X;))-

The 7, glue to give 7 : A(Q)q — Q. For each j,n > 1, {z € X;(Q) : n(z) € (—n,n)} is

contained in S, _1(X;), so it is finite. This implies, for each j > 1, that 7(X;(Q)) is discrete

and that {z € X;(Q) : m(x) = a} is finite for each a € Q. O
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