# NÉRON-TATE PROJECTION OF ALGEBRAIC POINTS

### BJORN POONEN

ABSTRACT. Let X be a geometrically irreducible closed subvariety of an abelian variety A over a number field k such that X generates A. Let V be a finite-dimensional subspace of  $A(\overline{k}) \otimes \mathbf{R}$ , and let  $\pi : A(\overline{k}) \to V$  be the orthogonal projection relative to a Néron-Tate pairing  $\langle \ , \ \rangle : A(\overline{k}) \times A(\overline{k}) \to \mathbf{R}$ . For  $V = A(k) \otimes \mathbf{R}$ , we prove that  $\pi(X(\overline{k})) = A(k) \otimes \mathbf{Q}$ , and moreover, there exist c, c' > 0 such that for any  $a \in A(k) \otimes \mathbf{Q}$ ,  $\{x \in X(\overline{k}) : \pi(x) = a$  and  $h(x) < ch(a) + c' \}$  is Zariski dense in X.

## 1. Introduction

Let k be a number field, and let  $\overline{k}$  be its algebraic closure. Let A be an abelian variety over k, and let X be a geometrically irreducible closed subvariety of A. Several results describe the location of the rational or algebraic points of X within A. For example, the "Mordell-Lang conjecture" states that if  $\Gamma$  is a finite rank subgroup of  $A(\overline{k})$  and if X is not a translate of an abelian subvariety, then  $X(\overline{k}) \cap \Gamma$  is not Zariski dense in X. This version of the statement was proved by Hindry [Hi], after earlier work of Faltings, Raynaud, Vojta and others. A generalization to semiabelian varieties was proved by McQuillan [McQ].

If one defines the Néron-Tate canonical height  $h:A(k)\to \mathbf{R}_{\geq 0}$  associated to a symmetric ample line sheaf on A, one can also state the "generalized Bogomolov conjecture:" If X is not a translate of an abelian subvariety by a torsion point, there exists  $\epsilon>0$  such that  $\{x\in X(\overline{k}):h(x)<\epsilon\}$  is not Zariski dense in X. The conjecture was proved by Zhang [Zh1], using ideas from an important special case (the original Bogomolov conjecture) proved by Ullmo [Ul] using an equidistribution theorem of Szpiro, Ullmo, and Zhang [SUZ]. There is also the combined "Mordell-Lang plus Bogomolov" result of [Po] and the further distribution result of [Zh2]. Moriwaki [Mo],[Mo2] has proved generalizations of most of these statements with k replaced by a finitely generated field extension of  $\mathbf{Q}$ .

Define a Néron-Tate pairing for A to be a bilinear form  $\langle \ , \ \rangle : A(\overline{k}) \times A(\overline{k}) \to \mathbf{R}$  such that  $\langle x, x \rangle = h(x)$  for a height function h as above. We may consider  $\langle \ , \ \rangle$  also as an inner product on the vector space  $A(\overline{k})_{\mathbf{R}} := A(\overline{k}) \otimes \mathbf{R}$ , which is infinite dimensional if dim A > 0. For any field extension L of k, define also  $A(L)_{\mathbf{Q}} := A(L) \otimes \mathbf{Q}$  and  $A(L)_{\mathbf{R}} := A(L) \otimes \mathbf{R}$ .

In this article, we study the image of  $X(\overline{k})$  under the orthogonal projection  $\pi: A(\overline{k}) \to V$  where V is a finite-dimensional subspace of  $A(\overline{k})_{\mathbf{R}}$ . After possibly enlarging k, we have  $V \subseteq A(k)_{\mathbf{R}}$ , and for our purposes, we lose no information in enlarging V to  $A(k)_{\mathbf{R}}$ . Also, by translating X to assume  $0 \in X$  (enlarging k if necessary), and then replacing K by the image of the Albanese homomorphism K also, we may reduce to the case in which K generates K, i.e., in which K is surjective, or equivalently, the differences K is K.

Date: February 21, 2000.

This research was supported by NSF grant DMS-9801104, a Sloan Fellowship, and a Packard Fellowship. This article has been published in *Internat. Math. Res. Notices* **2001**, no. 9, 435–440.

with  $P,Q \in X(\overline{k})$  generate the group  $A(\overline{k})$ . We make these hypotheses, to simplify the statement of our result.

**Theorem 1.** Let X be a geometrically irreducible closed subvariety of an abelian variety A over a number field k. Assume that X generates A. Let  $\pi: A(\overline{k}) \to A(k)_{\mathbf{R}}$  denote the orthogonal projection relative to a Néron-Tate pairing for A. Then

- (a)  $\pi(X(\overline{k})) = A(k)_{\mathbf{Q}}$ .
- (b) There exist c, c' > 0 such that for any  $a \in A(k)_{\mathbf{Q}}$ ,

$$\{ x \in X(\overline{k}) : \pi(x) = a \text{ and } h(x) < ch(a) + c' \}$$

is Zariski dense in X.

Almost in contradiction with Theorem 1 we have the following, which is a formal consequence of the Mordell-Lang conjecture.

**Theorem 2.** Let A be an abelian variety over  $\overline{\mathbf{Q}}$  with  $\dim A > 0$ . Then there exists a nonzero linear functional  $\pi : A(\overline{\mathbf{Q}})_{\mathbf{Q}} \to \mathbf{Q}$  such that for every geometrically irreducible closed subvariety  $X \subseteq A$  not containing a translate of a positive-dimensional abelian subvariety of A,

- (a)  $\pi(X(\overline{\mathbf{Q}}))$  is a discrete subset of  $\mathbf{Q}$  in the archimedean topology.
- (b)  $\{x \in X(\overline{\mathbf{Q}}) : \pi(x) = a\}$  is finite for every  $a \in \mathbf{Q}$ .

There is no contradiction, however, since  $\ker \pi$  in Theorem 2 need not be the orthogonal complement of a finite-dimensional subspace of  $A(\overline{\mathbf{Q}})_{\mathbf{Q}}$ .

Remarks.

- (1) Borrowing terminology from the field of medical imaging, Theorem 1 implies that X cannot be recovered from its Néron-Tate CAT scan!
- (2) Analogues of Theorems 1 and 2 where the number fields are replaced by any field finitely generated over **Q** can be formulated using the height functions defined by Moriwaki [Mo], [Mo2], and their proofs are the same as in the number field case.

#### 2. Proofs

**Lemma 3.** Let X be a geometrically irreducible projective variety over an infinite field k, with dim  $X \ge 1$ . Then there exists a geometrically irreducible closed curve  $Y \subseteq X$  such that the induced morphism  $Alb Y \to Alb X$  is surjective. Moreover, the union of such Y is Zariski dense in X.

*Proof.* Let  $A = \operatorname{Alb} X$ . Choose a prime  $\ell$  not equal to the characteristic of k. Let  $A[\ell]$  denote the kernel of multiplication by  $\ell$  on A. For each  $P \in A[\ell](\overline{k})$ , choose a zero-cycle of degree zero on  $X_{\overline{k}}$  representing P. Let  $S' \subseteq X(\overline{k})$  be the set of points appearing in these zero-cycles together with one extra point  $Q \in X(\overline{k})$ . Let S be the image of S' in X.

The blow-up  $\alpha: X' \to X$  at S is projective; embed X' in some  $\mathbf{P}^N$ . Bertini's theorem [Da, p. 249] gives a dense open subset U of the Grassmannian of linear subspaces  $L \subseteq \mathbf{P}^N$  of codimension  $\dim X' - 1$  such that any point of U(k) corresponds to  $L \subseteq \mathbf{P}^N$  for which  $X' \cap L$  is geometrically irreducible. Choose such an L, and let  $Y' = X' \cap L$ . For dimension reasons, Y' meets every exceptional fiber of  $\alpha$ . Let  $Y = \alpha(Y')$ . Then Y is a geometrically irreducible curve passing through the points of S', so the image of A contains  $A[\ell]$ . The only abelian subvariety of A containing all  $\ell^{2\dim A}$  points of order dividing  $\ell$  is A itself,

so Alb  $Y \to A = \text{Alb } X$  is surjective. (This last trick is due to O. Gabber [Ka].) The final statement follows, since Y also passes through  $Q \in X(\overline{k})$ , which was arbitrary.

Remark. It follows from [Ka] or alternatively [Po2] that the conclusion of Lemma 3 holds even if k is a finite field.

**Lemma 4.** Let  $A, k, \langle , \rangle$ , and  $\pi$  be as in Theorem 1. Then  $\pi(A(\overline{k})) \subseteq A(k)_{\mathbb{Q}}$ .

*Proof.* Given  $P \in A(\overline{k})$ , let L be a Galois extension of k such that  $P \in A(L)$ . Any  $\sigma \in \operatorname{Gal}(L/k)$  acts as an isometry of  $A(L)_{\mathbf{R}}$  with  $\langle \ , \ \rangle$  and preserves  $A(k)_{\mathbf{R}}$ , so  $\pi({}^{\sigma}P) = \pi(P)$ . Thus

$$\pi(P) = \frac{1}{[L:k]} \pi \left( \sum_{\sigma \in Gal(L/k)} {}^{\sigma}P \right) \in A(k)_{\mathbf{Q}}.$$

If X is a curve over a perfect field k and  $n \ge 1$ , denote by  $X^{(n)}$  the quotient of  $X^n$  by the action of the symmetric group  $S_n$  permuting the coordinates. Points in  $X^{(n)}(k)$  will be identified with  $G_k$ -stable unordered n-tuples of points in  $X(\overline{k})$ , where  $G_k := \operatorname{Gal}(\overline{k}/k)$ .

**Lemma 5.** Let X be a smooth projective geometrically integral curve of genus  $g \geq 1$  over  $\mathbf{F}_q$ . Let U be a dense open subset of  $X^{(g)}$ . Then there exist infinitely many  $u \in U(\overline{\mathbf{F}}_q)$  such that  $\operatorname{Gal}(\overline{\mathbf{F}}_q/\mathbf{F}_q(u))$  acts transitively on the g-tuple corresponding to u.

Proof. For  $\mathbf{F}_r \supseteq \mathbf{F}_q$ , let  $\sigma: X \to X$  denote the r-th power Frobenius morphism. The set  $S_r := X(\mathbf{F}_{r^g}) - \bigcup_{d|g,d < g} X(\mathbf{F}_{r^d})$  has size  $r^g + o(r^g)$  as  $r \to \infty$  through powers of q, by the Weil bounds. The map  $S_r \to X^{(g)}(\mathbf{F}_r)$  sending x to the g-tuple  $\{x, x^{\sigma}, \dots, x^{\sigma^{g-1}}\}$  (on which  $\mathrm{Gal}(\overline{\mathbf{F}}_q/\mathbf{F}_r)$  acts transitively) is a g-to-one map, so the image has  $r^g/g + o(r^g)$  points as  $r \to \infty$ . By the Weil bounds again, at most  $O(r^{g-1})$  of these lie outside U. Hence there remain  $r^g/g + o(r^g)$  points in  $U(\mathbf{F}_r)$  corresponding to desired g-tuples. Finally,  $r^g/g + o(r^g)$  is unbounded as  $r \to \infty$ .

**Lemma 6.** Let  $f: X \to X'$  be a finite morphism between quasiprojective varieties over a number field k, and let h and h' denote height functions on  $X(\overline{k})$  and  $X'(\overline{k})$ , respectively, defined (up to O(1)) using embeddings of X and X' in projective spaces. Then there exist constants  $c_1, c_2 > 0$  such that  $h(x) \le c_1 h'(f(x)) + c_2$  for all  $x \in X(\overline{k})$ .

*Proof.* If we change the embedding of X, then h and the new height  $\tilde{h}$  are bounded by linear polynomials in each other, since the isomorphisms between the two copies of X are given locally by rational functions. Hence the question is independent of embeddings. In particular, we may reduce to the case where  $X = \operatorname{Spec} B$  is embedded in  $\mathbf{A}^m$  and  $X' = \operatorname{Spec} A$  is embedded in  $\mathbf{A}^n$  for some  $m, n \geq 0$ . By finiteness, each of the m coordinate functions t on X satisfies a monic polynomial

$$(1) t^r + a_1 t^{r-1} + \dots + a_r = 0$$

with  $a_i \in A$ . For  $x \in X(\overline{k})$ , (1) shows that the height of t(x) is bounded by a linear polynomial in the heights of the  $a_i(f(x))$ , which in turn are bounded by a linear polynomial in h'(f(x)).

Proof of Theorem 1. By Lemma 4,  $\pi(X(\overline{k})) \subseteq A(k)_{\mathbf{Q}}$ , so it remains to prove that for any  $a \in A(k)_{\mathbf{Q}}$ ,  $\{x \in X(\overline{k}) : \pi(x) = a\}$  is Zariski dense in X.

Lemma 3 lets us reduce to the case where X is a geometrically integral curve. (I learned this method for reducing to curves from Shou-Wu Zhang.) We may enlarge k in order to assume that X(k) contains a smooth point  $P_0$  of X. Translating X and a by  $-P_0$ , we may assume that  $P_0 = 0$  in A. Let J be the Albanese (Jacobian) variety of the normalization  $\tilde{X}$  of X. Then we have a commutative diagram

where  $\phi$  is a surjection and j is the Abel map sending the point  $\tilde{P}_0 \in \tilde{X}(k)$  above  $P_0$  to  $0 \in J(k)$ . Choose a quotient abelian variety B of J such that the induced homomorphism  $J \to A \times B$  is an isogeny. Define  $\langle \ , \ \rangle_J$  and  $\pi_J$  for J by tensoring the pullbacks of symmetric ample line sheaves on A and B. Then we have isomorphisms

$$J(\overline{k})_{\mathbf{Q}} \cong A(\overline{k})_{\mathbf{Q}} \oplus B(\overline{k})_{\mathbf{Q}},$$
  
$$J(\overline{k})_{\mathbf{R}} \cong A(\overline{k})_{\mathbf{R}} \oplus B(\overline{k})_{\mathbf{R}},$$

respecting the pairings. If we find a Zariski dense set of points S in  $\tilde{X}(\overline{k})$  with  $\pi_J(S) = \{(a,0)\}$  under the isomorphism above, then  $\alpha(S)$  is a Zariski dense set of points in  $X(\overline{k})$  with  $\pi(\alpha(S)) = \{a\}$ , and the heights of the latter points are bounded by a linear polynomial in the heights of the former points, as is true for images under any morphism. Hence from now on, we may assume that X is a geometrically integral smooth projective curve of genus  $g \geq 1$  embedded in its Jacobian A by the Albanese map determined by  $P_0 \in X(k)$ .

Since  $A(\overline{k})$  is divisible,  $a \in A(k)_{\mathbf{Q}}$  is represented by a point in  $A(\overline{k})$ , which we again call a. Enlarge k to assume that  $a \in A(k)$ . (This changes  $\pi$  as well, but it only makes the problem harder.) Choose a prime  $\mathfrak{p}$  of good reduction for A, and let  $\mathbf{F}_q$  denote the residue field. Extend  $\mathfrak{p}$  to a place of  $\overline{k}$ . Let  $\overline{X}$ ,  $\overline{a} \in \overline{A}(\mathbf{F}_q)$ , etc. denote the mod  $\mathfrak{p}$  reductions of X,  $a \in A(k)$ , etc. Let  $\phi$  denote the birational morphism  $\overline{X}^{(g)} \to \overline{A}$  sending  $\{x_1, \ldots, x_g\}$  to  $x_1 + \cdots + x_g$ , using the embedding  $\overline{X} \hookrightarrow \overline{A}$ . Let U and V denote dense open subsets of  $\overline{X}^{(g)}$  and  $\overline{A}$ , respectively, such that  $\phi$  induces an isomorphism  $U \to V$ . Let  $\overline{u} \in U(\overline{\mathbf{F}}_q)$  be one of the infinitely many points given by Lemma 5, let  $\overline{b} = \phi(\overline{u}) - g\overline{a} \in A(\overline{\mathbf{F}}_q)$ , and lift  $\overline{b}$  to a torsion point  $b \in A(\overline{k})$ .

By choice of U, we can write  $ga + b = x_1 + \cdots + x_g$  for  $x_i \in X(\overline{k})$ , which are uniquely determined up to permutation. Moreover,  $\operatorname{Gal}(\overline{k}/k(b))$  acts transitively on the  $x_i$ , since the choice of  $\overline{u}$  guarantees Galois-transitivity on the reductions. Hence  $\pi(x_i) = \pi(x_1)$  for all i, and

$$\pi(x_1) = \frac{1}{g} \sum_{i=1}^{g} \pi(x_i) = \frac{1}{g} \pi(ga + b) = a,$$

since  $\pi(a) = a$  and  $\pi(b) = 0$ . There were infinitely many choices for  $\bar{u}$ , hence infinitely many distinct possibilities for  $\bar{b}$ , for b, and for  $x_1$ . In particular, the  $x_1$  with  $\pi(x_1) = a$  are Zariski dense in X. Finally, let E denote the largest open subset of A above which the summing morphism  $s: X^g \to A$  is finite, i.e., above which  $X^{(g)} \to A$  is an isomorphism.

Lemma 6 applied to  $s^{-1}(E) \to E$  shows that  $h(x_1)$  is bounded by a linear polynomial in  $h(ga + b) = g^2 h(a)$ .

Proof of Theorem 2. Let  $X_1, X_2, \ldots$  be a complete list of the countably many possibilities for X. Choose a flag of subspaces

$$0 = V_0 \subset V_1 \subset V_2 \subset \dots$$

of  $A(\overline{\mathbf{Q}})_{\mathbf{Q}}$  such that dim  $V_n = n$  and  $\bigcup V_n = A(\overline{\mathbf{Q}})_{\mathbf{Q}}$ . Let  $S_n(X_j)$  denote the set of  $x \in X_j(\overline{\mathbf{Q}})$  whose image in  $A(\overline{\mathbf{Q}})_{\mathbf{Q}}$  lies in  $V_n$ . The Mordell-Lang conjecture guarantees that  $S_n(X_j)$  is finite for each  $n \geq 0$  and  $j \geq 1$ . Starting with the zero map  $\pi_0 : V_0 \to \mathbf{Q}$ , by induction on  $n \geq 1$ , we can define  $\mathbf{Q}$ -linear maps  $\pi_n : V_n \to \mathbf{Q}$  such that  $\pi_n|_{V_{n-1}} = \pi_{n-1}$  and  $|\pi_n(x)| \geq n$  for any x in the finite set  $\bigcup_{j \leq n} (S_n(X_j) - S_{n-1}(X_j))$ .

The  $\pi_n$  glue to give  $\pi: A(\overline{\mathbf{Q}})_{\mathbf{Q}} \to \mathbf{Q}$ . For each  $j, n \geq 1$ ,  $\{x \in X_j(\overline{\mathbf{Q}}) : \pi(x) \in (-n, n)\}$  is contained in  $S_{n-1}(X_j)$ , so it is finite. This implies, for each  $j \geq 1$ , that  $\pi(X_j(\overline{\mathbf{Q}}))$  is discrete and that  $\{x \in X_j(\overline{\mathbf{Q}}) : \pi(x) = a\}$  is finite for each  $a \in \mathbf{Q}$ .

### ACKNOWLEDGEMENTS

I thank Thomas Scanlon for a brief conversation which led to an improvement of my original Theorem 2, and especially Shou-Wu Zhang for several discussions on related questions in Néron-Tate geometry.

## References

- [Da] Danilov, V. I., Algebraic varieties and schemes, in: *Algebraic geometry I*, edited by I. R. Shafarevich, Encyclopaedia of Mathematical Sciences **23**, Springer-Verlag, Berlin, 1994.
- [Hi] HINDRY, M., Autour d'une conjecture de Serge Lang, Invent. Math. 94 (1988), no. 3, 575–603.
- [Ka] Katz, N., Space filling curves over finite fields, Math. Res. Lett. 6 (1999), no. 5-6, 613-624.
- [McQ] McQuillan, M., Division points on semi-abelian varieties, Invent. Math. 120 (1995), no. 1, 143–159.
- [Mo] Moriwaki, A., Arithmetic height functions over finitely generated fields, *Invent. Math.* 140 (2000), 101–142.
- [Mo2] MORIWAKI, A., A generalization of conjectures of Bogomolov and Lang over finitely generated fields, to appear in *Duke Math. J.*, preprint available at http://arXiv.org/abs/math.NT/9908092
- [Po] Poonen, B., Mordell-Lang plus Bogomolov, Invent. Math. 137 (1999), no. 2, 413–425.
- [Po2] POONEN, B., Bertini theorems over finite fields, in preparation.
- [SUZ] SZPIRO, L., ULLMO, E., AND ZHANG, S., Équirépartition des petits points, *Invent. Math.* 127 (1997), no. 2, 337–347.
- [Ul] ULLMO, E., Positivité et discrétion des points algébriques des courbes, Ann. of Math. (2) 147 (1998), no. 1, 167–179.
- [Zh1] Zhang, S., Equidistribution of small points on abelian varieties, Ann. of Math. (2) 147 (1998), no. 1, 159–165.
- [Zh2] Zhang, S., Distribution of almost division points, Duke Math. J. 103 (2000), no. 1, 39–46.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CA 94720-3840, USA  $E\text{-}mail\ address$ : poonen@math.berkeley.edu