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0. Profinite completions of topological groups

Let G be a topological group. The profinite completion of G is

Ĝ := lim←−
U

G

U
,

where U ranges over the finite-index open normal subgroups of G. There is a natural

continuous homomorphism G → Ĝ through which every other continuous homomorphism

from G to a profinite group factors uniquely. If G is profinite already, then G → Ĝ is an
isomorphism.

In general, G→ Ĝ need not be injective or surjective. Nevertheless, we think of G as being

almost isomorphic to Ĝ: The finite-index open subgroups of G are in bijection with those

of Ĝ. And finite-index open subgroups of certain Galois groups are what we are interested
in. . .

1. Local class field theory

1.1. Notation associated to a discrete valuation ring.

O : a complete discrete valuation ring

K := Frac(O)

v : the valuation K× � Z
p : the maximal ideal of O
k : the residue field O/p

Ks : a fixed separable closure of K

Kab : the maximal abelian extension of K in Ks

Kunr : the maximal unramified extension of K in Ks

ks : the residue field of Kunr, so ks is a separable closure of k.

Equip K and its subsets with the topology coming from the absolute value |x| := exp(−v(x)).
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1.2. Local fields.

Definition 1.1. A nonarchimedean local field is a complete discrete-valued field K as in
Section 1.1 such that the residue field k is finite. An archimedean local field is R or C.

Facts:

• A nonarchimedean local field of characteristic 0 is isomorphic to a finite extension of
Qp.
• A (nonarchimedean) local field of characteristic p > 0 is isomorphic to Fq((t)) for

some power q of p.

1.3. The local Artin homomorphism. Let K be a local field. Local class field theory
says that there is a homomorphism

θ : K× → Gal(Kab/K)

that is almost an isomorphism. The homomorphism θ is called the local Artin homomorphism.
It cannot be literally an isomorphism, because Gal(Kab/K) is a profinite group, hence com-
pact, while K× is not. What is true is that θ induces an isomorphism of topological groups

K̂× → Gal(Kab/K).
If K is archimedean, then θ : K× → Gal(Kab/K) is surjective and its kernel is the con-

nected component of the identity in K×.
For the rest of Section 1.3, we assume that K is nonarchimedean. Then θ is injective:

The choice of a uniformizer π ∈ O lets us write K× = O×πZ ' O× × Z, and O× is already

profinite, so K̂× ' O× × Ẑ. Thus local class field theory says that there is an isomorphism

O× × Ẑ→ Gal(Kab/K).

More canonically, without choosing π, the two horizontal exact sequences below are almost
isomorphic:

(1) 0 // O× // K×
v //

� _

θ
��

Z //
� _

��

0

0 // Gal(Kab/Kunr) // Gal(Kab/K)
res // Gal(Kunr/K) // 0

With the identification of the group at lower right

Gal(Kunr/K) ' Gal(ks/k) ' Ẑ

mapping the Frobenius automorphism to 1 ∈ Ẑ, the right vertical map in (1) becomes

the natural inclusion Z ↪→ Ẑ. In other words, θ maps K× isomorphically to the set of
σ ∈ Gal(Kab/K) inducing an integer power of Frobenius on the residue field (as opposed to

a Ẑ-power). The bottom row of (1) is simply the profinite completion of the top row.
Also from (1), one sees that θ(O×) is the inertia subgroup Gal(Kab/Kunr) of Gal(Kab/K),

and that θ maps any uniformizer to a Frobenius automorphism in Gal(Kab/K). Moreover,
the descending chain

O× ⊃ 1 + p ⊃ 1 + p2 ⊃ · · ·
is mapped isomorphically by θ to the descending chain of ramification subgroups of Gal(Kab/K)
in the upper numbering.
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1.4. Functoriality. Let L be a finite extension of K. Let NL/K : L× → K× be the norm
map. Let θL, θK be the local Artin homomorphisms associated to L,K, respectively. Let
res : Gal(Lab/L)→ Gal(Kab/K) be the homomorphism mapping an automorphism σ of Lab

to its restriction σ|Kab . Then the square

L×
θL //

NL/K

��

Gal(Lab/L)

res
��

K×
θK // Gal(Kab/K)

commutes.

1.5. Finite abelian extensions. Because θ is almost an isomorphism, and because of
Galois theory, the following sets are in bijection:

• The finite-index open subgroups of K×.
• The (finite-index) open subgroups of Gal(Kab/K).
• The finite abelian extensions of K contained in Ks.

Going backwards, if L is a finite abelian extension of K in Ks, the corresponding subgroup
of K× is NL/KL

×. (This could be viewed as a consequence of the functoriality above.)
The composition

K× → Gal(Kab/K)
res
� Gal(L/K)

is surjective with kernel NL/KL
×, and O× maps to the inertia subgroup IL/K E Gal(L/K),

and any uniformizer π maps to a Frobenius element of Gal(L/K).

2. Global class field theory (via ideles)

2.1. Global fields.

Definition 2.1. A number field is a finite extension of Q. A global function field is a finite
extension of Fp(t) for some prime p, or equivalently is the function field of a geometrically
integral curve over a finite field Fq (called the constant field), where q is a power of some
prime p. A global field is a number field or a global function field.

Throughout Sections 2 and 3, K is a global field. If v is a nontrivial place of K (given by
an absolute value on K), then the completion Kv is a local field. If v is nonarchimedean, let
Ov be the valuation subring of Kv; if v is archimedean, let Ov = Kv.

2.2. The adele ring. The adele ring of K is the restricted direct product

A = AK :=
∏′

v

(Kv,Ov) :=

{
(av) ∈

∏
v

Kv : av ∈ Ov for all but finitely many v

}
.

It is a topological ring: the topology is uniquely characterized by the condition that
∏

vOv
is open in A and has the product topology. The diagonal map K → A is like Z → R: it
embeds K as a discrete co-compact subgroup of A.
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2.3. The idele group and idele class group. The idele group of K is

A× =
∏′

v

(K×v ,O×v ) :=

{
(av) ∈

∏
v

K×v : av ∈ O×v for all but finitely many v

}
.

It is a topological group: the topology is uniquely characterized by the condition that
∏

vO×v
is open in A× and has the product topology.1 The diagonal map K× → A× is like Z× → R×:
it embeds K× as a discrete subgroup of A×, but the quotient C = CK := A×/K× is not
compact. The topological group C is called the idele class group.

2.4. The global Artin homomorphism. Let Ks be a fixed separable closure of K. Let
Kab be the maximal abelian extension of K contained in Ks.

The group C plays the role in global class field theory played by K× in local class field
theory. Namely, if K is a global field, there is a global Artin homomorphism

θ : C → Gal(Kab/K)

that induces an isomorphism Ĉ
∼→ Gal(Kab/K).

If K is a number field, then θ is surjective and its kernel is the connected component of
the identity in C.

If K is a global function field with constant field k, then θ is injective and θ(C) equals the
set of σ ∈ Gal(Kab/K) whose restriction in Gal(ks/k) is an integer power of the Frobenius
generator.

2.5. Functoriality. Let L be a finite extension of K of degree n. Then AL ' AK ⊗
K
L is

free of rank n over AK , so there is a norm map NL/K : AL → AK . We write NL/K also for
the induced homomorphism NL/K : CL → CK . Then

CL
θL //

NL/K

��

Gal(Lab/L)

res
��

CK
θK // Gal(Kab/K)

commutes.

2.6. Finite abelian extensions. The following sets are in bijection:

• The finite-index open subgroups of C.
• The finite-index open subgroups of Gal(Kab/K).
• The finite abelian extensions of K contained in Ks.

Going backwards, if L is a finite abelian extension of K in Ks, the corresponding subgroup
of C is NL/KCL. The composition

C → Gal(Kab/K)
res
� Gal(L/K)

is surjective with kernel NL/KCL.

1Alternatively, one can use the general recipe for getting the topology on the units of a topological ring
R: not the subspace topology on R× as a subset of R (this may fail to make the inverse map R× → R×

continuous), but the subspace topology on the set of solutions to xy = 1 in R × R (this is what one gets if
one expresses the multiplicative group scheme Gm as an affine variety).
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2.7. Connection between the global and local Artin homomorphisms. Let v be a
place of K. Identify K×v with a subgroup of A× by mapping α ∈ K×v to the idele with α
in the v-th position and 1 in every other position. The composition K×v ↪→ A× � C is
injective. Let θv be the local Artin homomorphism for Kv. Then the diagram

K×v
θv //

� _

��

Gal(Kab
v /Kv)� _

res
��

C
θ // Gal(Kab/K)

commutes. Thus θ determines θv.
Conversely, if one knows θv for all v, one can construct θ as follows. Let L be a finite

abelian extension of K contained in Ks. Define

A× → Gal(L/K)

(av) 7→
∏
v

θv(av);

if v is unramified in L/K, and av ∈ O×v , then θv(av) = 1, so all but finitely many terms
in the infinite product are 1, and the product makes sense. Take the inverse limit over all
possible L to get

A× → Gal(Kab/K).

The idelic version of the Artin reciprocity law says that K× is in the kernel, so we get a
homomorphism

C → Gal(Kab/K),

which is θ.

2.8. Moduli.

Definition 2.2. A modulus is a formal product m =
∏

v v
ev where ev ∈ Z≥0, all but finitely

many ev equal 0, and ev ∈ {0, 1} for real v, and ev = 0 for complex v. The support suppm
is the (finite) set of nonarchimedean places v such that ev 6= 0.

If K is a number field, then a modulus can be viewed as a pair consisting of

(1) an integral ideal of the ring of integers OK , and
(2) a subset of the real places.

If K is the function field of a smooth projective curve X over a finite field, then a modulus
is the same thing as an effective divisor on X.

2.9. Ray class groups and ray class fields. In this section we assume that K is a number
field. Fix a modulus m =

∏
v v

ev . We will define a finite-index open subgroup Um,v ⊆ O×v
for each v. If ev = 0, define Um,v := O×v . If ev > 0 and v is nonarchimedean, define
Um,v := 1 + pevv , where pv is the maximal ideal of Ov. If ev > 0 and v is real, define Um,v

as R>0 ⊆ R× ' K×v . Define Um :=
∏

v Um,v ⊆ A×. The image of Um under A× � C is a
finite-index open subgroup U ′m of C (this is equivalent to finiteness of the class number of K,
as we will see in Section 3.4). The corresponding finite abelian extension Rm of K is called
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the ray class field of modulus m, and Rm over K is unramified at all v with ev = 0. The ray
class group of modulus m is

C

U ′m
=

A×

UmK×
,

which is isomorphic to Gal(Rm/K) via the global Artin homomorphism.
Every finite-index open subgroup of A× contains Um for some m, so every finite abelian

extension of K is contained in Rm for some m.

3. Global class field theory (via ideals)

In this section we assume that K is a number field.

3.1. Classical ray class groups. Let I be the group of fractional ideals of K, or equiva-
lently, the free abelian group on the nonarchimedean places of K. Let P be the subgroup of
principal ideals. The class group is ClOK := I/P .

We now generalize to an arbitrary modulus m =
∏

v v
ev . Let Im be the subgroup of

fractional ideals that do not involve the primes dividing m; i.e., Im is the free abelian group on
the nonarchimedean places v satisfying ev = 0. For a ∈ K×, the notation a ≡ 1 (mod×m)
means that a ∈ Um,v for every v satisfying ev > 0. The group Pm ⊆ Im is the group of
principal ideals generated by some a ∈ K× with a ≡ 1 (mod×m). The classical ray class
group of modulus m is ClmOK := Im/Pm. Section 3.4 will prove that this is isomorphic to
the ray class group C/U ′m defined in Section 2.9.

3.2. The classical Artin homomorphism. Let L/K be a finite abelian extension of num-
ber fields. Let S be a finite set of finite primes of K such that S contains every prime that
ramifies in L. Let IS be the group of fractional ideals that do not involve the primes in S.
The classical Artin homomorphism is the map

Θ: IS → Gal(L/K)

sending each prime ideal p /∈ S to the Frobenius element Frobp ∈ Gal(L/K).

3.3. The main theorems. The Artin reciprocity law states that there exists a modulus m
(depending on L/K) with suppm = S such that the subgroup Pm ⊆ Im = IS is contained in
ker Θ. The existence theorem states that given a modulus m and group H with Pm ⊆ H ⊆ Im
there exists an abelian extension L of K unramified outside suppm such that the kernel of
Θ for L/K equals H.

3.4. Comparison of ideal groups and idele groups. Consider the trivial modulus m = 1
(with ev = 0 for all v). Taking the restricted direct product of the valuation maps v : K×v � Z
gives a surjective homomorphism

A× → I

that discards the archimedean components of its input, and its kernel is U1 =
∏

vO×v . Thus
A×

U1
' I. If we take the quotient by the image of K× on both sides, we find that the ray

class group A×

U1K× of modulus 1 is isomorphic to the class group I/P = ClOK . The ray class
field R1 of modulus 1 is called the Hilbert class field, which can be characterized also as the
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maximal abelian extension of K in Ks that is unramified at all places of K (including the
archimedean ones). We get

C

U ′1
=

A×

U1K×
' I

P
= ClOK ' Gal(R1/K).

This can generalized to an arbitrary modulus m =
∏
vev as follows. Let Am ⊆ A× be

the subgroup consisting of (av) with (av) with av ∈ Um,v for every v with ev > 0. Let
Km = Am ∩K×. We have an isomorphism

Am

Um

∼→ Im.

Dividing by the image of Km on both sides gives

(2)
Am

UmKm

∼→ Im
Pm

.

On the other hand, A× = AmK×, so there is an isomorphism

Am

Km

∼→ A×

K×
= C.

Dividing by the image of Um on both sides, and combining with (2), we get isomorphisms

C

U ′m
=

A×

UmK×
' Im

Pm

= ClmOK ' Gal(Rm/K).

4. An introduction to an introduction to the Langlands program

Let K be a local or global field. Every 1-dimensional character (continuous homomor-
phism)

Gal(Ks/K)→ C×

factors through Gal(Kab/K) and has finite image. These characters form a discrete abelian
group, the Pontryagin dual of the profinite group Gal(Kab/K). It follows that the problem of
classifying finite abelian extensions of K is more or less the same as the problem of describing
all these characters.

The Langlands program is an attempt to understand Gal(Ks/K) more completely by
describing its higher-dimensional representations: the group C× = GL1(C) is replaced by
GLn(C), or even G(C) for other linear algebraic groups G. The continuous homomorphisms

Gal(Ks/K)→ G(C)

are conjectured to correspond to certain “automorphic” objects defined intrinsically in terms
of K, just as class field theory gives a description of the group Gal(Kab/K) (which is defined
in terms of extrinsic objects such as finite abelian extensions, which are initially mysterious)
in terms of intrinsic objects (K× or C) obtained directly from K.

Ultimately, the program would give information about nonabelian algebraic extensions
of K.

7



5. Further reading

For basics on profinite groups, see [Ser02, I.§1] and [Gru86]. The latter discusses infinite
Galois theory as well.

For local class field theory, see [Ser86]. For the approach to global class field theory via
cohomology of ideles, see [Tat86]. For a treatment of global class field theory via ideals, see
[Jan96]. All these topics are covered also in [Neu99].

For an introduction to the Langlands program, see [BG03].
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