
A p-ADIC APPROACH TO RATIONAL POINTS ON CURVES

BJORN POONEN

Abstract. In 1922, Mordell conjectured the striking statement that for a polynomial
equation f(x, y) = 0, if the topology of the set of complex number solutions is complicated
enough, then the set of rational number solutions is finite. This was proved by Faltings
in 1983, and again by a different method by Vojta in 1991, but neither proof provided a
way to provably find all the rational solutions, so the search for other proofs has continued.
Recently, Lawrence and Venkatesh found a third proof, relying on variation in families of
p-adic Galois representations; this is the subject of the present exposition.

1. The Mordell conjecture

1.1. Rational points on curves. The equation x2 + y2 = z2 has infinitely many solutions
in integers satisfying gcd(x, y, z) = 1. Equivalently, the circle x2 + y2 = 1 has infinitely
many rational points ((3/5, 4/5), (5/13, 12/13), etc.) This can be understood geometrically:
each line through (−1, 0) with rational slope intersects the circle at one other point, which
must have rational coordinates since finding its coordinates amounts to solving a quadratic
equation over Q for which one rational root is already known. The same argument shows
that any nonsingular conic section defined by a polynomial with rational coefficients having
one rational point has infinitely many.

x2 + y2 = 1 x4 + y4 = 1
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In contrast, Fermat proved that the equation x4 + y4 = z4 has no positive integer solutions.
Equivalently, the set of rational points on the plane curve x4 + y4 = 1 is {(±1, 0), (0,±1)}.
What about x4 + y4 = 17? It turns out that it too has only finitely many rational points.
(They are (±2,±1) and (±1,±2) [FW01].) More generally, for any fixed d ≥ 4 and a ∈ Q×,
the curve xd + yd = a has only finitely many rational points. All these finiteness claims are
instances of the Mordell conjecture, which states that a “complicated enough” curve has only
finitely many rational points, if any at all.

In the previous paragraph, the condition d ≥ 4 is what made the curve “complicated
enough”. To state the Mordell conjecture fully, however, we need to consider also curves
defined by several polynomials in higher-dimensional space and to introduce the notion of
genus to measure their geometric complexity.

1.2. Projective space. Let k be a field and let n ∈ Z≥0. The set of k-points on n-dimensional
affine space is An(k) := kn.

Define an equivalence relation ∼ on kn+1 − {~0} by (a0, . . . , an) ∼ (λa0, . . . , λan) for all
λ ∈ k×. Let (a0 : . . . : an) denote the equivalence class of (a0, . . . , an). The set of all such
equivalence classes is the set

Pn(k) :=
kn+1 − {~0}

k×

of k-points on n-dimensional projective space.
The points (a0 : . . . : an) ∈ Pn(k) with a0 6= 0 have a unique representative of the form

(1, a1, . . . , an), so they form a copy of An(k). For each i, the same holds for the points with
ai 6= 0. Moreover, Pn(k) is the union of these n+ 1 overlapping copies of An(k).

One advantage of projective space over affine space is that Pn(R) is compact for the topology
coming from the Euclidean topology on each Rn; similarly, Pn(C) is compact. Related to this
is that intersection theory works better in projective space: for example, two distinct lines in
P2(k) always meet in exactly one point.

1.3. Projective varieties. A finite list of polynomials f1, . . . , fm ∈ k[x1, . . . , xn] defines an
affine variety1 X ⊂ An whose set of k-points is

X(k) := {~a ∈ An(k) : f1(~a) = · · · = fm(~a) = 0}.

But for a point (a0 : . . . : an) ∈ Pn(k), a polynomial condition f(~a) = 0 does not necessarily
make sense; to make sure that it is unchanged by scaling ~a, we assume that f is homogeneous,
a sum of monomials of the same total degree, such as x50x21 − x40x31 + 9x71 of degree 7. A finite
list of homogeneous polynomials f1, . . . , fm ∈ k[x0, . . . , xn] defines a projective variety X ⊂ Pn

1Some people require a variety to satisfy additional conditions, such as not being a union of two strictly
smaller such varieties.
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whose set of k-points is

X(k) := {(a0 : · · · : an) ∈ Pn(k) : f1(~a) = · · · = fm(~a) = 0}.

The decomposition of Pn as a union of n+ 1 copies of An restricts to express X as a union of
n+ 1 affine varieties called affine patches. For each i, dehomogenizing f1, . . . , fm by setting
xi equal to 1 gives polynomials cutting out the ith affine patch in An.

1.4. Smooth varieties. If a variety Y ⊂ An is defined by f1, . . . , fn−r such that for every
field extension L ⊃ k and point ~a ∈ Y (L), the matrix

((
∂fi
∂xj

)
(~a)
)
∈ Mn−r,n(L) has rank

n − r, then call Y obviously smooth of dimension r; the rank condition is the same as the
Jacobian criterion in the implicit function theorem. More generally, any affine or projective
variety X is called smooth of dimension r if (in a sense we will not make precise) it can be
covered by subvarieties isomorphic to obviously smooth varieties Y as above.

If X is smooth of dimension r over R, then X(R) is a smooth R-manifold of dimension r.
The same holds if R is replaced by C in all three places.

1.5. Genus of a curve. From now on, we consider a smooth projective curve X over Q,
that is, a projective variety over Q that is smooth of dimension 1. We assume, moreover, that
X is geometrically connected, meaning that the variety defined by the same polynomials over
an algebraically closed extension field (such as C) is nonempty and not the disjoint union of
two strictly smaller varieties. Then X(C) is a compact connected 1-dimensional C-manifold,
that is, a compact Riemann surface. Forgetting the complex structure, we find that X(C) is
a compact connected oriented 2-dimensional real manifold; by the classification of such, X(C)
is homeomorphic to a g-holed torus for some g ∈ Z≥0. The integer g is called the genus of X.
It measures the geometric complexity of X.

Remark 1.1. It turns out that g also equals the dimension of the space of holomorphic 1-forms
on X(C). One can also define g algebraically, either by using Kähler differentials in place of
holomorphic forms, or by computing the dimension of a sheaf cohomology group H1(X,OX).

Example 1.2 (The Riemann sphere). If X = P1, then the space X(C) = P1(C) = C ∪ {∞} is
homeomorphic to a sphere via (the inverse of) stereographic projection. Thus g = 0.

Example 1.3 (Plane curves). If X ⊂ P2 is a smooth projective curve defined by a degree d
homogeneous polynomial, then it turns out that g = (d− 1)(d− 2)/2.

Example 1.4 (Conic sections). A nondegenerate conic section is a smooth curve of degree 2

in P2. By Example 1.3, it is of genus 0.

Example 1.5 (Elliptic curves). An elliptic curve is a smooth degree 3 curve y2z − x3 −Axz2 −
Bz3 = 0 in P2 for some numbers A,B ∈ Q. (Dehomogenizing by setting z = 1 gives the
equation y2 = x3 + Ax + B for one affine patch.) By Example 1.3, an elliptic curve is of
genus 1.
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Example 1.6 (Hyperelliptic curves). Let f(x) ∈ Q[x] be a nonconstant polynomial with no
repeated factors. Then y2 = f(x) defines a smooth curve in A2. It is isomorphic to an affine
patch of some smooth projective geometrically connected curve X. If f has degree 2g + 1 or
2g + 2, then the genus of X is g.

Remark 1.7. The problem of determining the rational points on a general curve can be
reduced to the problem for a smooth projective geometrically connected curve (cf. [Poo17,
Remark 2.3.27]). That is why it suffices to consider only the latter.

1.6. The conjecture.

Mordell conjecture ([Mor22], first proved in [Fal83]). Let X be a smooth projective geo-
metrically connected curve of genus g over Q. If g > 1, then X(Q) is finite.

Remark 1.8. One can say qualitatively what happens for curves of genus 0 and 1 as well:

Genus g X(Q) Some examples
0 infinite, if nonempty lines and conics2

1 can be finite or infinite elliptic curves, . . .
> 1 finite plane curves of degree ≥ 4, . . .

Several proofs of the Mordell conjecture are known, none of them easy:

• Faltings [Fal83] proved the conjecture in 1983 using methods from Arakelov theory,
a kind of arithmetic intersection theory that combines number-theoretic data with
complex-analytic data.
• Vojta [Voj91] gave a completely different proof based on diophantine approximation,
a theory whose original goal was to quantify how closely irrational algebraic numbers
such as 3

√
2 could be approximated by rational numbers with denominator of at most

a certain size. For a more elementary variant of Vojta’s proof due to Bombieri, see
[Bom90] or [HS00].
• Lawrence and Venkatesh [LV19] recently gave yet another proof. Their proof shares
some ingredients with Faltings’s but replaces the most difficult steps by arguments
involving p-adic Hodge theory. The rest of this article is devoted to explaining some
of the ideas underlying their proof.

Remark 1.9. All of these proofs generalize to the case of curves defined over number fields
instead of just Q. (A number field is a finite field extension over Q, such as Q(

√
5).)

2In fact, every genus 0 curve is isomorphic to one of these.
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Remark 1.10. Although the Lawrence–Venkatesh proof is the first complete proof of the
Mordell conjecture using p-adic methods, older p-adic approaches have given partial results.
Chabauty [Cha41] gave a proof for X satisfying an additional hypothesis, namely rank J(Q) <

g for a certain projective group variety J associated to X, the Jacobian. More recently,
Kim [Kim05, Kim09] proposed a sophisticated extension of Chabauty’s ideas, using the
nilpotent fundamental group of X as a substitute for J . He proved that his approach
combined with well-known conjectures would imply the Mordell conjecture. Kim’s approach
has already led to the explicit determination of X(Q) for some X outside the reach of previous
methods [BDM+19], and it may be that Kim’s approach succeeds for every X of genus > 1.

Remark 1.11. All the proofs so far are ineffective: they do not prove that there is an algorithm
that takes as input the list of polynomials defining a curve X of genus > 1 and outputs the
list of all rational points on X. At best they give a computable upper bound on #X(Q) in
terms of X. See [Poo02] for more about the algorithmic problem.

2. Overall strategy of the Lawrence–Venkatesh proof

Here let us outline the strategy of Lawrence and Venkatesh, while postponing definitions
and details to later sections.

Let X be a smooth projective geometrically connected curve of genus > 1 over Q. Lawrence
and Venkatesh use two maps of sets

(1) X(Q)
KP−→ {curves} H1

et−→ {Qp-representations of GQ},

where each of the last two sets is really a set of isomorphism classes.

• The map KP sends a rational point x ∈ X(Q) to a curve Yx over Q; the curves Yx
are the fibers of a surjective morphism Y → X for some 2-dimensional variety Y
defined in Section 3. (Fiber means the inverse image of a point. KP stands for Kodaira
and Parshin, who constructed certain Y → X for studying the Mordell conjecture
[Par71].)
• The map H1

et sends each curve to its étale cohomology; see Section 4.

Let V be the composition of the two maps. To complete the proof that X(Q) is finite,
Lawrence and Venkatesh prove that V has finite image and finite fibers; see Section 5.

3. A family of curves

In this section, we construct the algebraic family of curves Y → X.

3.1. Fundamental group of a punctured Riemann surface. For now, let X be a
compact Riemann surface of genus g. Because X is homeomorphic to a 4g-gon with edges

5



glued appropriately, the Seifert–van Kampen theorem implies that the fundamental group of
X (with respect to any base point) has a presentation

π1(X) '
〈
a1, b1, . . . , ag, bg

∣∣∣ [a1, b1] · · · [ag, bg]〉,
where [a, b] := aba−1b−1; that is, π1(X) is the quotient of a free group on 2g generators by
the smallest normal subgroup containing the indicated product of g commutators. More
generally, if B is a finite subset of X of size r, then

π1(X −B) '
〈
a1, b1, . . . , ag, bg, c1, . . . , cr

∣∣∣ [a1, b1] · · · [ag, bg]c1 · · · cr〉.
3.2. Analytic construction of a family of ramified covers. Now fix X and a finite
group G. Let x ∈ X. A surjective homomorphism π1(X − {x})

α
� G defines a finite covering

space of X − {x}, and it can be completed to a finite ramified covering Yx,α → X, with some
branches possibly coming together above x ∈ X.

This covering depends on α, but there are only finitely many α since π1(X−{x}) is finitely
generated. To obtain a space not depending on a choice of any one α, define the finite disjoint
union Yx :=

∐
α Yx,α, which is a disconnected ramified covering of X.3 As x varies, the Yx

vary continuously in a family. The total space of this family is a 2-dimensional compact
complex manifold Y with a proper submersion φ : Y → X such that φ−1(x) = Yx for each
x ∈ X.

x

Y

X

Yx

φ

3.3. An algebraic family of curves. The constructions above can be made algebraic, in
the following sense. Suppose that X is a smooth projective connected curve over C. Then by
the Riemann existence theorem, Yx,α → X arises from an algebraic morphism of algebraic
curves. Moreover, there is a 2-dimensional variety Y with a morphism φ : Y → X whose
fibers are the disconnected curves Yx =

∐
α Yx,α.

Even better, the construction is canonical enough that if X is defined over Q, then
φ : Y → X can be defined over Q. This is called a Kodaira–Parshin family; see [LV19, §7] for
details.

3Lawrence and Venkatesh use a variant in which G has trivial center and the disjoint union is over conjugacy
classes of surjective homomorphisms α; this makes sense since the isomorphism type of Yx,α depends only on
the conjugacy class.

6



Remark 3.1. The curve X is playing two roles: it is the base of the family Y → X, but also
each fiber Yx is a ramified covering of X.

4. Galois representations

The Lawrence–Venkatesh proof makes essential use of p-adic Galois representations. There-
fore, in this section we define Qp, define the absolute Galois group of a field, and give examples
and properties of Qp-representations of the absolute Galois group of Q.

4.1. The field of p-adic numbers. Let p be a prime number. The ring of p-adic integers is
the inverse limit Zp := lim←−Z/pnZ. Thus an element of Zp is a sequence (a1, a2, . . .) where
the elements an ∈ Z/pnZ are compatible in the sense that the natural homomorphism
Z/pn+1Z � Z/pnZ maps an+1 to an for each n. For example,

(3 mod 5, 13 mod 52, 38 mod 53, . . .) ∈ Z5.

As a ring, Zp is a domain of characteristic 0. Its fraction field, denoted Qp, is called the field
of p-adic numbers.

For each n ≥ 1, the homomorphism πn : Zp → Z/pnZ sending (a1, a2, . . .) to an is surjective
with kernel pnZp. The kernel of π1 : Zp → Z/pZ = Fp is the unique maximal ideal pZp of Zp.
The collection of subsets π−1

n (a) for all n ∈ Z≥1 and a ∈ Z/pnZ is a basis of a topology on
Zp. Equip Qp with the unique topology making it a topological group having Zp as an open
subgroup.

Remark 4.1. Here we explain an alternative construction of Zp and Qp and their topologies,
producing the same results. The p-adic absolute value on Q is characterized by

∣∣pn a
b

∣∣
p
:= p−n

whenever a, b, n ∈ Z and p - a, b; thus a rational number is p-adically small if its numerator is
divisible by a large power of p. Define Qp as the completion of Q with respect to | |p, just as
R is the completion of Q with respect to the standard absolute value. Then | |p extends to
an absolute value on Qp. Define Zp as the closed unit disk {x ∈ Qp : |x|p ≤ 1}. Finally, | |p
induces a metric on Qp, which defines a topology on Zp and Qp.

Working with Zp or Qp amounts to working with infinitely many congruences at once, but
passing to the limit has advantages. One is that one can work over a domain or field of
characteristic 0. Another is that some ideas from analysis over R have analogues for Qp.

Whereas number fields such as Q are examples of what are called global fields, Qp is an
example of a local field. For a more detailed introduction to p-adic numbers, see [Kob84].

4.2. The absolute Galois group of Q. A complex number is algebraic over Q if it is a
zero of some nonzero polynomial in Q[x]. The set of all algebraic numbers is a subfield Q of
C, called an algebraic closure of Q.

Now let K be a subfield of Q. Call K ⊃ Q a finite extension if dimQK is finite. Call K ⊃ Q
a Galois extension if it is generated by the set of all zeros of some collection of polynomials in
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Q[x].4 For example, Q( 3
√
2) is not a Galois extension of Q, but Q( 3

√
2, e2πi/3 3

√
2, e4πi/3 3

√
2) is.

The field Q is the union of its finite Galois subextensions K.
For a Galois extension K ⊃ Q, the Galois group Gal(K/Q) is the set of automorphisms

of K that fix Q pointwise5. The absolute Galois group of Q is GQ := Gal(Q/Q). Each
automorphism of Q restricts to give an automorphism of each finite Galois subextension K,
and any compatible collection of such automorphisms defines an automorphism of Q, so

GQ ' lim←−
finite Galois K ⊃ Q

Gal(K/Q).

Just as the inverse limit Zp had a topology, the inverse limit GQ has a topology.

Remark 4.2. More generally, for any field F , one can construct a field F and topological
group GF .

4.3. Global p-adic Galois representations. Let V be a finite-dimensionalQp-vector space.
If dimV = r, then AutV ' GLr(Qp), which has a topology coming from the topology of Qp.
Call a Qp-linear action of GQ on V continuous if the homomorphism ρ : GQ → AutV defined
by the action is continuous. By a Qp-representation of GQ we mean a finite-dimensional
Qp-vector space V equipped with a continuous action of GQ. In the next few sections, we
give examples of such representations arising in number theory and arithmetic geometry.

4.4. The cyclotomic character. Let m be a positive integer. Define

µm := {z ∈ Q : zm = 1},

which under multiplication is a cyclic group of order m. Thus µm is a free Z/mZ-module of
rank 1. The group GQ acts on the group µm.

Now fix a prime p, and let m range through the powers of p. Form the inverse limit

T := lim←−µpn

with respect to the homomorphisms µpn+1 � µpn sending ζ to ζp. Then T is a free rank 1

module under the ring Zp := lim←−Z/pnZ, and GQ acts on T .
Next let

V := T ⊗Zp Qp.

Then V is a 1-dimensional Qp-vector space, and GQ acts on V . It follows from the definitions
that the action is continuous, so V is a 1-dimensional Qp-representation of GQ; it is called
the cyclotomic character.

4For a definition that works over an arbitrary ground field k instead of Q, one should require each
polynomial to have distinct zeros in k.

5Fixing Q pointwise is automatic; this condition becomes relevant only over other ground fields.
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4.5. Galois representations associated to elliptic curves. Let E be an elliptic curve
over Q. It turns out that E is a group variety; in particular, there is a map of varieties
E × E → E making E(Q) an abelian group. If P ∈ E(Q), we may use this group law to
define 3P := P + P + P and so on. For each m ≥ 1, it turns out that the m-torsion subgroup

E[m] := {P ∈ E(Q) : mP = 0}

is a free Z/mZ-module of rank 2. Therefore the inverse limit

TpE := lim←−E[p
n]

(with respect to the homomorphisms E[pn+1]→ E[pn] sending P to pP ) is a free Zp-module
of rank 2, called a Tate module. Next,

VpE := TpE ⊗Zp Qp

is a 2-dimensional Qp-vector space. The continuous action of GQ on E(Q) induces continuous
actions on E[pn], TpE, and VpE. Thus VpE is a 2-dimensional Qp-representation of GQ.

4.6. Galois representations associated to higher-genus curves. Let X be a smooth
projective geometrically connected curve of genus g over Q. If g 6= 1, there is no group law
X × X → X, but the Jacobian J of X does have a group law. The construction of VpE
generalizes to produce a 2g-dimensional Qp-representation VpJ of GQ.

4.7. Galois representations from étale cohomology. If X is a smooth projective variety
over Q, and i ∈ Z≥0 then the étale cohomology group Hi(XQ,Qp) (which we will not attempt
to define here) is a Qp-representation of GQ.

Example 4.3. If E is an elliptic curve, then it turns out that H1(EQ,Qp) is the dual of the
representation VpE. If X and J are as in Section 4.6, then H1(XQ,Qp) is the dual of VpJ .

4.8. Semisimple representations. Let V be a Qp-representation of GQ. Call V irreducible
if V 6= 0 and there is no GQ-invariant subspace W with 0 ( W ( V . Call V semisimple if it
is a direct sum of irreducible representations. Maschke’s theorem [Ser77, §1.4, Theorem 2]
states that any C-representation of a finite group is semisimple, but this is not true for
Fp-representations of a finite group of order divisible by p, and Qp-representations of GQ are
more like the latter in this regard: they need not be semisimple.

Example 4.4. Let χ : GQ → Q×
p be the cyclotomic character. There is a homomorphism

logp : Q×
p → Qp from the multiplicative group to the additive group; see [Kob84, IV.2].

Composing these yields a nontrivial continuous homomorphism λ : GQ → Qp. Let V :=

Qp⊕Qp, viewed as a space of column vectors. Let each g ∈ GQ act as

(
1 λ(g)

0 1

)
on V . The

only invariant subspace of V is Qp ⊕ 0, so V is not semisimple.
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4.9. The absolute Galois group of Qp. Let Qp denote an algebraic closure of Qp. The
homomorphism Z ↪→ Zp extends uniquely to Q ↪→ Qp and non-uniquely to Q ↪→ Qp; fix
one such embedding. Define GQp

:= Gal(Qp/Qp). It turns out that Qp is generated by its
subfields Q and Qp, so the homomorphism GQp → GQ sending each σ to σ|Q is injective.
Identify GQp with its image, which is called a decomposition group of GQ.

The absolute value | |p on Qp extends in a unique way to Qp. Let Zp := {x ∈ Qp : |x|p ≤ 1};
it is a subring. The unique maximal ideal of Zp is m := {x ∈ Qp : |x|p < 1}, and the quotient
Zp/m is an algebraic closure Fp of Fp. Each element of GQp preserves | |p and hence induces
an automorphism of Zp/m. Thus we obtain a homomorphism GQp → GFp . It is surjective,
and its kernel Ip ⊂ GQp ⊂ GQ is called an inertia group. To summarize, we have a diagram

1 // Ip // GQp
//

� _

��

GFp
// 1

GQ.

The Frobenius automorphism Frobp ∈ GFp is the automorphism x 7→ xp of Fp; it generates a
dense subgroup of GFp since it restricts to a generator of each finite quotient Gal(Fpn/Fp).
Write Frobp also for any element of GQp mapping to Frobp ∈ GFp , or for the corresponding
element of GQ.

4.10. Local Galois representations. Let p and q be primes. (Soon we will take q = p.) A
Qp-representation of GQq is a finite-dimensional Qp-vector space V equipped with a continuous
action of GQq . Call V unramified if Iq acts trivially on V ; in that case the GQq -action can be
described by one matrix, namely the automorphism Frobq |V ∈ GL(V ) given by the action of
any Frobq ∈ GQq . Given w ∈ Z, call such a V pure of weight w if the characteristic polynomial
of Frobq |V is a polynomial in Z[x] whose complex zeros have absolute value qw/2.

4.11. Properties of representations coming from geometry. Now return to a global
representation V , a Qp-representation of GQ. For each prime q, restricting the GQ-action to
the subgroup GQq yields a local representation Vq. Let S be a finite set of primes. Call V
unramified outside S if Vq is unramified for every q /∈ S. For w ∈ Z, call such a V pure of
weight w outside S if, in addition, Vq is pure of weight w for every q /∈ S. These properties
were introduced because they hold for representations “coming from geometry”:

Theorem 4.5. Each representation Hi(XQ,Qp) as in Section 4.7 is unramified outside S
and pure of weight i outside S, for a suitable finite set S (cf. [Del74, Théorème 1.6]).

Remark 4.6. One can say more about S. The variety X can be defined by polynomials
with coefficients in Z. Reducing all the coefficients of the polynomials modulo ` produces
polynomials defining a variety over F`. For most `, this variety is again smooth; more
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precisely, this holds for all primes ` outside a finite set S0. Then in Theorem 4.5 one may
take S = S0 ∪ {p}.

4.12. Faltings’s finiteness theorem for global Galois representations. Faltings clev-
erly combined a few classical facts from number theory (Hermite’s finiteness theorem and the
Chebotarev density theorem) to prove the following finiteness statement.

Theorem 4.7 (cf. [Fal83, proof of Satz 5]). Fix a nonnegative integer d, a prime p, a finite
set S of primes, and an integer w. Then the set of isomorphism classes of semisimple
d-dimensional Qp-representations of GQ that are unramified outside S and pure of weight w
outside S is finite.

5. The Lawrence–Venkatesh proof of the Mordell conjecture

We now flesh out the sketch we gave in Section 2, though we will still have to gloss over
many difficult arguments.

5.1. From rational points to representations. Let X be a smooth projective geometri-
cally connected curve of genus > 1 over Q. The goal is to prove that X(Q) is finite.

Let G be a finite group. All the claims to be made in Section 5.2 will be true if G is chosen
suitably. (Lawrence and Venkatesh take G to be the semidirect product FqoF×

q for a suitable
large prime q.) Let φ : Y → X be the Kodaira–Parshin family of curves over X defined using
G; let KP be the map sending each x ∈ X(Q) to the smooth projective curve Yx := φ−1(x)

over Q. Let H1
et denote the map sending each smooth projective curve C over Q to the global

Galois representation H1
et(CQ,Qp). The composition of these, as in (1), is a map of sets V :

X(Q)
KP //

V

""
{curves}

H1
et // {Qp-representations of GQ}

x � // Yx
� // Vx := H1

et((Yx)Q,Qp).

Now it turns out that

• The representations Vx are all of the same dimension.
• They are semisimple.6

• They are unramified outside a set S that is independent of x, because one can choose
a set S0 as in Remark 4.6 that works for the whole family Y → X.
• They are pure of weight 1 outside S.

6The semisimplicity is actually a difficult theorem, proved by Faltings in his paper on the Mordell conjecture.
Lawrence and Venkatesh would be “cheating” if they used this, so instead they give an independent argument
using Hodge–Tate weights to prove that Vx is semisimple for all but finitely many x ∈ X(Q); that is sufficient
for their proof of the Mordell conjecture.
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That is, the representations Vx satisfy all the conditions of Faltings’s finiteness theorem
(Theorem 4.7), so

the map V has finite image!

To finish the proof that X(Q) itself is finite, one needs to show that every fiber of V is
finite, i.e., that the Vx vary enough that there are only finitely many x ∈ X(Q) mapping to
any given isomorphism class of representations.

5.2. Variation in a p-adic family of local Galois representations. The plan is to show
that the global representations Vx vary enough by showing that even their restrictions to GQp

vary enough. These restrictions are local Galois representations indexed by x ∈ X(Q), but
to study them, we view them as members of a larger family of representations, indexed by
x ∈ X(Qp). Namely, for x ∈ X(Qp), define the local Galois representation

Vx := H1
et((Yx)Qp

,Qp).

Then x 7→ Vx defines the map Vp in the following commutative diagram of sets:

X(Q)
� _

��

V // {Qp-representations of GQ}

restriction
��

X(Qp)
Vp // {Qp-representations of GQp}.

To prove that V has finite fibers, it suffices to prove that Vp has finite fibers. That is, loosely
speaking, one must show that the local representation Vx varies enough as x ranges over
X(Qp); it is this claim that a large part of the Lawrence–Venkatesh article is devoted to. Its
proof proceeds as follows:

• First, p-adic Hodge theory relates the variation of the étale cohomology groups Vx
for x ∈ X(Qp) to the variation of the Hodge filtration in the corresponding de Rham
cohomology groups.
• The variation of the Hodge filtration is described by the Gauss–Manin connection,
which in down-to-earth terms means that it is described by the solutions to a system
of differential equations whose coefficients are algebraic functions on X over Q.
• The same differential equations describe the variation of the Hodge filtration for the
family YC → XC of complex projective curves.
• A lower bound on that variation is given by the monodromy of the Kodaira–Parshin
family over C.
• An extensive calculation in topology (involving mapping class groups, Dehn twists,
and the like) proves that indeed the monodromy group is large enough.

This completes the proof of the Mordell conjecture.
12



Remark 5.1. Lawrence and Venkatesh show that their approach has applications beyond
rational points on curves. In particular, using recent work of Bakker and Tsimerman [BT19],
they prove that certain affine varieties F of higher dimension (moduli spaces of smooth
hypersurfaces in projective space) have few integral points, where “few” means that they are
contained in a subvariety of F of lower dimension.

Acknowledgments

I thank Brian Lawrence for a comment.

References

[BT19] Benjamin Bakker and Jacob Tsimerman, The Ax-Schanuel conjecture for variations of Hodge
structures, Invent. Math. 217 (2019), no. 1, 77–94, DOI 10.1007/s00222-019-00863-8. MR3958791
↑13

[BDM+19] Jennifer Balakrishnan, Netan Dogra, J. Steffen Müller, Jan Tuitman, and Jan Vonk, Explicit
Chabauty-Kim for the split Cartan modular curve of level 13, Ann. of Math. (2) 189 (2019), no. 3,
885–944, DOI 10.4007/annals.2019.189.3.6. MR3961086 ↑5

[Bom90] Enrico Bombieri, The Mordell conjecture revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17
(1990), no. 4, 615–640. MR1093712 (92a:11072) ↑4

[Cha41] Claude Chabauty, Sur les points rationnels des courbes algébriques de genre supérieur à l’unité,
C. R. Acad. Sci. Paris 212 (1941), 882–885 (French). MR0004484 (3,14d) ↑5

[Del74] Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307
(French). MR0340258 (49 #5013) ↑10

[Fal83] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983),
no. 3, 349–366 (German). English translation: Finiteness theorems for abelian varieties over
number fields, 9–27 in Arithmetic Geometry (Storrs, Conn., 1984), Springer, New York, 1986.
Erratum in: Invent. Math. 75 (1984), 381. MR718935 (85g:11026a) ↑4, 11

[FW01] E. Victor Flynn and Joseph L. Wetherell, Covering collections and a challenge problem of Serre,
Acta Arith. 98 (2001), no. 2, 197–205, DOI 10.4064/aa98-2-9. MR1831612 ↑2

[HS00] Marc Hindry and Joseph H. Silverman, Diophantine geometry: an introduction, Graduate Texts
in Mathematics, vol. 201, Springer-Verlag, New York, 2000. MR1745599 (2001e:11058) ↑4

[Kim05] Minhyong Kim, The motivic fundamental group of P1 \{0, 1,∞} and the theorem of Siegel, Invent.
Math. 161 (2005), no. 3, 629–656. MR2181717 (2006k:11119) ↑5

[Kim09] Minhyong Kim, The unipotent Albanese map and Selmer varieties for curves, Publ. Res. Inst.
Math. Sci. 45 (2009), no. 1, 89–133, DOI 10.2977/prims/1234361156. MR2512779 ↑5

[Kob84] Neal Koblitz, p-adic numbers, p-adic analysis, and zeta-functions, 2nd ed., Graduate Texts in
Mathematics, vol. 58, Springer-Verlag, New York, 1984. MR754003 (86c:11086) ↑7, 9

[LV19] Brian Lawrence and Akshay Venkatesh, Diophantine problems and p-adic period mappings,
October 25, 2019. Preprint, arXiv:1807.02721v3 . ↑4, 6

[Mor22] L. J. Mordell, On the rational solutions of the indeterminate equations of the third and fourth
degrees, Proc. Cambridge Phil. Soc. 21 (1922), 179–192. ↑4

[Par71] A. N. Parshin, Quelques conjectures de finitude en géométrie diophantienne, Actes du Con-
grès International des Mathématiciens (Nice, 1970), Gauthier-Villars, Paris, 1971, pp. 467–471.
MR0427323 ↑5

13



[Poo02] Bjorn Poonen, Computing rational points on curves, Number Theory for the Millennium, III
(Urbana, IL, 2000), 2002, pp. 149–172. MR1956273 (2003k:11105) ↑5

[Poo17] Bjorn Poonen, Rational points on varieties, Graduate Studies in Mathematics, vol. 186, American
Mathematical Society, Providence, RI, 2017. MR3729254 ↑4

[Ser77] Jean-Pierre Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg,
1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathe-
matics, Vol. 42. MR0450380 ↑9

[Voj91] Paul Vojta, Siegel’s theorem in the compact case, Ann. of Math. (2) 133 (1991), no. 3, 509–548.
MR1109352 (93d:11065) ↑4

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA
02139-4307, USA

Email address: poonen@math.mit.edu
URL: http://math.mit.edu/~poonen/

14

http://math.mit.edu/~poonen/

	1. The Mordell conjecture
	1.1. Rational points on curves
	1.2. Projective space
	1.3. Projective varieties
	1.4. Smooth varieties
	1.5. Genus of a curve
	1.6. The conjecture

	2. Overall strategy of the Lawrence–Venkatesh proof
	3. A family of curves
	3.1. Fundamental group of a punctured Riemann surface
	3.2. Analytic construction of a family of ramified covers
	3.3. An algebraic family of curves

	4. Galois representations
	4.1. The field of p-adic numbers
	4.2. The absolute Galois group of Q
	4.3. Global p-adic Galois representations
	4.4. The cyclotomic character
	4.5. Galois representations associated to elliptic curves
	4.6. Galois representations associated to higher-genus curves
	4.7. Galois representations from étale cohomology
	4.8. Semisimple representations
	4.9. The absolute Galois group of Qp
	4.10. Local Galois representations
	4.11. Properties of representations coming from geometry
	4.12. Faltings's finiteness theorem for global Galois representations

	5. The Lawrence–Venkatesh proof of the Mordell conjecture
	5.1. From rational points to representations
	5.2. Variation in a p-adic family of local Galois representations

	Acknowledgments
	References

