
Contemporary Mathematics

Using zeta functions to factor polynomials over finite fields

Bjorn Poonen

Abstract. In 2005, Kayal suggested that Schoof’s algorithm for counting
points on elliptic curves over finite fields might yield an approach to factor
polynomials over finite fields in deterministic polynomial time. We present an
exposition of his idea and then explain details of a generalization involving
Pila’s algorithm for abelian varieties.

1. Introduction

Factoring univariate polynomials over finite fields is a solved problem in prac-
tice. Known algorithms are fast, and they are proved to run in polynomial time if
granted access to a source of randomness. But the theoretical question of whether
there exists a deterministic polynomial-time algorithm remains open. See the sur-
vey articles [Len82], [Len90], and [vzGP01]; the last of these contains a very
extensive bibliography.

In 1985, Schoof gave a deterministic polynomial-time algorithm to compute
the number of points on a given elliptic curve over a finite field [Sch85, Section 3].
At the Mathematisches Forschungsinstitut Oberwolfach in July 2005, Neeraj Kayal
suggested a way to use Schoof’s algorithm to attempt to factor polynomials over
finite fields in deterministic polynomial time. The author, who was present, re-
sponded that one could use higher genus curves or higher-dimensional abelian va-
rieties in place of elliptic curves, and that these heuristically had a greater chance
of success.

It seems that the only written record of the ideas of Kayal and the author
before now is the 2006 master’s thesis of Amalaswintha Wolfsdorf [Wol06]. She
describes Kayal’s idea for elliptic curves in detail, and writes a few sentences on the
higher genus case based on a November 25, 2005 email from the present author.
Our purpose is to present a brief exposition of Kayal’s idea and to explain details
of the generalization, which is Theorem 5.1 in this article.

2. Schoof’s algorithm

Understanding Kayal’s idea requires some knowledge of Schoof’s algorithm,
which we now recall, in the special case of a prime field Fp.

2010 Mathematics Subject Classification. Primary 11Y05; Secondary 14G10, 14G15, 14K15.
Key words and phrases. Factoring polynomials, zeta function, abelian variety, finite field.
This research was supported in part by National Science Foundation grant DMS-1601946 and

Simons Foundation grants #402472 (to Bjorn Poonen) and #550033.
1

2 BJORN POONEN

Theorem 2.1 ([Sch85, Section 3]). There exists a deterministic polynomial-
time algorithm that takes as input a prime p and a Weierstrass equation of an
elliptic curve E over Fp, and outputs #E(Fp).

Polynomial-time means polynomial in the size of the input, which is of order
log p.

Sketch of proof. Hasse proved that #E(Fp) = p − a + 1 for some a ∈ Z
satisfying |a| ≤ 2

√
p. If one can compute a mod ` for all primes ` 6= p up to

some bound L, then an effective Chinese remainder theorem lets one compute
a mod

∏
`<L `. If L is chosen as a sufficiently large constant multiple of log p, then∏

`<L ` > 4
√
p, so a mod

∏
`<L ` determines a.

The Frobenius endomorphism F of E satisfies F 2 − aF + p = 0 in EndE.
In particular, F 2 − aF + p acts as 0 on the `-torsion subscheme E[`], and this
condition uniquely determines a mod `. It remains to explain how to compute with
these objects. First, E[`] is SpecR for some Fp-algebra R defined by O(1) explicit
equations of degree polynomial in `, and these equations can be computed from
the group law on E; from this, one can compute an explicit multiplication table
for R with respect to an Fp-basis. (With a little more work, following Schoof, one
can work even more explicitly by using division polynomials, but this does not
generalize as easily.) The action of F on E[`] is given by the pth power map on R,
whose action on Fp-algebra generators can be computed explicitly by writing the
exponent p in binary and using repeated squaring and multiplication. Similarly, the
action of p (or any smaller integer) on E[`] can be computed by writing p in binary
and using repeated doubling and addition on E. Combining these lets one compute
the action of F 2−aF +p on E[`] in time bounded by P (`, log p) for some polynomial
P . For each `, try a = 0, 1, . . . , ` − 1 until the value mod ` is found that makes
F 2 − aF + p kill E[`]. The total running time is at most

∑
`<L

∑`−1
a=0 P (`, log p),

which is polynomial in log p. �

3. Kayal’s factoring idea

For simplicity, suppose that p is a large prime and suppose that we are given
the product f(t) = (t − r1)(t − r2) ∈ Fp[t] for some unknown distinct r1, r2 ∈ Fp.
Let B = Fp[t]/(f(t)), so B is secretly isomorphic to Fp × Fp. Elements of B are
represented by polynomials of degree ≤ 1 in Fp[t]. A Weierstrass equation over
B with discriminant in B× defines an elliptic scheme E over B, which secretly
specializes to two elliptic curves over Fp, say E1 and E2.

What happens if we blithely run Schoof’s algorithm on E, as if B were Fp? If
#E1(Fp) = #E2(Fp), then there exists a ∈ Z such that F 2 − aF + p = 0 in EndE,
and the algorithm runs as usual, and outputs the common value #E1(Fp) = E2(Fp),
but we learn nothing about the factorization of f(t). Now suppose instead that
#E1(Fp) 6= #E2(Fp). Write #Ei(Fp) = p − ai + 1 for i = 1, 2, so a1 6= a2. Then
for some `, we have a1 6≡ a2 (mod `). Thus, when we check integers a to see
if F 2 − aF + p kills E[`], which amounts to certain elements of B vanishing, we
instead find an integer a1 for which these elements of B vanish mod t− r1 but do
not all vanish mod t− r2. Hence we discover a nontrivial factor of f(t).

Heuristically it is likely that #E1(Fp) 6= #E2(Fp), since there are about 4
√
p

possible values for the order of an elliptic curve over Fp. If we are unlucky enough
to have chosen E so that #E1(Fp) = E2(Fp), we can try again with a different E,

USING ZETA FUNCTIONS TO FACTOR POLYNOMIALS OVER FINITE FIELDS 3

or use the same linear polynomials as Weierstrass coefficients while replacing f(t)
by f(t+1). We do not have a proof, however, that a deterministic sequence of such
trials will succeed after polynomially many attempts.

Remark 3.1. The same approach can be tried to factor a polynomial f(t) :=
(t− r1) · · · (t− rd) for distinct r1, . . . , rd ∈ Fp, by induction on d. If, using obvious
notation, #E1(Fp), . . . ,#Ed(Fp) are not all equal, then Schoof’s algorithm will find
a nontrivial factor g of f , and then we can apply the inductive hypothesis to factor
g and f/g.

Remark 3.2. Berlekamp [Ber70] showed that one can reduce the problem
of factoring polynomials in Fq[t] for arbitrary prime powers q to the problem of
factoring polynomials in Fp[t] with distinct roots all in Fp; see also [Len82, Sections
3 and 4] for another exposition of this.

4. Pila’s algorithm

To generalize Kayal’s approach to abelian varieties, we need Pila’s generaliza-
tion of Schoof’s algorithm.

Let A be a g-dimensional abelian variety over Fp. Let F be the Frobenius
endomorphism of A. For each prime ` 6= p, we may form the `-adic Tate module
T`A := lim←−n

A[`n]. Let P (t) be the characteristic polynomial of F acting on T`A,
so degP = 2g. A priori the coefficients of P are in Z`, but in fact they lie in Z and
are independent of the choice of `. Knowledge of P is equivalent to knowledge of
the zeta function ZA.

An abelian variety A over Fp can be described explicitly by giving a positive
integer N and a finite list of homogeneous polynomials in Fp[x0, . . . , xN] whose
common zero locus in PN is A, together with the addition morphism A×A→ A (and
also the inversion morphism if desired) in terms of explicit polynomial mappings on
affine patches. Pila’s algorithm accepts such data as input, and outputs P (t) ∈ Z[t].
Its running time is bounded by a polynomial in log p whose degree and coefficients
depend only on N and the number and degrees of the polynomials defining A and
the addition law [Pil90, Theorem A].

The general outline of Pila’s algorithm is similar to that of Schoof’s algorithm:
it computes P (t) mod ` for many small primes ` by studying the action of F on
A[`], and then reconstructs P (t) by using an effective Chinese remainder theorem.
For each `, it tries each monic degree 2g polynomial in (Z/`Z)[t] and tests whether
it equals P (t) mod `. Each test involves a deterministic sequence of arithmetic op-
erations on elements of Fp controlled by queries: each query asks whether some
previously computed element is 0, and the result dictates which arithmetic opera-
tion is to be carried out next. This is all that we will need to know about Pila’s
algorithm.

5. Generalization of Kayal’s factoring idea

We will prove that we can replace elliptic curves by abelian varieties in Kayal’s
approach. Also, instead of using only the order of the group of points, we can
use the whole zeta function. The advantage of using higher-dimensional abelian
varieties is that there are many more possible zeta functions, so success becomes
very likely, at least heuristically: see Section 6.

4 BJORN POONEN

Given a variety V over a finite field, let ZV be its zeta function, viewed as a
rational function in Q(T).

Let U be a dense open subscheme of A1
Z := SpecZ[t]. Let A → U be an

abelian scheme. For each prime p and u ∈ U(Fp), let Au be the fiber above
u. Concretely, A can be thought of as a family of abelian varieties defined by
equations with coefficients in Z[t]; specializing t to a suitably general value u ∈ Fp

produces an abelian variety Au over Fp; here “suitably general” means outside
a certain bad locus, which may be taken to be of the form ∆(t) = 0 for some
“discriminant” ∆(t) ∈ Z[t] that is not identically zero but vanishes at any u for
which the specialization Au is degenerate.

Theorem 5.1 below will involve the following:

Hypothesis Z. There exist a dense open subscheme U of A1
Z and an abelian

scheme A → U such that for every sufficiently large prime p, the ZAu
for the

different u ∈ U(Fp) are distinct.

Theorem 5.1. There is a deterministic algorithm that takes as input a finite
field Fq and a nonzero polynomial f ∈ Fq[t], and outputs the factors of f in Fq[t],
such that if Hypothesis Z holds, then the running time is polynomial in log q and
deg f .

Remark 5.2. Our proof will show that an algorithm as in Theorem 5.1 not
only exists, but also can be written down explicitly, even if we do not know in
advance the abelian scheme A → U in Hypothesis Z.

Proof. By Remark 3.2, we may assume that q is a prime p and that f has
distinct roots all in Fp. Of course we also assume that deg f ≥ 2.

First, we give an algorithm depending on explicit knowledge of an abelian
scheme A → U as in Hypothesis Z. More precisely, we may shrink U to assume
that U = SpecT , where T = Z[t][1/∆] for some nonzero polynomial ∆ ∈ Z[t], and
we may assume that we are given explicit polynomials describing A over T in the
same way that we described abelian varieties over Fp in Section 4.

There are at most (deg f)(deg ∆) values c ∈ Fp such that f(t + c) and ∆(t)
have a nontrivial gcd, so by trying c = 0, 1, . . . in turn, we quickly find such a c (of
course, we may assume that p > (deg f)(deg ∆). Replace f(t) by f(t+c) to assume
that gcd(f,∆) = 1. Let B = Fp[t]/(f(t)). Then SpecB is a closed subscheme of
U , and the base change AB is an abelian scheme over B. It consists of a disjoint
union of abelian varieties Au over Fp, one for each zero u of f .

Apply Pila’s algorithm to AB , but each time it queries an element of B to test
whether it is 0, instead compute a gcd with f to test whether it is 0, a unit, or a
nonzero zerodivisor. By Hypothesis Z, the zeta functions ZAu for two different zeros
u of f are distinct in Q(T), so there exists a prime ` such that the characteristic
polynomials mod ` of Au for these two u are distinct. Therefore the computations
in Pila’s algorithm must eventually diverge for these two values of u, which can
happen only if a nonzero zerodivisor in B is encountered. At that point, we have
found a nontrivial factor f0 of f . Apply induction to the factors f0 and f/f0. This
completes the description of the algorithm when we are given A → U explicitly. In
particular, there exists an algorithm to factor polynomials, even though we might
not know which algorithm it is that does it.

We now describe a new program Ω that does not rely on knowledge of A → U .
Program Ω enumerates all computer programs and runs them in parallel, devoting

USING ZETA FUNCTIONS TO FACTOR POLYNOMIALS OVER FINITE FIELDS 5

a fraction 2−n of its computing power to the nth program; at each step of each
program, Ω tests whether what that program has printed so far is a list of linear
polynomials over Fp whose product is f , and if so, Ω terminates the whole compu-
tation with this answer. If Hypothesis Z is true, and n is the number of the program
described in earlier paragraphs using an abelian scheme A → U as in Hypothesis Z,
then Ω finds the factorization in time bounded by 2n times a polynomial, but 2n

is a constant, so this is still polynomial in the size of the input. If Hypothesis Z is
false, then Ω still terminates with the correct factorization because there exists N
such that program N factors polynomials by trial division, but the running time of
Ω is not guaranteed to be bounded by a polynomial in this case. �

6. A heuristic for Hypothesis Z

For a g-dimensional abelian variety A over Fp, the complex zeros of the char-
acteristic polynomial P (t) have absolute value p1/2, so the coefficient of t2g−m in
P (t) is Og(pm/2), with the implied constant depending on g but not p. Also, the
functional equation of ZA shows that the coefficient of tm in P (t) is determined
by the coefficient of t2g−m. Thus P (t) is determined by coefficients of t2g−m for
m = 1, 2, . . . , g, so there are at most

∏g
m=1 Og(pm/2) = Og(pg(g+1)/4) possibili-

ties for P (t). Equivalently, if Zg,p is the set of zeta functions of all g-dimensional
abelian varieties over Fp, then #Zg,p = Og(pg(g+1)/4) as p→∞. In fact, DiPippo
and Howe [DH98] prove that for fixed g, we have #Zg,p ∼ pg(g+1)/4 as p → ∞,
where in this section we use the notation f(p) ∼ h(p) to mean that f(p)/h(p) tends
to a positive constant depending only on g as p→∞.

If we sample about p zeta functions from Zg,p at random, then the expected
number of equal pairs is ∼

(
p
2

)
1

pg(g+1)/4 ∼ p2−g(g+1)/4. If we do this for all primes p
greater than or equal to some large integer p0, then the expected total number of
equal pairs for all p is

∑
p≥p0

p2−g(g+1)/4, which tends to 0 as p0 → ∞, provided
that 2− g(g + 1)/4 < −1, which holds for g ≥ 4.

Now let U be a dense open subscheme of A1
Z, and let A → U be an abelian

scheme of relative dimension g. The previous paragraph suggests that if we model
the zeta functions of the fibers of A → U above Fp-points of U as being independent
random elements of Zg,p, then for sufficiently large p0 it is true for every p ≥ p0
that these zeta functions will be distinct; in other words, A → U should satisfy the
condition in Hypothesis Z, unless there is some extra structure to the family that
the model fails to reflect.

It even seems reasonable to guess that for a typical 1-parameter family of
genus 4 curves, the family of Jacobians will satisfy the condition in Hypothesis Z.
See [SV17] for some specific candidate families.

7. Weakening Hypothesis Z

Something slightly weaker than Hypothesis Z would suffice to obtain a polyno-
mial running time in Theorem 5.1:

Hypothesis Z′. There exist a dense open subscheme U of A1
Z and an abelian

scheme A → U such that for every sufficiently large prime p, there are at least
p− (log p)O(1) distinct zeta functions ZAu

as u varies over U(Fp).

Under Hypothesis Z′, given f ∈ Fp[t] that factors completely, one can attempt
to factor the polynomials f(t + c) for (log p)O(1) different values c ∈ Fp by running

6 BJORN POONEN

Pila’s algorithm as in the proof of Theorem 5.1. As long as the O(1) here is larger
than the O(1) in Hypothesis Z′, and as long as p is sufficiently large, there will be
at least one such c such that all the zeros of f(t+c) mod p lie in U(Fp) and the zeta
functions of the fibers above these zeros are pairwise distinct. Thus the algorithm
will succeed in factoring f(t + c) for at least one c, and evaluating the factors at
t − c recovers the factorization of f(t). The running time of the algorithm is still
polynomial in log p, albeit possibly with a larger exponent.

8. Using varieties other than abelian varieties

Suppose that instead of an abelian scheme as in Hypothesis Z, one had an
arbitrary finite-type morphism X → U for a dense open subscheme U of A1

Z such
that for any sufficiently large prime p and distinct u1, u2 ∈ U(Fp), there exists
a prime ` bounded by a polynomial in log p and a nonnegative integer i such
that the characteristic polynomials of Frobenius acting on Hi

et(Xu1 ×Fp,Z/`Z) and
Hi

et(Xu2 × Fp,Z/`Z) are different. Then again one could factor polynomials over
finite fields in deterministic polynomial time, provided that one had an analogue of
Pila’s algorithm that could compute these characteristic polynomials using a deter-
ministic sequence of arithmetic operations and queries whose number is bounded
by a polynomial in ` whose degree and coefficients depend only on X → U .

Madore and Orgogozo [MO15, Théorème 0.1] gave an algorithm for comput-
ing such characteristic polynomials, but their bound on the running time is only
primitive recursive, not polynomial in `.

Acknowledgements

I thank Andrew Sutherland and José Felipe Voloch for encouraging me to write
this article, and I thank Amalaswintha Wolfsdorf for sharing her master’s thesis
with me.

References

[Ber70] E. R. Berlekamp, Factoring polynomials over large finite fields, Math. Comp. 24 (1970),
713–735, DOI 10.2307/2004849. MR0276200 ↑3

[DH98] Stephen A. DiPippo and Everett W. Howe, Real polynomials with all roots on the unit
circle and abelian varieties over finite fields, J. Number Theory 73 (1998), no. 2, 426–
450, DOI 10.1006/jnth.1998.2302. Corrigendum in J. Number Theory 83 (2000), no. 1,
182. MR1657992 ↑5

[Len82] A. K. Lenstra, Factorization of polynomials, Computational methods in number theory,
Part I, Math. Centre Tracts, vol. 154, Math. Centrum, Amsterdam, 1982, pp. 169–198.
MR700263 ↑1, 3

[Len90] H. W. Lenstra Jr., Algorithms for finite fields, Number theory and cryptography
(Sydney, 1989), London Math. Soc. Lecture Note Ser., vol. 154, Cambridge Univ. Press,
Cambridge, 1990, pp. 76–85. MR1055400 ↑1

[MO15] David A. Madore and Fabrice Orgogozo, Calculabilité de la cohomologie étale modulo
`, Algebra Number Theory 9 (2015), no. 7, 1647–1739, DOI 10.2140/ant.2015.9.1647
(French, with English and French summaries). MR3404650 ↑6

[Pil90] J. Pila, Frobenius maps of abelian varieties and finding roots of unity in finite fields,
Math. Comp. 55 (1990), no. 192, 745–763, DOI 10.2307/2008445. MR1035941 ↑3

[Sch85] René Schoof, Elliptic curves over finite fields and the computation of square roots mod
p, Math. Comp. 44 (1985), no. 170, 483–494, DOI 10.2307/2007968. MR777280 ↑1, 2

[SV17] Andrew V. Sutherland and José Felipe Voloch, Maps between curves and arithmetic
obstructions, September 18, 2017. Preprint, arXiv:1709.05734v1. ↑5

USING ZETA FUNCTIONS TO FACTOR POLYNOMIALS OVER FINITE FIELDS 7

[vzGP01] Joachim von zur Gathen and Daniel Panario, Factoring polynomials over finite fields:
a survey, J. Symbolic Comput. 31 (2001), no. 1-2, 3–17, DOI 10.1006/jsco.1999.1002.
Computational algebra and number theory (Milwaukee, WI, 1996). MR1806203 ↑1

[Wol06] Amalaswintha Wolfsdorf, Factorising polynomials over finite fields, March 2006. Mas-
ter’s thesis, University of Oxford, arXiv:1709.05513v1. ↑1

Department of Mathematics, Massachusetts Institute of Technology, Cambridge,
MA 02139-4307, USA

E-mail address: poonen@math.mit.edu
URL: http://math.mit.edu/~poonen/

