
ISOMORPHISM TYPES OF COMMUTATIVE ALGEBRAS OF FINITE
RANK OVER AN ALGEBRAICALLY CLOSED FIELD

BJORN POONEN

Abstract. Let k be an algebraically closed field. We list the finitely many isomorphism
types of rank n commutative k-algebras for n ≤ 6. There are infinitely many types for each
n ≥ 7.

This article was originally published in Computational Arithmetic Geometry (edited by
K. Lauter and K. Ribet), Contemporary Math. 463 (2008), Amer. Math. Soc., 111–120. That
version had an error in the classification of symmetric bilinear forms in characteristic 2; this
led to a few redundant entries in the table. Also, one algebra in Case 4b in characteristic 2
was missing. These errors have now been corrected.

All algebras are assumed to be commutative, associative, and with 1 (except briefly in
Remark 1.1). We assume that k is an algebraically closed field, except in Section 2. By the
rank of a k-algebra, we mean its dimension as a k-vector space.

1. Local algebras of rank up to 6

Our main goal is to list representatives for the (finitely many) isomorphism classes of
rank n k-algebras for n ≤ 6. As we discuss in Section 2, it is known [Sup56] that the number
of isomorphism classes is infinite for every n ≥ 7, so it is natural to stop at 6. One purpose
of these calculations is to give insight into the moduli space of based rank n algebras for
small values of n: see [Poo08]. The geometry of this moduli space seems to be what is behind
the parameterization and enumeration of number fields of fixed low degree and bounded
discriminant, as in the work of Bhargava [Bha04a,Bha04b,Bha04c,Bha05].

Remark 1.1. Many partial results had been obtained by earlier authors. For example, in
the case char k = 0, these algebras were determined implicitly, by classifying nilpotent
commutative subalgebras of the algebra of n×n matrices up to conjugacy, by [Cha54] (n ≤ 5)
and [Dym66] (n = 6). See also [ST66, §2.8 and §2.9]. The paper [Maz80] classifies nilpotent
commutative associative algebras without 1 up to n ≤ 5 for char k 6= 2, 3; isomorphism types
of such algebras of rank n are in bijection with isomorphism types of local commutative
associative algebras with 1 of rank n+ 1 (send A to k ⊕ A), so our results are novel only in
that they handle the cases of characteristic 2 and 3. Our methods are more elementary than
those in [Maz80], which used Hochschild cocycles.

Remark 1.2. The classification of finite-rank algebras is useful in the study of regular subgroups
of the affine group AGLn(k); see [PTB16].
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Classifying the local algebras A is enough since every finite-rank algebra is a product of
these. Let m be the maximal ideal of A. For i ≥ 1, let di = dimk(mi/mi+1).

We classify local algebras A first by n := dimk A, and next by the sequence ~d := (di)i≥1 (we
retain only the finitely many nonzero terms). Each algebra is represented by P/I where P is
the polynomial ring in the first d1 of the variables x, y, z, w, v, and I is an ideal in P . Table 1

summarizes the results. For each (n, ~d), it lists exactly one algebra in each isomorphism class,
by giving I. Each entry marked with * (or **) should be included if and only if char k = 2
(respectively, 3): in other characteristics it becomes isomorphic to the last unstarred entry
preceding it.

Lemma 1.3.

(1) If d1 = 1, then A ' k[x]/(xn).
(2) If d1 = n− 1, then A ' k[x1, . . . , xn−1]/(x1, . . . , xn−1)

2.

(3) The local algebras with ~d = (d1, d2) correspond to d2-dimensional subspaces of the
space of symmetric bilinear forms on a d1-dimensional vector space V , up to GL(V )-
equivalence. Equivalently, they correspond to (d1(d1 + 1)/2− d2)-dimensional sub-
spaces of the space of quadratic forms on a d1-dimensional vector space W , up to
GL(W )-equivalence.

Proof. The first two claims are obvious. For the third statement we take V := m/m2 and
consider the subspace of bilinear forms obtained by composing the multiplication map
V × V → m2 with linear functionals m2 → k. Taking the dual of the subspace gives a space
of quadratic forms on W := V ∨. �

Remark 1.4 (Classification of symmetric bilinear forms). Symmetric bilinear forms correspond
to symmetric matrices. We can form such a symmetric matrix by taking the direct sum of a
zero block and an identity matrix block. If char k = 2, we can also take the direct sum of a

zero block and blocks of the form H :=

(
0 1
1 0

)
. Albert [Alb38, Theorems 3 and 6] proved

that every symmetric matrix is equivalent to a unique matrix in the list just given. (Thus for
n ≥ 1, the number of types of nondegenerate symmetric bilinear forms on an n-dimensional
space is two if char k = 2 and n is even, and one if char k 6= 2 or n is odd.) We use the
notation 0a ⊕ 1b to denote the direct sum of an a× a zero block and a b× b identity matrix
block.

Example 1.5. Rank 5 algebras with ~d = (3, 1) are given by a nonzero symmetric bilinear
form on a 3-dimensional space, up to equivalence. Such an algebra has a basis 1, e2, e3, e4, e5
and the entries of the 3 × 3 symmetric matrix specify what multiple of e5 we get when
we multiply two of e2, e3, e4. For example, if in characteristic 2 we choose the type that

is a direct sum of
(
0
)

and

(
0 1
1 0

)
, we get k[x, y, z] modulo the ideal sum of (x, y, z)3 and

(x2, y2, z2, xy, xz) (coming from the zeros in the 3× 3 matrix); this is the second algebra in

Table 1 with ~d = (3, 1); in the explanation column, we give the shorthand 01 ⊕H for the
type of the symmetric bilinear form.

Remark 1.6 (Classification of quadratic forms). Every quadratic form in x1, . . . , xn is equivalent
to x1x2 + x3x4 + · · ·+ x2r−1x2r or (x1x2 + x3x4 + · · ·+ x2r−1x2r) + x22r+1 for some r ∈ Z≥0.
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n ~d Ideal Explanation

1 (0)
2 1 (x2) Lemma 1.3(1)
3 1, 1 (x3) Lemma 1.3(1)

2 (x, y)2 Lemma 1.3(2)
4 1, 1, 1 (x4) Lemma 1.3(1)

2, 1 (x2, xy, y3) 01 ⊕ 11
(x2, y2) H

*(x2 + y2, xy) 12
3 (x, y, z)2 Lemma 1.3(2)

5 1, 1, 1, 1 (x5) Lemma 1.3(1)
2, 1, 1 (x2, xy, y4)

(x2 + y3, xy)
2, 2 (xy, x3, y3) Lemma 1.3(3), Remark 1.6

(x2, xy2, y3) Lemma 1.3(3), Remark 1.6
3, 1 (x2, y2, xy, xz, yz, z3) 02

(x2, y2, z2, xy, xz) 01 ⊕H
*(x2, xy, xz, yz, y2 + z2) 01 ⊕ 12

(xy, xz, yz, x2 + y2, x2 + z2) 13
4 (x, y, z, w)2 Lemma 1.3(2)

6 1, 1, 1, 1, 1 (x6) Lemma 1.3(1)
2, 1, 1, 1 (x2, xy, y5)

(x2 + y4, xy)
2, 2, 1 (xy, x3, y4) Case I

(xy, x3 + y3) Case I
(x2, xy2, y4) Case IIa

(x2 + y3, xy2, y4) Case IIa
(x2, y3) Case IIa

*(x2 + xy2, y3) Case IIa
**(x2, xy2 + y3) Case IIb

2, 3 (x, y)3 Lemma 1.3(3)
3, 1, 1 (x2, xy, y2, xz, yz, z4) 02

(x2, xy, y2 + z3, xz, yz, z4) 01 ⊕ 11
(x2, xy + z3, y2, xz, yz, z4) H

*(x2 + z3, xy, y2 + z3, xz, yz, z4) 12
3, 2 (xy, yz, z2, y2 − xz, x3) Case 1a

(xy, z2, xz − yz, x2 + y2 − xz) Case 1b
*(x2, z2, y2 − xz, yz) Case 1c

(x2, xy, xz, y2, yz2, z3) Case 2
(x2, xy, xz, yz, y3, z3) Case 2

(xy, xz, y2, z2, x3) Case 3
*(xy, xz, yz, y2 − z2, x3) Case 3
(xy, xz, yz, x2 + y2 − z2) Case 4a

(x2, xy, yz, y2 − z2) Case 4b
*(x2, xy, yz, xz + y2 − z2) Case 4b

(x2, xy, y2, z2) Case 4d
*(x2, xy, y2, z2 − xz) Case 4d

4, 1 (x2, y2, z2, xy, xz, xw, yz, yw, zw,w3) 03 ⊕ 11
(x2, y2, z2, w2, xy, xz, xw, yz, yw) 02 ⊕H

*(x2, y2, z2 + w2, xy, xz, xw, yz, yw, zw) 02 ⊕ 12
(x2, y2 + z2, y2 + w2, xy, xz, xw, yz, yw, zw) 01 ⊕ 13

(x2, y2, z2, w2, xy − zw, xz, xw, yz, yw) H ⊕H
*(x2 + y2, x2 + z2, x2 + w2, xy, xz, xw, yz, yw, zw) 14

5 (x, y, z, w, v)2 Lemma 1.3(2)

Table 1. Local algebras over k = k of rank ≤ 6.
3



Lemma 1.3 and Remarks 1.4 and 1.6 immediately classify all algebras of rank ≤ 6 except

for those with n and ~d as follows:

n = 5: (2, 1, 1)

n = 6: (2, 1, 1, 1), (2, 1, 2), (2, 2, 1), (3, 1, 1), (3, 2).

So we now suppose that A is an algebra of one of these types. Recall that we write A = P/I.

1.1. ~d = (2, 1, 1) or ~d = (2, 1, 2). Then A/m3 is a rank 4 algebra with ~d = (2, 1).
Suppose A/m3 is isomorphic to k[x, y]/(x2, y2) or k[x, y]/(x2 + y2, xy). Then the ideal I

contains two polynomials whose lowest-degree homogeneous parts are of degree 2 and have no
common factor. But then dimk A is at most their intersection multiplicity 4, a contradiction.

Suppose A/m3 ' k[x, y]/(x2, xy, y3). So I contains (x, y)4 as well as x2 + f and xy + g
for some homogeneous cubic forms f and g in x, y. By performing the change of variable
(x, y) 7→ (x + cy2, y) for some c ∈ k (this preserves (x2, xy, y3)), we may assume that the
coefficient of y3 in g is 0. Multiplying x2 + f(x, y), xy + g(x, y) by x, y and reducing modulo
(x, y)4 shows that x3, x2y, xy2 ∈ I, so we may assume f = cy3 for some c ∈ k and g = 0.
Scaling y, we may assume c ∈ {0, 1}. Thus I contains either (x2, xy, y4) or (x2 + y3, xy). But
each of these has codimension 5 in k[x, y], so I equals one of these. In particular, algebras with
~d = (2, 1, 2) do not exist. These two I’s lead to non-isomorphic algebras, since dimk(Annm)
is 2 in the first case, and 1 in the second.

1.2. ~d = (2, 1, 1, 1). Then A/m4 is isomorphic to k[x, y]/(x2, xy, y4) or k[x, y]/(x2 + y3, xy).
In the first case, a calculation similar to the case A/m3 ' k[x, y]/(x2, xy, y3) above shows

that A is isomorphic to one of k[x, y]/(x2, xy, y5) or k[x, y]/(x2 + y4, xy), and that these are
non-isomorphic.

In the second case, I contains (x, y)5 as well as x2+y3+f and xy+g for some homogeneous
quartic forms f, g. Multiplying x2 + y3 + f and xy + g by monomials of degree 2 yields
x4, x3y, x2y2, xy3 ∈ I. Considering y(x2 + y3 + f) − x(xy + g) modulo (x, y)5 shows that
y4 ∈ I. Thus (x, y)4 ⊆ I, contradicting d4 = 1.

1.3. ~d = (2, 2, 1). Then A/m3 is isomorphic to k[x, y]/(xy, x3, y3) or k[x, y]/(x2, xy2, y3).
Case I: We have A/m3 ' k[x, y]/(xy, x3, y3). Then I contains (x, y)4 as well as xy + f for

some cubic form f , and after changes of variables (x, y) 7→ (x, y+ x2) and (x, y) 7→ (x+ y2, y)
we may assume that x3 and y3 do not occur in f . Considering x(xy + f), y(xy + f) modulo
(x, y)4 yields x2y, xy2 ∈ I, so we may assume f = 0. Now (xy) + (x, y)4 has codimension 7,
so I = (xy, g) + (x, y)4 for some nonzero cubic form g, which we may take to be of the form
ax3 + by3. By interchanging and scaling x, y, we may assume g = x3 or g = x3 + y3. These
give non-isomorphic algebras, since dimk(Annm) is 2 or 1, respectively.

Case II: We have A/m3 ' k[x, y]/(x2, xy2, y3). Then I contains (x, y)4 as well as x2 + f for
some cubic form f . Considering x(x2 + f), y(x2 + f) modulo (x, y)4 yields x3, x2y ∈ I. But
(x, y)4 + (x2 + f) has codimension 7, so I contains also a nonzero cubic form g = cxy2 + dy3.
The cubic form g is determined up to scalar multiple and up to performing a change of
variable (x, y) 7→ (λx, µx+ µ′y) and reducing modulo the span of x3 and x2y, since these are
the only linear changes of variable preserving (x2, xy2, y3).

Case IIa: We can make g so that c = 0 or d = 0; by the previous sentence, this condition is
determined by the isomorphism type of A. Then scaling x, y and scaling g, we may assume
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g = xy2 or g = y3. Now reducing f modulo (x3, x2y, g) and scaling, we may assume that
if g = xy2 then f = 0 or f = y3, and if g = y3 then f = 0 or f = xy2. Thus we have four
possibilities for I:

(x2, xy2, y4), (x2 + y3, xy2, y4), (x2, y3), (x2 + xy2, y3).

We claim that these are non-isomorphic, except that the last two are isomorphic if char k 6= 2
via (x, y) 7→ (x + y2/2, y). We have dim(Annm) = 2, 2, 1, 1, respectively. The first is
distinguished from the second (and the third from the fourth if char k = 2) by the existence
of an element of m−m2 whose square is 0.

Case IIb: We cannot make c = 0 or d = 0. This can happen only if char k = 3, since
otherwise when d 6= 0 a linear change of variable (x, y) 7→ (x, y+αx) can make c = 0. Scaling
x and y, we may assume that g = xy2 + y3. Adding a multiple of g to x2 + f ∈ I, we may
assume that f = axy2 for some a ∈ k. If we use the change of variable (x, y) 7→ (x− ay2/2, y)
and reduce modulo (x, y)4 + (x3, x2y), we may assume a = 0 without changing g. This leads
to the algebra k[x, y]/(x2, xy2 + y3). We check that when char k = 3, no change of variable as
mentioned before could have made c = 0 or d = 0, and hence this algebra is not isomorphic
to those in Case IIa. On the other hand, when char k 6= 3, it is isomorphic to k[x, y]/(x2, y3)
via (x, y) 7→ (x, y + x/3).

1.4. ~d = (3, 1, 1). Then A/m3 is one of the four algebras with ~d = (3, 1).
Suppose A/m3 ' k[x, y, z]/(x2, y2, xy, xz, yz, z3). Then I contains x2 + f1, y

2 + f2, xy +
f3, xz + f4, yz + f5 and (x, y, z)4 for some cubic forms f1, . . . , f5. Multiplying by variables
and reducing modulo (x, y, z)4 shows that all cubic monomials are in I except possibly z3, so
z3 is a basis for m3. So we may assume fi = ciz

3 for some ci ∈ k. Replacing x by x+ az2 and
y by y + bz2 for suitable a, b ∈ k, we may assume that f4 = f5 = 0. Thus A is determined by
c1, c2, c3, which correspond to a symmetric bilinear form from the span 〈x, y〉 to 〈z3〉, or more
canonically from (m3 : m)/m2 to m3. The isomorphism type of A is then uniquely determined
by the isomorphism type of this symmetric bilinear form. For example, the form given by(

0 1
1 0

)
corresponds to I = (x2, xy − z3, y2, xz, yz, z4). In summary (changing the sign of z),

we get the four possibilities listed for ~d = (3, 1, 1).
Suppose A/m3 ' k[x, y, z]/(x2, y2, z2, xy, xz). As in the previous paragraph, I contains

x2 + f1, . . . , xz + f5 for some cubic forms fi, but this time every cubic monomial is a multiple
of one of x2, y2, z2, xy, xz, so we can prove that m3 = 0, a contradiction.

The other two possibilities for A/m3 can likewise be ruled out: in each, the multiples of
the quadratic monomials in the ideal of A/m3 span the space of cubic forms.

1.5. ~d = (3, 2). By Lemma 1.3, A is determined by a 2-dimensional subspace of the space of
symmetric bilinear forms on 〈x, y, z〉, up to GL3-equivalence. Hence A may be represented by
a linearly independent pair of symmetric bilinear forms (〈 , 〉1, 〈 , 〉2) which in turn may be
represented by a pair of 3× 3 symmetric matrices (M1,M2). Let keri be the kernel of 〈 , 〉i.
Let F (t, u) := det(tM1 + uM2), which is a cubic form determined up to GL2-equivalence
by A.

Case 1: F (t, u) is a nonzero cube. Without loss of generality, assume that F (t, u) is a
multiple of u3. In particular detM1 = 0. By Remark 1.4, we may change the basis of 〈x, y, z〉
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to assume that M1 is one of the following:1 0 0
0 0 0
0 0 0

 ,

1 0 0
0 −1 0
0 0 0

 ,

0 1 0
1 0 0
0 0 0

 ,

where the last is needed only if char k = 2. Write M2 =

a b c
b d e
c e f

.

Case 1a: M1 =

1 0 0
0 0 0
0 0 0

. Since F (t, u) is a nonzero multiple of u3, the lower right 2× 2

block of M2, representing 〈 , 〉2|ker1 , is a nonzero singular matrix, and by Remark 1.4 a linear

change of variables of y, z transforms this block to

(
1 0
0 0

)
. By replacing x with x+ λy for

suitable y, we may assume b = 0. By adding a multiple of M1 to M2 we may assume a = 0.

Now M2 =

0 0 c
0 1 0
c 0 0

. Since detM2 6= 0, we may scale z to assume c = 1. This (M1,M2)

yields the algebra

A ' k[x, y, z]

(xy, yz, z2, y2 − xz) + (x, y, z)3
.

Case 1b: M1 =

1 0 0
0 −1 0
0 0 0

. Adding a multiple of M1 to M2, we may assume that d = 0.

Setting the coefficients of t2u and tu2 in F (t, u) = det(tM1 + uM2) equal to 0 yields f = 0
and c = ±e. Moreover, F (t, u) is not identically 0, so (c, e) 6= (0, 0). If necessary, the change
of variable x 7→ −x lets us assume that c = e. The change of variable x 7→ x+λz for suitable
λ ∈ k lets us assume in addition that b = 0. Since F (t, u) is not 0, a 6= 0. Scaling M2, we

may assume a = 1. Scaling z, we may assume c = e = 1. Now M2 =

1 0 1
0 0 1
1 1 0

, and

A ' k[x, y, z]

(xy, z2, xz − yz, x2 + y2 − xz) + (x, y, z)3
.

Case 1c: M1 =

0 1 0
1 0 0
0 0 0

 and char k = 2. Adding a multiple of M1 to M2, we may

assume b = 0. Since F is a multiple of u3, we have f = 0. Since M2 is nonsingular, either a
or d is nonzero. By performing a 2× 2 invertible transformation of x and y (and then scaling
M1 to restore it) we may assume that a = 0 and d = 1. Since M2 is nonsingular, c 6= 0. A
change of variable y 7→ y + λx lets us assume that e = 0. Scaling z, we may assume c = 1.
Now

M2 =

0 0 1
0 1 0
1 0 0

 ,
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and

A ' k[x, y, z]

(x2, z2, y2 − xz, yz) + (x, y, z)3
.

This completes Case 1.

If F (t, u) is not a nonzero cube, then it vanishes at at least two (t : u) ∈ P1(k), so without
loss of generality ker1 and ker2 are nonzero.

Case 2: ker1 ∩ ker2 6= 0. In this case dim(ker1 ∩ ker2) = 1, since if it were any larger,
then M1 and M2 would be contained in a 1-dimensional space. Without loss of generality,
ker1 ∩ ker2 = 〈x〉. Then

A ' k[x, y, z]

(x2, xy, xz, q) + (x, y, z)3

where q is a quadratic form in y, z; up to isomorphism there are only the possibilities q = y2

and q = yz.

Case 3: ker1 and ker2 have dimensions 1, 2, respectively, and do not intersect. Without
loss of generality, ker1 = 〈x〉 and ker2 = 〈y, z〉. The restriction of each symmetric bilinear
form to the kernel of the other is nondegenerate (because of the kernel dimensions), so up to
isomorphism Remark 1.4 leaves only the possibility

M1 =

0 0 0
0 0 1
0 1 0

 , M2 =

1 0 0
0 0 0
0 0 0

 , A ' k[x, y, z]

(xy, xz, y2, z2) + (x, y, z)3
,

except that in characteristic 2 we have also

M1 =

0 0 0
0 1 0
0 0 1

 , M2 =

1 0 0
0 0 0
0 0 0

 , A ' k[x, y, z]

(xy, xz, yz, y2 − z2) + (x, y, z)3
.

Case 4: ker1 and ker2 are 1-dimensional and do not intersect. Without loss of generality,
ker1 = 〈x〉 and ker2 = 〈y〉. Then

M1 =

0 0 0
0 a b
0 b c

 , M2 =

d 0 e
0 0 0
e 0 f

 ,

for some a, b, c, d, e, f ∈ k.
Case 4a: a, d 6= 0. By a change of variable z 7→ z + λy for suitable λ ∈ k, we may assume

b = 0. Similarly, by a change z 7→ z+λ′x, we may assume e = 0. Since dim ker1 = dim ker2 =
1, we have c, f 6= 0. Scaling the Mi we may assume c = f = 1. Scaling y we may assume
a = 1. Scaling x we may assume d = 1. Now

M1 =

0 0 0
0 1 0
0 0 1

 , M2 =

1 0 0
0 0 0
0 0 1

 , A ' k[x, y, z]

(xy, xz, yz, x2 + y2 − z2) + (x, y, z)3
.

Case 4b: a 6= 0 and d = 0. As in Case 4a, we may assume b = 0. Since dim ker1 =
dim ker2 = 1, we have c, e 6= 0. Scaling, we may assume a = c = e = 1 and f ∈ {0, 1}. These
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two possibilities are

M1 =

0 0 0
0 1 0
0 0 1

 , M2 =

0 0 1
0 0 0
1 0 1

 , A ' k[x, y, z]

(x2, xy, yz, y2 − z2) + (x, y, z)3

M1 =

0 0 0
0 1 0
0 0 1

 , M2 =

0 0 1
0 0 0
1 0 1

 , A ' k[x, y, z]

(x2, xy, yz, xz + y2 − z2) + (x, y, z)3
.

If char k 6= 2, then the substitution z 7→ z − x/2 transforms the first into the second. If
char k = 2, then these two algebras are distinguished by the dimension of the kernel of the
squaring map on m.

Case 4c: a = 0 and d 6= 0. By symmetry in x and y, this is the same as Case 4b.
Case 4d: a = d = 0. Since dim ker1 = dim ker2 = 1, we have b, e 6= 0. We may scale to

assume that b = e = 1, so we obtain

M1 =

0 0 0
0 0 1
0 1 c

 , M2 =

0 0 1
0 0 0
1 0 f

 , A ' k[x, y, z]

(x2, xy, y2, z2 − (fx+ cy)z) + (x, y, z)3
.

If char k 6= 2, a change of variable z 7→ z + (f/2)x+ (c/2)y shows that

(1.7) A ' k[x, y, z]

(x2, xy, y2, z2) + (x, y, z)3
.

If char k = 2, we can perform a linear change of the variables x and y to transform the linear
form fx+ cy to either 0 or x; hence in addition to the algebra (1.7) we have the possibility

A ' k[x, y, z]

(x2, xy, y2, z2 − xz) + (x, y, z)3
,

and this is not isomorphic to (1.7), since only for (1.7) does every element of m have square 0.

The algebras in Case 1 are distinguished from the others with ~d = (3, 2) in that F (t, u)
is a nonzero cube, and are distinguished from the others in Case 1 by the equivalence type
of the singular symmetric bilinear form. The two algebras in Case 2 are distinguished from
the others in that the space (Annm)/m2 = ker1 ∩ ker2 is nonzero, and are distinguished from
each other by the isomorphism type of the symmetric form from m/(Annm) to m2 induced
by multiplication. The remaining algebras, in Cases 3, 4a, 4b, 4d, have F (t, u) equal to
−t2u, tu(t+ u), −tu2, 0, respectively. Therefore the only possible overlap is between Cases 3
and 4b. In both Case 3 and Case 4b, there are exactly two nonzero linear combinations of
〈 , 〉1, 〈 , 〉2 up to scalar with a nonzero kernel, but only in Case 3 does one of them have a
2-dimensional kernel.

In all cases where we included (x, y, z)3 in the ideal, we compute which monomials in
(x, y, z)3 are already in the ideal generated by the other generators, and include only the
remaining ones when we describe the algebra in Table 1. This completes the determination
of local algebras of rank ≤ 6 over k.

Remark 1.8. If we fix n ≤ 6 and k, there is a partial ordering on the set of isomorphism types
of rank n k-algebras that expresses which types deform to which other types. It might be
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nice to give the Hasse diagram for this partially ordered set. This is done for n = 5 with
char k 6= 2, 3 in [Maz80, p. 292].

Remark 1.9. Let Bn,k be the moduli space of rank n algebras equipped with a basis: see [Poo08].
There is an action of GLn(k) on Bn,k(k), and the orbits correspond to the isomorphism types
of algebras. It follows that dimBn,k = n2 for n ≤ 6.

2. Algebras of rank at least 7

Proposition 2.1 ([Sup56]). If n ≥ 7 and k is any infinite field, then the set of isomorphism
classes of rank n algebras over k is infinite.

Proof. It suffices to consider n = 7, because for higher n, we can take a product of a variable

rank 7 algebra with
∏n

i=8 k. We analyze algebras A with ~d = (4, 2) as we did for (3, 2) above.
They can be described by a linearly independent pair (M1,M2) of symmetric 4× 4 matrices,
and the binary quartic form det(tM1 + uM2) up to GL2-equivalence is determined by the
isomorphism type of A. Considering the case where M1 and M2 are diagonal shows that
all squarefree binary quartics arise. Now, given a squarefree binary quartic, we may choose
an ordering of its zeros in P1(k) and take their cross ratio. Since all cross ratios other than
0, 1,∞ arise, but at most 4! (in fact, at most 6) come from each isomorphism class of algebras,
there must be infinitely many algebras. �

Remark 2.2. For an infinite field k with char k 6= 2, we could give the following alternative
argument. When char k 6= 2, symmetric matrices correspond to quadratic forms, so an algebra

A with ~d = (4, 2) gives a pair of quadratic forms. Their common zero set in P3 defines in the
generic case a smooth genus 1 curve, whose j-invariant is an invariant of A. Infinitely many
j-invariants arise, so there are infinitely many isomorphism classes of A.

Remark 2.3. As pointed out by the referee, a similar argument can be used to simplify the

case ~d = (3, 2) handled in Section 1.5, when char k 6= 2: instead of a genus 1 curve, one
obtains an intersection of two conics in P2, which generically is a 0-dimensional scheme of
degree 4.

3. Summary

Table 2 lists, for each fixed rank n, the number of isomorphism types of rank n local
algebras over k, and the number of isomorphism types of all rank n algebras; the numbers
depend on char k. The counts for local algebras for char k 6= 2, 3 agree with those given
implicitly in [Maz80].
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Local All
n char 6= 2, 3 char 2 char 3 char 6= 2, 3 char 2 char 3
0 0 0 0 1 1 1
1 1 1 1 1 1 1
2 1 1 1 2 2 2
3 2 2 2 4 4 4
4 4 5 4 9 10 9
5 9 10 9 20 23 20
6 25 33 26 53 64 54
≥ 7 ∞ ∞ ∞ ∞ ∞ ∞

Table 2. Number of rank n algebras over k = k up to isomorphism.
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[Cha54] B. Charles, Sur l’algèbre des opérateurs linéaires, J. Maths. Pures. Appl. (9) 33 (1954), 81–145
(French). MR0065521 (16,439a) ↑1.1

[Dym66] Z. M. Dyment, Maximal commutative nilpotent subalgebras of a matrix algebra of the sixth degree,
Vesci Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk 1966 (1966), no. 3, 53–68 (Russian). MR0202762
(34 #2622) ↑1.1

[Maz80] Guerino Mazzola, Generic finite schemes and Hochschild cocycles, Comment. Math. Helv. 55 (1980),
no. 2, 267–293. MR576606 (82k:14010) ↑1.1, 1.8, 3

[PTB16] M.A. Pellegrini and M.C. Tamburini Bellani, More on regular subgroups of the affine group,
January 7, 2016. Preprint, arXiv:1601.01679v1 . ↑1.2

[Poo08] Bjorn Poonen, The moduli space of commutative algebras of finite rank, J. Eur. Math. Soc. (JEMS)
10 (2008), no. 3, 817–836, DOI 10.4171/JEMS/131. MR2421162 (2009d:14009) ↑1, 1.9

[Sup56] D. A. Suprunenko, On maximal commutative subalgebras of the full linear algebra, Uspehi Mat.
Nauk (N.S.) 11 (1956), no. 3(69), 181–184 (Russian). MR0082983 (18,639h) ↑1, 2.1
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