Available online at www.sciencedirect.com

Cﬁ ADVANCES IN
SGIENCEC DIRECT®

Applied

Mathematics

ELSEVIER Advances in Applied Mathematics 34 (2005) 447-466 -
www.elsevier.com/locate/lyaama

Smoothness of Schubert varieties
via patterns in root subsystems

Sara Billey***, Alexander Postniko%?
@ Department of Mathematics, University of Washington, Seattle, WA, USA
b Department of Mathematics, MIT, Cambridge, MA 02139, USA
Received 2 June 2004; accepted 12 August 2004
Available online 21 December 2004

Abstract

The aim of this article is to present a smoothness criterion for Schubert varieties in generalized
flag manifoldsG/ B in terms of patterns in root systems. We generalize Lakshmibai—Sandhya’s well-
known result that says that a Schubert variet$i) / B is smooth if and only if the corresponding
permutation avoids the patterns 3412 and 4231. Our criterion is formulated uniformly in general Lie
theoretic terms. We define a notion of pattern in Weyl group elements and show that a Schubert va-
riety is smooth (or rationally smooth) if and only if the corresponding element of the Weyl group
avoids a certain finite list of patterns. These forbidden patterns live only in root subsystems with
star-shaped Dynkin diagrams. In the simply-laced case the list of forbidden patterns is especially
simple: besides two patterns of tydg that appear in Lakshmibai—Sandhya’s criterion we only need
one additional forbidden pattern of ty@#,. In terms of these patterns, the only difference between
smoothness and rational smoothness is a single pattern inByyp@emarkably, several other im-
portant classes of elements in Weyl groups can also be described in terms of forbidden patterns.
For example, the fully commutative elements in Weyl groups have such a characterization. In or-
der to prove our criterion we used several known results for the classical types. For the exceptional
types, our proof is based on computer verifications. In order to conduct such a verification for the
computationally challenging typEg, we derived several general results on Poincaré polynomials of
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cohomology rings of Schubert varieties based on parabolic decomposition, which have an indepen-
dent interest.
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let G be a semisimple simply-connected complex Lie group &nlde a Borel sub-
group. The generalized flag manifofd/ B decomposes into a disjoint union $thubert
cells BwB/ B, labeled by elements of the corresponding Weyl grouy’. The Schubert
varieties X,, = BwB/B are the closures of the Schubert cells. A classical question of
Schubert calculus igzor which elements in the Weyl group, is the Schubert variety
X smoott?

This question has a particularly nice answer &r= SL(n). In this case the Weyl
group is the symmetric groupy = §,, of permutations of: letters. For a permutation
w=wiw2---w, N S, and another permutation = g102---0} In S, with k < n, we
say thatw contains the patterw if there is a sequenced p; < --- < pr < n such that
Wp, > Wp, if and only if o; > o; for all 1 <i < j < k. In other words,w contains the
patterno if there is a subsequence inof sizek with the same relative order of elements
asino. If w does not contain the pattesn then we say that avoids the pattere.

Theorem 1.1 (Lakshmibai—Sandhya [19]fFor a permutatiornw € S,,, the Schubert variety
X, in SL(n)/B is smooth if and only ifv avoids the pattern8412and4231

There are several general approaches to determining smoothness of Schubert varieties.
See Billey and Lakshmibai [6] for a survey of known results. Kazhdan and Lusztig defined
a weaker condition calledhtional smoothnesdRational smoothness can be interpreted in
terms of Kazhdan-Lusztig polynomials [15,16]. A Schubert variety is rationally smooth
whenever certain Kazhdan—-Lusztig polynomials are trivial. Kumar [18] presented smooth-
ness and rational smoothness criteria in terms of the nil Hecke ring, defined in [17]. There
are many other results due to Carrell, Peterson, and other authors related to (rational)
smoothness of the Schubert varieties. For example, according to a result of D. Peterson, see
Carrell and Kuttler [9], smoothness of Schubert varieties is equivalent to rational smooth-
ness in the case of a simply-laced root system. Nevertheless none of these general criteria
give a simple efficient nonrecursive method (such as the Lakshmibai—Sandhya criterion)
for determining if a given Schubert variety is smooth or not. Recently, Billey [1] presented
analogues of Lakshmibai—Sandhya’s theorem, for all classical yp&s,, andD,,. How-
ever, these constructions, including the definitions of patterns, depend on a particular way
to represent elements in classical Weyl groups as signed permutations.

The main goals of this paper are to present a uniform approach to pattern avoidance in
general terms of root systems and to extend the Lakshmibai—Sandhya criterion to the case
of an arbitrary semisimple Lie grou@. This approach using root subsystems will be de-
scribed in the next section. Theorem 2.2 gives a polynomial time algorithm for determining
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smoothness and rational smoothness of Schubert varietiesBnin terms of root subsys-

tems. As a consequence of the main theorem, we get two additional criteria for (rational)
smoothness in terms of root systems embeddings and double parabolic factorizations (see
Theorems 3.1 and 6.2).

Based on the ideas of root subsystems presented in this work, Braden and the first au-
thor [3] refined this notion and gave a lower bound for the Kazhdan—Lusztig polynomials
evaluated ay = 1 in terms of patterns. They also introduce a geometrical construction
which identifies “pattern Schubert varieties” as torus fixed point components inside larger
Schubert varieties. This can be used to give another proof of one direction of our main
theorem. However, due to a delay in publication, those results will appear first.

In Section 2, we formulate our smoothness criterion and describe the minimal lists of
patterns needed to identify singular (rationally singular) Schubert varieties. In Section 3,
we present a computational improvement using root system embeddings that reduces the
minimal lists to just 4 patterns (3 patterns) for (rational) smoothness test. The difference
between smoothness and rational smoothness is exhibited in the presence or absence of
rank 2 patterns. The connection to fully commutative elements is described in Section 4. In
Section 5, we recall several known characterizations of smoothness and rational smooth-
ness from the literature which we will use in the proof of the main theorem. In Section 6, we
reformulate our main result in terms of parabolic subgroups. Then we prove two statements
on parabolic decomposition which will be used in the proof of Theorem 2.2, including The-
orem 6.4 which gives a criterion for factoring Poincaré polynomials of Schubert varieties.

In Section 7, we give the details of the proof of the main theorem.

2. Root subsystems and the main results

As before, letG be a semisimple simply-connected complex Lie group with a fixed
Borel subgroupB. Let h be the Cartan subalgebra corresponding to a maximal torus con-
tained inB. Let @ € h* be the corresponding root system, andWet= Wy be its Weyl
group. The choice oB determines the subseét, C @ of positive roots. The fact that a
Schubert variet)X,,, w € W, in G/B is smooth (or rationally smooth) depends only on the
pair (1, w). We call such a pairrétionally) smoothwhenever the corresponding Schu-
bert variety is (rationally) smooth. Thiaversion sebf an elementw in the Weyl group
We is defined by

lp(w) =P Nw(P-),

where®_ = {—«a | @ € &} is the set of negative roots.
The following properties of inversion sets are well known, see [7, 81, no. 6].

Lemma 2.1. The inversion sefy (w) uniquely determines the Weyl group element
We . Furthermore, a subsdt C @ in the set of positive roots is the inversion gg{(w)
for somew if and only if there exist a linear formh on the vector spacé* such that
I ={oce®y|h(x)>0}.

A root subsystenof @ is a subset of rootgl C @ which is equal to the intersection
of @ with a vector subspace. Clearly, a root subsyst&rs a root system itself in the
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subspace spanned ky, see [7, 81, no. 1]. It comes with the natural choice of positive
rootsAy =AN@,.

By Lemma 2.1, for anyw € Wg and any root subsystem C &, the set of roots
I (w) N A is the inversion sefs (o) for a unique element € W, in the Weyl group
of A. Let us define thdlattening mapfa: Wy — W4 by setting f4 (w) = o whereo is
determined by its inversion séf (o) = I (w) N A.

Recall that a graph is calledstar if it is connected and it contains a vertex incident
with all edges. Let us say that a root systenis stellar if its Dynkin diagram is a star and
A is not of typeAs or Ap. For example B3 is stellar butFy is not. Our first analogue of
the Lakshmibai—Sandhya criterion can be formulated as follows. See also Theorems 2.3,
2.4,3.1and 6.2.

Theorem 2.2. Let G be any semisimple simply-connected Lie graBiie any Borel sub-
group, with corresponding root systedn and Weyl groupW = Wg. For w € W, the
Schubert varietyX,, € G/B is smooth(rationally smooth if and only if, for every stel-
lar root subsystem in @, the pair(A., fa(w)) is smoothrationally smooth.

The proof of Theorem 2.2 appears in Section 7Alfis a root subsystem i@ and
o = fa(w), then we say that the elemantin Wg contains the patterqa ., o). It follows
from Theorem 2.2 that an elementlif, containing a non-smooth (non-rationally-smooth)
pattern is also non-smooth (non-rationally-smooth). Another explanation of this fact for
rational smoothness based on intersection homology can be found in the work of Billey
and Braden [3] mentioned above.

Let us say that an elementavoids the patteriA, o) if w does not contain a pattern
isomorphic to(A,, o). Clearly, Theorem 2.2 implies that the set of (rationally) smooth
elementsv € Wg can be described as the set of all elemantsat avoid patterns of several
types. Since there are finitely many types of stellar root systems, the list of forbidden
patterns is also finite.

Actually, the list of stellar root systems is relatively smadlp, G2, Az, B3, C3, andDj.

Figure 1 shows their Dynkin diagrams labeled according to standard conventions from [7].

In order to use Theorem 2.2 as a (rational) smoothness test we need to know all non-
smooth and non-rationally-smooth elements in the Weyl groups with stellar root systems.

The following table gives the numbers of such elements.

stellar type B> Go A3z B3 C3 Dy
non-smooth elements 1 5 2 20 20 49
non-rationally-smooth elements 0 0 2 14 14 49

There are several things to notice about the table. In the simply-laced £ases D4
the numbers of non-smooth and non-rationally-smooth elements coincide. The rationally
smooth elements iB, are exactly the same as the rationally smooth elemerds.ifThis
explains why the number 14 appears in b&hand C3 cases. Note that in general the
number of non-smooth elements#) is not equal to the number of non-smooth elements
in C,,. For examples, we have 268 non-smooth elements iBitoase and 270 non-smooth
elements in th&, case.
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1 2 1 2 3 1 2 3
Gy = oe=o B3 = o—o=0 C3 = o—o<o0

Fig. 1. Dynkin diagrams of stellar root systems.

There are exactly two non-smooth elements of tyyae—they correspond to the two
forbidden patterns that appear Lakshmibai—Sandhya’s criterion. Although there are 49 non-
smooth elements of typBg, only one (!) of these 49 elements contains no forbidden
patterns. These three patterns (two of tyfaeand one of typeD,) are all patterns that are
needed in the case of a simply-laced root systariD(-E case).

For all stellar types, lets, s2, ... be the simple reflections generating the corresponding
Weyl groups labeled as shown on Fig. 1. Thus in bathand D4 cases the reflection
s2 corresponds to the central node of the corresponding Dynkin diagram. We will write
elements of corresponding Weyl groups as products of the genesators

Theorem 2.3. Suppose tha® is a simply-laced root system. Then the Schubert variety
Xy, w € Wg, is smooth if and only ifv avoids the following three patternsvo patterns

of typeAs given by the elementssiszsz andsisaszszs1 and one pattern of typ®4 given

by the elementys1s3s452.

Remark that, D. Peterson has shown (unpublished, see Carrell and Kuttler [9]) that in
the simply-laced case a Schubert variety is smooth if and only if it is rationally smooth.
Thus in the previous claim we can replace the word “smooth” by the phrase “rationally
smooth.”

For the case of arbitrary root systems (including non-simply-laced ones), we need to
list forbidden patterns of typeBy, G2, B3, andCs. The only non-smooth element 6%
is s2s152. The non-smooth elements of tyge are the 5 elements in the interval in the
Bruhat order{s1s2s1, wol (wo is excluded), wherev, is the longest Weyl group element
for type Go. There are also 6 non-smooth elements of tBp@nd 6 non-smooth elements
of type C3 that contain no forbidde®; patterns. The following theorem summarizes this
data and gives the minimal list of patterns for the smoothness test.

We will write [a, b, ..., c] to denote the collection of words 4, b, ..., c. We concate-
nate this collection with another word as followsg;, b, c]d is a shorthand for the four
wordsd, ad, bd, cd.

Theorem 2.4. Let @ be an arbitrary root system. The Schubert vari&ty, w € Wg, is
smooth if and only ifv avoids the patterns listed in the following table

stellar type forbidden patterns # patterns
By 528152 1
Go [s2]ls15281[52], $152515251 5
A3z §2515352, §152535251 2
B3 $2515352, $152535251[53, $352, $253, $25352] 6
C3 [s3]52515352[53], 352515253, §152535251535253 6
Dy 5251535452 1
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All Weyl group elements for the type® andG» are rationally smooth. Thus we can ig-
nore all root subsystems of these types in rational smoothness test. Rational smoothness can
be defined in terms of Kazhdan—Lusztig polynomials that depend only on the Weyl group.
The Weyl groups of type®s and C3 are isomorphic. Thus the lists of non-rationally-
smooth elements are identical in these two cases. The following theorem presents these
lists.

Theorem 2.5. Let @ be an arbitrary root system. The Schubert vari&ty, w € W, is
rationally smooth if and only ifv avoids the patterns listed in the following table

stellar type forbidden patterns # patterns
A3z 52515352, §152535251 2
B3=C3 [s3]s2515352[53], [s2]s352515253[52], 14
$152535251[53, 5253, 5352, 525352, $35253]
Dy 5251535452 1

A quick glance on the tables in Theorems 2.4 and 2.5 reveals that the lists of forbidden
patterns for non-simply-laced cases are longer than the list of three simply-laced forbidden
patterns. In Section 3 we show how to reduce the list patterns above to just the forbidden
patterns of types82, A3, D4 using embeddings of root systems.

3. Root system embeddings

In this section, we present an alternative notion of pattern avoidance in terms of em-
bedded root systems. Again we can characterize smoothness and rational smoothness of
Schubert varieties. The key advantage of this approach is that we reduce the minimal num-
ber of patterns to just 3 for rational smoothness and 4 for smoothness. While we believe
this approach is useful for computational purposes, we suspect root subsystems are better
for geometrical considerations.

Let @ and A be two root systems in the vectors spa¢eésind V, respectively. An
embeddingf A into @ isamape: A — @ that extends to an injective linear mép— V.

For example, any three positive roaisg, y € @, define anAsz-embedding whenever
a+B,B+yanda+ p+yarealling,.

Note that inner products are not necessarily preserved by embeddings as they are with
root subsystems. Also note that every root subsystein @ gives an embedding oft
into @, but it is not true that all embeddings come from root subsystems. It is possible that
A embeds intap but the linear span af(A) in @ contains some additional roots. Never-
theless, in the simply-laced case this can never happen. For simply-laced root systems, the
notions of root subsystems and embeddings are essentially equivalent.

We will say that ak-tuple of positive rootgps, ..., Br) in @, gives aB-embedding
Asz-embeddingor Ds-embeddingf these vectors are the images of the simple roots in
A for an embeddingdA — @ with A of type Ba, Az, or D4, respectively. For example,
B2>-embeddings are given by pairs of positive rogs, S2) such that both vectors;, + g2
and g1 + 28> belong to®,.. Also Az-embeddingsre given by triples of positive roots
(B1, B2, B3) such that all vectorgs + B2, B2 + B3, andp1 + B2 + B3 are roots ind,..
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Bas
Bs-embedding: Asz-embedding;:
B1 + 2 b1+ 262
P e————o——eo——0 [ B13 B24
By and B + 20 are long roots Bia
B12 B34

[B1 + B2 and B are short roots
P12 = P1, P23 = P2, P3a = Ps,
B13 = P1 + B2, P2a = P2+ B3,
Bra = B1+ B2+ B3

Fig. 2. Bo- and A3-embeddings.

Figure 2 illustratesB,- and Az-embeddings. The vertices on the figure correspond to the
positive roots in the image of the embedding. Here we usgd-al)-dimensional picture
in order to represent collections bfdimensional vectors. The vertices on the figure are the
intersections of the lines generated by the roots with a certain affine hyperplane. Therefore,
inversion sets are determined by half planes in these pictures. A similar 3-dimensional
figure can be constructed fdp,. Egon Schulte pointed out [22] that the figure can be
obtained by projecting 12 vertices of the regular 24-cell onto a tetrahedron spanned by
4 vertices of the 24-cell. In fact, it can be viewed as a model in projective 3-space, and then
it is actually related to the half-24-cell.

The set of positive root®, in @ and the embedding determines the set of positive
roots Ay = e 1(®,) in A. We can extend the definition of the flattening map to em-
beddings of root systems. For an embeddingt — @, let us define thdlattening map
fe:We — W4 by settingf.(w) = o, if the inversion set ofv pulls back to the inversion
set ofo, i.e., Ia(0) = e 1(Ip(w)). According to Lemma 2.1, the elementis uniquely
defined.

There are fiveAs-embeddings into a root systedh of type Bz and seven intap of
type C3. Among these twelve embeddings, five are necessary to classify rationally singular
Schubert varieties and three of these embeddings lead to false positive classifications of
rationally smooth elements iiW¢,. Therefore, we introduce the following definition in
order to eliminate the false conditions. For an embedding — @, let A c & be the root
subsystem i spanned by the imag€A). We say that an embeddiagA — @ is proper
if either A is not of typeB3, C3 or A is of type Bz, C3 and there exists &,-embedding
¢: By, — A such that

(1) If B2 has basig1, B2, thene(B1 + B2) = e(w;) for some simple rook; € A.

(2) We haves1(e(A)) = I, (s2s152) = {B1 + B2, B1 + 282, B2}. In words, the image
of the Bo-embedding intersects the image of theembedding in exactly three roots
which correspond to the inversion set of the unique singular Schubert vaTriety; s2)
of type B.

The root systems83 andC3 each have threB;-embeddings and each of these embeddings
corresponds to exactly one propgs-embedding.
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For an elementv in the Weyl groupWg, we say thatw contains arembedded pattern
of type Ba, Az, or Dy if there is a proper embeddirg A — @ such that

e By Ais of type B, and f,(w) = s25152;
o A3 AlisoftypeAs and f.(w) = 5152535251 OF fo(w) = 52515352;
e Dy: Alis of type D4 and f,(w) = s251535452.

Recall here that the Coxeter generatgref Weyl groups of typesB,, A3z, and D4 are
labeled as shown on Fig. 1. Note, that the reduced expressions above are all of the form:
central node conjugated by its neighbors or neighbors conjugated by the central node.

Let @V be the root system dual ®. Its Weyl groupWgv is naturally isomorphic to
We. For an elemeniv € Wy, we say thatv contains adual embedded pattemwhenever
the corresponding element Wigv >~ W¢ contains an embedded pattern given by a proper
embedding:: A — @V.

Theorem 3.1. Let G be any semisimple simply-connected Lie graBe any Borel sub-
group, with corresponding root systemand Weyl groupV = W .

(1) For w € W, the Schubert variety,, is rationally smooth if and only ifv has no
embedded patterns or dual embedded patterns of t4pes Dg.

(2) For w € Wy, the Schubert variet¥,, is smooth if and only ifv has neither embedded
patterns of type®,, A3, or D4, nor dual embedded patterns of typésor Dg.

Note that, the element, corresponding to a smooth Schubert varigty, may contain
dual embedded patterns of type. Thus smoothness of Schubert varieties, unlike rational
smoothness, is not invariant with respect to duality of root system.

Proof. Any B>, A3, or D4-embedding spans a root subsystem whose rank must be at
most 4. Therefore, this theorem follows directly from Theorem 2.2 by checking all root
systems of rank at most 4.0

We mention one more computational simplification in applying Theorem 3.1. For any
w € Wg, there exists a hyperplane that separates the sets offgpats and® . \ Iy (w).
Figure 3 illustrates embedded patterns of typesand As. It is easy to see that each of
these inversion sets is determined by a half plane. The black ver#tesfrespond to the
roots in the inversion sdt; (w) and the white vertices3” correspond to the roots outside
the inversion sefg (w).

Therefore, in order to search for embedded patterns/fof typesB,, Az and D4 we
only need to look for pairs, triple or quadruples of the following forms:

B>: A pair of positive rootq 81, 82) which forms the basis of 8>-embedding such that
B1¢ 1o (w) andpy + B2 € 1o (w).

Agz: Atriple of positive rootg81, B2, 83) which forms the basis ofgroper Az-embedding
such that (1)812, B34 ¢ 1o (w) and 14 € Ip (w); or (2) B2z ¢ 1o (w) andB1s, Bos €
Iy (w);
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B+ B2 B1 + 262
B O ® ® ® (2

B23 B23

B13 B24 B13 Baa

Br2 © Bsa B2 B34

Fig. 3. Forbidden embedded patterns of typesand A3.

D4: A 4-tuple of positive rootgp1, B2, B3, Ba) which forms the basis of 84-embedding
such thaps +2B2+ B3+ B4 € o (w) andpi+ o+ B3, B1+ B2+ P4, P2+ B3+ Pa ¢
Ip (w).

4. Other elements characterized by pattern avoidance

In a series of papers (see [11,23,24] and reference wherein), Fan and Stembridge have
developed a theory dlilly commutative elemenis arbitrary Coxeter groups. By defini-
tion, an element in a Coxeter group is fully commutative if all its reduced decompositions
can be obtained from each other by using only the Coxeter relations that involve commut-
ing generators.

According to [5] the fully commutative elements in tydeare exactly the permutations
avoiding the pattern 321. In type? and D, Stembridge has shown that the fully com-
mutative elements can again be characterized by pattern avoidance [23, Theorems 5.1 and
10.1].

We note here that fully commutative elements are easily characterized by root subsys-
tems as well. The following is an unpublished theorem originally due to Stembridge [25].

Proposition 4.1. Let W be any Weyl group with corresponding root systenThenw € W

is fully commutative if and only if for every root subsystérof typeA,, Bz, or G2 we have
fa(w) # wé wherew? is the unique longest element ¥f4. In other wordsuw is fully
commutative if and only ifv avoids the patterns given by the longest elements in fank
irreducible root systems.

Remark 4.2. Fan, Stembridge and Kostant also investigabélian elementin Weyl
groups. An elemenb € W is abelian if its inversion set(w) contain no three roots, 3,

anda + 8. Equivalentlyw € W is abelian if the Lie algebran w(b_) is abelian, wheré

is Borel andb_ is opposite Borel algebras. For simply-laced root systems, the set of abelian
elements coincides with the set of fully commutative elements. The set of abelian elements
has a simple characterization in terms of embedded patterns. Indeed, by definiid¥y
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is abelian if and only if there is na,-embedding:: A — @ such that the flattening, (w)
is the longest elementZ of W,.

5. Criteriafor smoothness and rational smoothness

In this section, we summarize the three criteria for smoothness and rational smoothness
we rely on for the proof of Theorem 2.2.

Let a1, ..., o, be the simple roots i and letZ[h] denote the symmetric algebra
generated by, ..., a,. For anyw, v € W such thatw < v, let us definek,, , € Z[h] by
the recurrence

Kyw= 1_[ a forw=v,

aelp(w)
K Kus; v if v<us;,
w,v ;
Kuys; v + (wsia;) Kys; vs; if v> vs;

for v < w and any simple reflectios such thatws; < w. Thenk,, , is a polynomial of
degreef(v) in the simple roots with non-negative integer coefficients. These polynomials
first appeared in the work of Kostant and Kumar [17] on the nil Hecke ring, see [2] for the
recurrence.

Kumar has given very general criteria for smoothness and rational smoothness in terms
of the nil-Hecke ring. Through a series of manipulations which were given in [6], one
can obtain the following statement from Kumar’s theorem for finite Weyl groups. Kumar’s
theorem in full generality applies to the Schubert varieties for any Kac—Moody group.
However we would need to work with rational functions of the roots.

Theorem 5.1 [6,18]. Given anyv, w € W such thatv < w, the Schubert variety,,,, is
smooth at,,,, if and only if

Kpo= [] « 1)

whereZ(w,v) ={a € @11 v £ sqw}.

We can simplify the computations in Theorem 5.1 by evaluating this identity at a well-
chosen point. The modification reduces the problem from checking a polynomial identity
to checking degrees plus a numerical identity. Checking the degrees can be done with a
polynomial time algorithm since this only depends on the number of positive roots.

Lemma 5.2. Letr € h be any regular dominant integral weight, i.e.(r) € N for each
o € ¢,. Given anyv, w € W such thatv < w, the Schubert variet,,,, is smooth at
eww, i and only if

|Zw,v)|=t@) and Ky, = [] a®. 2)

aeZ(w,v)
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Proof. We just need to prove the equivalence of (1) and (2). Dyer [10] has showK jhat
is divisible by [],cz (., o Therefore,Ky, v = [[yez .,y @ if @and only if their quotient
is 1. We can check that the quotient is 1 by checking the degrees are equal

z(u)zdeng,v)zdeg< I1 a>=|2(w,v)]

aeZ(w,v)
(in which case the quotient is a constant) and igt, () = Han(w,v) a(r). O

Remark 5.3. Note, by choosing such thatx(r) is always an integer, we do not have to
consider potential round off errors when checking equality.

Remark 5.4. A Schubert varietyX,, is smooth at every point if and only if it is
smooth atejq. Therefore, we only need to chedk,, ,u,(r) = noteZ(wo,wwo) a(r) when
| Z (wo, wwp)| = £(wwp) Or equivalentlyi{a € & : s, < w}| =£(w).

The next criterion due to Carrell-Peterson is for rational smoothnes8iTihat graph
B(w) for w € W is the graph with verticesc € W: x < w} and edges betweenandy if
x = sqy for somea € @ wheres, is the reflection corresponding &g

Note the Bruhat graph contains the Hasse diagram of the lower order ideal teiow
Bruhat order plus some extra edges. Let

Py(t) =Y 1V,

vw

then P, () is the Poincaré polynomiafor the cohomology ring of the Schubert variety
Xy

Theorem 5.5 [8]. The following are equivalent

(1) X, is rationally smooth at every point.

(2) The Poincaré polynomiab, (1) = 3_, <, 1*") of X,, is symmetridpalindromiq.

(3) The Bruhat graphB(w) is regular of degreé(w), i.e., every vertex i (w) is incident
to ¢(w) edges.

We can relate this theorem to the inversion skisw) using the following simple
lemma, see [7].

Lemma 5.6. Fix a reduced expression, sq, - - - sa, = w € W. Letpa, ..., B, be the simple
roots in®_ . The following sets are all equal to the inversion &gtw):
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1) &, Nw(@).
(2) {@ €Dy sqw < w).
(3) {Slllsdz ) "Sa_,'_llgaj: 1<j<pl

Let us label an edgér, s,x) in B(w) by the roota € @. Then, by Lemma 5.6, the
edges adjacent to in the Bruhat grapiB(w) are labeled by the elements bf (w) so
the degree dda) of the vertexw is £(w). At any other vertexxc < w we know #u <
D sqx < x}=£L(x) so de@x) = £(x) + #a € D41 x < sux < w}. Therefore, we have
the following lemma.

Lemma 5.7. The Bruhat graphB(w) is not regular if and only if there exists an< w
such that

degx) > deqw) <& #H#Haedy|x <syx <w}>L(w)—L(x).

6. Parabolic decomposition

In the first lemma below, we give an alternative characterization of pattern containment
in terms of a parabolic factorization. This leads to an alternative characterization of smooth
and rationally smooth elements in the Weyl group. We also give a method for factoring
some Poincaré polynomials of Schubert varieties.

Fix a subset/ of the simple roots. Letb’ be the root subsystem spanned by roots
in J, and Iet(b_{ =&/ N @, beits set of positive roots. L&Y; be the parabolic subgroup
generated by the simple reflections corresponding .thet W/ be the set of minimal
length coset representatives &1\ W (moding out on the left). In other words,

W/ ={ve W v (a) e &4 foranya € @1} (3)

Every w € W has a unique parabolic decomposition as the product w whereu €
Wy, ve W’ and£(w) = £(u) + £(v), and conversely, every produgte W;, v e W’/
has¢(uv) = £(u) + £(v) [14, Proposition 1.10]. Equivalently, it = uv is the parabolic
decomposition ansl, sq, - - - Sa,,» Sby Sk, * * Sb , are reduced expressions farv respectively
then eacly,, € W; ands,,s4, - “*8a,SbyShy " * * Sh, is a reduced expression for.

Let A C @ be any root subsystem. It was shown in [3] tkiais conjugate tap”’ for
some subsef of the simple roots, i.e., there existsvae W7 such thatv1(A) = @7.
Clearly, W, and W are isomorphic subgroups since the Dynkin diagramsAff@nd &/
are isomorphic as graphs. If there exist multiple isomorphisms, any one will suffice.

Lemma6.1. Let A C @ be any root subsystem. Suppose th&i) = @7 for vy € W’ as
above. Letw € W. Letu € W; and letu’ = vl_luvl be the corresponding element Wiy
under the natural isomorphism. Théin (w) = «’ if and only if there exit3, € W/ such
thatw = vIluvg.
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Proof. The elemenb; € W/ gives a one-to-one correspondence> v1 (o) betweerpos-
itive roots in A andpositiveroots in®”. Also for anyv, € W7, vy L maps positive roots
of @/ to positive roots inA C @ and negative roots ab”’ to negative roots ofA C @.

Let vo=u"tvyw. We claimv, € W/ since forany e @, vz_l(a) = w‘lvl_lu(a) > 0.
Then we have a bijection from the inversions:ab the inversions ofv in A:

acANlp(w) < wil(oz) <0 <& vzflu*lvl(oe) <0

o whi@ed! o vi@elsw). O
Theorem 6.2. Let @ be any root system and ldt, ..., J; be a collection of subsets of
simple roots such that all parabolic subsystedn§, ..., @7 are stellar and they include

all possible stellar types present in the Dynkin diagran®ofThenw € W is (rationally)
smooth if and only if it cannot be presented in the farm: v;luvz, wherev, vo € Wi |
ue Wy, forie{l, ..., s}, andu is (rationally) singular element iri, .

Proof. Suppose that is any stellar root subsystem ih. Then A is conjugate tod”,
whereJ = J; for somei. Now Lemma 6.1 shows that Theorem 6.2 is equivalent to Theo-
rem22. O

Each stellar parabolic subsktin Theorem 6.2 consists of a node in the Dynkin diagram
together with its neighbors. We need to pick all nonisomorphic such subsets. For example,
s =1, for @ of type A,; s = 2, for any other simply laced type; and= 3 for @ of type
B, or C, withn > 4.

Theorem 6.2 implies the following statement.

Corollary 6.3. Let us fix any subset of simple roots Suppose that € W; and vy, vz €
W are such thah)l‘luvz is a (rationally) smooth element i . Thenu is a (rationally)
smooth in element i .

It was shown in [4] that, for anyw € W and a subsef of the simple roots, the parabolic
subgroupW; has a unigue maximal elemen{w, J) € W; beloww in the Bruhat order.
The following theorem generalizes the factoring formulas for Poincaré polynomials found
in [1,12] and [6, Theorem 11.23]. Using this theorem one can simplify the search for the
palindromic Poincaré polynomials which appear in Theorem 5.5.

Theorem 6.4. Let J be any subset of the simple roots. Assume W has the parabolic
decompositionw = u - v with u € W; andv € W* and furthermorey = m(w, J). Then

J
Py(t) = Pu(t) P} (1)
wherePV' (1) = Y.y <, 1°@ is the Poincaré polynomial for in the quotient.

Proof. Let B(w)={x € W |x < w} and By, (v) = {z € W’/ | z < v}. We will show there
exists a rank preserving bijectiofi: B(w) — B(u) x By (v).
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Given anyx < w, sayx has parabolic decomposition= yz with respect toJ, then
y <u=m(w,J) sincem(w, J) is the unique maximal element below and in W, .
Furthermore, Proctor [20, Lemma 3.2] has shown thatdfW is also a minimal length
element in the coséV; z, thenz < w if and only if z < v. Therefore, we can define a map

fiB(w) — B(u) x By (v) 4)

by mappingx to (y, z). Note that this map is injective and rank preserving si6@g =
£(y) + £(z) by the properties of the parabolic decomposition.

Conversely, given any € W such thaty < « and given any € By, (v), then actually
y € W; and we haveyz < w with £(yz) = £(y) + £(z). Therefore,yz can be written as
a subexpression of the reduced expressiorufarhich is the concatenation of reduced
expressions for andv. Furthermoref (yz) = (y, z) sincez is the unique minimal length
coset representative in the coset containingHencef is surjective. O

Gasharov [12] and Billey [1] have shown that, for the classical types, the Poincaré poly-
nomials of rationally smooth Schubert varieties have very nice factorizations. Gasharov
and Reiner [13], Ryan [21], and Wolper [26] have in fact shown that smooth Schubert
varieties can be described as iterated fiber bundles over Grassmannians. We see a similar
phenomena for the exceptional types.

Coroallary 6.5. Every Poincaré polynomial of a rationally smooth Schubert variety in types
A,, B,, C,, D,, Eg, E7, Eg, G2, Fy4 factors into a product of symmetric factors each

of which are Poincaré polynomials indexed by elements in a maximal parabolic quotient
W/Wj.

We only use the following lemma in the proof of Theorem 2.2 while proving our criteria
for rational smoothness.

Lemma 6.6. Let w = uv be the parabolic decomposition af € W with u € W; and
ve W,

(1) If X, is not rationally smooth thei,, is not rationally smooth.
(2) For any root subsystem c @7/, we havelp (1) N A = I (w) N A. Therefore, if« has
a pattern(AL, o) then so doew.

Note, it is not true that if(, is singular in the quotienG/P; then X,, is necessarily
singular inG/B. Also, it is possible for bottX, to be smooth inG/B, X, smooth in the
quotient and yeX ,, to be singular inG/B if u #m(w, J).

Proof. To prove the first statement, assuiXig is not rationally smooth. Then there exits
a vertexx < u in the Bruhat graph for where degx) is too large by Theorem 5.5 and
Lemma 5.7, namely

Hae @i x <sqgx <u}>Ll(u) —L(x).
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We claim degxv) is too large forX,,. Note,x < sox < u impliess, € Wy, and there-
fore xv < sy xv < w by the properties of the parabolic decomposition. Therefore,

#Haoedi xv<sgxv<w} 2>2#Ho e Dyl x <sux <u}

> 0(u) — £(x) = L(w) — L(v) — £(x) = £(w) — £(xV).

Hence,X,, is not rationally smooth, proving the first statement.
The second statement follows directly from Lemma 6.0

7. Proof of Theorem 2.2

The semisimple Lie groups come in 4 serids;, B,, C,,, D, and 5 exceptional types
Es, E7, Eg, F4, G2. The proof of Theorem 2.2 for the four infinite series follows easily
on the known characterization for smooth Schubert varieties in terms of pattern avoidance.
The proof for the exceptional types was much more difficult. One might imagine that a
routine verification would suffice for these finite Weyl groups. However, both verifying
smoothness iF4 and rational smoothness g directly would be impossible in our life
time using previously known techniques. The exceptional types were proved with the aide
of a large parallel computer after making several reductions in complexity. These reduc-
tions in complexity also give insight into the intricate geometry of the exceptional types.
Recall, classical pattern avoidance is defined in terms of the following function which
flattensany subsequence into a signed permutation Aselenote the signed permutation
group. Elements if8,, can be written irone-line notatioras an ordered list of the numbers
1, ..., n with a choice of sign for each entry. For examplé13: s253525152 € BB, (barred
numbers are negative). The groBp is isomorphic to the Weyl group of typg, andC,,.
The Weyl group of typeD, is the subgroup o3, in which all elements have an even
number of negative entries; and the Weyl group of type 1 (the symmetric groug,,) is
the subgroup in which all elements have no negative entries.

Definition 7.1. Given any sequenc@ay . .. a of distinct non-zero real numbers, define
fl(araz...ay) to be the unique elemeht= b1 ... by in By such that

e botha; andb; have the same sign.
o foralli, j, we havelb;| < |b;]| if and only if |a;| < |a;].

For example, {6, 3, 7, 1) = 3241. Any sequence containing the subsequé&e7, 1
does not avoid the patteB8241.

Theorem 7.2[1,19]. LetW be one of the group®,4, ,, Wp,, Wc, or Wp, and letw e W.
Then X, is (rationally) smooth if and only if for each subsequerice i1 < iz < i3 <
is < n, fl(wi, wi,wi;w;,) corresponds to grationally) smooth Schubert variety.

In order to prove Theorem 2.2, we clainful, w;, w;;w;,) = v if and only if I4(v) =
Ip(w) N A where A is the root subsystem of typ8s in the span ofejy, |, e,
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Cluiy|s €lwy,|- \WE will prove this claim in typeB, the remaining cases are similar. Then
verification of typesds, B4, C4 and D4 suffices to check the theorem in the classical case.
For typeB,, let us pick the linear basis, ..., ¢, in b* such that the simple roots are
givenbyey,ep—e1,...,ep—e,—1. Thend ={epe;: 1< j <k <njUfe;: 1< j<n}.

A signed permutatiomw acts onR” by

| ew; if w; >0,
w(e])_ _elel if wj<0.

Explicitly, Iy (w) = @4 Nw®_ is the union of the following three sets

{w(—e‘,-): w;j <0},
{wlej —en): j <k, wj > |wgl},

{w(:l:ej —er): j<k, wy<Oandw;| < |wk|}.

Therefore, deciding ifw(—e;) or w(te; — ex) € Io(w) depends only on the relative
order and sign patterns om; and wi. By definition of the classical flattening func-
tion fl(w; wi,wi;wi,) = v e Wp, if wyw,w;w;, andvivpvzvs have the same relative
order and sign pattern. Hence, whenis the root subsystem of typB, determined by
€y, |> Clwiyls €lwigl» €lwiy |+ WE havele (w) N A = 14 (v) if and only if fl(w;, wi, wi;w;,) = v.
This proves the claim and finishes the proof of Theorem 2.2 for the classical types.

Next consider the root systems of typ&s and F4. We can simply check Theorem 2.2
by computer using the modified version of Kumar’s criterion for determining smooth-
ness and the Carrell-Peterson criteria discussed in Section 5. In particuléf,,fare
use Remark 5.4 to find all singular elements Schubert varieties. The§ta58 , Xs; 50515
Xos15051) Xsysasisasyr Xsasysosisy (ASSUMINGyy is the short simple root). Pattern avoidance
using root subsystems does not offer any simplification of this list. However, using root
systems embeddings in Section 3, these singular Schubert varieties all follow froBa one
pattern. All Schubert varieties of type, are rationally smooth.

For F4 we use the following algorithm to verify Theorem 2.2:

(1) Make a matrix of siz¢W |? containing the valuek, , () computed recursively using
the formula

Koo () = { Kups; v(r) if v <wvs;,
v Kups; v (r) + (wsiai (1) Kuys; s, (r) - if v > vs;
wheres; is any simple reflections such thak; < w.

(2) Identify all subsetgys, ..., y,} C @4 for p =2,3,4 such thafyy, ..., y,} forms a
basis for a root subsyster of type B2, Az, Bz or C3 (no root subsystems of types
G or D4 appear inFy). Let 5 be the list of all such root subsystem bases.

(3) For each such root subsystetmwith basisB € B, find all singular Schubert varieties
X, using Remark 5.4 and adth(v) to a list called BAYB). Note this list can be
significantly simplified by removing alB3, C3 Schubert varieties which are classified
as singular using &> root subsystem.
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(4) Foreactw € W, checké(w) = [{y: s, < w} andKu,,wuw, (") =[], ez (wo,wwe) ¥ )
if and only if no B € B exists such thais (w) N spar(B) is a member of BADB).

To verify the theorem for rational smoothnessfinwe use the same algorithm except
BAD (B) should contain all of the inversion sets for rationally singular Schubert varieties
of typesAs, B3, C3, D4 and in step (4) use the palindromic Poincaré polynomial criterion
for rational smoothness from Theorem 5.5.

Finally, for Eg, E7 andEg it suffices to check the theorem @fg since the corresponding
root systems and Weyl groups are ordered by containment. Note, the Weyl group of type
Eg has 696,729,600 elements so creating the matrix as in step (1) above is not possible with
the current technology. Therefore, a different method for verifying the main theorem was
necessary. Recall, D. Peterson has shown, see [9], that smoothness and rational smoothness
are equivalent for simply laced Lie groups, i.4,,, D, and Eg, E7, Eg. Unfortunately,
computing P, (¢) for all w € Eg and applying either of the Carrell-Peterson criteria in
Theorem 5.5 is out of the question, however we made the following observations:

(1) In Eg, if P,(¢) is not symmetric then approximately 99.989% of the time the only
coefficients we need to check aresdfands¢™)—1, In fact, in all of Eg, all one ever
needs to check is the first 6 coefficients (starting®equals the last 6 coefficients.
Note, the coefficient of! is just the number of distinct generators in any reduced
expression fow and the coefficient of*™)~1 is the number ob = ws, for « € &
such that (v) = £(w) — 1 which can be efficiently computed.

(2) In Eg, if P,(t) is symmetric then there always exists a factorization according to
Theorem 6.4 wherd is a subset of all simple roots except one which corresponds
to a leaf of the Dynkin diagram. This factored formula makes it easy to check the
palindromic property recursively.

(3) LetJ be the set of all simple roots ifig excepte. Here we are labeling the simple
roots according to the following Dynkin diagram:

By Lemma 6.6, we only need to test=uv wherev e W/ W;, u € W; =~ Wp, and
X, smooth. There are 9479 elementsVWgh, which correspond to smooth Schubert
varieties and 2160 elementsW/ W .

With these three observations, we can complete the verificatiéig aking the follow-
ing algorithm:

(1) Identify all root subsystems of typess, D4 and their bases as above (sinEg is
simply laced it has no root subsystems of the other types). Call the list of Bases

(2) For each such root subsystetnwith basisB € B, find all singular (or equivalently
rationally singular) Schubert varietigs, using Remark 5.4 and adgh (v) to a list
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called BAD(B). Note this list can be significantly shortened by removingallSchu-
bert varieties which are classified as singular usinggmnoot subsystem.
(3) Identify all 2160 minimal length coset representatives in the quodentw (moding
out on the left). Call this sep.
(4) Identify all 9479 elements in Smootiy ~ SmoothD7 := {u € Wp,: X,, is smooth
using classical pattern avoidance or root subsystems.
(5) For eachy € SmoothW; andv € Q, let w = uv and check ifB € B exists such that
Is(w) Nspar(B) € BAD(B).
(a) If yes, check as many coefficients as necessary to shaw is not symmetric.
Here 5 coefficients sufficed for all, v.
(b) If no, attempt to factoP,, (z) by takingJ’ to be all simple roots except one of the
leaf nodes of the Dynkin diagram ancuf=m(w, J")v’ or w=! = m(w=1, J")v'
in the corresponding parabolic decomposition then apply Theorem 6.4. For every
w in this case, there exists some suElso that

Pu() = Pu) PV (2)

where PUV,VJ (t) is symmetric andP,/ () factored into symmetric factors recur-
sively by peeling off one leaf node of the Dynkin diagram at a time.

This completes the proof of Theorem 2.2. Theorems 2.3, 2.4 and 2.5 follow directly.

Conjecture 7.3. Let @ be a simply laced root system of ramkSay(®.., w) is not a ratio-
nally smooth pair. We conjecture that one only need to compare the fistfficients and
the lastn coefficients ofP, (r) in order to find an asymmetry. Equivalently, the Kazhdan—
Lusztig polynomialP,q ,, (¢) has a non-zero coefficient among the teghsg?, ..., ¢".

We can show that for,, one only needs to cheak— 2 coefficients, forDs and Eg
one needs to check 3 coefficients, and &y one needs to check 5 coefficients. Har
(which is not simply laced) one needs to check 3 coefficients, an®gavne needs to
check 6 coefficients.
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As with Appel and Haken’s 1976 proof of the Four Color Theorem, our proof has met
some criticism as to the merit of using a computer verification. In fact, it has been re-
jected by two journals based not on the importance or originality of the results, but on the
method of proof. We believe quite to the contrary that every significant computer aided
proof is a major accomplishment in expanding the role of computers in mathematics. It
is like practicing to use induction 2000 years ago; it was a highly creative and influential
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achievement. With years of practice, we have become quite proficient with the induction
technigue. However, computer aided proof is a fledgling technique that certainly will have
a major impact on the future of mathematics. Therefore, we hope our method of proof will
actually make a much broader impact on the future of mathematics than our main theorem.
Perhaps the only thing a complete human proof could add is an intuitive explanation for
why stellar root subsystems contain all the bad patterns. This remains an open problem.
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