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Abstract

The aim of this article is to present a smoothness criterion for Schubert varieties in gene
flag manifoldsG/B in terms of patterns in root systems. We generalize Lakshmibai–Sandhya’s
known result that says that a Schubert variety inSL(n)/B is smooth if and only if the correspondin
permutation avoids the patterns 3412 and 4231. Our criterion is formulated uniformly in gene
theoretic terms. We define a notion of pattern in Weyl group elements and show that a Schu
riety is smooth (or rationally smooth) if and only if the corresponding element of the Weyl g
avoids a certain finite list of patterns. These forbidden patterns live only in root subsystem
star-shaped Dynkin diagrams. In the simply-laced case the list of forbidden patterns is esp
simple: besides two patterns of typeA3 that appear in Lakshmibai–Sandhya’s criterion we only n
one additional forbidden pattern of typeD4. In terms of these patterns, the only difference betw
smoothness and rational smoothness is a single pattern in typeB2. Remarkably, several other im
portant classes of elements in Weyl groups can also be described in terms of forbidden p
For example, the fully commutative elements in Weyl groups have such a characterization
der to prove our criterion we used several known results for the classical types. For the exce
types, our proof is based on computer verifications. In order to conduct such a verification
computationally challenging typeE8, we derived several general results on Poincaré polynomia
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cohomology rings of Schubert varieties based on parabolic decomposition, which have an in
dent interest.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let G be a semisimple simply-connected complex Lie group andB be a Borel sub-
group. The generalized flag manifoldG/B decomposes into a disjoint union ofSchubert
cellsBwB/B, labeled by elementsw of the corresponding Weyl groupW . TheSchubert
varietiesXw = BwB/B are the closures of the Schubert cells. A classical questio
Schubert calculus is:For which elementsw in the Weyl groupW , is the Schubert variet
Xw smooth?

This question has a particularly nice answer forG = SL(n). In this case the Wey
group is the symmetric groupW = Sn of permutations ofn letters. For a permutatio
w = w1 w2 · · ·wn in Sn and another permutationσ = σ1 σ2 · · ·σk in Sk , with k � n, we
say thatw contains the patternσ if there is a sequence 1� p1 < · · · < pk � n such that
wpi

> wpj
if and only if σi > σj for all 1 � i < j � k. In other words,w contains the

patternσ if there is a subsequence inw of sizek with the same relative order of elemen
as inσ . If w does not contain the patternσ , then we say thatw avoids the patternσ .

Theorem 1.1 (Lakshmibai–Sandhya [19]). For a permutationw ∈ Sn, the Schubert variet
Xw in SL(n)/B is smooth if and only ifw avoids the patterns3412and4231.

There are several general approaches to determining smoothness of Schubert v
See Billey and Lakshmibai [6] for a survey of known results. Kazhdan and Lusztig de
a weaker condition calledrational smoothness. Rational smoothness can be interpreted
terms of Kazhdan–Lusztig polynomials [15,16]. A Schubert variety is rationally sm
whenever certain Kazhdan–Lusztig polynomials are trivial. Kumar [18] presented sm
ness and rational smoothness criteria in terms of the nil Hecke ring, defined in [17].
are many other results due to Carrell, Peterson, and other authors related to (ra
smoothness of the Schubert varieties. For example, according to a result of D. Peters
Carrell and Kuttler [9], smoothness of Schubert varieties is equivalent to rational sm
ness in the case of a simply-laced root system. Nevertheless none of these genera
give a simple efficient nonrecursive method (such as the Lakshmibai–Sandhya cri
for determining if a given Schubert variety is smooth or not. Recently, Billey [1] prese
analogues of Lakshmibai–Sandhya’s theorem, for all classical typesBn, Cn, andDn. How-
ever, these constructions, including the definitions of patterns, depend on a particul
to represent elements in classical Weyl groups as signed permutations.

The main goals of this paper are to present a uniform approach to pattern avoida
general terms of root systems and to extend the Lakshmibai–Sandhya criterion to th
of an arbitrary semisimple Lie groupG. This approach using root subsystems will be

scribed in the next section. Theorem 2.2 gives a polynomial time algorithm for determining
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smoothness and rational smoothness of Schubert varieties inG/B in terms of root subsys
tems. As a consequence of the main theorem, we get two additional criteria for (ra
smoothness in terms of root systems embeddings and double parabolic factorizatio
Theorems 3.1 and 6.2).

Based on the ideas of root subsystems presented in this work, Braden and the fi
thor [3] refined this notion and gave a lower bound for the Kazhdan–Lusztig polyno
evaluated atq = 1 in terms of patterns. They also introduce a geometrical constru
which identifies “pattern Schubert varieties” as torus fixed point components inside
Schubert varieties. This can be used to give another proof of one direction of our
theorem. However, due to a delay in publication, those results will appear first.

In Section 2, we formulate our smoothness criterion and describe the minimal li
patterns needed to identify singular (rationally singular) Schubert varieties. In Sect
we present a computational improvement using root system embeddings that redu
minimal lists to just 4 patterns (3 patterns) for (rational) smoothness test. The diffe
between smoothness and rational smoothness is exhibited in the presence or abs
rank 2 patterns. The connection to fully commutative elements is described in Sectio
Section 5, we recall several known characterizations of smoothness and rational s
ness from the literature which we will use in the proof of the main theorem. In Section
reformulate our main result in terms of parabolic subgroups. Then we prove two state
on parabolic decomposition which will be used in the proof of Theorem 2.2, including
orem 6.4 which gives a criterion for factoring Poincaré polynomials of Schubert vari
In Section 7, we give the details of the proof of the main theorem.

2. Root subsystems and the main results

As before, letG be a semisimple simply-connected complex Lie group with a fi
Borel subgroupB. Let h be the Cartan subalgebra corresponding to a maximal torus
tained inB. Let Φ ∈ h∗ be the corresponding root system, and letW = WΦ be its Weyl
group. The choice ofB determines the subsetΦ+ ⊂ Φ of positive roots. The fact that
Schubert varietyXw, w ∈ W , in G/B is smooth (or rationally smooth) depends only on
pair (Φ+,w). We call such a pair (rationally) smoothwhenever the corresponding Sch
bert variety is (rationally) smooth. Theinversion setof an elementw in the Weyl group
WΦ is defined by

IΦ(w) = Φ+ ∩ w(Φ−),

whereΦ− = {−α | α ∈ Φ+} is the set of negative roots.
The following properties of inversion sets are well known, see [7, §1, no. 6].

Lemma 2.1. The inversion setIΦ(w) uniquely determines the Weyl group elementw ∈
WΦ . Furthermore, a subsetI ⊆ Φ+ in the set of positive roots is the inversion setIΦ(w)

for somew if and only if there exist a linear formh on the vector spaceh∗ such that
I = {α ∈ Φ+ | h(α) > 0}.

A root subsystemof Φ is a subset of roots∆ ⊂ Φ which is equal to the intersectio

of Φ with a vector subspace. Clearly, a root subsystem∆ is a root system itself in the
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subspace spanned by∆, see [7, §1, no. 1]. It comes with the natural choice of posi
roots∆+ = ∆ ∩ Φ+.

By Lemma 2.1, for anyw ∈ WΦ and any root subsystem∆ ⊂ Φ, the set of roots
IΦ(w) ∩ ∆ is the inversion setI∆(σ ) for a unique elementσ ∈ W∆ in the Weyl group
of ∆. Let us define theflattening mapf∆ :WΦ → W∆ by settingf∆(w) = σ whereσ is
determined by its inversion setI∆(σ ) = IΦ(w) ∩ ∆.

Recall that a graph is called astar if it is connected and it contains a vertex incide
with all edges. Let us say that a root system∆ is stellar if its Dynkin diagram is a star an
∆ is not of typeA1 or A2. For example,B3 is stellar butF4 is not. Our first analogue o
the Lakshmibai–Sandhya criterion can be formulated as follows. See also Theorem
2.4, 3.1 and 6.2.

Theorem 2.2. Let G be any semisimple simply-connected Lie group,B be any Borel sub
group, with corresponding root systemΦ and Weyl groupW = WΦ . For w ∈ W , the
Schubert varietyXw ⊂ G/B is smooth(rationally smooth) if and only if, for every stel
lar root subsystem∆ in Φ, the pair(∆+, f∆(w)) is smooth(rationally smooth).

The proof of Theorem 2.2 appears in Section 7. If∆ is a root subsystem inΦ and
σ = f∆(w), then we say that the elementw in WΦ contains the pattern(∆+, σ ). It follows
from Theorem 2.2 that an element inWΦ containing a non-smooth (non-rationally-smoo
pattern is also non-smooth (non-rationally-smooth). Another explanation of this fa
rational smoothness based on intersection homology can be found in the work of
and Braden [3] mentioned above.

Let us say that an elementw avoids the pattern(∆+, σ ) if w does not contain a patter
isomorphic to(∆+, σ ). Clearly, Theorem 2.2 implies that the set of (rationally) smo
elementsw ∈ WΦ can be described as the set of all elementsw that avoid patterns of sever
types. Since there are finitely many types of stellar root systems, the list of forb
patterns is also finite.

Actually, the list of stellar root systems is relatively small:B2, G2, A3, B3, C3, andD4.
Figure 1 shows their Dynkin diagrams labeled according to standard conventions fro
In order to use Theorem 2.2 as a (rational) smoothness test we need to know a
smooth and non-rationally-smooth elements in the Weyl groups with stellar root sys
The following table gives the numbers of such elements.

stellar type B2 G2 A3 B3 C3 D4

non-smooth elements 1 5 2 20 20 4
non-rationally-smooth elements 0 0 2 14 14

There are several things to notice about the table. In the simply-laced casesA3 andD4
the numbers of non-smooth and non-rationally-smooth elements coincide. The rat
smooth elements inBn are exactly the same as the rationally smooth elements inCn. This
explains why the number 14 appears in bothB3 andC3 cases. Note that in general t
number of non-smooth elements inBn is not equal to the number of non-smooth eleme
in Cn. For examples, we have 268 non-smooth elements in theB4 case and 270 non-smoo

elements in theC4 case.



S. Billey, A. Postnikov / Advances in Applied Mathematics 34 (2005) 447–466 451

o
9 non-

e

ding
n
write

riety

that in
ooth.
nally

ed to

he
nt
ts
his

r

Fig. 1. Dynkin diagrams of stellar root systems.

There are exactly two non-smooth elements of typeA3—they correspond to the tw
forbidden patterns that appear Lakshmibai–Sandhya’s criterion. Although there are 4
smooth elements of typeD4, only one (!) of these 49 elements contains no forbiddenA3
patterns. These three patterns (two of typeA3 and one of typeD4) are all patterns that ar
needed in the case of a simply-laced root system (A-D-E case).

For all stellar types, lets1, s2, . . . be the simple reflections generating the correspon
Weyl groups labeled as shown on Fig. 1. Thus in bothA3 and D4 cases the reflectio
s2 corresponds to the central node of the corresponding Dynkin diagram. We will
elements of corresponding Weyl groups as products of the generatorssi .

Theorem 2.3. Suppose thatΦ is a simply-laced root system. Then the Schubert va
Xw, w ∈ WΦ , is smooth if and only ifw avoids the following three patterns: two patterns
of typeA3 given by the elementss2s1s3s2 ands1s2s3s2s1 and one pattern of typeD4 given
by the elements2s1s3s4s2.

Remark that, D. Peterson has shown (unpublished, see Carrell and Kuttler [9])
the simply-laced case a Schubert variety is smooth if and only if it is rationally sm
Thus in the previous claim we can replace the word “smooth” by the phrase “ratio
smooth.”

For the case of arbitrary root systems (including non-simply-laced ones), we ne
list forbidden patterns of typesB2, G2, B3, andC3. The only non-smooth element ofB2
is s2s1s2. The non-smooth elements of typeG2 are the 5 elements in the interval in t
Bruhat order[s1s2s1,wo[ (wo is excluded), wherewo is the longest Weyl group eleme
for typeG2. There are also 6 non-smooth elements of typeB3 and 6 non-smooth elemen
of typeC3 that contain no forbiddenB2 patterns. The following theorem summarizes t
data and gives the minimal list of patterns for the smoothness test.

We will write [a, b, . . . , c] to denote the collection of words 1, a, b, . . . , c. We concate-
nate this collection with another word as follows:[a, b, c]d is a shorthand for the fou
wordsd, ad, bd, cd .

Theorem 2.4. Let Φ be an arbitrary root system. The Schubert varietyXw, w ∈ WΦ , is
smooth if and only ifw avoids the patterns listed in the following table:

stellar type forbidden patterns # patterns

B2 s2s1s2 1
G2 [s2]s1s2s1[s2], s1s2s1s2s1 5
A3 s2s1s3s2, s1s2s3s2s1 2
B3 s2s1s3s2, s1s2s3s2s1[s3, s3s2, s2s3, s2s3s2] 6
C3 [s3]s2s1s3s2[s3], s3s2s1s2s3, s1s2s3s2s1s3s2s3 6
D s s s s s 1
4 2 1 3 4 2
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All Weyl group elements for the typesB2 andG2 are rationally smooth. Thus we can i
nore all root subsystems of these types in rational smoothness test. Rational smoothn
be defined in terms of Kazhdan–Lusztig polynomials that depend only on the Weyl g
The Weyl groups of typesB3 and C3 are isomorphic. Thus the lists of non-rational
smooth elements are identical in these two cases. The following theorem present
lists.

Theorem 2.5. Let Φ be an arbitrary root system. The Schubert varietyXw, w ∈ WΦ , is
rationally smooth if and only ifw avoids the patterns listed in the following table:

stellar type forbidden patterns # patterns

A3 s2s1s3s2, s1s2s3s2s1 2
B3 = C3 [s3]s2s1s3s2[s3], [s2]s3s2s1s2s3[s2], 14

s1s2s3s2s1[s3, s2s3, s3s2, s2s3s2, s3s2s3]
D4 s2s1s3s4s2 1

A quick glance on the tables in Theorems 2.4 and 2.5 reveals that the lists of forb
patterns for non-simply-laced cases are longer than the list of three simply-laced for
patterns. In Section 3 we show how to reduce the list patterns above to just the for
patterns of typesB2, A3, D4 using embeddings of root systems.

3. Root system embeddings

In this section, we present an alternative notion of pattern avoidance in terms o
bedded root systems. Again we can characterize smoothness and rational smooth
Schubert varieties. The key advantage of this approach is that we reduce the minima
ber of patterns to just 3 for rational smoothness and 4 for smoothness. While we b
this approach is useful for computational purposes, we suspect root subsystems ar
for geometrical considerations.

Let Φ and ∆ be two root systems in the vectors spacesU and V , respectively. An
embeddingof ∆ into Φ is a mape :∆ → Φ that extends to an injective linear mapU → V .
For example, any three positive rootsα,β, γ ∈ Φ+ define anA3-embedding wheneve
α + β, β + γ andα + β + γ are all inΦ+.

Note that inner products are not necessarily preserved by embeddings as they a
root subsystems. Also note that every root subsystem∆ in Φ gives an embedding of∆
into Φ, but it is not true that all embeddings come from root subsystems. It is possibl
∆ embeds intoΦ but the linear span ofe(∆) in Φ contains some additional roots. Neve
theless, in the simply-laced case this can never happen. For simply-laced root syste
notions of root subsystems and embeddings are essentially equivalent.

We will say that ak-tuple of positive roots(β1, . . . , βk) in Φ, gives aB2-embedding,
A3-embedding, or D4-embeddingif these vectors are the images of the simple root
∆ for an embedding∆ → Φ with ∆ of type B2, A3, or D4, respectively. For example
B2-embeddings are given by pairs of positive roots(β1, β2) such that both vectorsβ1 + β2
andβ1 + 2β2 belong toΦ+. Also A3-embeddingsare given by triples of positive root

(β1, β2, β3) such that all vectorsβ1 + β2, β2 + β3, andβ1 + β2 + β3 are roots inΦ+.
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Fig. 2.B2- andA3-embeddings.

Figure 2 illustratesB2- andA3-embeddings. The vertices on the figure correspond to
positive roots in the image of the embedding. Here we used a(k − 1)-dimensional picture
in order to represent collections ofk-dimensional vectors. The vertices on the figure are
intersections of the lines generated by the roots with a certain affine hyperplane. The
inversion sets are determined by half planes in these pictures. A similar 3-dimen
figure can be constructed forD4. Egon Schulte pointed out [22] that the figure can
obtained by projecting 12 vertices of the regular 24-cell onto a tetrahedron spann
4 vertices of the 24-cell. In fact, it can be viewed as a model in projective 3-space, an
it is actually related to the half-24-cell.

The set of positive rootsΦ+ in Φ and the embeddinge determines the set of positiv
roots ∆+ = e−1(Φ+) in ∆. We can extend the definition of the flattening map to e
beddings of root systems. For an embeddinge :∆ → Φ, let us define theflattening map
fe :WΦ → W∆ by settingfe(w) = σ , if the inversion set ofw pulls back to the inversion
set ofσ , i.e., I∆(σ ) = e−1(IΦ(w)). According to Lemma 2.1, the elementσ is uniquely
defined.

There are fiveA3-embeddings into a root systemΦ of type B3 and seven intoΦ of
typeC3. Among these twelve embeddings, five are necessary to classify rationally sin
Schubert varieties and three of these embeddings lead to false positive classifica
rationally smooth elements inWC3. Therefore, we introduce the following definition
order to eliminate the false conditions. For an embeddinge :∆ → Φ, let ∆̄ ⊂ Φ be the root
subsystem inΦ spanned by the imagee(∆). We say that an embeddinge :∆ → Φ is proper
if either ∆̄ is not of typeB3,C3 or ∆̄ is of typeB3,C3 and there exists aB2-embedding
ε :B2 → ∆̄ such that

(1) If B2 has basisβ1, β2, thenε(β1 + β2) = e(αi) for some simple rootαi ∈ ∆.
(2) We haveε−1(e(∆)) = IB2(s2s1s2) = {β1 + β2, β1 + 2β2, β2}. In words, the image

of theB2-embedding intersects the image of the∆-embedding in exactly three roo
which correspond to the inversion set of the unique singular Schubert varietyX(s2s1s2)

of typeB2.

The root systemsB3 andC3 each have threeB2-embeddings and each of these embedd

corresponds to exactly one properA3-embedding.
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For an elementw in the Weyl groupWΦ , we say thatw contains anembedded patter
of typeB2, A3, or D4 if there is a proper embeddinge :∆ → Φ such that

• B2: ∆ is of typeB2 andfe(w) = s2s1s2;
• A3: ∆ is of typeA3 andfe(w) = s1s2s3s2s1 or fe(w) = s2s1s3s2;
• D4: ∆ is of typeD4 andfe(w) = s2s1s3s4s2.

Recall here that the Coxeter generatorssi of Weyl groups of typesB2, A3, andD4 are
labeled as shown on Fig. 1. Note, that the reduced expressions above are all of th
central node conjugated by its neighbors or neighbors conjugated by the central nod

Let Φ∨ be the root system dual toΦ. Its Weyl groupWΦ∨ is naturally isomorphic to
WΦ . For an elementw ∈ WΦ , we say thatw contains adual embedded patternwhenever
the corresponding element inWΦ∨ � WΦ contains an embedded pattern given by a pro
embeddinge :∆ → Φ∨.

Theorem 3.1. Let G be any semisimple simply-connected Lie group,B be any Borel sub
group, with corresponding root systemΦ and Weyl groupW = WΦ .

(1) For w ∈ W , the Schubert varietyXw is rationally smooth if and only ifw has no
embedded patterns or dual embedded patterns of typesA3 or D4.

(2) For w ∈ WΦ , the Schubert varietyXw is smooth if and only ifw has neither embedde
patterns of typesB2, A3, or D4, nor dual embedded patterns of typesA3 or D4.

Note that, the elementw, corresponding to a smooth Schubert varietyXw, may contain
dual embedded patterns of typeB2. Thus smoothness of Schubert varieties, unlike ratio
smoothness, is not invariant with respect to duality of root system.

Proof. Any B2, A3, or D4-embedding spans a root subsystem whose rank must
most 4. Therefore, this theorem follows directly from Theorem 2.2 by checking all
systems of rank at most 4.�

We mention one more computational simplification in applying Theorem 3.1. Fo
w ∈ WΦ , there exists a hyperplane that separates the sets of rootsIΦ(w) andΦ+ \ IΦ(w).
Figure 3 illustrates embedded patterns of typesB2 andA3. It is easy to see that each
these inversion sets is determined by a half plane. The black vertices “"” correspond to the
roots in the inversion setIΦ(w) and the white vertices “!” correspond to the roots outsid
the inversion setIΦ(w).

Therefore, in order to search for embedded patterns forw of typesB2, A3 andD4 we
only need to look for pairs, triple or quadruples of the following forms:

B2: A pair of positive roots(β1, β2) which forms the basis of aB2-embedding such tha
β1 /∈ IΦ(w) andβ1 + β2 ∈ IΦ(w).

A3: A triple of positive roots(β1, β2, β3) which forms the basis of aproperA3-embedding
such that (1)β12, β34 /∈ IΦ(w) andβ14 ∈ IΦ(w); or (2) β23 /∈ IΦ(w) andβ13, β24 ∈

IΦ(w);
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Fig. 3. Forbidden embedded patterns of typesB2 andA3.

D4: A 4-tuple of positive roots(β1, β2, β3, β4) which forms the basis of aD4-embedding
such thatβ1 +2β2 +β3 +β4 ∈ IΦ(w) andβ1 +β2 +β3, β1 +β2 +β4, β2 +β3 +β4 /∈
IΦ(w).

4. Other elements characterized by pattern avoidance

In a series of papers (see [11,23,24] and reference wherein), Fan and Stembrid
developed a theory offully commutative elementsin arbitrary Coxeter groups. By defin
tion, an element in a Coxeter group is fully commutative if all its reduced decompos
can be obtained from each other by using only the Coxeter relations that involve co
ing generators.

According to [5] the fully commutative elements in typeA are exactly the permutation
avoiding the pattern 321. In typesB andD, Stembridge has shown that the fully co
mutative elements can again be characterized by pattern avoidance [23, Theorems
10.1].

We note here that fully commutative elements are easily characterized by root s
tems as well. The following is an unpublished theorem originally due to Stembridge

Proposition 4.1. LetW be any Weyl group with corresponding root systemΦ. Thenw ∈ W

is fully commutative if and only if for every root subsystem∆ of typeA2, B2, or G2 we have
f∆(w) 	= w∆

o wherew∆
o is the unique longest element ofW∆. In other words,w is fully

commutative if and only ifw avoids the patterns given by the longest elements in ra2
irreducible root systems.

Remark 4.2. Fan, Stembridge and Kostant also investigatedabelian elementsin Weyl
groups. An elementw ∈ W is abelian if its inversion setI (w) contain no three rootsα,β,
andα +β. Equivalently,w ∈ W is abelian if the Lie algebrab∩w(b−) is abelian, whereb
is Borel andb− is opposite Borel algebras. For simply-laced root systems, the set of ab
elements coincides with the set of fully commutative elements. The set of abelian ele

has a simple characterization in terms of embedded patterns. Indeed, by definition,w ∈ WΦ
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5. Criteria for smoothness and rational smoothness

In this section, we summarize the three criteria for smoothness and rational smoo
we rely on for the proof of Theorem 2.2.

Let α1, . . . , αn be the simple roots inΦ and letZ[h] denote the symmetric algeb
generated byα1, . . . , αn. For anyw,v ∈ W such thatw � v, let us defineKw,v ∈ Z[h] by
the recurrence

Kw,w =
∏

α∈IΦ(w)

α for w = v,

Kw,v =
{

Kwsi,v if v < vsi,

Kwsi ,v + (wsiαi)Kwsi ,vsi if v > vsi

for v � w and any simple reflectionsi such thatwsi < w. ThenKw,v is a polynomial of
degree�(v) in the simple roots with non-negative integer coefficients. These polynom
first appeared in the work of Kostant and Kumar [17] on the nil Hecke ring, see [2] fo
recurrence.

Kumar has given very general criteria for smoothness and rational smoothness in
of the nil-Hecke ring. Through a series of manipulations which were given in [6],
can obtain the following statement from Kumar’s theorem for finite Weyl groups. Kum
theorem in full generality applies to the Schubert varieties for any Kac–Moody g
However we would need to work with rational functions of the roots.

Theorem 5.1 [6,18]. Given anyv,w ∈ W such thatv � w, the Schubert varietyXvwo is
smooth atewwo if and only if

Kw,v =
∏

α∈Z(w,v)

α, (1)

whereZ(w,v) = {α ∈ Φ+: v � sαw}.
We can simplify the computations in Theorem 5.1 by evaluating this identity at a

chosen point. The modification reduces the problem from checking a polynomial id
to checking degrees plus a numerical identity. Checking the degrees can be done
polynomial time algorithm since this only depends on the number of positive roots.

Lemma 5.2. Let r ∈ h be any regular dominant integral weight, i.e.,α(r) ∈ N+ for each
α ∈ Φ+. Given anyv,w ∈ W such thatv � w, the Schubert varietyXvwo is smooth at
ewwo if and only if

∣∣Z(w,v)
∣∣ = �(v) and Kw,v(r) =

∏
α(r). (2)
α∈Z(w,v)
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Proof. We just need to prove the equivalence of (1) and (2). Dyer [10] has shown thatKw,v

is divisible by
∏

α∈Z(w,v) α. Therefore,Kw,v = ∏
α∈Z(w,v) α if and only if their quotient

is 1. We can check that the quotient is 1 by checking the degrees are equal

�(v) = deg(Kw,v) = deg

( ∏
α∈Z(w,v)

α

)
= ∣∣Z(w,v)

∣∣

(in which case the quotient is a constant) and thatKw,v(r) = ∏
α∈Z(w,v) α(r). �

Remark 5.3. Note, by choosingr such thatα(r) is always an integer, we do not have
consider potential round off errors when checking equality.

Remark 5.4. A Schubert varietyXw is smooth at every point if and only if it i
smooth ateid. Therefore, we only need to checkKwo,wwo(r) = ∏

α∈Z(wo,wwo)
α(r) when

|Z(wo,wwo)| = �(wwo) or equivalently|{α ∈ Φ+: sα � w}| = �(w).

The next criterion due to Carrell–Peterson is for rational smoothness. TheBruhat graph
B(w) for w ∈ W is the graph with vertices{x ∈ W : x � w} and edges betweenx andy if
x = sαy for someα ∈ Φ+ wheresα is the reflection corresponding toα,

sαv = v − (v,α)

2(α,α)
α.

Note the Bruhat graph contains the Hasse diagram of the lower order ideal beloww in
Bruhat order plus some extra edges. Let

Pw(t) =
∑
v�w

t�(v),

thenPw(t2) is thePoincaré polynomialfor the cohomology ring of the Schubert varie
Xw.

Theorem 5.5 [8]. The following are equivalent:

(1) Xw is rationally smooth at every point.
(2) The Poincaré polynomialPw(t) = ∑

v�w t�(v) of Xw is symmetric(palindromic).
(3) The Bruhat graphB(w) is regular of degree�(w), i.e., every vertex inB(w) is incident

to �(w) edges.

We can relate this theorem to the inversion setsIΦ(w) using the following simple
lemma, see [7].

Lemma 5.6. Fix a reduced expressionsa1sa2 · · · sap = w ∈ W . Letβ1, . . . , βn be the simple

roots inΦ+. The following sets are all equal to the inversion setIΦ(w):
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(1) Φ+ ∩ w(Φ−).
(2) {α ∈ Φ+: sαw < w}.
(3) {sa1sa2 · · · saj−1βaj

: 1� j � p}.

Let us label an edge(x, sαx) in B(w) by the rootα ∈ Φ+. Then, by Lemma 5.6, th
edges adjacent tow in the Bruhat graphB(w) are labeled by the elements ofIΦ(w) so
the degree deg(w) of the vertexw is �(w). At any other vertexx < w we know #{α ∈
Φ+: sαx < x} = �(x) so deg(x) = �(x) + #{α ∈ Φ+: x < sαx � w}. Therefore, we have
the following lemma.

Lemma 5.7. The Bruhat graphB(w) is not regular if and only if there exists anx < w

such that

deg(x) > deg(w) ⇔ #{α ∈ Φ+ | x < sαx � w} > �(w) − �(x).

6. Parabolic decomposition

In the first lemma below, we give an alternative characterization of pattern contain
in terms of a parabolic factorization. This leads to an alternative characterization of s
and rationally smooth elements in the Weyl group. We also give a method for fac
some Poincaré polynomials of Schubert varieties.

Fix a subsetJ of the simple roots. LetΦJ be the root subsystem spanned by ro
in J , and letΦJ+ = ΦJ ∩ Φ+ be its set of positive roots. LetWJ be the parabolic subgrou
generated by the simple reflections corresponding toJ . Let WJ be the set of minima
length coset representatives forWJ \W (moding out on the left). In other words,

WJ = {
v ∈ W | v−1(α) ∈ Φ+ for anyα ∈ ΦJ+

}
. (3)

Every w ∈ W has a unique parabolic decomposition as the productuv = w whereu ∈
WJ , v ∈ WJ and �(w) = �(u) + �(v), and conversely, every productu ∈ WJ , v ∈ WJ

has�(uv) = �(u) + �(v) [14, Proposition 1.10]. Equivalently, ifw = uv is the parabolic
decomposition andsa1sa2 · · · sap , sb1sb2 · · · sbq are reduced expressions foru,v respectively
then eachsai

∈ WJ andsa1sa2 · · · sap sb1sb2 · · · sbq is a reduced expression forw.
Let ∆ ⊂ Φ be any root subsystem. It was shown in [3] that∆ is conjugate toΦJ for

some subsetJ of the simple roots, i.e., there exists av1 ∈ WJ such thatv1(∆) = ΦJ .
Clearly,W∆ andWJ are isomorphic subgroups since the Dynkin diagrams for∆ andΦJ

are isomorphic as graphs. If there exist multiple isomorphisms, any one will suffice.

Lemma 6.1. Let∆ ⊂ Φ be any root subsystem. Suppose thatv1(∆) = ΦJ for v1 ∈ WJ as
above. Letw ∈ W . Let u ∈ WJ and letu′ = v−1

1 uv1 be the corresponding element inW∆

under the natural isomorphism. Thenfl∆(w) = u′ if and only if there exitsv2 ∈ WJ such

thatw = v−1

1 uv2.
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Proof. The elementv1 ∈ WJ gives a one-to-one correspondenceα �→ v1(α) betweenpos-
itive roots in∆ andpositiveroots inΦJ . Also for anyv2 ∈ WJ , v−1

2 maps positive roots
of ΦJ to positive roots in∆ ⊂ Φ and negative roots ofΦJ to negative roots of∆ ⊂ Φ.

Let v2 =u−1v1w. We claimv2 ∈WJ since for anyα ∈Φ+
J , v−1

2 (α)=w−1v−1
1 u(α)>0.

Then we have a bijection from the inversions ofu to the inversions ofw in ∆:

α ∈ ∆+ ∩ IΦ(w) ⇔ w−1(α) < 0 ⇔ v−1
2 u−1v1(α) < 0

⇔ u−1v1(α) ∈ ΦJ− ⇔ v1(α) ∈ IΦ(u). �
Theorem 6.2. Let Φ be any root system and letJ1, . . . , Js be a collection of subsets o
simple roots such that all parabolic subsystemsΦJ1, . . . ,ΦJs are stellar and they include
all possible stellar types present in the Dynkin diagram ofΦ. Thenw ∈ W is (rationally)
smooth if and only if it cannot be presented in the formw = v−1

1 uv2, wherev1, v2 ∈ WJi ,
u ∈ WJi

, for i ∈ {1, . . . , s}, andu is (rationally) singular element inWJi
.

Proof. Suppose that∆ is any stellar root subsystem inΦ. Then∆ is conjugate toΦJ ,
whereJ = Ji for somei. Now Lemma 6.1 shows that Theorem 6.2 is equivalent to Th
rem 2.2. �

Each stellar parabolic subsetJi in Theorem 6.2 consists of a node in the Dynkin diagr
together with its neighbors. We need to pick all nonisomorphic such subsets. For ex
s = 1, for Φ of typeAn; s = 2, for any other simply laced type; ands = 3 for Φ of type
Bn or Cn with n � 4.

Theorem 6.2 implies the following statement.

Corollary 6.3. Let us fix any subset of simple rootsJ . Suppose thatu ∈ WJ andv1, v2 ∈
WJ are such thatv−1

1 uv2 is a (rationally) smooth element inW . Thenu is a (rationally)
smooth in element inWJ .

It was shown in [4] that, for anyw ∈ W and a subsetJ of the simple roots, the parabol
subgroupWJ has a unique maximal elementm(w,J ) ∈ WJ beloww in the Bruhat order
The following theorem generalizes the factoring formulas for Poincaré polynomials f
in [1,12] and [6, Theorem 11.23]. Using this theorem one can simplify the search fo
palindromic Poincaré polynomials which appear in Theorem 5.5.

Theorem 6.4. Let J be any subset of the simple roots. Assumew ∈ W has the parabolic
decompositionw = u · v with u ∈ WJ andv ∈ WJ and furthermore,u = m(w,J ). Then

Pw(t) = Pu(t)P WJ

v (t)

whereP WJ

v (t) = ∑
z∈WJ ,z�v t�(z) is the Poincaré polynomial forv in the quotient.

Proof. Let B(w) = {x ∈ W | x � w} andBWJ (v) = {z ∈ WJ | z � v}. We will show there

exists a rank preserving bijectionf :B(w) → B(u) × BWJ (v).
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Given anyx � w, sayx has parabolic decompositionx = yz with respect toJ , then
y � u = m(w,J ) sincem(w,J ) is the unique maximal element beloww and in WJ .
Furthermore, Proctor [20, Lemma 3.2] has shown that ifz ∈ W is also a minimal length
element in the cosetWJ z, thenz � w if and only if z � v. Therefore, we can define a ma

f :B(w) → B(u) × BWJ (v) (4)

by mappingx to (y, z). Note that this map is injective and rank preserving since�(x) =
�(y) + �(z) by the properties of the parabolic decomposition.

Conversely, given anyy ∈ W such thaty � u and given anyz ∈ BWJ (v), then actually
y ∈ WJ and we haveyz � w with �(yz) = �(y) + �(z). Therefore,yz can be written as
a subexpression of the reduced expression forw which is the concatenation of reduc
expressions foru andv. Furthermore,f (yz) = (y, z) sincez is the unique minimal length
coset representative in the coset containingyz. Hencef is surjective. �

Gasharov [12] and Billey [1] have shown that, for the classical types, the Poincaré
nomials of rationally smooth Schubert varieties have very nice factorizations. Gas
and Reiner [13], Ryan [21], and Wolper [26] have in fact shown that smooth Sch
varieties can be described as iterated fiber bundles over Grassmannians. We see
phenomena for the exceptional types.

Corollary 6.5. Every Poincaré polynomial of a rationally smooth Schubert variety in ty
An, Bn, Cn, Dn, E6, E7, E8, G2, F4 factors into a product of symmetric factors ea
of which are Poincaré polynomials indexed by elements in a maximal parabolic qu
W/WJ .

We only use the following lemma in the proof of Theorem 2.2 while proving our crit
for rational smoothness.

Lemma 6.6. Let w = uv be the parabolic decomposition ofw ∈ W with u ∈ WJ and
v ∈ WJ .

(1) If Xu is not rationally smooth thenXw is not rationally smooth.
(2) For any root subsystem∆ ⊂ ΦJ , we haveIΦ(u)∩∆ = IΦ(w)∩∆. Therefore, ifu has

a pattern(∆+, σ ) then so doesw.

Note, it is not true that ifXv is singular in the quotientG/PJ thenXw is necessarily
singular inG/B. Also, it is possible for bothXu to be smooth inG/B, Xv smooth in the
quotient and yetXw to be singular inG/B if u 	= m(w,J ).

Proof. To prove the first statement, assumeXu is not rationally smooth. Then there ex
a vertexx < u in the Bruhat graph foru where deg(x) is too large by Theorem 5.5 an
Lemma 5.7, namely
#{α ∈ Φ+: x < sαx � u} > �(u) − �(x).
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We claim deg(xv) is too large forXw. Note,x � sαx � u implies sα ∈ WJ , and there-
forexv � sαxv � w by the properties of the parabolic decomposition. Therefore,

#{α ∈ Φ+: xv < sαxv � w} � #{α ∈ Φ+: x < sαx � u}
> �(u) − �(x) = �(w) − �(v) − �(x) = �(w) − �(xv).

Hence,Xw is not rationally smooth, proving the first statement.
The second statement follows directly from Lemma 6.1.�

7. Proof of Theorem 2.2

The semisimple Lie groups come in 4 series:An, Bn, Cn, Dn and 5 exceptional type
E6, E7, E8, F4, G2. The proof of Theorem 2.2 for the four infinite series follows ea
on the known characterization for smooth Schubert varieties in terms of pattern avoi
The proof for the exceptional types was much more difficult. One might imagine t
routine verification would suffice for these finite Weyl groups. However, both verif
smoothness inF4 and rational smoothness inE8 directly would be impossible in our life
time using previously known techniques. The exceptional types were proved with th
of a large parallel computer after making several reductions in complexity. These r
tions in complexity also give insight into the intricate geometry of the exceptional typ

Recall, classical pattern avoidance is defined in terms of the following function w
flattensany subsequence into a signed permutation. LetBn denote the signed permutatio
group. Elements inBn can be written inone-line notationas an ordered list of the numbe
1, . . . , n with a choice of sign for each entry. For example, 32̄1= s2s3s2s1s2 ∈ Bn (barred
numbers are negative). The groupBn is isomorphic to the Weyl group of typeBn andCn.
The Weyl group of typeDn is the subgroup ofBn in which all elements have an eve
number of negative entries; and the Weyl group of typeAn−1 (the symmetric groupSn) is
the subgroup in which all elements have no negative entries.

Definition 7.1. Given any sequencea1a2 . . . ak of distinct non-zero real numbers, defi
fl(a1a2 . . . ak) to be the unique elementb = b1 . . . bk in Bk such that

• bothaj andbj have the same sign.
• for all i, j , we have|bi | < |bj | if and only if |ai | < |aj |.

For example, fl(6̄,3, 7̄,1) = 3̄24̄1. Any sequence containing the subsequence6̄,3, 7̄,1
does not avoid the pattern̄324̄1.

Theorem 7.2 [1,19]. LetW be one of the groupsWAn−1, WBn , WCn or WDn and letw ∈ W .
ThenXw is (rationally) smooth if and only if for each subsequence1 � i1 < i2 < i3 <

i4 � n, fl(wi1wi2wi3wi4) corresponds to a(rationally) smooth Schubert variety.

In order to prove Theorem 2.2, we claim fl(wi1wi2wi3wi4) = v if and only if I∆(v) =

IΦ(w) ∩ ∆ where ∆ is the root subsystem of typeB4 in the span ofe|wi1 |, e|wi2 |,
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e|wi3 |, e|wi4 |. We will prove this claim in typeB, the remaining cases are similar. Th
verification of typesA3, B4, C4 andD4 suffices to check the theorem in the classical c

For typeBn, let us pick the linear basise1, . . . , en in h∗ such that the simple roots a
given bye1, e2−e1, . . . , en−en−1. ThenΦ+ = {ek ±ej : 1� j < k < n}∪{ej : 1� j � n}.
A signed permutationw acts onRn by

w(ej ) =
{

ewj
if wj > 0,

−e|wj | if wj < 0.

Explicitly, IΦ(w) = Φ+ ∩ wΦ− is the union of the following three sets

{
w(−ej ): wj < 0

}
,{

w(ej − ek): j < k, wj > |wk|
}
,{

w(±ej − ek): j < k, wk < 0 and|wj | < |wk|
}
.

Therefore, deciding ifw(−ej ) or w(±ej − ek) ∈ IΦ(w) depends only on the relativ
order and sign patterns onwj and wk . By definition of the classical flattening fun
tion fl(wiwi2wi3wi4) = v ∈ WB4 if wiwi2wi3wi4 and v1v2v3v4 have the same relativ
order and sign pattern. Hence, when∆ is the root subsystem of typeB4 determined by
e|wi1 |, e|wi2 |, e|wi3 |, e|wi4 |, we haveIΦ(w)∩∆ = I∆(v) if and only if fl(wi1wi2wi3wi4) = v.
This proves the claim and finishes the proof of Theorem 2.2 for the classical types.

Next consider the root systems of typesG2 andF4. We can simply check Theorem 2
by computer using the modified version of Kumar’s criterion for determining smo
ness and the Carrell–Peterson criteria discussed in Section 5. In particular, forG2, we
use Remark 5.4 to find all singular elements Schubert varieties. They areXs1s2s1, Xs1s2s1s2,
Xs2s1s2s1, Xs1s2s1s2s1, Xs2s1s2s1s2 (assumingα1 is the short simple root). Pattern avoidan
using root subsystems does not offer any simplification of this list. However, using
systems embeddings in Section 3, these singular Schubert varieties all follow from oB2
pattern. All Schubert varieties of typeG2 are rationally smooth.

ForF4 we use the following algorithm to verify Theorem 2.2:

(1) Make a matrix of size|W |2 containing the valuesKw,v(r) computed recursively usin
the formula

Kw,v(r) =
{

Kwsi,v(r) if v < vsi ,
Kwsi,v(r) + (wsiαi(r))Kwsi ,vsi (r) if v > vsi

wheresi is any simple reflections such thatwsi < w.
(2) Identify all subsets{γ1, . . . , γp} ⊂ Φ+ for p = 2,3,4 such that{γ1, . . . , γp} forms a

basis for a root subsystem∆ of typeB2, A3, B3 or C3 (no root subsystems of type
G2 or D4 appear inF4). LetB be the list of all such root subsystem bases.

(3) For each such root subsystem∆ with basisB ∈ B, find all singular Schubert varietie
Xv using Remark 5.4 and addI∆(v) to a list called BAD(B). Note this list can be
significantly simplified by removing allB3, C3 Schubert varieties which are classifi

as singular using aB2 root subsystem.
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(4) For eachw ∈ WF4, check�(w) = |{γ : sγ � w}| andKwo,wwo(r) = ∏
γ∈Z(wo,wwo)

γ (r)

if and only if noB ∈ B exists such thatIΦ(w) ∩ span(B) is a member of BAD(B).

To verify the theorem for rational smoothness inF4 we use the same algorithm exce
BAD(B) should contain all of the inversion sets for rationally singular Schubert vari
of typesA3,B3,C3,D4 and in step (4) use the palindromic Poincaré polynomial crite
for rational smoothness from Theorem 5.5.

Finally, forE6, E7 andE8 it suffices to check the theorem onE8 since the correspondin
root systems and Weyl groups are ordered by containment. Note, the Weyl group o
E8 has 696,729,600 elements so creating the matrix as in step (1) above is not possib
the current technology. Therefore, a different method for verifying the main theorem
necessary. Recall, D. Peterson has shown, see [9], that smoothness and rational sm
are equivalent for simply laced Lie groups, i.e.,An, Dn andE6, E7, E8. Unfortunately,
computingPw(t) for all w ∈ E8 and applying either of the Carrell–Peterson criteria
Theorem 5.5 is out of the question, however we made the following observations:

(1) In E8, if Pw(t) is not symmetric then approximately 99.989% of the time the o
coefficients we need to check are oft1 andt�(w)−1. In fact, in all ofE8, all one ever
needs to check is the first 6 coefficients (starting att1) equals the last 6 coefficient
Note, the coefficient oft1 is just the number of distinct generators in any redu
expression forw and the coefficient oft�(w)−1 is the number ofv = wsα for α ∈ Φ+
such that�(v) = �(w) − 1 which can be efficiently computed.

(2) In E8, if Pw(t) is symmetric then there always exists a factorization accordin
Theorem 6.4 whereJ is a subset of all simple roots except one which correspo
to a leaf of the Dynkin diagram. This factored formula makes it easy to chec
palindromic property recursively.

(3) Let J be the set of all simple roots inE8 exceptα1. Here we are labeling the simp
roots according to the following Dynkin diagram:

By Lemma 6.6, we only need to testw = uv wherev ∈ W/WJ , u ∈ WJ ≈ WD7 and
Xu smooth. There are 9479 elements ofWD7 which correspond to smooth Schub
varieties and 2160 elements inW/WJ .

With these three observations, we can complete the verification ofE8 using the follow-
ing algorithm:

(1) Identify all root subsystems of typesA3, D4 and their bases as above (sinceE8 is
simply laced it has no root subsystems of the other types). Call the list of basesB.

(2) For each such root subsystem∆ with basisB ∈ B, find all singular (or equivalently

rationally singular) Schubert varietiesXv using Remark 5.4 and addI∆(v) to a list
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called BAD(B). Note this list can be significantly shortened by removing allD4 Schu-
bert varieties which are classified as singular using anA3 root subsystem.

(3) Identify all 2160 minimal length coset representatives in the quotientWJ \W (moding
out on the left). Call this setQ.

(4) Identify all 9479 elements in Smooth-WJ ≈ Smooth-D7 := {u ∈ WD7: Xu is smooth}
using classical pattern avoidance or root subsystems.

(5) For eachu ∈ Smooth-WJ andv ∈ Q, let w = uv and check ifB ∈ B exists such tha
IΦ(w) ∩ span(B) ∈ BAD(B).
(a) If yes, check as many coefficients as necessary to showPw(t) is not symmetric.

Here 5 coefficients sufficed for allu, v.
(b) If no, attempt to factorPw(t) by takingJ ′ to be all simple roots except one of th

leaf nodes of the Dynkin diagram and ifw = m(w,J ′)v′ or w−1 = m(w−1, J ′)v′
in the corresponding parabolic decomposition then apply Theorem 6.4. For
w in this case, there exists some suchJ ′ so that

Pw(t) = Pu′(t)P WJ ′
v′ (t)

whereP WJ ′
v′ (t) is symmetric andPu′(t) factored into symmetric factors recu

sively by peeling off one leaf node of the Dynkin diagram at a time.

This completes the proof of Theorem 2.2. Theorems 2.3, 2.4 and 2.5 follow direc

Conjecture 7.3. LetΦ be a simply laced root system of rankn. Say(Φ+,w) is not a ratio-
nally smooth pair. We conjecture that one only need to compare the firstn coefficients and
the lastn coefficients ofPw(t) in order to find an asymmetry. Equivalently, the Kazhda
Lusztig polynomialPid,w(q) has a non-zero coefficient among the termsq1, q2, . . . , qn.

We can show that forAn one only needs to checkn − 2 coefficients, forD5 andE6
one needs to check 3 coefficients, and forE8 one needs to check 5 coefficients. ForF4
(which is not simply laced) one needs to check 3 coefficients, and forB5 one needs to
check 6 coefficients.
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Perhaps the only thing a complete human proof could add is an intuitive explanati
why stellar root subsystems contain all the bad patterns. This remains an open prob

References

[1] S. Billey, Pattern avoidance and rational smoothness of Schubert varieties, Adv. Math. 139 (1998) 14
MR 99i:14058.

[2] S. Billey, Kostant polynomials and the cohomology ring forG/B, Duke Math. J. 96 (1999) 205–224, M
2000a:14060.

[3] S. Billey, T. Braden, Lower bounds for Kazhdan–Lusztig polynomials from patterns, Transform. Gro
(2003) 321–332, MR2015254.

[4] S. Billey, C.K. Fan, J. Losonczy, The parabolic map, J. Algebra 214 (1) (1999) 1–7, MR 2000e:2006
[5] S. Billey, W. Jockush, R. Stanley, Some combinatorial properties of Schubert polynomials, J. Alg

Combin. 2 (1993) 345–374, MR 94m:05197.
[6] S. Billey, V. Lakshmibai, Singular Loci of Schubert Varieties, Progr. Math., vol. 182, Birkhäuser, 2000

2001j:14065.
[7] N. Bourbaki, Éléments de Mathématique, Groupes et Algèbres de Lie, Chapitre VI: Systèmes de R

Hermann, Paris, 1968, MR 39 #1590.
[8] J. Carrell, The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness

bert varieties, in: Algebraic Groups and Their Generalizations: Classical Methods, in: Proc. Sympo
Math., vol. 56, part 1, Amer. Math. Soc., Providence, RI, 1994, pp. 53–61, MR 95d:14051.

[9] J. Carrell, J. Kuttler, On the smooth points ofT -stable varieties inG/B and the Peterson map, Inven
Math. 151 (2003) 353–370, MR 2003m:14078.

[10] M. Dyer, The nil Hecke ring and Deodhar’s conjecture on Bruhat intervals, Invent. Math. 111 (1993
574, MR 94c:20073.

[11] C.K. Fan, Structure of a Hecke algebra quotient, J. Amer. Math. Soc. 10 (1997) 139–167, MR 97k:2
[12] V. Gasharov, Sufficiency of Lakshmibai–Sandhya singularity conditions for Schubert varieties, Com

Math. 126 (1) (2001) 47–56, MR 2002d:14078.
[13] V. Gasharov, V. Reiner, Cohomology of smooth Schubert varieties in partial flag manifolds, preprint,

J. London Math. Soc. (2) 66 (3) (2002) 550–562.
[14] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Stud. Adv. Math., vol. 29, Cam

University Press, 1990, MR 92h:20002.
[15] D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (2

165–184, MR 81j:20066.
[16] D. Kazhdan, G. Lusztig, Schubert varieties and Poincaré duality, in: Geometry of the Laplace Opera

Proc. Sympos. Pure Math., vol. 36, Amer. Math. Soc., Providence, RI, 1980, pp. 185–203, MR 84g:1
[17] B. Kostant, S. Kumar, The nil Hecke ring and cohomology ofG/P for a Kac–Moody groupG, Proc. Natl.

Acad. Sci. USA 83 (1986) 1543–1545, MR 88b:17025a.
[18] S. Kumar, The nil Hecke ring and singularity of Schubert varieties, Invent. Math. 123 (1996) 471–50

97j:14057.
[19] V. Lakshmibai, B. Sandhya, Criterion for smoothness of Schubert varieties inSL(n)/B , Proc. Indian Acad.

Sci. (Math. Sci.) 100 (1990) 45–52, MR 91c:14061.
[20] R. Proctor, Classical Bruhat orders are lexicographic shellable, J. Algebra 77 (1982) 104–126, M

20044.
[21] K.M. Ryan, On Schubert varieties in the flag manifold ofSL(n,C), Math. Ann. 276 (1987) 205–224, MR

88e:14061.

[22] E. Schulte, personal communication.



466 S. Billey, A. Postnikov / Advances in Applied Mathematics 34 (2005) 447–466

r. Math.

(1996)

) 184–
[23] J.R. Stembridge, Some combinatorial aspects of reduced words in finite Coxeter groups, Trans. Ame
Soc. 349 (1997) 1285–1332, MR 97h:05181.

[24] J.R. Stembridge, On the fully commutative elements of Coxeter groups, J. Algebraic Combin. 5
353–385, MR 97g:20046.

[25] J.R. Stembridge, personal communication.
[26] J.S. Wolper, A combinatorial approach to the singularities of Schubert varieties, Adv. Math. 76 (1989
193, MR 90g:14037.


