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Abstract. For any field k and integer g ≥ 2, we construct a hyperelliptic curve X over
k of genus g such that #(AutX) = 2. We also prove the existence of principally polarized
abelian varieties (A, θ) over k of prescribed dimension g ≥ 1 such that Aut(A, θ) = {±1}.

1. Introduction

If X is a (smooth, projective, and geometrically integral) curve over a field k, let AutX
denote the group of automorphisms of X defined over k. In [Po1], we proved that for any
field k and integer g ≥ 3, there exists a curve X over k of genus g such that AutX = {1}.

This paper studies the analogous problem for hyperelliptic curves. If X is a hyperelliptic
curve, then X has a non-trivial automorphism, namely the hyperelliptic involution ι, so our
result takes the following form:

Theorem 1. For any field k and integer g ≥ 2, there exists a hyperelliptic curve X over k
of genus g such that AutX = {1, ι}.

As a corollary, we obtain a similar result for principally polarized abelian varieties. For
an abelian variety A with polarization θ defined over k, let Aut(A, θ) denote the group of
automorphisms of A over k respecting the polarization (and the group structure of A).

Corollary 2. For any field k and integer g ≥ 1, there exists a g-dimensional principally
polarized abelian variety (A, θ) over k such that Aut(A, θ) = {±1}.

Proof. For g = 1, it suffices to let A be an elliptic curve of j-invariant not 0 or 1728 [Si,
Theorem III.10.1]. For g ≥ 2, let A be the Jacobian of the curve given by Theorem 1; the
desired property then follows from Torelli’s theorem (see [Mi, Theorem 12.1]). �

Remarks. Corollary 2 is proved for k algebraically closed in [KS, Lemma 11.2.6], also with
Jacobians. It is also true that for any polarized abelian scheme A → S of relative dimension
g ≥ 1, the set of points s ∈ S for which the automorphism group of the fiber As (as polarized
abelian variety) is {±1} is open in S [KS, Lemma 11.2.5]. In particular, it follows that a
generic principally polarized abelian variety of dimension g ≥ 1 (corresponding to the generic
point of the coarse moduli space of principally polarized abelian varieties of dimension g over
an algebraically closed field k) has automorphism group {±1}.
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2. Construction

In this section, we describe a hyperelliptic curve X for each k and g, by giving the equation
of an affine curve whose smooth projective model is the desired X. The proof that X has
genus g and that AutX = {1, ι} will be presented in Section 3.

We would like to exploit Galois action to control automorphisms in the proof of Theorem 1.
Hence we will first reduce to the case where k = Q or k = Fp for some prime p. If
K ⊆ L are algebraically closed fields, and X is a curve of genus g ≥ 2 over K, then the
automorphisms of X defined over L are all defined over K, because the Aut(L/K)-orbit of
any new automorphism would be infinite, violating the theorem that AutX is finite for any
curve of genus g ≥ 2 over an algebraically closed field [Sc]. Hence in proving Theorem 1, we
may replace k by its minimal subfield. Let p be the characteristic of k, so that k = Fp if
p > 0, and k = Q if p = 0.

Case I: p = 2.

Let X be the curve

y2 + y = x2g−1 +
1

x
.

Case II: p = 0.

For fixed g, let A = {0, 1, 2, . . . , 2g}, and let A(3) denote the set of ordered triples of
distinct elements of A. For each pair of distinct triples a = (a1, a2, a3) and b = (b1, b2, b3)
in A(3), there is a unique non-trivial automorphism φab of P1 such that φab(ai) = bi for
i = 1, 2, 3. Let X be the curve

y2 = x(x− 1)(x− 2) . . . (x− 2g)(x− t)

for some t ∈ Q outside the finite set

A ∪
⋃
a6=b

(φab(A) ∪ {r ∈ Q : φab(r) = r}) .

Case III: p ≥ 3, g ≥ 4.

Let q(x) ∈ k[x] be an irreducible cubic. Let j(x) ∈ k(x) be an automorphism of P1 that
acts as a 3-cycle on the roots of q(x). Then j has at most two fixed points, so we may pick
c ∈ k such that j(c) 6= c. If 2g − 2 6≡ 0 (mod 3), choose r(x) ∈ k[x] irreducible of degree
2g − 2; otherwise choose r(x) to be the product of two irreducible polynomials in k[x] of
degrees 2 and 2g − 4. Let X be the curve y2 = f(x), where

f(x) := (x− c)q(x)r(x).

Case IV: p ≥ 3, g = 3.

Let q(x), r(x) ∈ k[x] be irreducible polynomials of degree 2 and 3, respectively. Let j be
an automorphism of P1 that acts as a 3-cycle on the roots of r(x). Since #P1(k) ≥ 4, we
can choose distinct a, b, c ∈ P1(k) such that j does not act as a 3-cycle on {a, b, c}. Let X
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be the curve y2 = f(x), where

f(x) := (x− a)(x− b)(x− c)q(x)r(x).

(If a =∞, then we interpret “x− a” as “1”, since this accomplishes what we actually want:
for the map X → P1 to be ramified above a, b, c in addition to the roots of q and r. Similar
interpretations should be made if b =∞ or c =∞.)

Case V: p ≥ 3, g = 2.

Let q(x), r(x) ∈ k[x] be irreducible polynomials of degree 2 and 3, respectively. Let q1, q2
be the roots of q in k, and let r1, r2, r3 be the roots of r in k, ordered so that rp1 = r2. Let
j be the automorphism of P1 fixing q1 and q2 and mapping r1 to r2. Pick c ∈ k such that j
does not map r3 to c. Let X be the curve y2 = f(x), where

f(x) := (x− c)q(x)r(x).

3. Proof of Theorem 1

In each case, let S denote the set of branch points of the separable 2-to-1 map X → P1.
For p 6= 2, #S = 2g+ 2, so that X has genus g by the Hurwitz formula. Any automorphism
of X that is neither the identity nor the hyperelliptic involution must induce a non-trivial
automorphism of P1 preserving S.

Case I: p = 2.

Let P0 and P∞ denote the points on X where x = 0 and x = ∞, respectively. The
ramification divisor of the 2-to-1 map X → P1 is 2gP∞ + 2P0, so the genus of X is g by the
Hurwitz formula. Any automorphism of X induces an automorphism of P1 preserving the
projection of the ramification divisor to P1. The only such automorphisms of P1 are those
of the form x 7→ λx for λ ∈ k∗, but the two function fields obtained by adjoining to k(x) a
root y1 of

y21 + y1 = x2g−1 +
1

x

or a root y2 of

y22 + y2 = (λx)2g−1 +
1

λx
are distinct by Artin-Schreier theory, unless λ = 1. Hence all automorphisms of X induce
the trivial automorphism of the quotient P1.

Case II: p = 0.

Since g ≥ 2, if an automorphism h of P1 preserves S = {0, 1, . . . , 2g, t}, then h maps some
3-element subset of A = {0, 1, . . . , 2g} to another 3-element subset of A. If h is non-trivial,
then h = φab for some a, b ∈ A(3). But then h−1(t) 6∈ S, by choice of t, and this contradicts
the definition of h.

Case III: p ≥ 3, g ≥ 4.
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Let F denote the compositum of all finite extensions of k = Fp of degree prime to 3.
Exactly (2g+2)−3 points in S are F-rational. Suppose that h is a non-trivial automorphism
of P1 preserving S. Then h must map at least (2g+2)−6 of these F-rational points to other
F-rational points of S. But (2g+2)−6 ≥ 3, and h is determined by its values at 3 points, so
h must be defined over F. In particular, h preserves the set of three non-F-rational points of
S, the roots of the cubic q(x). If h fixed any one of them, then since they are all conjugate
over F, h would fix them all, and h would be trivial. Otherwise, h acts as a 3-cycle, and
after replacing h by h−1 if necessary, we may assume h = j. Also, h is defined over k, since
its values at the three roots of q(x) are specified in a Gal(k/k)-stable way. Thus h maps c
into a k-rational element of S, so h(c) = c, contradicting the choice of c.

Case IV: p ≥ 3, g = 3.

Suppose that h is a non-trivial automorphism of P1 preserving S. Since six of the eight
points in S are Fp3-rational, at least four Fp3-rational points in S are mapped by h to other
Fp3-rational points, and hence h is defined over Fp3 . In particular, h preserves the set of
roots of the quadratic q(x). If h mapped any of the three Fp-rational points in S to any
other, then this together with the action on the roots of q(x) would give a Gal(Fp/Fp)-stable
specification of h, so h would be defined over Fp. Otherwise, h interchanges the set {a, b, c}
of three Fp-rational points in S with the set of three roots of r(x). In the latter case, if we let
σ be a generator of Gal(Fp6/Fp2), we obtain a new non-trivial automorphism h′ := σh ◦ h−1
that maps a, b, c to themselves in some order. Thus in any case, we obtain a non-trivial
Fp-rational automorphism (which we rename h) of P1 preserving S. As in Case III, h must
act as a 3-cycle on the roots of the cubic r(x). After replacing h by h−1 if necessary, we have
h = j. Since an automorphism of P1 is determined by three values, h must be of order 3,
and it is k-rational, so it must either fix a, b, c pointwise or act as a 3-cycle on a, b, c. The
former would make h trivial, and the latter was expressly ruled out by our assumptions.

Case V: p ≥ 3, g = 2.

Label the roots r1, r2, r3, c, q1, q2 with 1, 2, 3, 4, 5, 6, respectively, so that the absolute Frobe-
nius acts on S as the permutation σ := (123)(56). Let H be the group of automorphisms
of P1 preserving S, which we may faithfully view as a subgroup of S6, since automorphisms
are determined already by three values. The Frobenius automorphism acts on H as con-
jugation by σ. By choice of c, (12)(34) 6∈ H. Therefore the non-existence of non-trivial
automorphisms follows from the purely group-theoretical Lemma 3 below.

Lemma 3. Suppose that H is a subgroup of S6 such that

(1) Each non-trivial element of H has at most two fixed points.
(2) H is normalized by σ := (123)(56).
(3) The permutation (12)(34) is not in H.

Then H = {1}.

Proof. Suppose that there exists an element π ∈ H that does not commute with σ3 = (56).
Define η := π−1σ3πσ−3. Then η ∈ H, by condition (2), and η is the product of the two
unequal transpositions π−1σ3π and σ−3 = (56). By condition (1), η has at most two fixed
points, so η must be (ab)(56) for some a < b < 5. Let η′ := σησ−1, which is in H, by
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condition (2). Then η′ = (a′b′)(56) for some a′ < b′ < 5. But the transposition (a′b′) =
(123)(ab)(123)−1 cannot be disjoint from (ab), so ηη′ violates condition (1).

Thus every element of H commutes with (56), and H ⊆ S4×S2. By condition (1), H maps
isomorphically to its projection H ′ in S4. If H ′ had an element of order 3, the corresponding
element of H would be a 3-cycle, violating condition (1). Hence #H ′ divides 4!/3 = 8.
Assume H ′ is not trivial. Then H ′ contains an element of order 2, i.e., a transposition τ or
an S4-conjugate of (12)(34). In the former case, by condition (2), (123)τ(123)−1τ would be
an element of order 3 in H ′, a contradiction. Thus H ′ contains an S4-conjugate of (12)(34).
All such conjugates are conjugate by powers of (123), so by condition (2), H ′ contains
V4 := {1, (12)(34), (13)(24), (14)(23)}. If we map V4 via the inverse of the isomorphism
H → H ′, and then map down to S2 = {1, (56)}, the kernel is non-trivial, so at least one
of (12)(34), (13)(24), (14)(23) is actually in H. Conjugating by powers of σ, and using
condition (2), we find that all three are in H. This violates condition (3), so H ′ is trivial,
and so is H. �

This completes the proof of Theorem 1. In the next paper of this series [Po3], we will
prove the existence of smooth hypersurfaces X ⊂ Pn+1 of degree d with AutX = {1}, for
prescribed n and d (satisfying minor constraints).
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