5. The author is grateful to W. N. Everitt for drawing his attention to the close connection of Theorem 2
with the results obtained in [6] and to M. Sh. Birman for useful comments concerning this theorem.
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Resolutions for S,-Modules, Associated with Rim Hooks,
and Combinatorial Applications

I. M. Pak and A. E. Postnikov UDC 512.547+511.217

1. In [1] a method for constructing resolutions that “materialize” classical formulas for S,-modules
is given. In this paper we present a new resolution. In a special case it “materializes” the well-known

combinatorial fact that the value of the inversion polynomial f,(t) for trees with n+41 vertices at t = —1
is equal to the number of up-down permutations (see [2, 3]).
Let Ag(n) = Ag :=C(21,z2,...,2a)/(zizj —qz;Ti,i < j) be the algebra of functions on the quantum

space equipped with the natural gradation 4, = Ag @ A; @ Ag @.... The braid group Br(n), defined by
the generators s;, s2,...,5,—1 and the relations sisiy15; = siy18iSiy1, $is; = sjs; for |t — j| > 2, acts
on Ag in the following way:

b b bita bny . b1 b _biy1 b
si(zyt . owfe e ) =t w T

It is clear that for ¢ = +1 the relation s? = id also holds, i.e., A+ is a graded S,-module. From now
on we will consider the case g = —1.

Let a = (a3,...,a,), where 0 < a3 <--- < a, and |a| := a; + -+ + a,. We consider the submodule
To C A—; generated by the monomials :vzl(l) ... m';'zn), where 0< b; <a;,t=1,...,n,and 0 € S,. The

module 7, is also graded: 7, =0 @l ®--- D1

Now we construct a skew Young diagram 6(a) C Z3, 6(a) = {61, ..., 0.}, such that 6; = (1,n) and
if 6,1 = (i,7), then 6, = (¢,7—1) for a; even and 6; = (i +1, j) for a; odd, I =2,3,...,n. Obviously,
the diagram 6 = @(a) thus obtained is a rim hook (see [4, 5]).

Recall that to any skew Young diagram <, |y| = n, there corresponds a representation 7. of the
symmetric group S, . If v is an ordinary Young diagram, then the representation =, is irreducible (see

[4, 5]).

Theorem. Let § = 0(a). There ezists a natural resolution

0 1 al ; ;
0— 77 *Ta—>"‘—’_7'¢lz —7mg — 0 if a1 is even,
1] 1 |a} ; ;
O—-1, 21— > >0 if a1 1s odd.

Since the Euler-Poincaré characteristic is equal to zero, we get the following formula for characters
el = ylal=1 4L g (Cpylely0 = {

xe if ay is even,

1
0 if a; is odd, (1)

Moscow State University. Moscow Independent University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya,
Vol. 28, No. 2, pp. 72-75, April-June, 1994. Original article submitted April 19, 1993.

132 0016-2663/94/2802-0132 $12.50 (c)1994 Plenum Publishing Corporation



where x* is the character of the representation 7! and xg is the character of mg.

The authors also found a purely combinatorial proof of formula (1) based on the construction of an
involution on the tableaux of a special kind. The proof of the theorem and the construction of the
involution will be published later.

In the remaining part of the paper we will consider some examples and consequences of the theorem
and continue the investigation of the graded S,-module A_;.

2. Suppose that S, acts on V = C* by the permutation of coordinates. Consider the Weil algebra
E(V)=S8(V)®A(V) = P S*(V)®A!(V) as a graded S,-module, where S¥(V)®A(V) is the component
of degree 2k + 1. It can be shown that A_; is isomorphic to E(V) as a graded S,-module. Using the
results of [6] concerning the decomposition of the bigraded S,-module E(V), we immediately obtain the

following formula:
b 21 25+1
Z . PN H R
d1mH0m(7r>‘, A_l)t = m, (2)
k=0 (i,))€x

where A C Z2 is a Young diagram, |A\| = n, and h(i, j) is the length of the hook at the box (i, ) (see
[4, 5]).

3. Let a = (0,1,...,n—1) and f,(t) := Egﬁ_}o dimrft(g)_k. It is known that fr(1) = dim7, =
(n+1)"7! is the number of labeled trees with n + 1 vertices, f,(1+1¢)=t""3 cnikt® , where cni is the
number of connected graphs with n + 1 vertices and k edges, and f,(¢) is the inversion polynomial for
trees with n + 1 vertices (see {2, 3]).

We will show that the theorem implies f,(—1) = ud,,, where ud, is the number of up-down permuta-
tioms, i.e.,

ud, == |{c € Sn|o(1) < o(2) >c(3) <... }|.

Indeed, in this case the diagram 6 = 6(a) has a “staircase” form: § = (n,n,n—1,n—2,...)\ (n — 1,

n—2,n—3,...). If we consider (1) as an identity for dimensions, we immediately obtain fp(~1) =
dim# = ud, . Note that S o2 jud,t"/n! =tant + sect (see [2, 3]).
4. Let a = (0,k,2k,...,(n — 1)k). This case is a natural generalization of Sec. 3 to k-dimensional

trees (see [7]). In this case dim7, = (kn + 1)*"!, dim#f(a) = ud,, for odd k, and dim#é(a) = 1 for
even k.

5. Let a = (a1,...,an), a1 = - =an =k, Tng := 7q, and gni(t) := Y dim7¢'. It can be shown
that gnx(t) = (1 +t+---+t¥)*. For S,-invariants the following formula holds:

i NSasin . (AFzt)(1+2%)...
;dlm(Tnk)Stz _(l—z)(l—zt2)... ) (3)

where the right-hand side contains k factors. Since 1_1_1__)117','2 ¥ = AL (n) as k — oo, it follows from (3) that

. . i n o0 1+zt2i+l
S dim(ALy ()%t = T 1= @
i,n =0

On the other hand, from (2) for A = (n) we get

i i QO+, A+
Zdlm(A—l(n))S S R Sy Sy gy R

Taking the sum of the right-hand sides of (5) over all n and comparing this sum with the right-hand side
of (4), we obtain the well-known Euler identity (see [2])

00 n ; ) ;
1 t2t-1 1 t21+1
S ] 1+ 11 1=
] 1—¢2¢ 4 1— zt2
n=0 1=0 1=0
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In this connection we note that S,-invariants of the algebra A_;(n) are generated by the polynomials
ei(z3,...,22) and poi—1(T1,...,2n), 1 =1,...,n, where e; are elementary and p; are power symmetric
polynomials (e.g., see [4]).
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The Skew Field of Rational Functions on GL4(n, K)
A. N. Panov UDC 512.554.3+-512.813.4

For every field K, the ring of regular functions on the quantum matrix algebra My(n, K) is defined
by generators and imposed relations [1, 2]. This ring is a K-algebra and is generated, as a K-algebra,
by the elements {a;; | 1 < 4,7 < n} and K[q, ¢7!]. The variable ¢ commutes with a;;, and the matrix
elements are related by the conditions a;ja;x = q"la,-ka,'j for 7 < k, @riami; = ¢ amsar; for k < m,
@ijGkm = gm@ij for ¢ < k, j > m, and @ijkm — Grmai; = (¢7" — @) aimag; for i <k, j <m. We
denote the ring of regular functions on the quantum matrix algebra My(n, K) by K[M(n, K)] or §,.
For every € € K, € # 0, the algebra §, contains the ideal §¢(¢ —¢), and we can define the specialization
T = §4/Fq(q — €). Hereafter we will use the common notation §, for both rings §, and §., stating
explicitly whenever we use it whether ¢ is a variable or an element of the field K.

For a permutation ¢ we denote by [(c) the number of inversions in the rearrangement o(1), ... ,a(n).
The quantum determinant det, is an element of the algebra §, that is the sum E(——q)_l(")alg(l) e lng(n)
over all permutations o € S,,. If ¢ is generic (i.e., ¢ is either a variable or an element of K that is not a
root of unity), then the quantum determinant generates the center of the ring §, [1].

Proposition 1 [2, 3, 5]. The ring §, is a Noetherian integral domain.

The ring K[GLy(n)] of regular functions on the quantum group GL,(n, K) is defined as a localization
of the ring §, by the multiplicative subset generated by det,. The ring K[GL,(n)] is also a Noetherian
integral domain. A Noetherian integral domain has a skew field of fractions [4, Theorem 3.6.12]. The skew
fields of fractions of the rings K[GL4(n)] and §, coincide.

Definition 1. The skew field of fractions Fract K[GL4(n)] will be called the skew field of rational
functions on the quantum group GL,(n, K) and denoted by K(GL4(n)) or F,.

The main purpose of this article is to describe the skew field of fractions F; in simpler terms. To this
end, we consider algebras of twisted polynomials and their skew fields of fractions.

Definition 2. Let S = (s(i, j)) be a skew-symmetric Z-matrix of size ¢ x t. The algebra of twisted
polynomials is a K-algebra A,(S) generated by zi,...,z: and K[g, ¢7"] with the relations zz; =
q”(i’j)azja:; and gz; = ;q.

Proposition 2. The ring A4(S) is a Noetherian integral domain.
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