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(with an appendix by Matthias Aschenbrenner)

Abstract. The problem of deciding, given a complex variety X, a point x ∈ X, and a
subvariety Z ⊆ X, whether there is an automorphism of X mapping x into Z is proved
undecidable. Along the way, we prove the undecidability of a version of Hilbert’s tenth
problem for systems of polynomials over Z defining an affine Q-variety whose projective
closure is smooth.

1. Introduction

Theorem 1.1. There is no algorithm that, given a nice complex variety X, a closed point
x ∈ X, and a nice subvariety Z ⊆ X, decides whether or not there is an automorphism of
X mapping x into Z.

Variety means separated scheme of finite type over a field. Nice means smooth, projective,
and geometrically integral (we will eventually apply this adjective also to varieties over fields
that are not algebraically closed). Algorithm means Turing machine. So that the input
admits a finite description, we assume that the input includes a description of a finitely
generated subfield K of C and that the coefficients of the equations defining X, x, Z are
elements of K. More precisely, we assume that we are given f1, . . . , fm ∈ Z[x1, . . . , xn] such
that Z[x1, . . . , xn]/(f1, . . . , fm) is a domain with fraction field K, and that elements of K are
presented as rational expressions in the generators.

Actually, we show that the problem is undecidable even if X, x, Z are base extensions of
Q-varieties. In fact, we prove a strong form of Theorem 1.1:

Theorem 1.2. There is a fixed nice Q-variety X and a fixed rational point x on X such
that it is impossible to decide which nice Q-subvarieties Z of X meet {σx : σ ∈ AutX}.

That is, there is no algorithm that takes Z as input and decides whether there exists an
automorphism of X mapping x into Z.

Finally, our X in Theorem 1.2 will have AutX = AutXC, where XC is the base extension
X ×

SpecQ
SpecC, so it does not matter whether we consider only automorphisms defined over

Q or also automorphisms over C.
These problems are proved undecidable by relating them to Hilbert’s tenth problem.

Hilbert asked for an algorithm to decide, given a multivariable polynomial equation with
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integer coefficients, whether or not it was solvable in integers. Matiyasevich [Mat70], build-
ing on earlier work of Davis, Putnam, and Robinson [DPR61], proved that no such algorithm
exists.

Remark 1.3. If X is a nice variety of general type, the problems above are decidable because
AutX is finite and computable as a subgroup of some PGLn acting on some pluricanonical
image of X.

Remark 1.4. This is not the first time that a problem in algebraic geometry has been proved
undecidable. The problem of deciding whether a rational map of complex varieties X 99K P2

admits a rational section is undecidable [KR92] (this is equivalent to the analogue of Hilbert’s
tenth problem for C(T1, T2)). The generalization with P2 replaced by any fixed complex
variety of dimension at least 2 is undecidable too [Eis04]. (But the analogue for P1 is still
open, as is the analogue for any other fixed curve.)

Remark 1.5. Burt Totaro asked the author in 2007 whether the problem of deciding whether
two varieties are isomorphic is undecidable.

2. Lattice automorphisms preserving a finite subset

The group of affine linear automorphisms of Zn is the semidirect product GLn(Z) n Zn,

with (A,~b) acting as ~x 7→ A~x+~b.

Lemma 2.1. For each n ≥ 3, there exists a finite subset S of Zn containing ~0 := (0, 0, . . . , 0)
such that the subgroup of GLn(Z)nZn mapping S to S equals the subgroup G of linear maps
given by matrices 

1 a1
1 a2

. . .
...

1 an−1
an


with ai ∈ Z for all i and an = ±1.

Proof. Let pi be the ith prime. For 1 ≤ i ≤ n − 1, let vi ∈ Zn be the vector with pi in
the ith coordinate and 0 elsewhere. Let S = {~0, v1, . . . , vn−1}. Let G′ be the subgroup of

GLn(Z) n Zn mapping S to itself. Suppose that g ∈ G′. Then g fixes ~0 since each other
vector in S differs from some other vector by a primitive vector. Also g fixes vi for each i,
since vi is distinguished from the other vj by being divisible by pi. So g fixes S pointwise. It
hence acts trivially on the real affine linear span of S, so it acts trivially on Zn−1 × 0. Thus
G′ ⊆ G. Conversely, elements of G map S to S. So G′ = G. �

Remark 2.2. In fact, Lemma 2.1 holds for all n ≥ 1.

3. Blow-ups of powers of an elliptic curve

In this section, we prove a weak version of Theorem 1.1 in which Z is not required to be
smooth or integral.

Fix an elliptic curve E over Q such that EndE ' Z and such that E(Q) contains a point P
of infinite order. For instance, E could be the curve labelled 37A1 in [Cre97], with equation
y2 + y = x3−x, and P could be (0, 0). Let n ≥ 3. Let X be the blow-up of En at the subset
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S ′ ⊂ (Z · P )n corresponding to the subset S ⊂ Zn given by Lemma 2.1. For a variety V ,
we write AutV for the group of automorphisms of V as a variety without extra structure,
even if V is an abelian variety. The birational morphism X → En is the map from X to its
Albanese torsor, so there is an injective homomorphism AutX → AutEn whose image equals
the subgroup of AutEn mapping S ′ to itself. Any such automorphism of En must be of the

form ~x 7→ A~x+~b for some A ∈ GLn(Z) and~b ∈ En, but S ′ ⊂ (Z·P )n so~b ∈ (Z·P )n. It follows
that AutX is isomorphic to the group G in Lemma 2.1. Identify the exceptional divisor D
above ~0 ∈ En with Pn−1 in the natural way. Let x = (0 : · · · : 0 : 1) ∈ Pn−1 = D ⊆ X. If
σ ∈ AutX corresponds to 

1 a1
1 a2

. . .
...

1 an−1
an

 ∈ G,
then σx = (a1 : · · · : an) ∈ Pn−1.

Given a polynomial f(t1, . . . , tn−1) ∈ Z[t1, . . . , tn−1], let F (t1, . . . , tn) ∈ Z[t1, . . . , tn] be its
homogenization, and let Z be the zero locus of F in Pn−1 = D ⊆ X. Then f has a zero in
Zn−1 if and only if F has a zero in Zn−1× {±1}, which holds if and only if σx ∈ Z for some
σ ∈ AutX.

Since the general problem of deciding whether a polynomial in Z[t1, . . . , tn−1] has an zero
in Zn−1 is undecidable, the general problem of deciding whether σx ∈ Z for some σ ∈ AutX
is undecidable too.

4. Making the subvariety smooth

Lemma 4.1. There is an algorithm that, given a nonconstant f ∈ Z[x1, . . . , xn], constructs
a polynomial F ∈ Z[x1, . . . , xn+1] such that

(i) The equation f(~a) = 0 has a solution ~a ∈ Zn if and only if F (~b) = 0 has a solution
~b ∈ Zn+1.

(ii) The affine variety X := SpecQ[x1, . . . , xn+1]/(F ) is smooth and geometrically inte-
gral.

(iii) We have degF = 2 deg f . (Here deg denotes total degree.)

Proof. Consider F (x1, . . . , xn, y) = c(y2−y)+f(x1, . . . , xn)2 for some c ∈ Z>0. The values of
y2 − y and f(x1, . . . , xn)2 on integer inputs are nonnegative, so (i) is satisfied. The singular
locus S of X is contained in the locus where ∂F/∂y = 0, which is 2y − 1 = 0 in AN . On
the other hand, Bertini’s theorem ([Har77, Remark III.10.9.2]) shows that S is contained in
y2− y = 0 for all but finitely many c. In this case S = ∅, so X is smooth over Q. By testing
c = 1, 2, . . . in turn, we can effectively find the first c for which X is smooth over Q.

This X is also geometrically integral: since X is isomorphic to a variety of the form
z2 − g = 0 for some nonconstant g ∈ Z[x1, . . . , xn], if it were not geometrically integral,
z2 − g would factor as (z + h)(z − h) for some nonconstant h ∈ Q[x1, . . . , xn], but then X
would have to be singular at the common zeros of z and h, a contradiction. �

Lemma 4.2. There is an algorithm that, given an affine scheme U of finite type over Z whose
generic fiber UQ is smooth over Q, constructs N ∈ Z>0 and a closed immersion U ↪→ AN

Z
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such that the projective closure of the generic fiber UQ in PNQ is smooth. Moreover, N can be
bounded in terms of the degree and number of variables of the equations defining U .

Proof. Embed U as a closed subscheme of some Am
Z . Identify Am

Z with the locus in PmZ =
ProjZ[x0, . . . , xm] where x0 6= 0. Let X be the closure of U in PmZ . Let H = X − U .

Effective resolution of singularities [Vil89, Vil92, BM91, BM97, BS00] lets us construct a
coherent sheaf of ideals IQ on XQ with support contained in HQ such that blowing up XQ
along IQ yields a smooth Q-scheme. Moreover, resolution of singularities has computably
bounded complexity as one varies the variety in an algebraic family, by Noetherian induction:
namely, reduce to the case of an irreducible base B, compute the blow-ups needed to resolve
the generic fiber, examine the denominators in the rational functions on B that arise in the
coefficients, define the open subscheme V of B on which these denominators are invertible so
that the same sequence of blow-ups specializes to give a resolution for any fiber above a point
of V , and finally apply the inductive hypothesis to the family over B − V , which has lower
dimension. Therefore the degrees of the homogeneous polynomials that locally generate IQ
can be bounded (in terms of the degree and number of variables of the equations defining U).
Let IQ be the homogeneous ideal of Q[x0, . . . , xm] generated by these polynomials. Since the
support of IQ is contained in HQ, the Nullstellensatz shows that there is a positive integer
r such that xr0 ∈ IQ. By Noetherian induction again, r is bounded. We have xr0 ∈ I.

By the appendix to this article, we can compute I := IQ ∩ Z[x0, . . . , xm]. Moreover, the
degrees of the generators of I can be bounded in terms of those of IQ, as explained in the
remarks at the end of the appendix. Choose d larger than all these degrees and larger than r.
Blowing up the coherent sheaf of ideals on X defined by I yields X ′

π→ X with X ′Q smooth
over Q. Let E be the exceptional divisor on X ′.

A basis for the degree-d part Id of I determines a projective embedding of X ′ in some PNZ
(cf. the proofs of [Har77, II.7.10(b) and II.7.16(c)]), and N is bounded. We have xd0 ∈ Id, and
the corresponding hyperplane section of X ′ is the Cartier divisor dπ∗H − E, which has the
same support as π∗H, since d > r. Let AN

Z be the complement in PNZ of the hyperplane defined
by the coordinate corresponding to xd0 ∈ Id. Then X ′ ∩ AN

Z = X ′ − π−1(H) = π−1(U) ' U .
In other words, U is isomorphic to a closed subscheme of AN

Z whose projective closure is X ′,
and the generic fiber X ′Q of X ′ is smooth. �

Combining the previous two lemmas with the negative solution to Hilbert’s tenth problem
yields:

Corollary 4.3. There is no algorithm that, given f1, . . . , fm ∈ Z[x1, . . . , xn] such that the
projective closure of SpecQ[x1, . . . , xn]/(f1, . . . , fm) in PnQ is smooth and geometrically inte-
gral over Q, decides whether f1(~a) = · · · = fm(~a) = 0 has a solution ~a ∈ Zn.

Applying the construction of Section 3 to the smooth projective geometrically integral
Q-variety Z arising as the projective closure in Corollary 4.3 proves Theorem 1.1.

5. Uniformity

In this section we prove Theorem 1.2. In our proof of Theorem 1.1, the variety X and the
point x depend only on the integer n chosen at the beginning of Section 3.

The negative solution of Hilbert’s tenth problem shows that there are fixed m and d such
that the problem of deciding whether an m-variable polynomial of total degree d is solvable

4



in natural numbers is undecidable [Mat70]. Replacing each variable by a sum of squares
of four new variables and applying Lagrange’s theorem that every nonnegative integer is
a sum of four squares shows that the same uniform undecidability holds for solvability in
integers, provided that we replace (m, d) by (4m, 2d). Combining this with Lemma 4.1 yields
undecidability even if we restrict to polynomials defining a smooth affine hypersurface over Q,
provided that we replace (m, d) by (m+ 1, 2d). Lemma 4.2 re-embeds these hypersurfaces in
a projective space of bounded dimension, which can then be embedded in a larger projective
space of fixed dimension D. Finally we may take n = D + 1 in Section 3. This completes
the proof of Theorem 1.2.
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Appendix: Algorithms for computing saturations of ideals in finitely
generated commutative rings

by Matthias Aschenbrenner

Consider the following basic task:

Given a finitely generated commutative Z-algebra A (specified by generators
and relations) and a finite list of generators for an ideal I of A, compute a
finite list of generators for the inverse image of the ideal I ⊗ Q under the
natural morphism A→ A⊗Q.

The existence of such an algorithm is well-known [GTZ88, Corollary 3.8], and the purpose of
this appendix is to briefly describe two different procedures for the task at hand, and to make
some additional related remarks. Before this, we observe that representing the Z-algebra A
as a quotient A = Z[X]/J where J is an ideal of the polynomial ring Z[X] = Z[X1, . . . , XN ]
(where N and generators for J are part of the input data) one sees that it suffices to consider
the case where A is a polynomial ring over Z. In this case, the pullback ideal in question may
also simply be described as the saturation IQ[X]∩Z[X] of I with respect to the multiplicative
subset Z \ {0} of Z[X]. That is, we need to give an algorithm which does the following:

Given N ∈ N and generators f1, . . . , fn for an ideal I of Z[X] = Z[X1, . . . , XN ],
compute a finite list of generators for the ideal IQ[X] ∩ Z[X] of Z[X].

In fact, both algorithms below compute a nonzero integer δ such that (I : δ) = IQ[X]∩Z[X]
as well as a finite list of generators for the ideal (I : δ).

Algorithm 1. This algorithm, from [GTZ88, §3], uses Gröbner bases in polynomial rings
over Z. For basic facts about Gröbner bases in this context, see [AL94]. One may proceed
as follows:
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(1) Compute a Gröbner basis G of I with respect to an arbitrary monomial ordering of
the monomials in X. Let s be the least common multiple of the leading coefficients
of the elements of G, with s = 1 if I = {0} (and hence G = ∅). Then we have

IQ[X] ∩ Z[X] = IZ[1
s
][X] ∩ Z[X]

by [AL94, Proposition 4.4.4]. (The integer s also has the property that (Z[X]/I)[1
s
] is

a free Z[1
s
]-module [Vas97, Theorem 2.1]; this is a particular instance of Grothendieck’s

“generic freeness lemma”.)
(2) Next, let Y be a new indeterminate, distinct from X1, . . . , XN . Then

IZ[1
s
][X] ∩ Z[X] = (I, Y s− 1) ∩ Z[X]

by [AL94, Proposition 4.4.1]. Fix an arbitrary monomial ordering <X of the mono-
mials Xα = Xα1

1 · · ·X
αN
N (α = (α1, . . . , αN) ∈ NN) in X. Compute a Gröbner basis

Gs for the ideal (I, Y s− 1) of Z[X, Y ] with respect to the monomial ordering given
by

XαY a < XβY b ⇐⇒ a < b, or a = b and Xα <X Xβ.

Then the finite set Gs∩Z[X] is a Gröbner basis for (I, Y s−1)∩Z[X] = IQ[X]∩Z[X],
by [AL94, Theorem 4.3.6].

As a bonus, if we choose a nonzero integer δ such that δg ∈ I for all g ∈ Gs ∩ Z[X], then
IQ[X] ∩ Z[X] = (I : δ). (We may take δ to be a power of s.)

Algorithm 2. This algorithm, implicit in [Asc04], uses the natural division of the problem
posed into two subproblems:

(P1) Compute an integer δ such that (I : δ) = IQ[X] ∩ Z[X].
(P2) Compute, given g ∈ Z[X], a finite list of generators for the ideal (I : g).

First, as a byproduct of Hermann’s classical algorithm [Her26] for deciding ideal membership
in polynomial rings over fields, one obtains a procedure for computing a polynomial P (C) ∈
Z[C] in the coefficient tuple c of f1, . . . , fn such that δ = P (c) has the property in (P1);
see [Asc04, Section 3]. Subproblem (P2) is approached by specifying an algorithm which
accomplishes the following:

(P2′) Given g1, . . . , gm ∈ Z[X], compute a finite generating set for the Z[X]-submodule of
Z[X]m consisting of the solutions to the homogeneous linear equation y1g1 + · · · +
ymgm = 0.

To see how this solves (P2), given g ∈ Z[X], consider the homogeneous linear equation

y1f1 + · · ·+ ynfn = yn+1g.

Then the projection onto the (n + 1)st components of every generating set for the Z[X]-
module of solutions to this equation in Z[X]n+1 is a generating set for the ideal (I : g). An
algorithm for (P2′), based on an adaptation of Hermann’s algorithm from Q[X] to Z[X], may
be found in [Asc04, Section 4]. (Of course, (P2′) may also be solved using Gröbner bases: it
suffices to note that given a Gröbner basis G for the ideal (g1, . . . , gm) of Z[X] with respect
to an arbitrary monomial ordering, the representations of the S-polynomials of G in normal
form with respect to G give rise to a finite generating set for the syzygies of g1, . . . , gm; see
[AL94, Theorem 4.3.16].)
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Remarks. Algorithm 1 seems better suited for practical computations. However, unlike in
the case of fields, the precise worst-case behavior of the analogue of Buchberger’s algorithm
for computing Gröbner bases over Z[X] is as of yet still unclear. (For very weak bounds see
[GM94], and for further discussion the forthcoming [Asc09].) Algorithm 2 has the advantage
of coming with explicit (doubly-exponential) complexity bounds: for example, suppose d ∈
N is an upper bound on the (total) degree of fi for i = 1, . . . , n; then IQ[X] ∩ Z[X] =

(g1, . . . , gm) where deg(gj) ≤ (2d)2
N log(N+1)

for j = 1, . . . ,m, cf. [Asc04, Theorem B]. (Note
that this bound only depends on the bound d on the degrees and not on the particular
coefficients of the fi.)

In connection with (P1), we remark that the smallest positive integer δ such that (I :
δ) = IQ[X] ∩ Z[X] agrees with the exponent of the torsion subgroup of the additive group
of Z[X]/I. (The torsion subgroup of the additive group of a Noetherian ring always has
finite exponent.) The algorithms indicated above, together with a procedure for deciding
equality of ideals in Z[X] (found in [GTZ88,Asc04]), give rise to a procedure for computing
this exponent in an obvious way; another algorithm was given by Clivio [Cli90] (based on
earlier work of Ayoub [Ayo83]).
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