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QUANTUM SCHUBERT POLYNOMIALS

SERGEY FOMIN, SERGEI GELFAND, AND ALEXANDER POSTNIKOV

In this paper, we compute Gromov-Witten invariants of the flag manifold using a
new combinatorial construction for its quantum cohomology ring. Our construction
provides quantum analogues of the Bernstein-Gelfand-Gelfand results on the coho-
mology of the flag manifold, and the Lascoux-Schützenberger theory of Schubert
polynomials. We also derive the quantum Monk’s formula.

1. Introduction

Let Fln be the manifold of complete flags in the n-dimensional linear space Cn.
The cohomology ring H∗(Fln ,Z) can be described in two different ways. An al-
gebraic description due to A. Borel [5] represents it canonically as a quotient of a
polynomial ring:

H∗(Fln ,Z) ∼= Z[x1, . . . , xn]/In ,(1.1)

where In is the ideal generated by symmetric polynomials in x1, . . . , xn without
constant term.

Another, geometric, description of the cohomology ring of the flag manifold is
based on the decomposition of Fln into Schubert cells. These are even-dimensional
cells indexed by the elements w of the symmetric group Sn . The corresponding co-
homology classes σw , called Schubert classes, form an additive basis in H∗(Fln ,Z).

To relate the two descriptions, one would like to determine which elements of
Z[x1, . . . , xn]/In correspond to the Schubert classes under the isomorphism (1.1).
This was first done in [2] (see also [8]) for a general case of an arbitrary complex
semisimple Lie group. Later, Lascoux and Schützenberger [22] came up with a
combinatorial version of this theory (for the type A) by introducing remarkable
polynomial representatives of the Schubert classes σw called Schubert polynomials
and denoted Sw .

Recently, motivated by ideas that came from the string theory [31, 30], math-
ematicians defined, for any Kähler algebraic manifold X , the (small) quantum co-
homology ring QH∗(X,Z), which is a certain deformation of the classical cohomol-
ogy ring (see, e.g., [28, 19, 14] and references therein). The additive structure of
QH∗(X ,Z) is essentially the same as that of ordinary cohomology. In particular,
QH∗(Fln ,Z) is canonically isomorphic, as an abelian group, to the tensor prod-
uct H∗(Fln ,Z) ⊗ Z[q1, . . . , qn−1], where the qi are formal variables (deformation
parameters). The multiplicative structure of the quantum cohomology is however
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deformed compared to the classical cohomology ring H∗(Fln ,Z), and specializes
to it in the classical limit q1 = · · · = qn−1 = 0. The structure constants for the
quantum multiplication are the 3-point Gromov-Witten invariants of genus 0. In-
formally, these invariants count equivalence classes of certain rational curves in the
algebraic variety Fln .

The quantum analogue of Borel’s theorem was recently obtained by Givental
and Kim [15, 16, 17, 18] and Ciocan-Fontanine [7]. They showed that there is a
canonical ring isomorphism

QH∗(Fln ,Z) ∼= Z[q1, . . . , qn−1][x1, . . . , xn]/Iqn ,(1.2)

where Iqn is the ideal generated by the coefficients En
1 , . . . , E

n
n of the characteristic

polynomial

det(1 + λGn) =

n∑
i=0

En
i λ

i(1.3)

of the matrix

Gn =


x1 q1 0 · · · 0
−1 x2 q2 · · · 0
0 −1 x3 · · · 0
...

...
...

. . .
...

0 0 0 · · · xn

 .(1.4)

This result specializes to Borel’s theorem in the classical limit q1 = · · · = qn−1 = 0,
since in that case En

i specializes to eni = ei(x1, . . . , xn), the elementary symmetric
polynomial of degree i. We call En

i the i’th quantum elementary polynomial in the
variables x1, . . . , xn .

In what follows, Z[q] stands for Z[q1, . . . , qn−1]. Analogously, Z[q, x] abbreviates
Z[q1, . . . , qn−1][x1, . . . , xn].

The next natural problem arising in the theory of quantum cohomology of the flag
manifold is that of finding an algebraic/combinatorial method for computing the
structure constants of quantum multiplication in the basis of Schubert classes (the
Gromov-Witten invariants). Since the general structure of the quantum cohomology
ring is given by (1.2) , a solution to this problem can be obtained from an algebraic
description of the elements of the quotient ring Z[q, x]/Iqn that represent Schubert
classes under the isomorphism (1.2). In other words, one would like to express a
given Schubert class in terms of the generators xi using the quantum cohomology
operations.

In this paper, we solve these problems, thus obtaining a quantum analogue of the
Bernstein–Gelfand–Gelfand result. Our solution is essentially combinatorial, and
only relies on few properties of the quantum cohomology, which can be expressed
in elementary terms (see Properties 4.1–4.4).

The main question can be stated without mentioning Schubert classes. Suppose
a cohomology class c is written as a polynomial in the generators xi in the ordinary
cohomology ring of the flag manifold. How can c be expressed in terms of the xi
using the quantum cohomology operations? In other words, one would like a direct
algebraic description of the quantization map defined by the following commutative
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diagram:

H∗(Fln)⊗ Z[q] ∼= Z[q, x]/In

↓ ↓quantization map

QH∗(Fln) ∼= Z[q, x]/Iqn

(1.5)

In this diagram, the horizontal maps correspond to the ring isomorphisms (1.1) and
(1.2); the left vertical arrow represents the tautological Z[q]-linear map.

In order to state our main results, we need some notation. Let

ei1...in−1 = e1i1e
2
i2 · · · en−1

in−1
= ei1(x1) ei2(x1 , x2) · · · ein−1(x1 , . . . , xn−1) ,(1.6)

where we assume 0 ≤ ik ≤ k for all k; by convention, ek0 = 1. Similarly, let

Ei1...in−1 = E1
i1E

2
i2 · · ·En−1

in−1
,(1.7)

where each Ek
ik

is a quantum elementary polynomial in x1, . . . , xk , as defined above
by (1.3)–(1.4). It is not hard to show (see Section 3) that the cosets of the poly-
nomials ei1...in−1 (respectively, Ei1...in−1) form a Z[q]-linear basis in the quotient
space Z[q, x]/In (respectively, Z[q, x]/Iqn).

Theorem 1.1. The quantization map is the Z[q]-linear map Z[q, x]/In→Z[q, x]/Iqn
that sends each coset of ei1...in−1 to the corresponding coset of Ei1...in−1 .

The quantization map can also be described in terms of a certain family of
commuting difference operators (see Section 5).

In the language of Schubert polynomials, Theorem 1.1 can be restated as follows.
For w ∈ Sn , write the uniquely defined expansion Sw =

∑
αi1...in−1ei1...in−1 , with

integer coefficients αi1...in−1 . Define the quantum Schubert polynomial Sq
w by

Sq
w =

∑
αi1...in−1Ei1...in−1 .

Theorem 1.2. The quantum Schubert polynomial Sq
w , as defined above, repre-

sents the image of the corresponding Schubert class σw under the canonical isomor-
phism QH∗(Fln) → Z[q, x]/Iqn .

Thus the structure constants of the quantum cohomology ring QH∗(Fln) with
respect to the basis of Schubert classes (i.e., the corresponding 3-point Gromov-
Witten invariants) are equal to the structure constants of the ring Z[q, x]/Iqn with
respect to the basis of quantum Schubert polynomials.

An alternative approach to describing the structure of the quantum cohomol-
ogy ring involves an explicit rule for the expansion of the quantum product of
an arbitrary Schubert class σw by a two-dimensional class σsr , where sr denotes
the transposition (r r + 1). To state this rule, we need some extra notation. For
1 ≤ a < b ≤ n, let tab = (a b) ∈ Sn denote the transposition of a and b. Also, let
qab = qaqa+1 · · · qb−1 .

Theorem 1.3 (Quantum Monk’s formula). For w ∈ Sn and 1 ≤ r < n, the quan-
tum product σsr ∗ σw of the Schubert classes σsr and σw is given by

σsr ∗ σw =
∑

σwtab +
∑

qcdσwtcd ,(1.8)

where the first sum is over all transpositions tab such that a ≤ r < b and `(wtab) =
`(w) + 1, and the second sum is over all transpositions tcd such that c ≤ r < d and
`(wtcd) = `(w) − `(tcd) = `(w)− 2(d− c) + 1.
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In the classical limit q1 = · · · = qn−1 = 0, equation (1.8) becomes the classical
Monk’s formula [26] (see Theorem 2.8).

We present below the general outline of the paper. In Section 2, the necessary
background is reviewed, including basic facts from the theory of classical cohomol-
ogy of the flag manifolds, ordinary Schubert polynomials, quantum cohomology,
and Gromov-Witten invariants. In Section 3, we study the polynomials ei1...im and
their quantum counterparts Ei1...im . This allows us to derive some basic properties
of the combinatorially defined quantum Schubert polynomials Sq

w , and describe a
method for their computation. Section 4 is devoted to the proof of Theorem 1.2.
The crucial ingredient of this proof is the orthogonality property, whose combina-
torial proof is postponed until Section 6. This proof relies on a description of the
quantization map that involves a family of commuting difference operators, which
is given in Section 5. Section 7 contains the proof of the quantum Monk’s for-
mula. In Section 8, we review our main results. Following that, we discuss in
Section 9 the problem of axiomatic characterization of the quantum Schubert poly-
nomials. Our particular choice of polynomial representatives of Schubert classes is
uniquely determined by the stability property discussed in Section 10. The quan-
tum complete homogeneous polynomials are studied in Section 11. In Section 12,
we apply Gröbner basis techniques for efficient computation of k-point Gromov-
Witten invariants of the flag manifolds. Sections 13 and 14 contain the tables of
Gromov-Witten invariants for the flag manifolds Fl3 and Fl4 , and the tables of
quantum Schubert polynomials for S2 , S3 , and S4 .

Among the many open problems in the field, we will only mention a few. The
first natural task is to extend the theory to the case of an arbitrary root system,
thus providing a quantum analogue to the corresponding result in [2]. It would be
interesting to find a combinatorial construction for the quantum Schubert polyno-
mials for other classical series (cf. [4, 11, 27]), and to compute the Gromov-Witten
invariants of partial flag manifolds1 (cf. [1, 16]).

2. Preliminaries

2.1. Flag manifold. We begin with reviewing the basic results on the classical
cohomology of the flag manifold. Details can be found, e.g., in [13, Chapter 10].

Let Fln be the flag manifold whose points are the complete flags of subspaces

U. = (U1 ⊂ U2 ⊂ · · · ⊂ Un = Cn) , dimUi = i ,(2.1)

in the n-dimensional linear space Cn. The space Fln comes equipped with the flag
of tautological vector bundles 0 = E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = Cn ; the fiber of
Ei at the point (2.1) is Ui .

Consider the ring homomorphism

π : Z[x1, . . . , xn] −→ H∗(Fln ,Z)(2.2)

given by π(xi) = −c1(Ei/Ei−1), where c1(Ei/Ei−1) ∈ H2(Fln ,Z), i = 1, . . . , n, is
the first Chern class of the line bundle Ei/Ei−1 . Let In ⊂ Z[x1, . . . , xn] be the ideal
generated by all symmetric polynomials without constant term—or, equivalently,
by the elementary symmetric polynomials ei(x1, . . . , xn), for i = 1, . . . , n. The
following classical result is due to A. Borel [5].

1Note added in proof. The latest developments in “quantum Schubert calculus” are reviewed
and unified in W. Fulton’s recent note “Universal Schubert polynomials”.
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Theorem 2.1. The kernel of the homomorphism π is In . The induced map

Z[x1, . . . , xn]/In −→ H∗(Fln ,Z)

is an isomorphism.

A geometric description of H∗(Fln ,Z) is based on a decomposition of Fln into
even-dimensional cells indexed by the elements of the symmetric group Sn . These
cells are described in terms of a relative position of a flag U. with respect to a fixed
reference flag V. ∈ Fln , as follows.

Let v1, . . . , vn be the standard basis in Cn, and let Vb denote the b-dimensional
subspace spanned by vn+1−b , . . . , vn . For w ∈ Sn , define the dual Schubert cell
Ωo
w as the set of all flags U. ∈ Fln such that, for all a, b ∈ {1, . . . , n},

dim(Ua ∩ Vb) = #{1 ≤ i ≤ a , n+ 1− w(i) ≤ b} .

Let Ωw be the closure of Ωo
w (the corresponding Schubert variety). The (real)

dimension of Ωw is n(n− 1)− 2l, where l = `(w) is the length of w (the number of
inversions). Let [Ωw] ∈ Hn(n−1)−2l(Fln ,Z) be the fundamental cycle of Ωw . Define
the Schubert class

σw = [Ωw]∗ ∈ H2l(Fln ,Z)

as the cohomology class corresponding to the fundamental cycle [Ωw] under the
natural isomorphism Hn(n−1)−2l(Fln ,Z) ∼= H2l(Fln ,Z) . The following result of
C. Ehresmann [9] is classical.

Theorem 2.2. The Schubert classes σw , w ∈ Sn , form an additive basis in the
free abelian group H∗(Fln ,Z). Thus the rank of H∗(Fln ,Z) is n! .

In particular, H2(Fln,Z) is spanned by the classes σsi = π(x1 + · · · + xi), i =
1, . . . , n− 1, where π is defined by (2.2).

2.2. Divided differences and Schubert polynomials. In [2], Bernstein, Gel-
fand, and Gelfand suggested a procedure, based on divided difference recurrences,
that can be used to compute the elements of the quotient ring C[x1, . . . , xn]/In
which correspond to the Schubert classes. Explicit combinatorial representatives
called the Schubert polynomials were then discovered by Lascoux and Schützen-
berger [22]. In this section, we review the main definitions and basic facts of this
theory. For more details see, e.g., [25].

In the symmetric group Sn , let si denote the adjacent transposition (i i + 1).
For a permutation w ∈ Sn, an expression w = si1si2 · · · sil of minimal possible
length l is called a reduced decomposition, l = `(w) is the length of w, and the
sequence i1, i2, . . . , il is called a reduced word for w. For example, the transpo-
sition tij , i < j, that interchanges i and j has a reduced decomposition tij =
sisi+1 · · · sj−2sj−1sj−2 · · · si+1si , among others.

Let f = f(x1, . . . , xn) be a function of x1, . . . , xn. For w ∈ Sn , denote w f =
f(xw−1(1), . . . , xw−1(n)) . The divided difference operator ∂i is then defined by

∂i f = (f − sif)/(xi − xi+1) .
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Obviously, Z[x1, . . . , xn] is invariant under ∂i , i = 1, . . . , n − 1. The operators ∂i
satisfy the following relations:

∂i ∂j = ∂j ∂i for |i− j| > 1 ,

∂i ∂i+1 ∂i = ∂i+1 ∂i ∂i+1 ,

∂2
i = 0 .

(2.3)

For any permutation w, define the operator ∂w by ∂w = ∂i1∂i2 · · · ∂il , where w =
si1si2 · · · sil is a reduced decomposition. It follows from the relations (2.3) that ∂w
does not depend on the choice of such reduced decomposition.

The following properties of the divided differences will be used in the sequel.

Proposition 2.3 ([25, 2.7]). Let v and w be permutations. Then

∂v∂w =

{
∂vw if `(vw) = `(v) + `(w),
0 otherwise.

Proposition 2.4 ([25, (2.2), 2.13] “Leibniz formula”). 1. For any polynomials f
and g and any i,

∂i(fg) = ∂i(f) · g + (sif)(∂ig) .(2.4)

In particular, ∂i commutes with multiplication by any polynomial which is symmet-
ric in xi and xi+1 .

2. For a linear form f =
∑
λixi , we have

∂w(fg) = w(f)∂wg +
∑

(λi − λj)∂wtijg ,(2.5)

where the sum is over all i < j such that `(wtij) = `(w)− 1.

Let δ = δn = (n − 1, n − 2, . . . , 1, 0) and xδ = xn−1
1 xn−2

2 · · ·xn−1 . For a per-
mutation w ∈ Sn , the Schubert polynomial Sw of Lascoux and Schützenberger
is defined by Sw = ∂w−1wo

xδ , where wo is the longest element in Sn , given by
wo(i) = n+ 1− i. Equivalently,

Swo = xδ and Swsi = ∂iSw whenever `(wsi) = `(w)− 1 .(2.6)

The following fundamental result is an immediate corollary of [2].

Theorem 2.5. The Schubert polynomials represent Schubert classes, i.e., in the
notation of (2.2) and Theorem 2.1, π(Sw) = σw .

Let Ln denote the Z-span of the monomials xa1
1 · · ·xan−1

n−1 satisfying 0 ≤ ak ≤
n−k. It is easy to see that Ln is invariant under each of the operators ∂1, . . . , ∂n−1 .
This leads to the following result.

Proposition 2.6 ([22, 25]). The space Ln is complementary to the ideal In . The
Schubert polynomials Sw , for w ∈ Sn , form a linear basis of Ln .

We will also need the following properties of the Schubert polynomials.

Corollary 2.7 ([25, (4.2)]). Let v, w ∈ Sn. Then

∂vSw =

{
Swv−1 if `(wv−1) = `(w)− `(v) ,
0 otherwise .
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Theorem 2.8 (Monk’s formula [26, 25]; cf. also Chevalley [6]). We have

SsrSw =
∑

Swtij ,

where the sum is over all transpositions tij such that i ≤ r < j and `(wtij) =
`(w) + 1.

Note that Ssr = x1 + · · ·+ xr .
The Schubert polynomials have the following orthogonality property (see, e.g.,

[25, (5.4)]). For a polynomial f , define

〈f〉 = (∂wo(f))(0, . . . , 0) ;(2.7)

observe that

∂wo(f) =
∑
w

(−1)`(w)wf ·
∏
i<j

(xi − xj)
−1 .(2.8)

Theorem 2.9. For u, v ∈ Sn ,

〈Su Sv〉 =

{
1 if v = wou ;

0 otherwise.
(2.9)

Geometrically, 〈f〉 is the coefficient of σwo in the expansion of π(f) ∈ H∗(Fln) in
the basis of Schubert classes σw ; here π denotes the canonical homomorphism (2.2).
Theorem 2.9 can be restated as saying that the bases {σw} and {σwow} are dual to
each other with respect to the Poincaré pairing in H∗(Fln).

2.3. Gromov-Witten invariants and quantum cohomology. In this section,
we reproduce the definitions of the Gromov-Witten invariants and the quantum
cohomology ring of the flag manifold. See [1, 3, 7, 10, 14, 15, 16, 17, 19, 20, 24, 28]
for details, and for various approaches to the subject.

The homology classes [Ωwosi ], i = 1, . . . , n − 1, of two-dimensional Schubert
varieties form a linear basis in H2(Fln ,Z). An algebraic map f : P1 → Fln
has multidegree d = (d1, . . . , dn−1) if f∗[P1] =

∑
di[Ωwosi ] . The moduli space

Md(P1, F ln) of such maps is a smooth algebraic variety of (complex) dimension

D =

(
n

2

)
+ 2

n−1∑
i=1

di .(2.10)

For a subvariety Y ⊂ Fln and a point t ∈ P1, let us denote

Y (t) = {f ∈ Md(P1, F ln) | f(t) ∈ Y }.(2.11)

The codimension of Y (t) in Md(P1, F ln) equals the codimension of Y in Fln.
Let w1, . . . , wN ∈ Sn. The Gromov-Witten invariant of genus 0 associated to

the classes σw1 , . . . , σwN is defined as follows. Let g1, . . . , gN be generic elements
of GLn , and let t1, . . . , tN be distinct points in P1. Define

〈σw1 , . . . , σwN 〉d =

{
number of points in

⋂
(giΩwi)(ti) if

∑
`(wi) = D,

0 otherwise.

(2.12)

These cardinalities are finite and independent of the choice of points ti ∈ P1 and
generic elements gi ∈ GLn .

Informally, the Gromov-Witten invariant 〈σw1 , . . . , σwN 〉d of the flag manifold
Fln counts rational curves in Fln which have multidegree d = (d1, . . . , dn−1) and
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pass through Schubert varieties Ωw1 , . . . ,ΩwN . The condition
∑
`(wi) = D ensures

that this cardinality is finite.
We will now define the (small) quantum cohomology ring QH∗(Fln ,Z) of the

flag manifold Fln . As an abelian group,

QH∗(Fln ,Z) = H∗(Fln ,Z)⊗ Z[q1, . . . , qn−1] ,(2.13)

where q1, . . . , qn−1 are formal parameters. The multiplication in QH∗(Fln ,Z) (the
quantum multiplication) is a linear over Z[q] = Z[q1, . . . , qn−1] binary operation ∗
defined by

σu ∗ σv =
∑
w∈Sn

∑
d

qd 〈σu, σv, σw〉d σwow ,(2.14)

where where we denote qd = qd1
1 · · · qdn−1

n−1 for d = (d1, . . . , dn−1).
Quantum multiplication is commutative and—miraculously—associative [28, 24].

The specialization q1 = · · · = qn−1 = 0 recovers the ordinary cohomology ring
H∗(Fln ,Z). Indeed, an algebraic map P1 → Fln of multidegree (0, . . . , 0) is con-
stant, so the Gromov-Witten invariants 〈σu, σv, σw〉(0,...,0) are the usual intersection

numbers.
Note that 〈σu, σv, σw〉d vanishes unless `(u)+ `(v) = `(wow)+2

∑
di (cf. (2.10)

and (2.12)). Thus quantum multiplication respects the grading defined by deg(σw)
= `(w) and deg(qi) = 2.

The following description of the quantum cohomology ring of the flag manifold
was given by Givental and Kim [15], and further justified by Kim [16, 17] and
Ciocan-Fontanine [7]. Let Iqn be the ideal in the ring Z[q, x] that is generated by
the coefficients En

1 , . . . , E
n
n of the characteristic polynomial (1.3) of the matrix Gn

given by (1.4).
Define the Z[q]-linear ring homomorphism

πq : Z[q, x] −→ QH∗(Fln ,Z)

by setting πq(x1 + · · ·+ xi) = σsi .

Theorem 2.10 ([15, 16, 17, 7]). The kernel of πq is Iqn . The induced map

Z[q, x]/Iqn −→ QH∗(Fln ,Z)(2.15)

is a ring isomorphism.

3. Quantization via standard monomials

3.1. Straightening. Let eki = ei(x1, . . . , xk) be the i’th elementary symmetric
polynomial :

eki =
∑

1≤r1<···<ri≤k
xr1 · · ·xri .

By convention, ek0 = 1 for k ≥ 0, and eki = 0 unless 0 ≤ i ≤ k.
The polynomials eki satisfy the obvious recurrence

eki = ek−1
i + xke

k−1
i−1 .(3.1)

Lemma 3.1. For k 6= l, we have ∂le
k
i = 0. Moreover, ∂l commutes with multipli-

cation by eki , provided k 6= l. Also, ∂ke
k
i = ek−1

i−1 .

Proof. The proof follows from Proposition 2.4, part 1.
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Lemma 3.2. For i, j, k ≥ 1, the following relations hold:

(ek+1
i − eki )e

k
j−1 = (ek+1

j − ekj )e
k
i−1 ,(3.2)

eki e
k
j = ek+1

i ekj +
∑
l≥1

ek+1
i−l e

k
j+l −

∑
l≥1

eki−le
k+1
j+l .(3.3)

Proof. By (3.1), we have (ek+1
i −eki )ekj−1 = xk+1e

k
i−1e

k
j−1 = (ek+1

j −ekj )eki−1. Equa-

tion (3.3) follows from (3.2) by induction on i:

ekj (e
k
i+1 − ek+1

i+1 ) = −eki (ek+1
j+1 − ekj+1)

= ek+1
i ekj+1 − ek+1

j+1e
k
i + ekj+1(e

k
i − ek+1

i )

= ek+1
i ekj+1 − ek+1

j+1e
k
i +

∑
l≥1

(ek+1
i−l e

k
j+1+l − ek+1

j+1+le
k
i−l)

=
∑
l≥1

(ek+1
i+1−le

k
j+l − ek+1

j+1e
k
i+1−l) .

For i1, . . . , im such that 0 ≤ ik ≤ k, let

ei1...im = e1i1 · · · emim .(3.4)

We will call ei1...im a standard elementary monomial. (These polynomials were
originally introduced in [22], and were denoted PI there.) In other words, a standard
elementary monomial is any product of the eki without repetitions of upper indices k.
Note that appending zeroes at the end of the sequence i1, . . . , im does not change
the standard elementary monomial.

Proposition 3.3 (Straightening). The standard elementary monomials form a lin-
ear basis in the ring Z[x1, x2, . . . ] of polynomials in infinitely many variables.

Proof. We will first show that every polynomial f ∈ Z[x1, x2, . . . ] belongs to the
span of standard elementary monomials. Note that xi = ei1 − ei−1

1 ; hence f is a
linear combination of some monomials in the eki . Choose such a linear combination
and apply to it the following straightening algorithm.

Suppose that some monomial in this linear combination is not standard. Assume
it contains eki e

k
j , with the smallest possible value of k. Then replace eki e

k
j by

the right-hand side of (3.3). Because of our choice of k, we will not create a
new repetition of upper indices with a smaller k. If there still are nonstandard
monomials, repeat the same procedure. This process will terminate, since the total
degree of the polynomial does not change. As a result, we will express f as a linear
combination of standard elementary monomials.

Now let us show that all standard elementary monomials are linearly indepen-
dent. For suppose not. Find a nontrivial linear relation R with terms of minimal
possible degree. Let k be the minimal index such that some eki , i > 0, appears in
some monomial in R. By Lemma 3.1, ∂k annihilates every monomial not containing
eki , i > 0, whereas ∂ke

k
i e

k+1
j · · · = ek−1

i−1 e
k+1
j · · · . Hence applying ∂k to R results in a

nontrivial linear relation with terms of smaller degree. This contradicts the choice
of R.

Proposition 3.3 can be used to prove the following basic result. Recall that In
denotes the ideal generated by the polynomials en1 , . . . , e

n
n .
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Proposition 3.4 (see [22], [23, (2.6)–(2.7)], [25, (4.13)]). Each of the following
form a Z-linear basis in Z[x1, . . . , xn]/In :

• the monomials xa1
1 · · ·xan−1

n−1 such that 0 ≤ ak ≤ n− k;
• the standard elementary monomials ei1i2...in−1 ;
• the Schubert polynomials Sw for w ∈ Sn .

Moreover, each of these families spans the same vector space Ln ⊂ Z[x1, . . . , xn] ,
which is complementary to In .

Proof. In view of Proposition 2.6, we only need to show that the standard elemen-
tary monomials ei1i2...in−1 are linearly independent (this is true by Proposition 3.3)

and span the same space as the monomials xa1
1 · · ·xan−1

n−1 satisfying 0 ≤ ak ≤ n− k.
Indeed, each ei1i2...in−1 is obviously a linear combination of such monomials, and
the result follows by a dimension argument.

3.2. Quantum elementary polynomials. Recall that the quantum elementary
polynomial Ek

i is defined as the coefficient of λi in the characteristic polynomial
det(1 + λGk) of the matrix Gk given by

Gk =


x1 q1 0 · · · 0
−1 x2 q2 · · · 0
0 −1 x3 · · · 0
...

...
...

. . .
...

0 0 0 · · · xk

 .

By convention, Ek
i = 0 unless 0 ≤ i ≤ k.

The quantum elementary polynomials Ek
i have the following combinatorial in-

terpretation. Let us view each variable xj as a singleton {j}, 1 ≤ j ≤ k, and each
qr as a “dimer” {r, r + 1}, 1 ≤ r ≤ k − 1. Then Ek

i is the sum of all monomials
in the xj and qr which correspond to disjoint collections of singletons and dimers
covering exactly i distinct nodes. The number of monomials in Ek

k is thus equal to
the k’th Fibonacci number. Also immediate from this description is the recurrence
(see [15])

Ek
i = Ek−1

i + xkE
k−1
i−1 + qk−1E

k−2
i−2 ,(3.5)

for any 1 ≤ i ≤ k, where we assume q0 = 0.
The polynomials Ek

i are homogeneous with respect to the grading deg(xi) = 1,
deg(qj) = 2, and specialize to the eki in the case q1 = · · · = qn−1 = 0 .

The following analogue of (3.2) can be used for “quantum straightening.”

Lemma 3.5. For k ≥ j ≥ 0, k ≥ i ≥ 0,

Ek
i E

k+1
j+1 + Ek

i+1E
k
j + qkE

k−1
i−1 E

k
j = Ek

j E
k+1
i+1 + Ek

j+1E
k
i + qkE

k−1
j−1E

k
i .(3.6)

Proof. By (3.5), one has

Ek
i (Ek+1

j+1 − Ek
j+1) = Ek

i (xk+1E
k
j + qkE

k−1
j−1 )

and

Ek
j (Ek+1

i+1 − Ek
i+1) = Ek

j (xk+1E
k
i + qkE

k−1
i−1 ) .

Subtracting the second equation from the first, we obtain (3.6).
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By analogy with (3.4), we define a quantum standard elementary monomial by

Ei1...im = E1
i1 · · ·Em

im ,(3.7)

where 0 ≤ ik ≤ k for k = 1, . . . ,m.
The following quantum analogue of Proposition 3.4 can be proved in the same

way as the latter, using a straightening procedure based on Lemma 3.5.

Proposition 3.6. Each of the following form a Z[q]-linear basis in Z[q, x]/Iqn :

• the monomials xa1
1 · · ·xan−1

n−1 such that 0 ≤ ak ≤ n− k;
• the quantum standard elementary monomials Ei1i2...in−1 .

Moreover, each of these two families spans the same vector space Lqn ⊂ Z[q, x]
complementary to Iqn .

Quantum straightening can be used to compute the expansion of a product of
several quantum standard elementary monomials in the basis {Ei1i2...in−1} of the
ring Z[q, x]/Iqn .

3.3. Quantum Schubert polynomials. Let us recall the combinatorial definition
of the quantum Schubert polynomials Sq

w given in the introduction. By Proposi-
tion 3.4, one can uniquely expand an ordinary Schubert polynomial Sw , w ∈ Sn ,
as a linear combination of standard elementary monomials, with integer coefficients:
Sw =

∑
αi1...in−1ei1...in−1 . We then define

Sq
w =

∑
αi1...in−1Ei1...in−1 .(3.8)

Propositions 3.4 and 3.6 immediately imply the following result.

Proposition 3.7. The quantum Schubert polynomials Sq
w for w ∈ Sn , form a

Z[q]-linear basis in the space Lqn spanned by the monomials xa1
1 · · ·xan−1

n−1 satisfying
0 ≤ ak ≤ n − k. The Iqn-cosets of these quantum Schubert polynomials form a
Z[q]-linear basis in Z[q, x]/Iqn .

The expansions of Schubert polynomials for Sn in terms of the standard monomi-
als can be computed recursively top-down, starting from Swo = e12...n−1 . Namely,
use the basic recurrence (2.6) together with the rule for computing a divided
difference of an elementary symmetric polynomial (Lemma 3.1), the Leibniz for-
mula (2.4), and the straightening procedure from Section 3.1. For example, in S4

we have:

S4321 = Swo = e123 ,

S3421 = ∂1S4321 = ∂1e123 = e023∂1e
1
1 = e023 ,

S3412 = ∂3S3421 = ∂3e023 = e020∂3e
3
3 = (e22)

2 = e022 − e013 .

The corresponding quantum Schubert polynomials Sq
w are then obtained by replac-

ing each standard elementary monomial by its quantum analogue. For instance,

Sq
3412 = E022 − E013

= (x1x2 + q1)(x1x2 + x1x3 + x2x3 + q1 + q2)

−(x1 + x2)(x1x2x3 + q1x3 + q2x1)

= x2
1x

2
2 + 2q1x1x2 − q2x

2
1 + q21 + q1q2 .
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Figure 1. Quantum Schubert polynomials for S3

In Section 14, we provide the tables of quantum Schubert polynomials for S2 ,
S3 (cf. Figure 1), and S4 . For each permutation w, we also give the expansion
of the Schubert polynomial Sw as a linear combination of standard elementary
monomials.

Proposition 3.8. Sq
w is a homogeneous polynomial of degree `(w), with respect to

the grading defined by deg(xi) = 1 and deg(qj) = 2. Specializing q1 = · · · = qn−1 =
0 yields Sq

w = Sw , the classical Schubert polynomials.

Proof. The proof follows from the corresponding properties of quantum elementary
polynomials.

Proposition 3.8 implies that the transition matrices between the bases {Sq
w} and

{Sw} are unipotent triangular, with respect to any linear ordering that is consistent
with the length function `(w).

To conclude this section, we formulate the quantum analogue of the orthogo-
nality property (2.9) of the Schubert polynomials. Similarly to the classical case,
orthogonality of Schubert classes is a trivial consequence of the quantum cohomol-
ogy definitions (cf. Property 9.4 below). At this point, however, we have not proved
yet that our combinatorially defined quantum Schubert polynomials Sq

w represent
Schubert classes σw in the quantum cohomology ring. Moreover, the proof of this
fact given in Section 4 depends on a combinatorial proof of the orthogonality of
the Sq

w .
For F ∈ Z[q, x]/Iqn , let 〈〈F 〉〉 ∈ Z[q] denote the coefficient of Sq

wo
in the expansion

of F in the basis of quantum Schubert polynomials (cf. Proposition 3.7). Equiva-
lently, 〈〈F 〉〉 is the coefficient of the staircase monomial xδ = xn−1

1 xn−2
2 · · ·xn−1 in

the monomial expansion of F .
The following result is the quantum analogue of Theorem 2.9. Its proof is post-

poned until Section 6.

Theorem 3.9 (Orthogonality). For u, v ∈ Sn ,

〈〈Sq
u Sq

v〉〉 =

{
1 if v = wou ;

0 otherwise.
(3.9)

4. Proof of Theorems 1.1 and 1.2

We begin with an outline of the proof. Let {Qw} be the “geometric” quantum
Schubert polynomials, i.e., the elements of the quotient Z[q, x]/Iqn which represent
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the Schubert classes under the isomorphism (2.15). Theorem 1.2 can be reformu-
lated as saying that the Qw coincide with the cosets of the combinatorially defined
polynomials Sq

w .
To prove Theorem 1.2 (thus Theorem 1.1), we will need four particular proper-

ties of the elements Qw (see Properties 4.1–4.4). The first three of these properties
easily follow from the definition of quantum cohomology; the fourth one is a theo-
rem of Ciocan-Fontanine [7]. We will use these properties of the Qw , in conjunction
with several properties of the polynomials Sq

w (most notably, their orthogonality,
Theorem 3.9), to demonstrate that the Qw coincide with the cosets of the Sq

w . As
a byproduct, this will immediately imply that Properties 4.1–4.4 uniquely deter-
mine the Qw . The issue of axiomatic characterization of the quantum Schubert
polynomials is discussed in Section 9.

In this section, we work in the quotient ring Z[q, x]/Iqn . All polynomials should
be understood as representing cosets modulo Iqn .

Property 4.1 (Homogeneity). Every Qw is homogeneous of degree `(w), assum-
ing deg(xi) = 1 and deg(qj) = 2.

Proof. See the remark following (2.14).

Property 4.2 (Classical limit). Specializing q1 = · · · = qn−1 = 0 yields Qw =
Sw .

Proof. This reflects the fact that this specialization converts the quantum cohomol-
ogy of Fln into the usual one.

Properties 4.1 and 4.2 imply that the Qw form a Z[q]-linear basis in Z[q, x]/Iqn ,
and the transition matrices between any two of the bases {Qw}, {Sq

w}, and {Sw}
are unipotent triangular, with respect to any linear ordering consistent with `(w).

The next property is a reformulation of the fact that the Gromov-Witten invari-
ants are nonnegative integers.

Property 4.3 (Nonnegativity of structure constants). The structure constants of
the ring Z[q, x]/Iqn , with respect to the basis {Qw} , are polynomials in q1, . . . , qn−1

with nonnegative integer coefficients.

Let Z+[q] be the set of all polynomials in the qj whose coefficients are nonnegative
integers. Let QH∗

+ be the set of all linear combinations of the Qw with coefficients
in Z+[q]. By Property 4.3, QH∗

+ is a semiring, i.e., is closed under addition and
multiplication.

As a corollary, 〈〈Qw1 · · · Qwk
〉〉 ∈ Z+[q] , for any w1, . . . , wk ∈ Sn , where 〈〈· · ·〉〉 is

defined as in Section 3.3. Indeed, 〈〈Qw1 · · · Qwk
〉〉 is equal to the coefficient of Qwo

in the expansion of this product in the basis {Qw} , since the transition matrix
between {Qw} and {Sw} is unipotent triangular.

It is well known that the ordinary Schubert polynomial Sw for a cycle w =
sk−i+1 · · · sk is the elementary symmetric polynomial eki . The following result,
which is a restatement of formula (3) in [7], provides a quantum analogue to this
fact.

Property 4.4 (Quantum elementary polynomials). For a cycle w = sk−i+1 · · · sk
∈ Sn , the polynomial Qw is Ek

i , the quantum elementary polynomial.

In our proof of Theorem 1.2, we will only need the following corollary of this
property: every quantum elementary polynomial Ek

i belongs to the semiring QH∗+ .
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It then follows by Property 4.3 that every quantum standard elementary monomial
belongs to QH∗

+ .
We are now prepared to give a proof of Theorem 1.2. Fix a nonnegative in-

teger l ≤ `(wo). By Proposition 3.4, the polynomials Sw , `(w) = l, are related
to the ei1...in−1 , i1 + · · · + in−1 = l, by a nondegenerate linear transformation.
Moreover, each ei1...in−1 is a nonnegative integer combination of the Sw , since

ei1...in−1 is a product of Schubert polynomials ekik , and the classical structure con-
stants are nonnegative. Every Sw , `(w) = l, should enter the expansion of at least
one ei1...in−1 , i1 + · · ·+ in−1 = l. Therefore∑

i1+···+in−1=l

ei1...in−1 =
∑

`(w)=l

αwSw ,

with certain positive αw . Using the definition (3.8) of the quantum Schubert poly-
nomials and the fact that Ei1...in−1 ∈ QH∗

+ , we obtain:∑
`(w)=l

αwSq
w ∈ QH∗+ .(4.1)

By Properties 4.1 and 4.2, each Sq
w is equal to Qw plus a Z[q]-linear combination

of some Qv with `(v) < `(w). It follows that∑
`(w)=l

αwSq
w =

∑
`(w)=l

αwQw + 〈 linear combination of Qv with `(v) < `(w)〉 ,

and (4.1) yields ∑
`(w)=l

αw(Sq
w −Qw) ∈ QH∗

+ .(4.2)

Let j1, . . . , jn−1 be such that

j1 + · · ·+ jn−1 > `(wo)− l .(4.3)

Since Ej1...jn−1 ∈ QH∗
+ , Property 4.3 implies that, for any w,

〈〈Ej1...jn−1Qw〉〉 ∈ Z+[q] .(4.4)

Likewise, (4.2) gives 〈〈Ej1...jn−1

∑
`(w)=l αw(Sq

w − Qw)〉〉 ∈ Z+[q] . Using orthogo-

nality (Theorem 3.9) and (4.3), we rewrite the last statement as

−
∑

`(w)=l

αw〈〈Ej1...jn−1 Qw〉〉 ∈ Z+[q] .(4.5)

Recall that the αw are strictly positive. Comparing (4.4) with (4.5), we conclude
that 〈〈Ej1...jn−1Qw〉〉 = 0 , for any l, any w of length l, and any j1, . . . , jn−1 satisfy-
ing (4.3). Therefore 〈〈Sq

wovQw〉〉 = 0 for any v ∈ Sn satisfying `(v) < `(w). Once
again using orthogonality, we conclude that the expansion of Qw in the basis {Sq

v}
contains no terms with `(v) < `(w), meaning that Qw = Sq

w , as desired.

5. Commuting difference operators

Recall that the quotient Z[q, x]/In is isomorphic, as a vector space, to the quan-
tum cohomology of the flag manifold (cf. (2.13)). In this section, we construct a
family of commuting difference operators acting in Z[q, x]/In , which will later be
shown to correspond to the operators of multiplication by two-dimensional classes
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in the ring QH∗(Fln,Z). These operators will be an essential tool in our proof of
the orthogonality property, needed for the proof of Theorem 1.2.

Let us identify each polynomial f ∈ Z[q, x] with the operator of multiplication
by f . It will be convenient to denote qij = qiqi+1 · · · qj−1 for i < j. Note that
qijqjk = qik . Also let

∂(ij) = ∂tij = ∂i∂i+1 · · · ∂j−2∂j−1∂j−2 · · · ∂i+1∂i(5.1)

be the divided difference operator corresponding to the transposition tij , i < j.
Define the difference operators Xk , for k = 1, . . . , n, by

Xk = xk −
∑

1≤i<k
qik∂(ik) +

∑
k<j≤n

qkj∂(kj) .(5.2)

Equivalently, for λ1, . . . , λn ∈ Z[q],∑
i

λiXi =
∑
i

λixi +
∑

1≤i<j≤n
(λi − λj)qij∂(ij) .(5.3)

Theorem 5.1. The operators X1, . . . ,Xn commute pairwise.

To prove this result, we will need the following lemma, in which [ , ] stands for
the commutator: [A,B] = AB −BA.

Lemma 5.2. The following commutation relations hold (recall that we identify
the xi with the corresponding multiplication operators):

1. For a < c, we have [∂(ac), xb] = 0 unless a ≤ b ≤ c.
2. For a < b, we have [∂(ab), xa + xa+1 + · · ·+ xb] = 0.
3. For a < b and c < d, we have [∂(ab), ∂(cd)] = 0 unless b = c or a = d.
4. For a < b < c, we have [∂(ac), xb] + [∂(ab), ∂(bc)] = 0.

Proof. 1. Use (5.1) and the fact that multiplication by xi commutes with ∂j unless
j = i or j = i− 1.

2. Follows from xa + · · ·+ xb being a symmetric function of xa, . . . , xb .
3. By Proposition 2.3, ∂v and ∂w commute whenever v and w do. Therefore,

∂(ab) and ∂(cd) commute if the numbers a, b, c, d are all distinct. This proves the
claim unless a = c or b = d. In these cases, once again using Proposition 2.3, we
conclude that ∂(ab)∂(ad) = ∂(ad)∂(ab) = 0 and ∂(ad)∂(cd) = ∂(cd)∂(ad) = 0.

4. From the “Leibniz formula” (2.5) with w = tac, we obtain:

∂(ac)(xb · g) = xb · ∂(ac)g − ∂tactabg + ∂tactbcg

= (xb∂(ac) − ∂(ab)∂(bc) + ∂(bc)∂(ab))g . �

Proof of Theorem 5.1. By (5.2) and Lemma 5.2, we have, for a < b:

[Xa , Xb] =
[
xa,−

∑
i≤a

qib∂(ib)

]
+
[∑
j≥b

qaj∂(aj), xb

]
+
∑
i<a

qib[∂(ia), ∂(ab)]

+
∑
j>b

qaj [∂(ab), ∂(bj)]−
∑

a<i<b

qab[∂(ai), ∂(ib)]

= −qab[xa, ∂(ab)] + qab[∂(ab), xb] + qab
∑

a<i<b

[∂(ab), xi]

= qab[∂(ab), xa + xa+1 + · · ·+ xb]

= 0 . �
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For a polynomial f ∈ Z[q, x], we write f(X ) to denote the operator f(X1, . . . ,Xn);
this is well defined by Theorem 5.1. Accordingly, f(X )(g) will denote the result of
applying f(X ) to a polynomial g.

Lemma 5.3. For any polynomial f ∈ Z[q, x] , there exists a unique F ∈ Z[q, x]
such that f = F (X )(1).

Proof. Let degx denote the degree on Z[q, x] defined by degx(xi) = 1 and degx(qj) =
0. We first prove existence by induction on degx(f) = d. If d = 0, then f ∈ Z[q]
and F = f . Suppose d > 0. Since each operator Xi − xi lowers degx , it follows
that f(x) − f(X )(1) is a polynomial of degree < d. By the induction assumption,
this polynomial can be expressed in the form g(X )(1), for some g ∈ Z[q, x]. Hence
f(x) = (f + g)(X )(1) . To prove uniqueness, note that whenever h 6= 0, one has
degx(h(X )(1)) = degx(h) ≥ 0, implying h(X )(1) 6= 0.

As a corollary of the last lemma, commuting operators X1, . . . ,Xn are alge-
braically independent over the ring Z[q].

By Lemma 5.3, we have a Z[q]-linear bijection ψ : Z[q, x] → Z[q, x] given by

ψ : f 7→ F , f = F (X )(1) .(5.4)

Our next goal is to find the polynomial F = ψ(f) for the special case f = ei1,...,im .

Proposition 5.4. We have Ek
i (X )(g) = eki g for any polynomial g ∈ Z[q, x] which

is symmetric in the variables x1, . . . , xk+1 , k < n, and also in the case g = 1,
k = n.

Proof. Induction on k. If k = 0, then E0
0(X )(g) = e00 g = g. Suppose k > 0. Then,

using the induction hypothesis, Lemma 3.1, (3.1), and (3.5), we obtain:

Ek
i (X )(g) =

(
Ek−1
i (X ) + XkE

k−1
i−1 (X ) + qk−1E

k−2
i−2 (X )

)
(g)

= ek−1
i g + Xk(e

k−1
i−1 g) + qk−1e

k−2
i−2 g

= ek−1
i g + xke

k−1
i−1 g − qk−1∂k−1e

k−1
i−1 g + qk−1e

k−2
i−2 g

= ek−1
i g + xke

k−1
i−1 g

= eki g . �

Theorem 5.5. For any m ≤ n, we have Ei1...im(X )(1) = ei1...im . In particular,
Ek
i (X )(1) = eki for any i ≤ k ≤ n.
Equivalently, ψ(ei1...im) = Ei1...im and ψ(eki ) = Ek

i , in the notation of (5.4).

Proof. Repeatedly using Proposition 5.4, we obtain:

Ei1...im(X )(1) = Ei1...im−1(X )(emim)

= Ei1...im−2(X )(em−1
im−1

emim) = · · · = e1i1 · · · emim . �

Corollary 5.6. For any w ∈ Sn , we have ψ(Sw) = Sq
w , i.e., Sq

w(X )(1) = Sw .

Proof. The proof follows from the definition (3.8) of quantum Schubert polynomials.



QUANTUM SCHUBERT POLYNOMIALS 581

Lemma 5.7. The map ψ defined by (5.4) bijectively maps the ideal In onto Iqn .

Proof. Every element in In is of the form f1e
1
n+ · · ·+fne

n
n , for f1, . . . , fn ∈ Z[q, x].

Denote Fi = ψ(fi) . Note that each operator Xi commutes with multiplication by
any polynomial which is symmetric in x1, . . . , xn (cf. Proposition 2.4 and (5.2)).
Using this observation together with Theorem 5.5, we obtain: (FiE

n
i )(X )(1) =

Fi(X )(eni ) = eni Fi(X )(1) = eni fi. Hence ψ(f1e
n
1 + · · ·+fnenn) = F1E

n
1 + · · ·+FnEn

n ,
proving the lemma.

By Lemma 5.7 and Theorem 5.5, the map ψ induces a Z[q]-linear bijection

Z[q, x]/In → Z[q, x]/Iqn ,(5.5)

which sends the cosets of the ei1...im to the corresponding cosets of Ei1...im .

Lemma 5.8. The operators X1, . . . ,Xn leave the space In ⊂ Z[q, x] invariant.

Proof. We have Xi(f1e
n
1 + · · ·+ fne

n
n) = en1Xi(f1) + · · ·+ ennXi(fn) .

Observe that the definition (5.4) of the map ψ implies that Xi(g) = ψ−1(xiψ(g))
for any polynomial g. In other words, ψ translates the action of Xi into mul-
tiplication by xi . In view of Lemma 5.8, Xi induces an operator in Z[q, x]/In .
This operator corresponds via ψ to multiplication by xi in the ring Z[q, x]/Iqn .
It follows that the Xi , understood as operators acting in Z[q, x]/In , satisfy the
relations Ek(X ) = 0, and thus provide a representation for the ring QH(Fln,Z).

We conclude this section by a useful corollary of Theorem 5.5 and formula (2.7).

Corollary 5.9. Let F ∈ Z[q, x]/Iqn . Then 〈〈F 〉〉 is equal to the constant term of
∂wo(F (X )(1)). (The latter is well defined by Lemma 5.7.)

6. Proof of orthogonality

In this section we prove the orthogonality property of the quantum Schubert
polynomials (Theorem 3.9). To this end, we will need the following lemmas. As
before, we identify polynomials with the corresponding multiplication operators.

Lemma 6.1. Let l ≤ k < n. Then, for any i1, . . . , ik−1 ,

∂woe
1
i1 · · · ek−1

ik−1
∂l∂l+1 · · · ∂k = 0 .(6.1)

Proof. Let us move ∂l, . . . , ∂k to the left, one by one. By Lemma 3.1 and Proposi-
tion 2.4, ∂m commutes with eai unless m = a, whereas

emi ∂m = ∂mei(x1, . . . , xm−1, xm+1) + em−1
i−1 .(6.2)

If ∂m moves through emim (the first term in the right-hand side of (6.2)), then it
can be moved all the way to the left, and the corresponding term vanishes since
∂wo∂m = 0. Otherwise ∂m changes emim into em−1

i−1 . The only term remaining in the
left-hand side of (6.1) upon moving ∂l, . . . , ∂k−1 will be

∂woe
1
i1 · · · el−1

il−1
el−1
il−1 · · · ek−2

ik−1−1∂k = ∂wo∂ke
1
i1 · · · el−1

il−1
el−1
il−1 · · · ek−2

ik−1−1 = 0 .

Recall that Lqn denotes the Z[q]-span of the monomials xa1
1 · · ·xan−1

n−1 such that
0 ≤ ai ≤ n− i for all i. By Proposition 3.4, the polynomials ei1...in−1 form a Z[q]-
basis of Lqn . The following result is proved in exactly the same way as Theorem 5.5.
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Proposition 6.2. For any f ∈ Lqn and any polynomial g which is symmetric in
x1, . . . , xn , we have F (X )(g) = G(X )(f) = fg, where F = ψ(f) and G = ψ(g), in
the notation of (5.4).

Let us fix an integer k such that 1 ≤ k ≤ n. It will be convenient to represent

the operators Xl , l ≤ k, in the form Xl = X̃l +
≈
X l, where

X̃l = xl −
∑
j<l

qjl∂(jl) +
∑

l<j≤k
qlj∂(lj) ,

≈
X l =

∑
j>k

qlj∂(lj) .
(6.3)

Let Ek
i (X̃ ) = Ek

i (X̃1, . . . , X̃k).

Proposition 6.3. For any polynomial f ∈ Z[q, x] ,

Ek
i (X̃ )(f) = eki f .(6.4)

Thus Ek
i (X ) coincides with the operator of multiplication by eki , provided qk = 0.

Proof. Let us denote Pk = Z[q1, . . . , qk−1][x1, . . . , xk]. The operator Ek
i (X̃ ) does

not involve divided differences ∂l with l ≥ k. Therefore it commutes with xl , l > k,

and it suffices to prove (6.4) for f ∈ Pk . (Notice that in this case Ek
i (X̃ )(f) ∈ Pk .)

Let us expand f in the standard elementary monomials (possibly involving vari-
ables xl with l > k). Let N be greater than the largest value of M such that some
eMi enters one of these monomials. Then f ∈ LqN and, by Proposition 6.2, we have
EN
i (X )(f) = eNi f . The ideal Jk = 〈qk, qk+1, . . . , xk+1, xk+2, . . . 〉 is an invariant

subspace for all the Xi and for the operators of multiplication by xi . Hence Xi and
xi act on the quotient space, which is isomorphic to Pk . The corresponding actions

of EN
i (X ) and eNi on Pk coincide with Ek

i (X̃ ) and eki , respectively. This implies

Ek
i (X̃ )(f) = eki f , as desired.

Lemma 6.4. For any k < n and any f ,

∂woei1...ik−1
(Ek

ik
(X ) − ekik) f = 0 .(6.5)

Proof. Let us write Ek
ik

(X ) as a polynomial in the Xl , l ≤ k, substitute Xl = X̃l+
≈
X l

everywhere, and expand. The terms which only involve the truncated operators X̃l

will combine into the operator Ek
ik

(X̃ ). By Proposition 6.3, (Ek
ik

(X̃ ) − ekik)f = 0 .
To prove Lemma 6.4, it therefore suffices to show that any composition of operators
of the form

∂woei1...ik−1
X̃l1 · · · X̃lj∂(lm) ,(6.6)

with 1 ≤ l1 < l2 < · · · < lj < l ≤ k < m, vanishes. In view of the definition
of ∂(lm) , this claim will follow if we prove that

∂woei1...ik−1
X̃l1 · · · X̃lj∂l · · · ∂k = 0(6.7)

for 1 ≤ l1 < l2 < · · · < lj < l ≤ k. We will prove (6.7) by induction on j. If j = 0,
then it coincides with Lemma 6.1. For j > 0, the only term in the expression (6.3)

for X̃lj that neither commutes with (∂l · · · ∂k) nor vanishes after composition with
(∂l · · · ∂k) is qlj l∂(lj l) . We then note that

∂(lj l)(∂l · · · ∂k) = ∂lj · · · ∂l−2∂l−1∂l−2 · · · ∂lj (∂l · · · ∂k) = (∂lj · · ·∂k)∂l−2 · · · ∂lj .
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Using the induction assumption, we conclude that the left-hand side of (6.7) equals

qlj l (∂woei1...ik−1
X̃l1 · · · X̃lj−1∂lj∂lj+1 · · · ∂k)∂l−2 · · ·∂lj .

The parenthesized factor is an expression similar to the left-hand side of (6.7) with
j decreased by 1 and l replaced by lj . By the induction assumption, it vanishes,
and Lemma 6.4 is proved.

We will now complete the proof of Theorem 3.9. Let us first note that the only
nontrivial case is `(u)+ `(v) > `(wo). Indeed, if deg(Sq

u Sq
v) = `(u)+ `(v) < `(wo),

then the monomial xδ cannot appear in the expansion of Sq
u Sq

v . In the case
`(u)+ `(v) = `(wo), the only terms which can contribute to 〈〈Sq

u Sq
v〉〉 are those not

involving the qi , and (3.9) follows from its classical counterpart (2.9).
Since our quantum Schubert polynomials are linear combinations of quantum

standard elementary monomials of the same degree, it remains to show that

〈〈Ei1...in−1 Ej1...jn−1〉〉 = 0(6.8)

whenever

i1 + · · ·+ in−1 + j1 + · · ·+ jn−1 > `(wo) = n(n− 1)/2 .(6.9)

In view of Theorem 5.5, Ei1...in−1(X )Ej1...jn−1(X )(1) = Ei1...in−1(X )(ej1...jn−1). By
Corollary 5.9, formula (6.8) is equivalent to

(∂wo(Ei1...in−1(X )(ej1...jn−1)))(0, . . . , 0) = 0 .(6.10)

Suppressing (X ) to avoid cumbersome notation, let us write

Ei1...in−1 = E1
i1 · · ·En−1

in−1
=

(
e1i1 + (E1

i1 − e1i1)

)
· · ·
(
en−1
in−1

+ (En−1
in−1

− en−1
in−1

)

)
and prove that for each term T in the expansion of this product we have

(∂woT (ej1...jn−1))(0, . . . , 0) = 0 .(6.11)

If T = e1i1 · · · en−1
in−1

, then (6.11) follows from (6.9). Any other T is of the form

T = e1i1 · · · ek−1
ik−1

(Ek
ik − ekik)T

′

for some k ≤ n−1, and (6.11) follows from Lemma 6.4 with g = T ′(ej1...jn−1). This
completes the proof of Theorem 3.9.

Define a bilinear form ( , ) in Z[q, x]/Iqn by setting

(F,Sq
w) = 〈〈F Sq

wow〉〉 .(6.12)

The following result is a reformulation of Theorem 3.9.

Theorem 6.5. With respect to the scalar product(6.12) in Z[q, x]/Iqn , the quantum
Schubert polynomials Sq

w , w ∈ Sn , form an orthonormal basis.
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7. Quantum Monk’s formula

In this section, we prove the quantum Monk’s formula (Theorem 1.3). Let us
first reformulate this formula in the language of quantum Schubert polynomials.

Theorem 7.1 (Quantum Monk’s formula). For w ∈ Sn and 1 ≤ r < n,

Sq
sr Sq

w = (x1 + · · ·+ xr)Sq
w =

∑
Sq
wtab

+
∑

qcdS
q
wtcd

,(7.1)

where the first sum is over all transpositions tab such that a ≤ r < b and `(wtab) =
`(w) + 1, and the second sum is over all transpositions tcd such that c ≤ r < d and
`(wtcd) = `(w) − `(tcd) = `(w)− 2(d− c) + 1.

More generally, for any linear form f =
∑
λixi , one has

fSq
w =

∑
(λa − λb)S

q
wtab +

∑
(λc − λd)qcdS

q
wtcd ,(7.2)

where the sums are over a < b and c < d such that `(wtab) = `(w) + 1 and
`(wtcd) = `(w) − `(tcd), respectively.

Proof. By the classical Monk’s formula (Theorem 2.8), the definition of Sq
w , and

Theorem 5.5, the equation (7.2) is equivalent to

f(X )(Sw) = f ·Sw +
∑

(λc − λd)qcdSwtcd ,

summed over all c < d such that `(wtcd) = `(w) − `(tcd). The latter follows from
Corollary 2.7.

Notice that formulas (7.1) and (7.2) hold on the level of polynomials, not just
for cosets (classes), as in Theorem 1.3.

8. Quantization map

At this point, let us review our main results, now that all of them are proved.
In view of Theorems 1.1, 5.5 (cf. also (5.5)) and 7.1, we now have four differ-

ent descriptions of the quantization map Z[q, x]/In → Z[q, x]/Iqn defined by the
commutative diagram (1.5). Geometrically, this is the map that sends a coset
that corresponds to a given class in the ordinary cohomology of Fln to the coset
corresponding to the same class as an element of the quantum cohomology ring.
Algebraically (or combinatorially), this map is defined by its action on standard
elementary monomials:

ei1...in−1 7−→ Ei1...in−1 .

The quantization map can also be defined in terms of the operators Xk given
by (5.2). Namely, the quantization image F of f is uniquely determined by

f = (F (X1, . . . ,Xn))(1) .

Yet another description can be obtained from the quantum Monk’s formula. It is
not hard to see that this formula can be used to recursively obtain the quantum
Schubert polynomials, starting with S

q
1 = 1. The quantization map is then defined

by

Sw 7−→ Sq
w .
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9. Axiomatic characterization

In Section 4, we have actually proved the following characterization theorem.

Theorem 9.1. Let {Qw}w∈Sn be a family of elements of Z[q, x]/Iqn satisfying Prop-
erties 4.1–4.4. Then the Qw are the cosets of the quantum Schubert polynomi-
als Sq

w .

It is natural to ask exactly which properties are essential to uniquely determine
the elements Qw . In particular, does one really need Property 4.4, which is the
only property in Theorem 9.1 that does not immediately follow from the definition
of the quantum cohomology of Fln ?

Proposition 9.2. In the case of S3 (or Fl3), Properties 4.1–4.3 uniquely deter-
mine the Qw (which hence coincide with the cosets of the Sq

w).

Proof. We certainly know that Q1 = 1, Qs1 = x1 , and Qs2 = x1 + x2 . Assume
that Qs1s2 = Sq

s1s2 +a and Qs2s1 = Sq
s2s1 +b , where a and b are, by Properties 4.1

and 4.2, some linear combinations of q1 and q2 . Then direct computations (with or

without a computer) give 〈〈Qs1s2 (Qs1)
2Qs2 〉〉 = a and 〈〈Qs2s1 (Qs2)

2Qs1 〉〉 = b ,
implying that both a and b are nonnegative linear combinations of q1 and q2 (we
will simply write a ≥ 0 and b ≥ 0). On the other hand,

Qs1Qs2 = x1(x1 + x2) = Sq
s1s2 + Sq

s2s1 = Qs1s2 +Qs2s1 + (−a− b) .

Hence −a − b ≥ 0 and therefore a = b = 0, as desired. The remaining case of
Qwo is treated in analogous fashion. Assume Qwo = Sq

wo
+ cSq

s1 + dSq
s2 . Then

〈〈QwoQs1s2 〉〉 = 〈〈QwoS
q
s1s2 〉〉 = c and 〈〈QwoQs2s1 〉〉 = 〈〈QwoS

q
s2s1 〉〉 = d , implying

c ≥ 0 and d ≥ 0. On the other hand, Qs1Qs1s2 = Sq
wo

= Qwo − cQs1 − dQs2 .
Hence −c ≥ 0 and −d ≥ 0, and therefore c = d = 0, as desired.

Similar but more involved considerations allowed us to verify, with the help of
a computer, that the result analogous to Proposition 9.2 holds for n = 4. It is
tempting to conjecture that this holds for every n. This would be a very nice result
(perhaps too nice to be true), since it would mean that it suffices to use the basic
properties of quantum cohomology to uniquely determine the polynomials Sq

w .

Conjecture 9.3 (Strong version). The quantum Schubert polynomials are unique-
ly defined by Properties 4.1–4.3. In other words, they are the only elements of
Z[q, x]/Iqn which are homogeneous with respect to the grading deg(xi) = 1, deg(qj) =
2, specialize to the ordinary Schubert polynomials in the classical limit q1 = · · · =
qn−1 = 0, and whose structure constants are polynomials in the qi with nonnegative
integer coefficients.

A weaker conjecture (cf. Conjecture 9.7 below) would extend the defining set
of axioms by additional properties of the elements Qw , which can be directly de-
rived from the their geometric definition. The first of these extra properties is
orthogonality (cf. Theorem 3.9).

Property 9.4. For u, v ∈ Sn ,

〈〈QuQv〉〉 =

{
1 if v = wou ;

0 otherwise.
(9.1)
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Proof. By definition, 〈〈QuQv〉〉 is the coefficient of Qwo in QuQv , which is equal to
the coefficient of the Schubert cycle σwo in the quantum product σu ∗ σv . In view
of (2.14) and the S3-symmetry of the Gromov-Witten invariants, this is the same
as the coefficient of σwou in σv ∗ σ1 = σv , which obviously equals the right-hand
side of (9.1).

The S2-symmetry of the type An−1 Dynkin diagram has as a consequence the
invariance of the quantum (and, in particular, the ordinary) cohomology of the
flag manifold with respect to the involutive ring automorphism ω : QH∗(Fln) →
QH∗(Fln) defined by ω(σsk) = σsn−k and ω(qk) = qn−k for k = 1, 2, . . . , n − 1.
Since Qsk = Sq

sk = x1 + · · · + xk , and x1 + · · · + xn ∈ Iqn , we can alternatively
define ω as the ring automorphism of Z[q, x]/Iqn given by

ω(xk) = −xn+1−k , ω(qk) = qn−k .(9.2)

Property 9.5. For any w ∈ Sn , one has ω(Qw) = Qwowwo .

The involution ω is studied in Section 11.1. In particular, Property 9.5 can be
proved combinatorially (cf. Corollary 11.6).

Property 9.6. If u and v belong to the parabolic subgroups generated by s1, . . . , sk
and sk+1, . . . , sn−1 , respectively, for some k, then Quv = QuQv .

Conjecture 9.7 (Weak version). The quantum Schubert polynomials are uniquely
defined by Properties 4.1–4.3 and 9.4–9.6.

10. Stability

The quantum Schubert polynomials have an important stability property that
justifies their choice as specific polynomial representatives of the corresponding
cosets modulo the ideal Iqn . Consider the natural embeddings of the symmetric
groups S1 ⊂ S2 ⊂ S3 ⊂ · · · ; viz., Sn permutes the set {1, . . . , n}.
Theorem 10.1 (Stability). Let w ∈ Sn . The quantum Schubert polynomial Sq

w is
the unique polynomial in Z[q1, . . . , qn−1][x1, . . . , xn] which has the following prop-
erty: for every N ≥ n, the polynomial Sq

w represents the Schubert class σw , in the
quantum cohomology ring QH∗(FlN ) ∼= Z[q1, . . . , qN−1][x1, . . . , xN ]/IqN .

Proof. It is immediate from our definition that the quantum Schubert polynomial
Sq
w , for w ∈ Sn , does not change if w is regarded as an element of SN , for any

N > n. Hence the property in question follows from Theorem 1.2. To prove
uniqueness, it suffices to show that if a polynomial f ∈ Z[q1, . . . , qn−1][x1, . . . , xn]
vanishes modulo the ideal IqN , for all N > n, then it vanishes identically. Indeed, f
belongs to the Z[q1, . . . , qN−1]-span of the monomials xa1

1 · · ·xaN−1

N−1 , 0 ≤ ak ≤ N−k,
for N ≥ n+ degx(f). Therefore, by Proposition 3.6, f = 0 if f ∈ IqN .

Several properties of the quantum Schubert polynomials Sq
w are peculiar to the

particular choice of coset representatives that we made. The proofs of the following
statements are left to the reader:

• the quantum Schubert polynomials Sq
w , for w ∈ S∞ , where S∞ =

⋃
Sn , form

a Z[q1, q2, . . . ]-linear basis of the polynomial ring Z[q1, q2, . . . ][x1, x2, . . . ];
• to multiply Sq

u and Sq
v in the quotient ring Z[q, x]/Iqn (which is equivalent

to computing the quantum product σu ∗ σv of the corresponding Schubert
classes), expand Sq

u Sq
v in the basis {Sq

w} of the ring Z[q1, q2, . . . ][x1, x2, . . . ]
and drop all terms containing Sq

w with w not in Sn ;
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• Sq
w does not involve qn−1 ;

• if w ∈ Sn but w /∈ Sn−1 , then Sq
w ∈ Iqn−1 .

11. Miscellaneous

11.1. Quantum complete homogeneous polynomials. Let hkl denote the sum
of all monomials of degree l in the variables x1, . . . , xk (the complete homogeneous
symmetric polynomial). The following result is well known.

Lemma 11.1. For k + l > n, one has hkl ∈ In .

Proof. The statement follows from the formula hkl = det
(
ek+l−i
j−i+1

)l
i, j=1

since all

elements in the first row of this determinant belong to In .

The proofs of the remaining results in Section 11 are fairly straightforward, and
are omitted for the sake of brevity.

Theorem 11.2. The quantization map sends the coset of a complete homogeneous

polynomial hkl to Hk
l = det

(
Ek+l−i
j−i+1

)l
i, j=1

. More generally, the quantization of

hi1...in−1 = h1
i1
· · ·hn−1

in−1
, where ik ≤ n− k for k = 1, . . . , n− 1, is

Hi1...in−1 = H1
i1 · · ·Hn−1

in−1
.(11.1)

Observe that if the condition ik ≤ n − k is not satisfied for at least one value
of k, then hi1...in−1 ∈ In , by Lemma 11.1.

The quantum complete homogeneous polynomials Hk
l will play a role in Sec-

tion 12.1 as elements of a Gröbner basis for the ideal Iqn . These polynomials can be
given a direct combinatorial interpretation in terms of families of nonintersecting
paths in a certain oriented graph.

11.2. Involution ω. Let ω be the involutive automorphism of the polynomial
ring Z[q, x] defined by ω(xk) = −xn+1−k and ω(qk) = qn−k , for k = 1, . . . , n
(cf. (9.2)).

Lemma 11.3. Both In and Iqn are invariant subspaces for the involution ω.

This shows that ω has well-defined actions on both Z[q, x]/In and Z[q, x]/Iqn .

Proposition 11.4 (cf. [21]). In Z[q, x]/In , the following rules for computing ω-
images hold:

ω(ei1...in−1) = hin−1...i1 ; ω(hi1...in−1) = ein−1...i1 ; ω(Sw) = Swowwo .

Proposition 11.5. Involution ω commutes with the quantization map.

Corollary 11.6. In Z[q, x]/Iqn , the following rules for computing ω-images hold:

ω(Ei1...in−1) = Hin−1...i1 ; ω(Hi1...in−1) = Ein−1...i1 ; ω(Sq
w) = Sq

wowwo
.

11.3. Quantization of square-free monomials. The combinatorial construc-
tion of Section 3.2 can be used to describe the image of any square-free monomial
xa = xa1xa2 · · · under the quantization map. Consider the graph whose vertices
are the ai and whose edges connect ai and aj if |ai − aj | = 1. Assign weight xai to
the vertex ai and weight qai to the edge (ai, ai + 1). Then every matching in this
graph (a collection of vertex-disjoint edges) acquires a weight equal to the product
of weights of its edges multiplied by the weights of remaining vertices. The sum of
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these weights, for all matchings, is the quantization of the monomial xa . A similar
rule for computing the inverse (“dequantization”) image Xa1Xa2 · · · (1) of a square-
free monomial xa can be obtained using Möbius inversion. The only difference from
the quantization rule is in replacing each qi by −qi .

12. Explicit computation

12.1. Gröbner bases. Recall that Lqn denotes the space, complementary to the
ideal Iqn , which is spanned (over Z[q]) by the monomials xa1

1 · · ·xan−1

n−1 satisfying
0 ≤ ak ≤ n − k. Another basis of Lqn is formed by the quantum Schubert poly-
nomials Sq

w , for w ∈ Sn (see Proposition 3.7). The problem of finding the unique
representative in Lqn of a given coset modulo Iqn can be solved using Gröbner bases
techniques. We refer the reader to [29, Chapter 1], which contains all definitions
and facts that we will need from the theory of Gröbner bases.

Let us use the degree lexicographic order, induced from x1 ≺ x2 ≺ · · · ≺ xn , on
the set of all monomials xa1

1 · · ·xann . More precisely, we first order the monomials
by the total degree a1 + · · · + an , and then break the ties using the lexicographic
order on the sequences (an, . . . , a1). This allows us to introduce the normal form
of any polynomial with respect to the ideal Iqn and the monomial order specified
above. This normal form can be found by means of a reduction procedure versus
the corresponding reduced Gröbner basis G of Iqn . The following direct description
of this Gröbner basis and the space of normal forms can be viewed as the quantum
analogue of [29, Theorem 1.2.7].

Proposition 12.1. The vector space Lqn is the space of normal forms for the ideal
Iqn ⊂ Z[q, x] with respect to the degree lexicographic monomial order defined above.

The corresponding reduced Gröbner basis G consists of the quantum complete
homogeneous polynomials Hn+1−k

k , k = 1, . . . , n (see Theorem 11.2).

Proof. We already know that each coset modulo Iqn contains a unique representative
from Lqn . Let us show that any monomial outside Lqn is congruent modulo Iqn to
a sum of smaller monomials. Assume xa = xa1

1 · · ·xann /∈ Lqn , which means that
ak > n − k for some k. Then, by Lemma 11.1, hkak ∈ In , implying Hk

ak
∈ Iqn .

Note that xakk is the largest monomial in the expansion of Hk
ak . Hence xakk can be

written, modulo Iqn , as a linear combination of smaller monomials. Multiplying by
all the xaii with i 6= k, we obtain the desired expansion of xa into smaller terms.

The description of the Gröbner basis G is then derived from the following two
facts: (i) the monomials outside Lqn are exactly those divisible by some monomial

of the form xkn+1−k , and (ii) a leading monomial of Hn+1−k
k is xkn+1−k .

To illustrate, for n = 3 the space of normal forms is the Z[q1, q2]-span of the
monomials 1, x1, x

2
1, x2, x1x2, x

2
1x2 . The reduced minimal Gröbner basis for Iq3

consists of

H3
1 = x1 + x2 + x3 ,

H2
2 = x2

1 + x1x2 + x2
2 − q1 − q2 ,

and

H1
3 = x3

1 − 2x1q1 − x2q1 .
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12.2. Computing the Gromov-Witten invariants. Since the quantum Schu-
bert polynomials Sq

w represent Schubert classes, the structure constants of the
ring Z[q, x]/Iqn with respect to the basis {Sq

w} are the generating functions for the
Gromov-Witten invariants 〈σu, σv, σw〉d of the flag manifold (cf. (2.14)). Actually,
(2.14) generalizes to

σw1 ∗ · · · ∗ σwk
=
∑
w∈Sn

∑
d

qd 〈σw, σw1 , . . . , σwk
〉d σwow(12.1)

(see, e.g., [7]). This formula allows us to compute k-point Gromov-Witten invariants
for an arbitrary k.

Corollary 12.2. For any w1, . . . , wk ∈ Sn ,

〈〈Sq
w1
· · ·Sq

wk
〉〉 =

∑
d

qd〈σw1 , . . . , σwk
〉d .(12.2)

Proof. This is a consequence of (12.1) and the orthogonality property (3.9).

Combining (12.2) with Corollary 5.9, we obtain the following formula for the
generating function of the Gromov-Witten invariants.

Corollary 12.3. For any w1, . . . , wk ∈ Sn ,

∑
d

qd〈σw1 , . . . , σwk
〉d =

〈∏
j

Sq
wj

(X1, . . . ,Xn−1)

 (1)

〉
,(12.3)

where 〈f〉 denotes the constant term of ∂wo(f) (cf. (2.7) and(2.8)).

An efficient alternative to the last formula is provided by a method described
below, which is based on the Gröbner bases techniques developed in Section 12.1.

Corollary 12.4. The expansion of an element F ∈ Z[q, x]/Iqn in the basis of cosets
of quantum Schubert polynomials Sq

w , w ∈ Sn , is given by F =
∑
cwSq

w mod Iqn ,
where each cw is the coefficient of the staircase monomial xδ = xn−1

1 xn−2
2 · · ·xn−1

in the normal form of the polynomial FSq
wow with respect to the degree lexicographic

monomial order described in Section 12.1.

Proof. In view of Theorem 3.9, cw is equal to the coefficient of Sq
wo

in the expansion
of FSq

wow . By Proposition 12.1, the normal form of FSq
wow lies in Lqn , and the

coefficient of Sq
wo

in its expansion in the basis of quantum Schubert polynomials is

equal to the coefficient of xδ .

Theorem 12.5. A Gromov-Witten invariant 〈σw1 , . . . , σwk
〉d of the flag manifold

is the coefficient of the monomial qd xδ in the normal form, with respect to the
degree lexicographic order induced from x1 ≺ x2 ≺ x3 ≺ · · · , of the product of
quantum Schubert polynomials Sq

w1
· · ·Sq

wk
. This normal form can be found using

the reduction procedure versus the Gröbner basis G = {Hn
1 , H

n−1
2 , . . . , H2

n−1, H
1
n}.

Proof. The proof follows from Corollaries 12.2 and 12.4 and Proposition 12.1.
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We remark that it is usually more efficient to alternate normal form reduction
with multiplication by Sq

w1
, Sq

w2
, . . . .

The cases k = 1, 2 of Theorem 12.5 are not so interesting, since the only non-
vanishing values are 〈σwo〉(0,...,0) = 1 and 〈σu , σwou〉(0,...,0) = 1, for any u ∈ Sn .
The case k = 3 is nontrivial and actually determines all other invariants, because
of the associativity property of quantum multiplication. Theorem 12.5 provides a
method to directly calculate the invariants 〈σw1 , . . . , σwk

〉d for arbitrary k, avoiding
the use of associativity. For example—just to show the practical efficiency of the
algorithms—one has, in Fl4 , 〈σwo , . . . , σwo︸ ︷︷ ︸

17

〉(15,19,14) = 385056 .

13. Gromov-Witten invariants for Fl3 and Fl4

Using the method of Theorem 12.5, we calculated all 3-point Gromov-Witten
invariants 〈σu, σv, σw〉d for the flag manifolds Fl3 and Fl4 . The results are given
in Tables 1 and 2, respectively. Since 〈σu , σv , σw〉d is invariant under permuting u,
v, and w, each relevant unordered triple (u, v, w) is listed only once. In view of the
definition (2.14) of the quantum product, Tables 1 and 2 contain all information
needed to construct the multiplication tables for QH(Fl3 ,Z) and QH(Fl4 ,Z). For
example, we have σs1 ∗ σw0 = q1σs1s2 + q1q2 , which is a particular instance of
the quantum Monk’s formula (1.8). Table 1 agrees with the data obtained by
P. di Francesco and C. Itzykson [10, Section 3.5] by a direct computation based on
the original geometric definition.

For each triple u, v, w ∈ S4 , Table 2 provides reduced words for u, v, and w, and
gives the polynomial

∑
d q

d 〈σu, σv, σw〉d unless it equals 0. For instance, the row

u v w
21 2132 1321 q1q2

in the table refers to the permutations u = s2s1 , v = s2s1s3s2 , and w = s1s3s2s1 ,
and should be understood as saying that the only nonvanishing Gromov-Witten
invariant 〈σu, σv, σw〉d , for these u, v, and w, is 〈σu, σv, σw〉(1,1,0) = 1 .

Table 1. 3-point Gromov-Witten invariants for Fl3

u v w
∑

d q
d 〈σu, σv, σw〉d

1 1 w0 1
1 s1 s1 s2 1
1 s2 s2 s1 1
s1 s1 s2 1
s1 s2 s2 1
s1 s1 w0 q1
s1 s2 s1 s2 s1 q1
s2 s2 w0 q2
s2 s1 s2 s1 s2 q2
s1 w0 w0 q1q2
s2 w0 w0 q1q2
s1 s2 s2 s1 w0 q1q2
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Table 2. 3-point Gromov-Witten invariants for Fl4

u v w
φ φ 123121 1
φ 1 12312 1
φ 2 12321 1
φ 3 21321 1
φ 12 1231 1
φ 21 1232 1
φ 13 2132 1
φ 23 1321 1
φ 32 2321 1
φ 123 121 1
φ 132 213 1
φ 321 232 1
1 1 1232 1
1 1 123121 q1
1 2 1231 1
1 2 1232 1
1 3 2132 1
1 12 123 1
1 21 232 1
1 21 12321 q1
1 13 132 1
1 13 232 1
1 13 21321 q1
1 23 121 1
1 23 132 1
1 32 213 1
1 32 232 1
1 121 1231 q1
1 121 123121 q1q2
1 213 1321 q1
1 321 2321 q1
1 1321 21321 q1q2
1 12321 123121 q1q2q3
2 2 1231 1
2 2 2321 1
2 2 123121 q2
2 3 1321 1
2 3 2321 1
2 12 213 1
2 12 12312 q2
2 21 123 1
2 21 232 1
2 13 121 1
2 13 132 1

u v w
2 13 213 1
2 13 232 1
2 23 121 1
2 23 321 1
2 32 213 1
2 32 21321 q2
2 121 1232 q2
2 121 123121 q1q2
2 132 2132 q2
2 232 1321 q2
2 232 123121 q2q3
2 1232 12312 q2q3
2 1321 21321 q1q2
2 12321 123121 q1q2q3
3 3 1321 1
3 3 123121 q3
3 12 121 1
3 12 213 1
3 21 132 1
3 21 232 1
3 13 121 1
3 13 132 1
3 13 12312 q3
3 23 121 1
3 23 12321 q3
3 32 321 1
3 123 1231 q3
3 213 1232 q3
3 232 2321 q3
3 232 123121 q2q3
3 1232 12312 q2q3
3 12321 123121 q1q2q3
12 12 13 1
12 12 1232 q2
12 21 23 1
12 21 123121 q1q2
12 13 13 1
12 13 23 1
12 32 2132 q2
12 121 232 q2
12 121 12321 q1q2
12 132 132 q2
12 132 232 q2
12 321 21321 q1q2
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u v w
12 232 12312 q2q3
12 1232 1232 q2q3
12 1321 1321 q1q2
12 1321 2321 q1q2
12 2321 123121 q1q2q3
12 12321 12321 q1q2q3
12 123121 123121 q1q

2
2q3

21 21 1231 q1
21 21 2321 q1
21 13 32 1
21 13 1321 q1
21 13 2321 q1
21 23 32 1
21 121 213 q1
21 121 12312 q1q2
21 121 21321 q1q2
21 132 21321 q1q2
21 213 321 q1
21 1231 123121 q1q2q3
21 1232 123121 q1q2q3
21 2132 1321 q1q2
21 12312 12321 q1q2q3
13 13 32 1
13 13 1232 q3
13 13 1321 q1
13 13 123121 q1q3
13 23 1231 q3
13 23 1232 q3
13 32 32 1
13 123 123 q3
13 121 121 q1
13 121 213 q1
13 121 21321 q1q2
13 213 232 q3
13 213 12321 q1q3
13 321 321 q1
13 232 232 q3
13 232 12312 q2q3
13 1231 1231 q1q3
13 1231 123121 q1q2q3
13 1232 1232 q2q3
13 1232 123121 q1q2q3
13 1321 1321 q1q2
13 1321 123121 q1q2q3
13 2321 2321 q1q3
13 2321 123121 q1q2q3

u v w
13 12312 12321 q1q2q3
13 12321 21321 q1q2q3
23 23 1231 q3
23 23 2321 q3
23 32 123121 q2q3
23 123 213 q3
23 132 12312 q2q3
23 213 232 q3
23 232 12312 q2q3
23 232 21321 q2q3
23 1232 2132 q2q3
23 1321 123121 q1q2q3
23 2321 123121 q1q2q3
23 12321 21321 q1q2q3
32 32 1321 q2
32 123 12312 q2q3
32 121 132 q2
32 121 232 q2
32 121 21321 q1q2
32 132 132 q2
32 232 12321 q2q3
32 1231 1232 q2q3
32 1231 123121 q1q2q3
32 1232 1232 q2q3
32 1321 1321 q1q2
32 12321 12321 q1q2q3
32 123121 123121 q1q

2
2q3

123 132 1232 q2q3
123 321 123121 q1q2q3
123 232 2132 q2q3
123 1321 12321 q1q2q3
123 2321 21321 q1q2q3
121 121 1231 q1q2
121 121 1232 q1q2
121 121 1321 q1q2
121 121 2321 q1q2
121 132 1321 q1q2
121 132 2321 q1q2
121 213 1321 q1q2
121 213 123121 q1q2q3
121 321 2132 q1q2
121 232 1232 q2q3
121 232 1321 q1q2
121 232 123121 q1q2q3
121 1231 12321 q1q2q3
121 1232 12321 q1q2q3
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u v w
121 2321 12312 q1q2q3
121 12312 123121 q1q

2
2q3

132 213 123121 q1q2q3
132 321 1321 q1q2
132 232 1231 q2q3
132 232 1232 q2q3
132 1231 12321 q1q2q3
132 2321 12321 q1q2q3
132 12312 123121 q1q

2
2q3

132 21321 123121 q1q
2
2q3

213 213 1231 q1q3
213 213 2321 q1q3
213 213 123121 q1q2q3
213 232 1232 q2q3
213 232 123121 q1q2q3
213 1231 21321 q1q2q3
213 1232 21321 q1q2q3
213 2132 12321 q1q2q3
213 1321 12312 q1q2q3
213 2321 12312 q1q2q3
321 1231 12312 q1q2q3
321 1232 12321 q1q2q3
232 232 1231 q2q3

u v w
232 232 1232 q2q3
232 232 1321 q2q3
232 232 2321 q2q3
232 1231 21321 q1q2q3
232 1321 12321 q1q2q3
232 2321 12321 q1q2q3
232 21321 123121 q1q

2
2q3

1231 1231 1321 q1q2q3
1231 1232 1321 q1q2q3
1231 2132 2321 q1q2q3
1232 1321 2321 q1q2q3
1232 1321 123121 q1q

2
2q3

1232 2321 2321 q1q2q3
1232 21321 21321 q1q

2
2q3

1232 123121 123121 q1q
2
2q

2
3

2132 2132 123121 q1q
2
2q3

2132 12312 21321 q1q
2
2q3

1321 12312 12312 q1q
2
2q3

1321 123121 123121 q21q
2
2q3

12312 12312 123121 q1q
2
2q

2
3

21321 21321 123121 q21q
2
2q3

123121 123121 123121 q21q
2
2q

2
3

14. Tables of quantum Schubert polynomials

n = 2

w red.word Sw Sq
w

12 φ e0 1
21 1 e1 x1

n = 3

w red.word Sw Sq
w

123 φ e00 1
213 1 e10 x1

132 2 e01 x1 + x2

231 12 e02 x1x2 + q1
312 21 e11 − e02 x2

1 − q1
321 121 e12 x1(x1x2 + q1)
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n = 4

w red.word Sw Sq
w

1234 φ e000 1
2134 1 e100 x1

1324 2 e010 x1 + x2

1243 3 e001 x1 + x2 + x3

2314 12 e020 x1x2 + q1
3124 21 e110 − e020 x2

1 − q1
2143 13 e101 x1(x1 + x2 + x3)
1342 23 e002 x1x2 + x1x3 + x2x3 + q1 + q2
1423 32 e011 − e002 x2

1 + x1x2 + x2
2 − q1 − q2

2341 123 e003 x1x2x3 + q1x3 + q2x1

3214 121 e120 x1(x1x2 + q1)
2413 132 e021 − e003 x2

1x2 + x1x
2
2 + q1x1 + q1x2 − q2x1

3142 213 e102 − e003 x2
1x2 + x2

1x3 + q1x1 − q1x3

4123 321 e111 − e021 x3
1 − 2q1x1 − q1x2

− e021 + e003
1432 232 e012 − e003 x2

1x2 + x2
1x3 + x1x

2
2 + x1x2x3 + x2

2x3

+ q1x1 + q1x2 − q1x3 + q2x2

3241 1231 e103 x1(x1x2x3 + q1x3 + q2x1)
2431 1232 e013 (x1 + x2)(x1x2x3 + q1x3 + q2x1)
3412 2132 e022 − e013 x2

1x
2
2 + 2q1x1x2 − q2x

2
1 + q21 + q1q2

4213 1321 e121 − e022 x3
1x2 + q1x

2
1 − q1x1x2 − q21 − q1q2

+ e013 − e103
4132 2321 e112 − e022 − e103 x3

1x2 + x3
1x3 + q1x

2
1 − q1x1x2

− 2q1x1x3 − q1x2x3 − q21 − q1q2
3421 12312 e023 (x1x2 + q1)(x1x2x3 + q1x3 + q2x1)
4231 12321 e113 − e023 (x2

1 − q1)(x1x2x3 + q1x3 + q2x1)
4312 21321 e122 − e113 x1(x

2
1x

2
2 + 2q1x1x2 − q2x

2
1 + q21 + q1q2)

4321 123121 e123 x1(x1x2 + q1)(x1x2x3 + q1x3 + q2x1)
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