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Abstract. Let X be a geometrically irreducible closed subvariety of an abelian variety A
over a number field k such that X generates A. Let V be a finite-dimensional subspace
of A(k) ⊗R, and let π : A(k) → V be the orthogonal projection relative to a Néron-Tate
pairing 〈 , 〉 : A(k) × A(k) → R. For V = A(k) ⊗R, we prove that π(X(k)) = A(k) ⊗Q,
and moreover, there exist c, c′ > 0 such that for any a ∈ A(k) ⊗ Q, {x ∈ X(k) : π(x) =
a and h(x) < ch(a) + c′ } is Zariski dense in X.

1. Introduction

Let k be a number field, and let k be its algebraic closure. Let A be an abelian variety
over k, and let X be a geometrically irreducible closed subvariety of A. Several results
describe the location of the rational or algebraic points of X within A. For example, the
“Mordell-Lang conjecture” states that if Γ is a finite rank subgroup of A(k) and if X is not
a translate of an abelian subvariety, then X(k) ∩ Γ is not Zariski dense in X. This version
of the statement was proved by Hindry [Hi], after earlier work of Faltings, Raynaud, Vojta
and others. A generalization to semiabelian varieties was proved by McQuillan [McQ].

If one defines the Néron-Tate canonical height h : A(k)→ R≥0 associated to a symmetric
ample line sheaf on A, one can also state the “generalized Bogomolov conjecture:” If X
is not a translate of an abelian subvariety by a torsion point, there exists ε > 0 such that
{x ∈ X(k) : h(x) < ε } is not Zariski dense in X. The conjecture was proved by Zhang [Zh1],
using ideas from an important special case (the original Bogomolov conjecture) proved by
Ullmo [Ul] using an equidistribution theorem of Szpiro, Ullmo, and Zhang [SUZ]. There is
also the combined “Mordell-Lang plus Bogomolov” result of [Po] and the further distribution
result of [Zh2]. Moriwaki [Mo],[Mo2] has proved generalizations of most of these statements
with k replaced by a finitely generated field extension of Q.

Define a Néron-Tate pairing for A to be a bilinear form 〈 , 〉 : A(k) × A(k) → R such
that 〈x, x〉 = h(x) for a height function h as above. We may consider 〈 , 〉 also as an inner
product on the vector space A(k)R := A(k)⊗R, which is infinite dimensional if dimA > 0.
For any field extension L of k, define also A(L)Q := A(L)⊗Q and A(L)R := A(L)⊗R.

In this article, we study the image of X(k) under the orthogonal projection π : A(k)→ V
where V is a finite-dimensional subspace of A(k)R. After possibly enlarging k, we have
V ⊆ A(k)R, and for our purposes, we lose no information in enlarging V to A(k)R. Also,
by translating X to assume 0 ∈ X (enlarging k if necessary), and then replacing A by the
image of the Albanese homomorphism AlbX → A, we may reduce to the case in which X
generates A, i.e., in which AlbX → A is surjective, or equivalently, the differences P − Q
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with P,Q ∈ X(k) generate the group A(k). We make these hypotheses, to simplify the
statement of our result.

Theorem 1. Let X be a geometrically irreducible closed subvariety of an abelian variety
A over a number field k. Assume that X generates A. Let π : A(k) → A(k)R denote the
orthogonal projection relative to a Néron-Tate pairing for A. Then

(a) π(X(k)) = A(k)Q.
(b) There exist c, c′ > 0 such that for any a ∈ A(k)Q,

{x ∈ X(k) : π(x) = a and h(x) < ch(a) + c′ }
is Zariski dense in X.

Almost in contradiction with Theorem 1 we have the following, which is a formal consequence
of the Mordell-Lang conjecture.

Theorem 2. Let A be an abelian variety over Q with dimA > 0. Then there exists a
nonzero linear functional π : A(Q)Q → Q such that for every geometrically irreducible closed
subvariety X ⊆ A not containing a translate of a positive-dimensional abelian subvariety of
A,

(a) π(X(Q)) is a discrete subset of Q in the archimedean topology.
(b) {x ∈ X(Q) : π(x) = a } is finite for every a ∈ Q.

There is no contradiction, however, since ker π in Theorem 2 need not be the orthogonal
complement of a finite-dimensional subspace of A(Q)Q.

Remarks.

(1) Borrowing terminology from the field of medical imaging, Theorem 1 implies that X
cannot be recovered from its Néron-Tate CAT scan!

(2) Analogues of Theorems 1 and 2 where the number fields are replaced by any field
finitely generated over Q can be formulated using the height functions defined by
Moriwaki [Mo],[Mo2], and their proofs are the same as in the number field case.

2. Proofs

Lemma 3. Let X be a geometrically irreducible projective variety over an infinite field k,
with dimX ≥ 1. Then there exists a geometrically irreducible closed curve Y ⊆ X such
that the induced morphism AlbY → AlbX is surjective. Moreover, the union of such Y is
Zariski dense in X.

Proof. Let A = AlbX. Choose a prime ` not equal to the characteristic of k. Let A[`] denote
the kernel of multiplication by ` on A. For each P ∈ A[`](k), choose a zero-cycle of degree
zero on Xk representing P . Let S ′ ⊆ X(k) be the set of points appearing in these zero-cycles
together with one extra point Q ∈ X(k). Let S be the image of S ′ in X.

The blow-up α : X ′ → X at S is projective; embed X ′ in some PN . Bertini’s theorem [Da,
p. 249] gives a dense open subset U of the Grassmannian of linear subspaces L ⊆ PN of
codimension dimX ′ − 1 such that any point of U(k) corresponds to L ⊆ PN for which
X ′ ∩ L is geometrically irreducible. Choose such an L, and let Y ′ = X ′ ∩ L. For dimension
reasons, Y ′ meets every exceptional fiber of α. Let Y = α(Y ′). Then Y is a geometrically
irreducible curve passing through the points of S ′, so the image of AlbY → A contains A[`].
The only abelian subvariety of A containing all `2 dimA points of order dividing ` is A itself,
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so AlbY → A = AlbX is surjective. (This last trick is due to O. Gabber [Ka].) The final
statement follows, since Y also passes through Q ∈ X(k), which was arbitrary. �

Remark. It follows from [Ka] or alternatively [Po2] that the conclusion of Lemma 3 holds
even if k is a finite field.

Lemma 4. Let A, k, 〈 , 〉, and π be as in Theorem 1. Then π(A(k)) ⊆ A(k)Q.

Proof. Given P ∈ A(k), let L be a Galois extension of k such that P ∈ A(L). Any σ ∈
Gal(L/k) acts as an isometry of A(L)R with 〈 , 〉 and preserves A(k)R, so π(σP ) = π(P ).
Thus

π(P ) =
1

[L : k]
π

 ∑
σ∈Gal(L/k)

σP

 ∈ A(k)Q.

�

If X is a curve over a perfect field k and n ≥ 1, denote by X(n) the quotient of Xn by
the action of the symmetric group Sn permuting the coordinates. Points in X(n)(k) will be
identified with Gk-stable unordered n-tuples of points in X(k), where Gk := Gal(k/k).

Lemma 5. Let X be a smooth projective geometrically integral curve of genus g ≥ 1 over
Fq. Let U be a dense open subset of X(g). Then there exist infinitely many u ∈ U(Fq) such
that Gal(Fq/Fq(u)) acts transitively on the g-tuple corresponding to u.

Proof. For Fr ⊇ Fq, let σ : X → X denote the r-th power Frobenius morphism. The set
Sr := X(Frg) −

⋃
d|g,d<gX(Frd) has size rg + o(rg) as r → ∞ through powers of q, by the

Weil bounds. The map Sr → X(g)(Fr) sending x to the g-tuple {x, xσ, . . . , xσg−1} (on which
Gal(Fq/Fr) acts transitively) is a g-to-one map, so the image has rg/g + o(rg) points as
r → ∞. By the Weil bounds again, at most O(rg−1) of these lie outside U . Hence there
remain rg/g + o(rg) points in U(Fr) corresponding to desired g-tuples. Finally, rg/g + o(rg)
is unbounded as r →∞. �

Lemma 6. Let f : X → X ′ be a finite morphism between quasiprojective varieties over a
number field k, and let h and h′ denote height functions on X(k) and X ′(k), respectively,
defined (up to O(1)) using embeddings of X and X ′ in projective spaces. Then there exist
constants c1, c2 > 0 such that h(x) ≤ c1h

′(f(x)) + c2 for all x ∈ X(k).

Proof. If we change the embedding of X, then h and the new height h̃ are bounded by
linear polynomials in each other, since the isomorphisms between the two copies of X are
given locally by rational functions. Hence the question is independent of embeddings. In
particular, we may reduce to the case whereX = SpecB is embedded in Am andX ′ = SpecA
is embedded in An for some m,n ≥ 0. By finiteness, each of the m coordinate functions t
on X satisfies a monic polynomial

(1) tr + a1t
r−1 + · · ·+ ar = 0

with ai ∈ A. For x ∈ X(k), (1) shows that the height of t(x) is bounded by a linear
polynomial in the heights of the ai(f(x)), which in turn are bounded by a linear polynomial
in h′(f(x)). �
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Proof of Theorem 1. By Lemma 4, π(X(k)) ⊆ A(k)Q, so it remains to prove that for any

a ∈ A(k)Q, {x ∈ X(k) : π(x) = a } is Zariski dense in X.
Lemma 3 lets us reduce to the case where X is a geometrically integral curve. (I learned

this method for reducing to curves from Shou-Wu Zhang.) We may enlarge k in order to
assume that X(k) contains a smooth point P0 of X. Translating X and a by −P0, we may
assume that P0 = 0 in A. Let J be the Albanese (Jacobian) variety of the normalization X̃
of X. Then we have a commutative diagram

X̃
j−−−→ J

α

y yφ
X −−−→ A

where φ is a surjection and j is the Abel map sending the point P̃0 ∈ X̃(k) above P0 to
0 ∈ J(k). Choose a quotient abelian variety B of J such that the induced homomorphism
J → A×B is an isogeny. Define 〈 , 〉J and πJ for J by tensoring the pullbacks of symmetric
ample line sheaves on A and B. Then we have isomorphisms

J(k)Q ∼= A(k)Q ⊕B(k)Q,

J(k)R ∼= A(k)R ⊕B(k)R,

respecting the pairings. If we find a Zariski dense set of points S in X̃(k) with πJ(S) =
{(a, 0)} under the isomorphism above, then α(S) is a Zariski dense set of points in X(k)
with π(α(S)) = {a}, and the heights of the latter points are bounded by a linear polynomial
in the heights of the former points, as is true for images under any morphism. Hence from
now on, we may assume that X is a geometrically integral smooth projective curve of genus
g ≥ 1 embedded in its Jacobian A by the Albanese map determined by P0 ∈ X(k).

Since A(k) is divisible, a ∈ A(k)Q is represented by a point in A(k), which we again call
a. Enlarge k to assume that a ∈ A(k). (This changes π as well, but it only makes the
problem harder.) Choose a prime p of good reduction for A, and let Fq denote the residue

field. Extend p to a place of k. Let X̄, ā ∈ Ā(Fq), etc. denote the mod p reductions of
X, a ∈ A(k), etc. Let φ denote the birational morphism X̄(g) → Ā sending {x1, . . . , xg} to
x1 + · · ·+ xg, using the embedding X̄ ↪→ Ā. Let U and V denote dense open subsets of X̄(g)

and Ā, respectively, such that φ induces an isomorphism U → V . Let ū ∈ U(Fq) be one
of the infinitely many points given by Lemma 5, let b̄ = φ(ū) − gā ∈ A(Fq), and lift b̄ to a

torsion point b ∈ A(k).
By choice of U , we can write ga + b = x1 + · · · + xg for xi ∈ X(k), which are uniquely

determined up to permutation. Moreover, Gal(k/k(b)) acts transitively on the xi, since the
choice of ū guarantees Galois-transitivity on the reductions. Hence π(xi) = π(x1) for all i,
and

π(x1) =
1

g

g∑
i=1

π(xi) =
1

g
π(ga+ b) = a,

since π(a) = a and π(b) = 0. There were infinitely many choices for ū, hence infinitely
many distinct possibilities for b̄, for b, and for x1. In particular, the x1 with π(x1) = a
are Zariski dense in X. Finally, let E denote the largest open subset of A above which the
summing morphism s : Xg → A is finite, i.e., above which X(g) → A is an isomorphism.
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Lemma 6 applied to s−1(E) → E shows that h(x1) is bounded by a linear polynomial in
h(ga+ b) = g2h(a). �

Proof of Theorem 2. Let X1, X2, . . . be a complete list of the countably many possibilities
for X. Choose a flag of subspaces

0 = V0 ⊂ V1 ⊂ V2 ⊂ . . .

of A(Q)Q such that dimVn = n and
⋃
Vn = A(Q)Q. Let Sn(Xj) denote the set of x ∈ Xj(Q)

whose image in A(Q)Q lies in Vn. The Mordell-Lang conjecture guarantees that Sn(Xj) is
finite for each n ≥ 0 and j ≥ 1. Starting with the zero map π0 : V0 → Q, by induction on
n ≥ 1, we can define Q-linear maps πn : Vn → Q such that πn|Vn−1 = πn−1 and |πn(x)| ≥ n
for any x in the finite set

⋃
j≤n (Sn(Xj)− Sn−1(Xj)).

The πn glue to give π : A(Q)Q → Q. For each j, n ≥ 1, {x ∈ Xj(Q) : π(x) ∈ (−n, n)} is
contained in Sn−1(Xj), so it is finite. This implies, for each j ≥ 1, that π(Xj(Q)) is discrete
and that {x ∈ Xj(Q) : π(x) = a} is finite for each a ∈ Q. �
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