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SYZYGIES OF ORIENTED MATROIDS

ISABELLA NOVIK, ALEXANDER POSTNIKOV, and BERND STURMFELS

Abstract

We construct minimal cellular resolutions of squarefree monomial ideals arisin
from hyperplane arrangements, matroids, and oriented matroids. These are Stanl
Reisner ideals of complexes of independent sets and of triangulations of Lawrer
matroid polytopes. Our resolution provides a cellular realization of R. Stanley’s for
mula for their Betti numbers. For unimodular matroids our resolutions are relatec
to hyperplane arrangements on tori, and we recover the resolutions constructed
D. Bayer, S. Popescu, and B. Sturmfeds We resolve the combinatorial problems
posed in B] by computing Mébius invariants of graphic and cographic arrangements
in terms of Hermite polynomials.

1. Cellular resolutions from hyperplane arrangements

A basic problem of combinatorial commutative algebra is to find the syzygies of
monomial idealM = (mg, ..., m) in the polynomial ringk[x] = K[X1, ..., Xn]
over a fieldk. One approach involves constructiogllular resolutionswhere thed th
syzygies ofM are indexed by the-dimensional faces of a CW-complex pbwertices.
After reviewing the general construction of cellular resolutions fréfnie define the
monomial ideals and resolutions studied in this paper.

Let A be aCW-complexsee [L2, 838]) withr verticesvy, ..., v, which are
labeled by the monomials, ..., m.. We writec > ¢’ whenever a celt’ belongs
to the closure of another callof A. This defines the face poset af We label each
cell c of A with the monomiaim; = Icm{m; | v; < c}, the least common multiple
of the monomials labeling the vertices afAlso, setmy = 1 for the empty cell of
A. Clearly,my dividesm¢ wheneverc’ < c. The principal ideakmc) is identified
with the freeN"-gradedk[x]-module of rank 1 with generator in degree deg For
a pair of cellsc > ¢/, let pg : (m¢) — (M) be the inclusion map of ideals. It is a
degree-preserving homomorphismidf-graded modules.
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Fix an orientation of each cell in, and define theellular complex G(A, M),
) 5 ; )
Y o N T N S S v %

as follows. TheN"-gradedk[x]-module ofi-chains is

Ci= P mo),

c:dimc=i
where the direct sum is over aldimensional cellg of A. The differentiab; : C; —
Ci_1 is defined on the componefih:) as the weighted sum of the mapg':

% = > c:c] pe,
c¢<c,dimc=i—-1

where[c : ¢'] € Z is theincidence coefficiendf oriented cells andc’ in the usual
topological sense. For a regular CW-complex, the incidence coeffigent] is +1

or —1, depending on the orientation of cellin the boundary ot. The differential
0; preserves th&"-grading ofk[x]-modules. Note that ifn; = --- = m; = 1, then
C.(A, M) is the usual chain complex & overk[x]. For any monomiain € K[Xx],

we defineA -y, to be the subcomplex ok consisting of all cellx whose labeim,

dividesm. We call any such <, an M-essentiasubcomplex ofA.

PROPOSITIONL.1 (4, Prop. 1.2])

The cellular complex XA, M) is exact if and only if every M-essential subcomplex
A<m of A is acyclic overk. Moreover, if m # me for any c> ¢, then G(A, M)
gives a minimal free resolution of M.

Propositionl.1is derived from the observation that, for a mononmglthe (degm)-
graded component d@,(A, M) equals the chain complex @<y overk. If both

of the hypotheses in Propositidnl are met, then we say that is an M-complex
and we callC, (A, M) aminimal cellular resolutiorof M. Thus eachM-complexA
produces a minimal free resolution of the id&&l In particular, for arM-complexA,
the numberf; (A) of i-dimensional cells ofA is exactly theith Betti numberof M,
that is, the rank of théth free module in a minimal free resolution. Thus, for fixed
M, all M-complexes have the sanievector.

Examples ofM-complexes appearing in the literature include planar maps (se
[11]), Scarf complexes (se&]), and hull complexes (seél]). A general construc-
tion of M-complexes using discrete Morse theory was proposed by E. Batzies a
V. Welker [1]. We next introduce a family oM-complexes which generalizes those
in[3, Th. 4.4].

Let.«# = {H1, Ha, ..., Hp} be an arrangement ofaffine hyperplanes ik,

Hiz{veRd|hi(v)=Ci}, i=1...,n, 1)
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wherecy, ..., ch, € Randhg, ..., hy are nonzero linear forms that spé&f’)*.
We fix two sets of variables, ..., x, andyjy, ..., Yn, and we associate with the
arrangementy two functionsmy andmyy from RY to sets of monomials:

My ;v —> 1_[ Xi and mxy:vr—>( l_[ xi)-( H y,-).

i :hj (v)#£G i :hj(v)>¢ jvj(v)<cj

Note thatmy (v) is obtained frommyy(v) by specializingy; to x; for all i.

Definition 1.2

The matroid idealof .« is the idealM,, of k[x] = K[X1, ..., Xn] generated by the
monomials{my (v) : v € RY}. Theoriented matroid ideabf <7 is the idealO,, of
K[X, y] = K[X1, ..., Xn, Y1, - - - , Yn] generated bymyy(v) : v € RY}.

The hyperplaneds, ..., Hy partition RY into relatively open convex polyhedra
called thecells of 7. Two pointsv, v' € RY lie in the same celt if and only if
Myy(v) = Myy(v'). We writemyy(c) for that monomial and, similarlyny(c) for its
image undery; — X;. Note thatmy(c’) dividesmy(c), andmyy(c’) dividesmyy(c),
providedc’ < c. The cells of dimension zero aidare calledserticesandregions,re-
spectively. A cell idboundedf it is bounded as a subset Bf . The set of all bounded
cells forms a regular CW-comple&,, called thebounded compleaf .o

Figure 1 shows an example of a hyperplane arrangem#nivith d = 2 and
n = 4, together with monomials that label its bounded cells. The bounded comple
B,/ of this arrangement consists of 4 vertices, 5 edges, and 2 regions.

THEOREM1.3

(@) The ideal M, is minimally generated by the monomials (), wherev
ranges over the vertices ef . The bounded complex,Bis an M,,/-complex.
Thus its cellular complex &B,,, M./) gives a minimal free resolution for
Mgy .

(b)  The ideal Q, is minimally generated by the monomialsytv), wherev
ranges over the vertices of . The bounded complexBis an O,/ -complex.
Thus its cellular complex &B./, O.) gives a minimal free resolution for
Oy .

To prove Theorenll.3, we must check that for both ideals the two hypotheses o
Propositionl.1 are satisfied. The second hypothesis is immediate: for a pair of cel
c > C/, there is a hyperplangkl; € & that contains’ but does not contain, in
which casemy(c) is divisible by x; andmy(c’) is not divisible byx;. The same is
true for the oriented matroid ide@l ;. The essence of Theoretm3is the acyclicity
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Mgy = (X4, X1X2, X2X3, X1X3)

Oy = (Y4, X1X2, Y2X3, X1X3)
X1 X2

X1X2X3

X1X2X3Y4

X1X3
X1X2Ya

X1X3Y4 X1Y2X3
X1Y2X3Ya

>

H1

Y2X3Y4
Y4 Y2X3

Ho Hy
Hs

Figure 1. The bounded compld,, with monomial labels

condition, which states that alll ,,-essential an®.,-essential subcomplexes Bf,
are acyclic. For the whole bounded complex, the following proposition is known.

PROPOSITIONL.4 (Bjérner and Ziegler (seé,[Th. 4.5.7]))
The complex B of bounded cells of a hyperplane arrangements contractible.

The acyclicity of allM-essential subcomplexes Bf, is an easy consequence of
Propositionl.4: eachM ,,-essential subcomplex is a bounded complex of a hyper
plane arrangement induced By in one of the flats ofez. The acyclicity of all
O -essential subcomplexes follows from a generalization of Propositibatated
in Proposition2.4. We give more details in Sectidh) where Theorem..3is restated
and proved in the more general setting of oriented matroids.

The first main result in this paper is the construction of the minimal free res
olution of an arbitrary matroid ideal (see Theoref8 and 3.9) and an arbitrary
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oriented matroid ideal (see Theoren?). A numerical consequence of this result is
a refinement of Stanley’s formula, given ihg, Th. 9], for their Betti numbers (see
Corollaries2.3and 3.4; see also the last paragraph of Section 3). The simplicial com
plexes corresponding to matroid ideals and oriented matroid ideals are the comple
of independent sets in matroids (see Renfaflk and the triangulations of Lawrence
matroid polytopes (see Theoretrd), respectively. In the unimodular case, oriented
matroid ideals arise as initial ideals of toric varietie®ix P! x --. x P1, by work
of Bayer, Popescu, and Sturmfef B4], and their Betti numbers can be interpreted
as face numbers of hyperplane arrangements on a torus (see Thédjemvery
ideal considered in this paper is Cohen-Macaulay; its Cohen-Macaulay type (hight
Betti number) is the Mébius invariant of the underlying matroid, and all other Bett
numbers are sums of Mébius invariants of matroid minors (see Section 8gnd (
Our second main result concerns the minimal free resolutions for graphic and c
graphic matroid ideals. In Section 5 we resolve the enumerative problems that we
left open in B, 85]. Proposition$.3 and5.7 give combinatorial expressions for the
Mobius invariant of any graph. More precise and explicit formulas, in terms of Her
mite polynomials, are established for the Mébius coinvariants of complete graphs (s
Theoremb.8) and of complete bipartite graphs (see Theokefn).

2. Oriented matroid ideals

In this section we establish a link between oriented matroids and commutative alg
bra. In the resulting combinatorial context, the algebraists’ classic question, “Wh
makes a complex exact?” (se@)[ receives a surprising answer: it is the topological
representation theorem of J. Folkman and J. Lawrence ¢s&@hpp. 5]).

We start by briefly reviewing one of the axiom systems for oriented matroid
(see B]). Fix a finite setE. A sign vector Xis an element of+, —, 0}E. Thepositive
part of X is denotedX™ = {i € E : X; = +}, andX~ and X° are defined similarly.
The supportofX is X = {i € E : X; # 0}. Theopposite— X of a vectorX is given

by (—X)i = —X;. Thecomposition X Y of two vectorsX andY is the sign vector
defined by
X i X #0,
(XX _{ Y, if X =0.

Theseparation sebf sign vectorsX andY is S(X,Y) ={i e E | X; = -Y; # 0}
Aset.? C {+, —, O} is the set ofovectorsf anoriented matroid on Hf and

only if it satisfies the following four axioms (se,[§ 4.1.1]):

(1) the zero sign vector zero is iff;

2) if X e &, then—X € & (symmetry);

(3) if X, Y e Z thenXoY €. (composition);
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@) if X,Y e Zandi € S(X,Y), then there existZ € .¢ such thatz; = 0 and
Zij=(XoY)j=(YoX)jforall j & S(X,Y) (elimination).
Somewhat informally, we say that such a g&r, %) is an oriented matroid. Aaffine
oriented matroid(see p, 810.1]), denoted# = (E,.¥, g), is an oriented matroid
with a distinguished elemegt € E such thatg is not aloop; that is, Xg # O for at
least one covectaX € .. Thepositive partof £ is £ ={X € £ : Xg=+}.
The set{+, —, 0}F is partially ordered by the product of partial orders

0<+ and O< — (+ and— are not comparable)

This induces a partial order on the set of coveci®tsA covectorX is calledbounded
if every nonzero covector < X is in the positive pariZ ™.

The topological representation theorem for oriented matroids ¢s8én[ 5.2.1])
states that? = . U {1} is the face lattice of an arrangement of pseudospheres; ar
Zt = £TU{0, 1} is the face lattice of an arrangement of pseudohyperplanesgsee |
Exer. 5.8]). These are regular CW-complexes homeomorphic to a sphere and a b
respectively. (This is why? is called theface lattice and.Z " is called theaffine face
lattice, of .#.) Thebounded complex B of .# is their subcomplex formed by the
cells associated with the bounded covectors. The bounded complex is uniquely de
mined by its face lattice—the poset of bounded covectors. Slightly abusing notatic
we denote this poset by the same symii),.

We write rk( - ) for the rank function of the lattic”. The atoms ofZ, that is, the
elements of rank 1, are calledcircuitsof .#. The vertices of the bounded complex
B 4 are exactly the cocircuits o# which belong to the positive pag’™.

Example 2. Affine oriented matroids from hyperplane arrangements)

Let% = {Hy, ..., Hn, Hg} be a central hyperplane arrangemenkfit! = RY x R,
written asH; = {(v, w) € RY x R : hj (v) = qw} andHg = {(v, w) : w = 0}. The
restriction of#’ to the hyperplang(v, w) : w = 1} is precisely the affine arrangement
& in Section 1. Fixe = {1, ..., n, g}. The image of the map

Rd+1—> {+,—,O}E,
(v, w) —~ (sign(h1(v) — ciw), ..., sign(hn(v) — chw), sign(w))

is the set? of covectors of an oriented matroid d&h The affine face lattice? of
A = (E, £, g) equals the face lattice of the affine hyperplane arrangemrerithe
bounded compleB , coincides with the bounded compl&y, in Propositionl.4.

Let.# = (E, %, g) be an affine oriented matroid da = {1, ..., n, g}. With every
sign vectorZ € {0, +, —)E, we associate a monomial

mxy(Z)=< [ xi>.( I1 yi), wherexg = yg = 1.

i:Zi=+ i:Zj=—
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Theoriented matroid ideal Qs the ideal in the polynomial ring[x, y] = k[x1, ...,

Xn, Y1, - - -, Yn] generated by all monomials corresponding to covedoes.# . The
matroid ideal Massociated with# = (E, &, g) is the ideal ofk[x] obtained from
O by specializingy; to x; for all i. These ideals are treated in SectibriThe main
result of this section concerns the syzygies of the oriented matroid @leal

THEOREM2.2

The oriented matroid ideal O is minimally generated by the monomials correspondir
to the vertices of B,. The bounded complex Bis an O-complex. Thus its cellular
complex G(B_ 4, O) gives a minimaN?"-graded freek[x, y]-resolution of O.

Recall that, for a monomiath in k[x, y], the correspondinif?"-graded Betti number
of O, Bm(O) is the multiplicity of the summan¢m) in a minimaINZ”—graded<[x, e
resolution ofO. Theorem?2.2implies the following numerical result.

COROLLARY 2.3
TheN?"-graded Betti numbers of O are dllor 1. They are given by the coefficients
in the numerator of th&?"-graded Hilbert series of O:

n
(X 0 Pmy@)/TTa-xa-w. ©)

ZeB_y

Proof of Theoren2.2
Distinct cellsZ and Z’ of the bounded compleB _, have distinct labelsnyy(Z) #
Myy(Z"). This implies minimality of the comple€,(B_,, O). In order to prove ex-
actness o€, (B_4, O), we must verify the first hypothesis in Propositibd. To this
end, we shall digress and first present a generalization of Proposition
Theregionsof an oriented matroidE, .#) are the maximal covectors, that is, the
maximal elements of the posét. For a covectoX € .# and a subset’ of E, denote
by X|e' € {+, —, O}F" the restriction ofX to E’: (X|g/)i = X; for everyi € E’. The
restriction of(E, .%) to a subseE’ of E is the oriented matroid o&’ with the set of
covectors.Z|g = {X|g : X € Z}.
The following result, which was cited without proof i, [Th. 4.4], is implicit in
the derivation of ¢, Th. 4.5.7]. We are grateful to G. Ziegler for making this explicit
by showing us the following proof. Ziegler's proof does not rely on the topologica
representation theorem for oriented matroids. If one uses that theorem, then the
lowing proposition can also be proved by a topological argument.

PROPOSITION2.4 (G. Ziegler)
Let.# = (E, ., g) be an affine oriented matroid, and let,Bbe its bounded com-
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plex. For any subset Bof E and any region Rof (E’, Z|g/), the CW-complex with
the face poset B= {X € B 4 : X|gr < R’} is contractible.

Proof

Let T denote the set of regions ¢f. A subsetA C T is said to beT -convexf it is
an intersection of “half-spaces,” that is, sets of the f@ign= {T € T : Te = +} and
Tg ={T € T: Te = —}. Each regiorR € T defines a partial order ¥

Ti<T :< [ecE:R=—(Te} € {e€ E: Re=—(To)e}.

Denote this poset by (., R). We also abbreviatg™* := T¢ =T n.Z*.

We may assume thdd’ is nonempty. TheZ := {X € T+ : X|gr = R} is
a nonemptyT -convex set. It is stated irb] Lem. 4.5.5] thatZ is an order ideal of
T(Z, R), and, moreover, it is an order ideal Bf € T(.Z, R). By [6, Prop. 4.5.6],
there exists a recursive coatom ordering,iavr in which the elements of# come
first. The restriction of this ordering t@ is a recursive coatom ordering of the poset
i@f = {X € #* : X < T forsomeT e %} U {1}. This implies (using§, Lem.
4.7.18)) that the order compleXorq(-Z;) of £} is a shellabler — 1)-ball. It is
a subcomplex ofAqq (£ ), which is also anr — 1)-ball, by [6, Th. 4.5.7]. Let
U = f;;\Bj/ be the set of “unbounded covectors.” Then the subcomplgxof
Aord (i@?) induced on the vertex set &f lies in the boundary ofAgq (£ ) and
hence also in the boundary &g (.,2@). Thus||Aord ($§)| [\I|Ay|| is a contractible
space. By §, Lem. 4.7.27], the spad¢Aqrq(B’)|| is a strong deformation retract of
[|Aord (.,Z%')H\HAU || and is hence contractible as well. O

We now finish the proof of Theorerfi.2. Consider anyO-essential subcomplex
(B.#) <xay» Of B 7, with a, b € N". This complex consists of all cells whose label
Myxy(Z) dividesx®yP. Set

E'={1<i<n:g =0andb =0},

E' = {1 <i < n: exactly one ofy andbj is positivg € E \ E”.
We first replace our affine oriented matr@id, .#, g) by the affine oriented matroid
(E\E”, #/E", g) gotten by contraction &”. Next we defineR’ € {+, —, 0}F by

R = { + fa>0, for everyi € E'.

— ifby >0,
We apply Propositio2.4with this R'to (E\E”, ¢ /E”, g). ThenB' is the face poset
of (B M) <xayb, which is therefore contractible. O

The oriented matroid ide® is squarefree and hence is the Stanley-Reisner ideal of
simplicial complexA_, on 2nvertices{l,...,n, 1, ..., n"}, whose faces correspond
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to squarefree monomials &fx, y] which do not belong t®; that is,
{it, .o ik, J1o-oos imb € Ay ifandonly if Xi; -« X Yj, -+ - Yjm € O.

In what follows we give a geometric description of that simplicial complex.

LEMMA 2.5
We have M {i, i’} # ¥ for any facet F ofA , and i€ {1,...,n}.

Proof

Let F be a face ofA_, such thatF N {i, i’} = #. Suppose that neithdt’ = F U {i}
norF” = F U {i’} is a face ofA_,. Then there exist cocircuitg’, Z” € B , such
that

Zi=+, (Zh)"\{i}c{l<j=n:jeF}uig
(Z)-c{l<j<n:j eF},

Z/=-, (Zh"c{l<j=n:jeFju{g
(Z"\{i}c{l<j<n:j eF}

By the strong elimination axiom applied &', Z”, i, g), there is a cocircuiZ such
thatzj = 0, Zg = 4, Z+ € (ZH)* U (Z"H*, Z= € (Z)~ U (Z")~. Thus
Z € B 4, and the monomiainyy(F) is divisible bymyy(Z) € O. This contradicts
FeAy. i

Suppose now that the affine oriented matroid = (E, £, g) is a single-element
extension of the matroidz\g = (E\g, -£\g) by an elemeng in general position,
in the sense ofd, Prop. 7.2.2]. For the affine arrangemenin Section 1 or Example
2.1, this means tha¥’ has no vertices at infinity. In such a case, Theofemmplies
the following properties 0D. We denote by the rank of.Z\g.

COROLLARY 2.6
The ringk[A_,] = Kk[X, y]/O is a Cohen-Macaulay ring of dimensi@n —r.

Proof

Since r.z\g) =r, every(n —r + 1)-element subs€ts, ..., in—r+1} of {1, ..., n}
contains the support of a (signed) cocircuit. This implies that every monomial of tf
formxi, -+ Xi,_,.1Yi; - - - Yin_r4, 0€lONGS t0O. The variety defined by these monomi-
als is a subspace arrangement of codimensiddenceO has codimension greater
than or equal to, which means that the ring[A_,] = Kk[X, y]/O has Krull dimen-
sion less than or equal tm2-r. By Theoren?.2, the bounded comple® , supports
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a minimal free resolution oD, and therefore
depth{k[A_41) = 2n— (the length of this resolution)= 2n —r.

Hence depttk[A 1) = dim(k[A_4]) = 2n—r, andk[A ,]is Cohen-Macaulay. T

The result in Corollary?2.6 can be strengthened to the statement that the simplicie
complexAy is shellable. This follows from Theorem9.

COROLLARY 2.7
The sef{x1 — Y1, ..., Xn — Yn} iS a regular sequence d A 4] = Kk[Xx, y]/O.

Proof

Sincek[A 4] is Cohen-Macaulay, it suffices to show that — y1, ..., Xn — ¥n}is a
part of a linear system of parameters (I.s.0.p.). This follows from Lemmand the
l.s.0.p. criterion due to B. Kind and P. Kleinschmid®[ Lem. 111.2.4]. O

Consider any signed circuit = (C*, C™) of our oriented matroid such thgtlies in
C~. By thegeneral positiorassumption oy, the complement of in that circuit is a
basis of the underlying matroid. We wrii; for the ideal generated by the variables
x; for eachi € C* and by the variableg; for eachj € C™\({g}.

PROPOSITION2.8
The minimal prime decomposition of the oriented matroid ideal equals: Q)¢ Pc,
where the intersection is over all circuits C such that €.

Proof

The right-hand side is easily seen to contain the left-hand side. For the converst
suffices to divide by the regular sequence— vi, ..., Xn — Yo and note that the
resulting decomposition for the matroid idedlis easy (see Remafk1). O

Our final result relates the ide@ to matroid polytopes and their triangulations. The
monograph of F. Santo4}] provides an excellent state-of-the-art introduction. We
refer in particular to 15, 84], where Santos introduces triangulations of Lawrence
(matroid) polytopes, and he shows that these are in bijection with one-element liftin
of the underlying matroid. Under matroid duality, one-element liftings correspon
to one-element extensions. In our context these extensions correspond to adding
special elemeng, which plays the role of the pseudohyperplane at infinity. From
Santos’s result we infer the following theorem.
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THEOREM2.9

The oriented matroid ideal O is the Stanley-Reisner ideal of the triangulation of th
Lawrence matroid polytope induced by the lifting dual to the extension by g. In pa
ticular, O is the Stanley-Reisner ideal of a triangulated ball.

The second assertion holds because lifting triangulations of matroid polytopes ¢
triangulated balls and, by Santos’s work, every triangulation of a Lawrence matro
polytope is a lifting triangulation. We remark that it is unknown whether arbitrary
triangulations of matroid polytopes are topological balls (d&ep. 7]).

3. Matroid ideals

Let .# be an (unoriented) matroid on the gdt ..., n}, and letL be its lat-
tice of flats. We encode# by the matroid ideal M generated by the monomials
mMy(F) = [Ji.i¢e Xi for every proper flatF € L. The minimal generators af!
are the squarefree monomials representing cocircuit&ofthat is, the monomials
my(H), whereH runs over all hyperplanes ofZ. Equivalently,M is the Stanley-
Reisner ideal of the simplicial complex of independent sets of the dual ma#&id
The following explains what happens when we substitgte> x; in Propositior2.8.

Remark 3.1
The matroid ideaM has the minimal prime decomposition

M= () (xlieB)

B basis of. Z

The following characterization of our ideals can serve as a definition of the wor
matroid It is a translation of the (co)circuit axiom into commutative algebra.

Remark 3.2
A proper squarefree monomial idelsll of k[x] is amatroid idealif and only if, for
every pair of monomialsn;, my € M and anyi € {1, ..., n} such thatx; divides

bothm; andmy, the monomial lcnimz, m2)/x; is in M as well.

Matroid ideals have been studied since the earliest days of combinatorial commutat
algebra as a paradigm for shellability and Cohen-Macaulayness. Stanley compu
their Betti numbers in]6, Th. 9]. The purpose of this section is to construct an explicit
minimal k[x]-free resolution for any matroid ide&fl. We note that in recent work
of V. Reiner and Welker14] the term “matroid ideal” is used for the squarefree
monomial ideals that are Alexander dual to our matroid ideals.
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We first consider the case wher# is anorientable matroid This means that
there exists an oriented matroid whose underlying matroid ig7 . Let.¥ be the set
of covectors of a single element extension#fby an elemeng in general position
(see b, Prop. 7.2.2]). Consider the affine oriented matro# = (E, ., g), where
E ={1,...,n}U{g}, and its bounded comple® ;. Note that, for each sign vector
Zin B 7 the zero se?0is a flat inL. Moreover, by the genericity hypothesis gn
all flats arise in this way. We label each céllof the bounded comple® 7 by the
monomialmy(Z) = [[{x : 1 <i <nandZ; # 0}.

THEOREM3.3

Let M be the matroid ideal of an orientable matroid. Then the bounded comple
B ;7 of any corresponding affine oriented matroid is an M-complex, and its cellula
complex G(B 7; M) gives a minimal free resolution of M ovkfx].

Proof

Leta= (a, ..., ay) € N", and consider thi&1-essential subcompleB ) <xa. This
complex (if not empty) is the bounded complex of the contractiotEf.¥, g) by
{1 <i <n:ga = 0} and hence is acyclic by Propositi@. Sincemy(Z’) is a
proper divisor ofmy(Z) wheneverZ’ < Z andZ’, Z ¢ B 7 it follows thatB 7 is
an M-complex. O

We remark thaC, (B ;;, M) is obtained from the comple&, (B 7, O), whereO is
the oriented matroid ideal o#7 = (E, .&, g), by specializingy; to x; for all i. Hence
Theorem2.2and Corollary2.7 give a second proof of Theore#ns.

COROLLARY 3.4
TheN"-graded Hilbert series of any matroid ideal M equals

(X ® D [T i ¢ B/ TTa-x%. 3)
i=1

FelL

where L is the lattice of flats of7, and | is its Mdbius function.

There are several ways of deriving this corollary. First, it follows frdr@, [Th. 9].

A second possibility is to observe that the geometric latticeoincides with the
Ilcm lattice (in the sense of]) of the idealM, and then §, Th. 2.1] implies the
claim. Finally, in the orientable case, Corollgty!follows from Theoren8.3and the
oriented matroid version of T. Zaslavksy’s face-count formula.
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PROPOSITION3.5 (Zaslavsky’'s formula (se€f], [6, Th. 4.6.5]))
The number of bounded regions of a rank r affine oriented matwie= E, %, 9
equals-1'u (0,1).

We next treat the case of nonorientable matroids. It would be desirable to constri
an M-complex for an arbitrary matroid ide&l and to explore the “space” of all
possibleM-complexes. Currently we do not know how to construct them. Therefor
we introduce a different technique for resolvikgminimally.

Let P be any graded poset that has a unique minimal ele®entd a unique
maximal element.. (Later on, we také to be the order dual of our geometric lattice
L.) Let A(P) denote the order complex &, that is, the simplicial complex whose
simplices[Fo, Fu, ..., Fi] are decreasing chainb> Fp > F; > --- > F > 0.
For F € P, denote byA(F) the order complex of the lower intervﬁ], F]. Note that
dimA(F) = rk(F) — 2. LetC; (A(F)) be thek-vector space af-dimensional chains
of A(F), and let

0 —> Ciry_2(A(F)—> -+ 2 C1(A(F))
&, Co(a(F) 2 g (A(F)) — 0

be the usual (augmented) chain complex; that is, the differential is given by

i
3i[Fo. Fu.....Fil=> (-DI[Fo.....Fj.....R] fori > 0andao[Fo] = 0.
j=0
Denote byZ;i (A(F)) = ker(d;) the space of-cycles, and b)ﬁi (A(F)) theith (re-
duced) homology ofA (F). (For relevant background on poset homology, $¢ [
For each paifF, F’ € P such that rkF) — rk(F’) = 1, we define a map

¢ : Ci(A(F)) — Ci—1(A(F))

by

0 if Fo # F/,

Fo.Fi.....F .
[Fo, Fa..., ']H{ (Fi.....F] if Fo=F".

The mapg is zero unles$’ < F (in other words,F coversF’). Note thatd o ¢ =
—¢ o 9, and hence the restriction @f to cycles gives a map : Z(A(F)) —
Zi_1(A(F")). Combining these maps, we obtain a complek-afector spaces:

ZP): 0— Z5(AP) L P zs(AF)
rk(F)=r -1

L L P zam) L P za(ar) —k
k(Fy=2 rk(F)=1
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(Here A(P) is regarded a&(i), and thus the first mag is well defined.) The com-
plex property¢? = 0 is verified by direct calculation using equatiof).(Let P
denote the poset obtained frdPby removing all rank levels greater than or equal to
j, and letA(Pj)) be the order complex d?j, U {1}.

PROPOSITION3.6
The complexZ’ (P) is exact ifH; (A(Pgy3)) =0foralli <r —3.

To prove Propositiors.6 we need some notation. ¥ € Py )i Zi—2(A(F)), we

denote itsF-component byxg. For a simplexsc = [Fg, F1, ..., F], we also write
o = Fo*[F1, ..., F], and the operation«” extends tok-linear combinations.
Remark 3.7

Suppose that € Cj (A(Pi+2)). Thenz can be expressed as

Z= Z F % yp = Z Z F/*F//*XF/’F//,
rk(F")=i+1 rk(F/)=i+1 F” <F’
whereyg: € Ci_1(A(F")) andxg/, g7 € Ci_2(A(F")). Its boundary equals

a(2) = Z F” x Z XF/, E”

rk(F/)=i F/>F”

= Z F’ Z Xg/ Fr + Z F/*F//*B(X[:/, F7).

rk(F/)=i+1 Fr<F' F,F”

We conclude that is a cycle if and only if the following conditions are satisfied:

> Xp pr=0 forall F” with rk(F") =i (4)
F/>F"

> Xerpr =0 forall F" with rk(F') =i + 1; (5)
F/<F!

d(Xgr, pr) =0 forall F’, F” such thatr” < F'. (6)

Proof of Propositior3.6
To show thatZ'(P) is exact, considey = (yg/) € EBrk(F/):iH Zi_1(A(F")) such
that¢ (y) = 0. There are several casesi =1 — 1, theny = y; can be expressed as
> tk(Fy=r—2 F * Xg, wherexg € Cr_3(A(F)). Then 0= ¢(y)r = Xf, and therefore
y = 0. Hence the leftmost mafis an inclusion.

LetO<i <r —1,and definez = 3y r—ir1 F' * Yr € Ci(A(Ri+2)). We
claim thatz is a cycle; that isz € Zj (A(Pi+2))). Indeed, ifi > 0, thenygs can be
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expressed a3 r p F” % Xp/ pr, wherexg: gr € Ci_2(A(F”)). Hence

@W)er= Y Xer e YFwith rk(F”) =1,
F/>F//

and

A(YFr) = Z XFr, Fr — Z F” x 8(X|:/’ Fr), VF’ with rk(F/) =i+1
F//<F/ F//<F/

Since¢(y) = 0 andd(yg/) = O for any F’ of ranki + 1, we infer thatz satis-
fies conditions 4) — (6) in Remark3.7 and therefore is a cycle. In the case= 0,
the proof is very similar. Now if = r — 2, thenz € Z;_2(A(P)), and¢(2) =
¢ (QO_F' xyr) = (Ypr) = y. Hence we are done in this casei. & r — 2, then, since
Zi(A(Pi+2)) € Zi(A(Pi+3))) and Hj (A(Pi+3))) = 0, it follows that there exists
w € Ci+1(A(Pi+3))) such thad (w) = z. Expressw aszrk(,:)zpr2 F * ve, where
v € Ci(A(F)). Sincez = a(w) = Zrk(F):i+2 VE — Zrk(F):i+2 F % d(vp), we
conclude thad (vp) = O forall F of ranki +2 and thal) vk =z=) ¢, F' xyg.
Thusv = (vg) € @rk(F)=i+2 Zi(A(F)), andg (v) = . O

COROLLARY 3.8
If P is a Cohen-Macaulay poset, theti(P) is exact.

Proof

If A(P) is Cohen-Macaulay, then(P)) is Cohen-Macaulay for every(see [L7,
Th. 4.3]). This means that all homologies &t Pj)) vanish, except possibly the top
one. Thus the conditions of Propositiért are satisfied. O

Suppose now that every atofof P is labeled by a monomiaha € k[x]. Theposet
ideal Ip is the ideal generated by these monomials. Associate with every elément
of P a monomialmg as follows:

me :=lem{ma:tk(A) =1, A< F} if F #0andmy:= 1

We say that the labeled podetis completef all monomialsmg are distinct, and for
everya € N" the set{F € P : degmg) < a} has a unique maximal element.

We identify the principal ideajmg ) with the freeN"-gradedk[x]-module of rank
1 with generator in degree det=. If F,G € P andF < G, thenmg is a divisor
of mg. Thus there is an inclusion of the corresponding idéalgmg) — (Mp).
Recall that there is a compleX (P) of k-vector spaces associated wih Tensoring
summands of this complex with the idedlsng) : F € P}, we obtain a complex of
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N"-graded fre&[x]-modules:

E(P) = P Zur)-2(A(F)) ® (mg)  with differentiald = ¢ @i.  (7)
FeP

THEOREM3.9

Suppose that the labeled poset P is complete and that the homaiog)(F(i +3)))
vanishes foran® <i <r —3and any Fe P of rank> i + 3; then(%¥(P), d) isa
minimal N"-graded freek[x]-resolution of the poset ideapl

Proof

(¢ (P), 9) is a complex olN"-graded freek[x]-modules. To show that it is a resolu-
tion, we have to check that, for amyc N", theath graded components’(P), 9)a

is an exact complex df-vector spaces. Let € N", and letF € P be the maximal
element among all elemern® < P such that degng) < a. Such an elemerk exists
since the labeled posétis complete. Theri@’ (P), 9)4 is isomorphic to the complex
([0, F]) of the posef0, F] and hence is exact ovér(by Proposition3.6). Thus
(7 (P), 9) is exact ovek[x]. Finally, sincemr andmg are distinct monomials for
any pairF < G, the resolution @ (P), d) is minimal. O

From Corollary3.8we obtain the following corollary.

COROLLARY 3.10
If P is a complete labeled poset such that every lower interval of P is Coher
Macaulay, then @ (P), 9) is a minimalN"-graded free resolution ofdl.

Returning to our matroid#, let P be a lattice of flats ordered by reverse inclusion.
HenceP is the order dual of the geometric lattiteabove. In particulaf) corresponds
tothe sefl,2,...,n}, andi corresponds to the empty set. Label each attbf P
(i.e., hyperplane of#) by the monomiaimy(H), as in the beginning of Section 3.
Identifying the variables; with the coatoms oP, we see thainy(H) is the product
over all coatoms not abovel. Then P is a complete labeled poset and its poset
ideal | p is precisely the matroid idedfl. Moreover, all lower intervals of the poset
P are Cohen-Macaulay (se#&€, 88]). From Corollary3.10we obtain the following
alternative to Theoreri.3.

THEOREM3.11
Let .# be any matroid. Then the compléX(P), 9) is a minimalN"-graded free
k[x]-resolution of the matroid ideal M.
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The two resolutions presented in this section provide a syzygetic realization of Ste
ley’s formula [L6, Th. 9] for the Betti numbers of matroid ideals. That formula states
that the number of minimath syzygies ok[x]/M is equal to

’

BiM) = | uL(F. 1)

F

where the sum is over all flats of coranki in .Z. The generating function

rk(M)

Va@=> AM-d = > |u(F Q)| gk )
i=0

F flat of #

for the Betti numbers oM is called thecocharacteristic polynomiabf .#. In the
next two sections we examine this polynomial for some special matroids.

4. Unimodular toric arrangements
A toric arrangements a hyperplane arrangement that lives on a td@igther than in
RY. One construction of such arrangements appears in recent work of Bayer, Popes
and Sturmfelsd]. Experts on geometric combinatorics might appreciate the followinc
description: fix a unimodular matroidZ, form the associated tiling of Euclidean
space by zonotopes (se#l] Prop. 3.3.4]), dualize to get an infinite arrangement of
hyperplanes, and divide out by the group of lattice translations.

Here is the same construction again, but now in slow motion. Fix a central hype

plane arrangemert = {Hy, ..., Hn} in RY, whereH; = {v e RY : h; - v = 0} for
someh; € Z9. Let L denote the intersection lattice @fordered by reverse inclusion.
We assume th&?’ is unimodular,which means that thel(x n)-matrix (hy, ..., hp)

has ranld, and all its ¢l x d)-minors lie in the set0, 1, —1}. We retain this hypothesis
throughout this section. (Se2l] and [3, Th. 1.2] for details on unimodularity.) The
set of all integral translates of hyperplanesf

Hj={veRY:h.-v=j} forie{l...,nandjeZ,

forms an infinite arrangement in RY. The unimodularity hypothesis is equivalent
to saying that the set of vertices af is precisely the lattic&; that is, no new
vertices can be formed by intersecting the hyperplatgs Define theunimodular
toric arrangement?/Z¢ to be the set of images of th; in the torusTd = R9/29.
Slightly abusing notation, we refer to these images as hyperplanes on the tor

The images of cells of in TY are calleccellsof /Z%. These cells form a cellular
decomposition of9. Denote byf; = f; (%V/Zd) the number of-dimensional cells in
this decomposition. The next result concerns theector( fo, f1, ..., fg) of ?/Zd.
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THEOREM4.1
If </79 is a unimodular toric arrangement, then

d
Y (@/2% -q' = ye(@), whereyy(q) =Y ui(F,1)- (—q)™mF
i=0 FelL

is the cocharacteristic polynomial of the underlying hyperplane arrangeraéent

Proof

Choose a vectow € RY which is not perpendicular to any 1-dimensional cell of
the arrangementt’. Consider the affine hyperplarf@ € RY : w - v = 1}. Let

o/ = % N H be a restriction of¢’ to H. Then is an affine arrangement iH.

For anyi > 0, there is a one-to-one correspondence betweeti thd)-dimensional
bounded cells o7 and thei-dimensional cells of toric arrangeméﬁi/zd. To see
this, consider the cells in the infinite arrangenfnghose minimum with respect to
the linear functionab — w - v is attained at the origin. These cells form a system of
representatives modulo tE#&-action. But they are also in bijection with the bounded
cells of 7. Using Propositior8.5 (see also Exampl2.1), we conclude

fi(€/2% = fi.1(Boy) = (D' - Y w(F. D),
dim(F)=i

where the sum is over elementslobf coranki. This completes the proof. O

Theorem4.1 was found independently by V. Reiner, who suggested that we includ
the following alternative proof. His proof has the advantage that it does not rely ¢
Zaslavsky’s formula.

Second proof of Theoreml

Starting with the unimodular toric arrangeméftZd, for each intersection subspace
F in the intersection lattice, let Te denote the subtorus obtained by restrictifz

to F. SoTp is just%/Z itself, andTy is not actually a torus but rather a point. Our
assertion is equivalent to

w(F, 1) = (—1)9MF . #{max cells inTg}. (9)

Let /(F) denote the right-hand side above. By the definition of the M&bius functior
of a poset, equatiord) is equivalent to

Z W'(G) =68g1 (Kronecker delta)
F<G<1l

The left-hand side of this equation is the (nonreduced) Euler characteri3tic ®his
is zero sinc€l is a torus, unles = 1 so thafTf is a point, and then it is 1. O
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We remark that Theorer 1 can be generalized to arbitrary toric arrangementg?
without the unimodularity hypothesis. The face count formula is a sum of loce
Mobius function values over all (now more than one) vertice® p£9. That general-
ization has interesting applications to hypergeometric functions, and it will be studie
in [13]. We know of no natural syzygetic interpretation of the complex¢&9 when

% is not unimodular. The enumerative applications in Section 5 all involve unimodule
arrangements, so we restrict ourselves to this case. We need the following recurs
for computing cocharacteristic polynomials.

PROPOSITION4.2
Let H be a hyperplane of the arrangeméfitThen

Vi (@) = Yegnn (D) + 9+ Y Yge(@),
Cc
where the sum is over all lines c¢ of the arrangentférihat are not contained in H.

The linesc of the arrangemeri# are the coatoms of the intersection latticeThe
arrangemen¥’/c is the hyperplane arrangemdnt; /c : ¢ € H; } inthe(d — 1)-
dimensional vectorspad®®/c. Note that ifc is a simple intersection, that is,dflies
on onlyd —1 hyperplanesi;, then ¥ c(q) = (1+q)9-1. Note that Propositiot.2,
together with the conditionr»(q) = 1 for the zero-dimensional arrangemefit
uniquely defines the cocharacteristic polynomial.

Proof

The intersection lattick of any central hyperplane arrangements semimodular
that is, if bothF andG coverF A G, thenF v G covers bothF and G (see [L8,
83.3.2]). The assertion follows from the relatioh8[ §3.10, (27)] for the M&bius
functions of any semimodular lattice. O

In the remainder of this section we review the algebraic context in which unimodulz
toric arrangements arise ][ This provides a Grobner basis interpretation for our
proof of Theoremt.1, and it motivates our enumerative results in Section 5.

Denote byB the (h x d)-matrix whose rows arby, ..., hy. All (d x d)-minors
of B are—1, 0, or +1. Theunimodular Lawrence ideadf % is the binomial prime
ideal

Jo = (x®y°—y?x" | a,b e N", a—b e ImageB)) in K[Xq, ..., %n, Y1, .-, Ynl.

The main result of J] states that the toric arrangemett/Z¢ supports a cellular
resolution ofJy. In particular, the Betti numbers of the unimodular Lawrence idea
Ji are precisely the coefficients of the cocharacteristic polynomialq).
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The construction in the proof of Theorefril has a Grobner basis interpretation.
Indeed, the generic vectar € RY defines a term order for the idealJ, as follows:

x2yP > y3P if a—b = B-u for someu € R% with w - u > 0.

It is shown in 3, 84] that the initial monomial ideal in(J») of J, with respect to
these weights is the oriented matroid ideal associated with the restriction of the cent
arrangemertt’ to the affine hyperplangv € RY : w - v = 1}. In symbols,

in, (Jg) = Oy.

In fact, in the unimodular case, Theorén¥(b) is precisely , Th. 4.4].

COROLLARY 4.3
The Betti numbers of the unimodular Lawrence idegal dnd all its initial ideals
in. (J¢), are the coefficients of the cocharacteristic polynongigl.

We close this section with a nontrivial example. bet 9, d = 4, and consider

X11 X12 X33 X21 X22 X23 X31 X32 X33
1 -1 0 -1 1 0 0 0 0
0 1 -1 0 -1 1 0 0 0
0 0 0 1 -1 0 -1 1 0
0 0 0 0 1 -1 0 -1 1

BT =

All nonzero (4x4)-minors of this matrix are-1 or+1, and hence we get a unimodular
central arrangemerit of nine hyperplanes ii®*. This is thecographic arrangement
associated with the complete bipartite grdff)z. The nine hyperplane variablesg
represent edges Kz 3. The associated Lawrence ideal can be computed by saturatic
(e.g., in Macaulay 2) from (binomials representing) the four rowB bf

JB = (X11X22Y12Y21 — X12X21Y11Y22, X12X23Y13Y22 — X13X22Y12Y23,

9]
X21X32Y22Y31 — X22X31Y21Y32, X22X33Y23Y32 — X23X32Y22Y33) : ( l_[ Xij Yi j) :
1<i,j<3

This ideal has 15 minimal generators, corresponding to the 15 circuits in the direct
graphKs 3. A typical initial monomial ideal in (Jg) = O, looks like this:

(X11X22y12)’21’ X11X23Y13Y21, X11X32Y12Y31, X11X33Y13Y31, X12X23Y13Y22,
X12X33Y13Y32, X21X32Y22Y31, X21X33Y23Y31, X22X33Y23Y32,
X11X22X33Y13Y21Y32, X11X22X33Y12Y23Y31, X11X23X32Y13Y22Y31,

X12X21X33Y11Y23Y32, X12X21X33Y13Y22Y31, X13X21X32Y12)’23y31)-
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This is the oriented matroid ideal of the 3-dimensional affine arrangendegtten
from % by taking a vectonw € R* with strictly positive coordinates. This ideal is
the intersection of 81 monomial primes, one for each spanning trg @fBy The-
orem2.9, they form a triangulation of a 13-dimensional Lawrence polytope, which i
given by its centrally symmetric Gale diagraf®@", —BT), as in B, Prop. 9.3.2(b)].
Resolving this ideal (e.g., in Macaulay 2), we obtain the cocharacteristic polynomié

Y (Q) = 1+ 159 + 4802 + 549° + 209*. (10)

It was asked in3, 85] what such Betti numbers arising from graphic and cographic
ideals are in general. This question is answered in the following section.

5. Graphic and cographic matroids

Among all matroids the unimodular ones play a special role; among unimodular m
troids those that arise from graphs play a special role; among all graphs the compl
graph plays a special role. Our aim in this section is to compute the cocharacteris
polynomial ofgraphic and cographicarrangements, with an emphasis on complete
graphs. The material in this section is purely combinatorial and can be read indep
dently from the commutative algebra seen earlier. However, the motivation that led
to prove TheoremS.8and5.14arose from the desire to count minimal syzygies. The
results in this section provide answers to questions poset] Bd]. We start out by
discussing graphic arrangements. Cographic arrangements are more challenging
are discussed further below.

Fix a connected grap® with vertices[d] = {1, ..., d} and edge& C [d] x [d].
LetV = {(v1,...,vq) € RY: vy + -+ vg = 0} ~RI-1 The graphic arrangement
%a is the arrangement iN' given by the hyperplanes = vj for (i, j) € E. Itis
unimodular (see41]). For each subse$ C [d], we get arinduced subgraph (g =
(S, EN(Sx 9)). For a partitionr of [d], we denote bys/x the graph obtained from
G by contracting all edges whose vertices lie in the same part dhe intersection
lattice L of the graphic arrangemefals has the following well-known description
in terms of thepartition lattice Iy (see, e.g.,42] for proofs and references).

PROPOSITIONS.1

The intersection lattice & is isomorphic to the sublattice of the partition latti€ky
consisting of partitionsr such that, for each part S of, the subgraph Gs is con-
nected. The element,\bf Lg corresponding tar € Iy is the intersection of the
hyperplaneqv; = vj} for pairs i, j in the same part ofr. The dimension of Vis
equal to the number of parts af minus1. The interval[V,, i] of the intersection
lattice Lg is isomorphic to the intersection latticegly, .

We write u(G) = IMLG(@, 1)| for the Mébius invariant of the intersection lattice.
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Thusu(G) equals theCohen-Macaulay typéop Betti number) of the matroid ideal
Mg = m{(Xij : (i,]) € F) | F € E isaspanning tree d3}.

From Propositiorb.1 and @), we conclude that all the lower Betti numbers can be
expressed in terms of the Mdbius invariants of the contracti®fs of G.

COROLLARY 5.2
The cocharacteristic polynomial of the graphic arrangemeégtis

Ve (@ = Y u(G/m) gL

nelg

This reduces our problem to computing the Mdbius invarja(®) of a graphG.
C. Greene and Zaslavsk¥(] found the following combinatorial formula. Aarien-
tation of the graphG is a choice, for each eddg j) of G, of one of the two possible
directionsi — j or j — i. An orientation isacyclicif there is no directed cycle.

PROPOSITION5.3
Fix a vertex i of G. Them(G) equals the number of acyclic orientations of G such
that, for any vertex j, there is a directed path fromi to j.

Proof

The regions of the graphic arrangeméfi are in one-to-one correspondence with
the acyclic orientations db: the region corresponding to an acyclic orientatiois
given by the inequalities; > x; for any directed edge— j in 0.

The linear functionak : (ug, ..., uq) — U; is generic for the arrangemetis.
The Mobius invarianf (G) equals the number of regions &t which are bounded
below with respect taw. We claim that the acyclic orientations corresponding to the
w-bounded regions are precisely the ones given in our assertion.

Suppose that, for any vertgxin G, there is a directed path— --- — j. For
any point(uy, ..., ug) of the corresponding region, this path impligs> - -- > uj.
The conditionuy + - - - + um = 0 forcesw(u) = u; > 0. This implies that the region
is w-positive. Conversely, consider any acyclic orientation that does not satisfy tt
condition in Propositiorb.3. Then there exists a vertgx# i which is a source of

o. Thenthe vectov = (-1,...,-1,d -1, -1,...,—1), whered — 1 isin thejth
coordinate, belongs to the closure of the region associatedowBt w(v) = —1.
Hence the region is nat-positive. O

The above discussion can be translated into a combinatorial recipe for writing tl
minimal free resolution of graphic ideaMg, where each syzygy is indexed by a
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certain acyclic orientation of a gragh/n. For the case of theomplete graph G=
Kgd, we recover the resolution ir8[ Th. 5.3]. Note that the intersection lattitex,
is isomorphic to the partition latticHy. For any partitionr of {1, ..., d} withi + 1
parts,Kq /7 is isomorphic toK; 1. The number of such partitions equ&&, i + 1),
the Stirling numberof the second kind. The number of acyclic orientationspf
with a unique fixed source equals We deduce the following corollary.

COROLLARY 5.4
The number of minimal ith syzygies okMequals 1 S(d, i + 1).

Remark 5.5

Reiner suggested to us the following combinatorial interpretatiqin(). It can be
derived from Propositiors.3. For any graphG, the Mobius invarianjt(G) counts
the number of equivalence classes of linear orderings of the vertiddswider the
equivalence relation generated by the following operations:

. commuting two adjacent vertices v’ in the ordering if{v, v} is not an edge
of G,
. cyclically shifting the entire order, that isgv2 - - - vy <> v2- - - VU1

Invariance under the second operation makes this interpretation convenient for writi
down the minimal free resolution of the graphic Lawrence ideal8,ig%].

Another application arises whehlV, S) is a Coxeter system ard its Coxeter
graph (considered without its edge labels). Supp®se {si, ..., S }. Thenu(G)
counts the number of Coxeter elemesis - -5, of G up to the equivalence relation
S1S2 7 Sn < Sz SpSy-

We now come to the cographic arrangem@gt, whose matroid is dual to that of
%. Fix a directed grapls on [d] with edgesE, whereG is allowed to have loops
and multiple edges. We associate w@hthe multiset of vectorgve € Z9 : e € E},
where, for an edge = (i — j), theith coordinate ol is 1, the jth coordinate is
—1, and all other coordinates are zero. fet= 0 for a loope = (i — i) of G. Let
Ve ={r: E— R|Y o .gA(®)ve = 0}. Note thatVg is a vector space of dimension
#{edge$ — #{verticeg + #{connected components hecographic arrangemerffé

is the arrangement iWg given by hyperplane$le = {A € Vg : A(e) = 0} for

e € E. Itis unimodular (seeJ1]). We write u*(G) = |,u|_é((), 1)| for the Mdbius
invariant of the intersection Iatticbé of %é and we refer to this number as the
Mobius coinvarianof G. Thusut(G) is the Cohen-Macaulay type of the cographic
ideal Jcé in [3, §5].
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Remark 5.6

The characteristic polynomial of a matroid can be expressed via the Tutte dichroma
polynomial (see0]). Thus the Mobius invariant and coinvariant of a graphare
certain values of the Tutte polynomial(G) = Tg (1, 0) andu*(G) = Tg(0, 1). We

do not know, however, how to express the cocharacteristic polynangél in terms

of the Tutte polynomial.

A formula for the Tutte polynomial due to I. Gessel and B. Sa@aifi. 2.1] implies
the following proposition.

PROPOSITIONS.7
The Mébius coinvariant of G it (G) = Y rcg(—1?IFI=1, where the sum is
over all forests in G andlF | denotes the number of edges in F.

We derive explicit formulas for the Mébius coinvariant of complete and complet:
bipartite graphs. A subgrapkl of a graphG is called apartial matchingif it is a
collection of pairwise disjoint edges of the graph. For a partial matchinteta(M)

be the number of vertices @ that have degree zero M. TheHermite polynomial
Hn(X), n > 0, is the generating function of partial matchings in the complete grap

Kn:
Ha() = ) x@™),
M

where the sum is over all partial matchingskip. In particular,Ho(x) = 1. Set also
H_1(x) = 0. The main result of this section is the following formula.

THEOREM5.8
The Md&bius coinvariant of the complete grapk, Kquals

n(Km) = (M=2) Hy_s(m—1), m=>2 (11)

A few initial numbersut(Km) are given below:

m 2 3 4 5 6 7 8 9 10
wt(Km) 0 1 6 51 560 7575 122052 2285353 48803904..

The proof of Theoren®.8relies on several auxiliary results and is given below. The
next proposition summarizes well-known properties of Hermite polynomials.
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PROPOSITION5.9
The Hermite polynomial k{x) satisfies the recurrence

H_1(x) =0, Ho(x) =1,

(12)
Hnt1(X) = X Hh(X) +n Ha—1(X), n>0.

It is given explicitly by the formula

[n/2]
— yn n 1y N2k
Hn(X) = X" + Z <2k>(2k DXk,

k>1
where(2k — D!' = (2k — D)2k — 3)(2k —5)---3- 1.

Proof

In a partial matching the first vertex has either degree 0 or 1. This gives two terms
the right-hand side of the recurrence?). The formula forH,(x) follows from the
fact that there ar€2k — 1)!! matchings withk edges on R vertices. O

Returning to general cographic arrangements, recall that anesofge graphG is
called anisthmusif G\e has more connected components tk&ra graph is called
isthmus-freef no edge ofG is an isthmus. The minimal nonempty isthmus-free sub-
graphs ofG are thecyclesof G. For a subgraplid of G, denote byG/H the graph
obtained fromG by contracting the edges &f. Note thatG/H may have loops and
multiple edges even & does not. The following result appears irt].

PROPOSITIONS.10

The intersection lattice ‘é of the cographic arrangement is isomorphic to the lattice
of isthmus-free subgraphs of G ordered by reverse inclusion. The element of the
tersection lattice that corresponds to an isthmus-free subgraph HyissWg. The
coatoms of the lattice & are the cycles of G. For two isthmus-free subgraphs H

of G, the interva[Vy, V] of the intersection lattice g is isomorphic to the interval
[0, 1] of the intersection lattice § .

Propositiord.2 implies the following recurrence for the cocharacteristic polynomial
V() of the cographic arrangemet .

COROLLARY 5.11
Let e be an edge of the graph G. Then

Vgt (@ =Ygy @ +0A) Vg (@), (13)
C

where the sum is over all cycles C of G that contain e.
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Considering terms of the highest degreelif))( we obtain the following corollary.

COROLLARY 5.12
If e is any edge of G that is not an isthmus, then

u(G) =) ut(G/0), (14)
C
where the sum is over all cycles C of G that contain e.

Note thatu(G) is equal to the Mébius coinvariant of the graﬁmbtained fromG
by removing all loops and isthmuses. Thus, when we use relaii)ntg calculate
u*(G), we may remove all new loops obtained after contracting the &cle

We are ready to prove TheorenB. Forn > 0 andk > 1, defineKrﬁk) to be the
complete graphK,, on the vertices 1 .., n, together with one additional vertext- 1
(root) connected to each vertex.1., n by k edges. Lewﬁk) = ;H(Kr(]k)) be the
Mobius coinvariant of the graph,ﬁk). Note thatK i, = Kr(nlil andut(Km) = /Lr(.i')_l.
Theoremb.8 can be extended as follows.

PROPOSITIONS.13
We have the following formulaz®® = Hn(n +k — 1) — n Hy_1(n + k — 1) for
n, k> 1.

Proof

We utilize Corollary5.12. Select an edge = (n, n + 1) of the graphK¥’. There
arek — 1 choices for a cycl€ of length 2 that contains the edgeand the graph
Kr(,k)/C, after removing loops, is isomorphic lqgkfll). There argn—1) k choices for
a cycleC of length 3 that contains the edgeand the graprh(r(]k)/c, after removing
loops, is isomorphic tda(rgk_zz). In general, for cycles of lenglh> 3, there ard (n —
1H(n—2)---(n—1+2) choices, and we obtain a graph that is isomorphiérffgﬂ:ll).

Equation (4) implies the following recurrence fqrﬁ,k):

w0 = k=D pptP + k(- D P
+kn=D =2 w8 4tk - -2 =3y +.... (15

n

which, together with the initial conditiongk) =1, defines the numbepﬁﬂk) uniquely.
Set

k41 k+2 K
b = u® 4 npdtY - pdP 4. nn—1 - LY.
Thenuﬁk) = bﬁk) - nbﬁ]k_Jrll) and the relation15) can be rewritten as

b — np*Y = (k= (O — (n — HOXE?) 4k (n — 1) K2
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or, simplifying, as
b = (0 + k= DBIY + (0 — DD, (16)

We claim thaibﬁk) = Hp(n+k—1). Indeed,bg‘) =1, b1(k) = k, and equation(6)

is equivalent to the defining relation) for the Hermite polynomials. Hen o

by —nb Y = Hy(n+k — 1) — nHy_1(n + k — 1). =

Proof of Theoren®.8
By Propositions.13and equationi(?),

ph(Km) = 1) 3 = Hmno1(M=1)—(M—=1) Hn_2(M—1) = (M—2) Hy3(M—1). ©

We now discuss a bipartite analog of Hermite polynomials. For a partial matchir
M in the complete bipartite grapkm n, denote bya(M) the number of vertices in
the first part that have degree zeroNh and byb(M) the number of vertices in the
second part that have degree zero. Define

Hmn(X, y) = Y x2M) ybM),
M

where the sum is over all partial matchingsKm, . In particular,Hyn o = x™ and
Hon = y". Set alsoHm -1 = H_1n = 0. The following statement is a bipartite
analogue of Theorer.8.

THEOREMb.14
The Mdbius coinvariant of the complete bipartite grapk Kequals

p(Kmn) = (M= — HHm 20 2(0—1,m—1), mn=>1
The following proposition is analogous to Propositia#.

PROPOSITIONS.15
The polynomial i n(X, y) is given by

min(m,n) . .
Hmn(X,y) = Z (k)(k)k! Xm—kyn—k.

k=0
It satisfies the following recurrence relations:
Hmn(X, ¥) = X Hn—1,n(X, ¥) + N Hm—1.n-1(X, ¥),

Hmn(X, ¥) =Y Hnno1(X, ¥Y) + M Hn_1n-1(X, Y),
Hm,o = x™, Hon = y". (17
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Proof

The first formula is obtained by counting the partial matching&jqn. The recur-
rence relations1(7) are obtained by distinguishing two cases when the first vertex i
the first (second) part dfy, n has degree 0 or 1 in a partial matching. O

Let us define the grapki < as the complete bipartite gra, , with an additional
vertexv such that is connected bk edges with each vertex in the first part and by
| edges with each vertex in the second part. ;It.%tn L(K(k I)) be the Mdbius
coinvariant of this graph. Note th#&tm n = K(1 0 _, and, thusp* (Kmn) = ,ur; r?) 1-

Theorem5.14can be extended as follows.

PROPOSITION5.16
We have

M%r!)z Hon(h+ k=1, m+1—-1)—mn Hp_1 n—1(n+k—1, m+1-1).

Proof

Our proof is similar to that of Proposition 13 We utilize Corollary5.12. Select an
edgee of the graphK & that joins the additional vertex with a vertex from the
first part. There ar& — 1 choices for a cycl€ of length 2 that contalns the edge

and the grapiKn, k. I)/C after removing loops, is isomorphic K)m frll) There are

n | choices for a cycl€ of length 3 that contains the edggand the grapn, &, I)/C

after removing loops, is isomorphic to* L+ por cycles of length 4, we have

m-1,n-1"
n(m—1) k choices and obtain a graph |somorph|d<gﬂ<+21,'1+i), and so on. In general,

for cycles of odd lengthre+ 1 > 3, we havd n(m—1)(n— 1) (m—2)---(Mm—r +
D (n —r + 1) choices, and we obtain a graph |somorph|dz(;‘§+rr ;*P For cycles of
even length+ 2 > 4, we havekn(im — )(n —1)(m—2)---(n—r + H)(m—r)

choices, and we obtain a Erlaph |1=,omorph|¢’§]fg$+rr 'frnJrP Equation {4) implies the
(k. 1)

following recurrence fogum

qu]( rP _ (k —1 M(k,l+1) + Inu(k+l’|+l) + kn(m —1 M(k+1,|+2)

m—1,n m-1,n-1 m-2,n—1
+Inm -1 - 1) pi2 D
+knm -1 —Hm—2) w0 . (18)

which, together with the initial COhdItIOI’}S(k D~ =(-D" andyg(k b =(k-1mM

InErmidigleusly eEines e ”Umbﬁﬁ% ) Let us fix the numberp = k+n—1 and
q =1+ m— 1 and writem n for uiPn Pl gom+ 1) s

B = mn +NMum_g n—1+nM = mM—1) pm-2n-2+---
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Thenumn = bmn — M nhy-1, n—1 and the relationi(8) can be rewritten as

Pbrn—mMnbn_1n-1=— (bm—l,n —(M-1nbno n—1)
+(P-—Nn+Dbman+@-—m+Dnbn1n1

or, simplifying, as
bmn = (P —N)bm-1,n + (@ + DN bm-1,n-1 + (M= Dnbm_2 n-1. (19)

This relation, together with the initial conditions , = 9", bno = p™, b_1n =
bm,—1 = 0, uniquely determines the numbdxs .

We claim thatom n = Hm.n(p, q). Indeed, the above initial conditions are satis-
fied by Hm n(p, 9), and (L9) follows from the defining relationsL{) for the bipartite
Hermite polynomials. In order to see this, we write hy)(

Hmn(p, d) = P Hm—1.n(P, 9) + N Hm—_1, n—1(P. 9),
N Hm-1,n(P,4) = Nd Hn-1,n-1(P, Q) + N(M — 1) Hy_2 n-1(p, Q).

The sum of these two equations is equivalent to equafién Henceuﬂf,'g = bmn—

MnNbn-1n-1= Hmn(pP.q) —MnHy_1n-1(p, 9. O

An alternative expression fwﬁ,‘{'n) can be deduced from Propositiér.a

min(m,n)

kD _ _ my (n _qym—r _a\n—T
Mmn = ; a r)(r)(r>r!(n+k DM+ - (20)

Proof of Theoren®.14
By Proposition5.16and the recurrence relations,

Ml(Km,n)
= 1Y L = Hmno1(h—1,m— 1) — m(n — 1) Hp-1,n-2(n — 1, m — 1)
=M—-=DHn-1n-10=1Im-1)— M- -1 Hn-1,n-20 =1L, m-1)

=(M-1)M" -1 Hno2n2m—1, m-1). O

For a commutative algebra example illustrating Theo%eid, consider the Lawrence
ideal Jg C K[x11, ..., X33, Y11, - - - » Y33] associated with the bipartite grajs 3.
This is the Lawrence lifting of the ideal of 2 2)-minors of a generic (3 3)-matrix.

It is discussed in the end of Section 4. Its Cohen-Macaulay type is

pt(Kaz)=@—1)-(3-1)-H11(22) =2-2-5=20.

This is the leading coefficient of the cocharacteristic polynomial in equation (
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