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1 Introduction

In the recent time in the works of different authors [4, 5,6, 7, 11, 14, 17] arose
a new interest to the classical Robinson-Schensted-Knuth correspondence [9].

The Robinson-Schensted-Knuth correspondence (RSK) is a bijection be-
tween pairs (P, Q) of semi-standard Young tableaux and matrices M with
nonnegative integer entries such that the column sums of M give weight
of P and the row sums of M give weight of @ (see Corollary 4.5). This

correspondence is important in representation theory of the general linear



group GL(N) and the symmetric group S,, and in the theory of symmetric
functions.

We can view a pair of tableaux (P, () of the same shape as a sequence
of Young digrams o) = 0 C any C ... Cap) D Apsr) D .. D apg) = 0.
In general, consider a sequence of diagrams a = (o), (1), ..., ) such
that for all 7 either a(i)/a(i-l—l) or oz(H_l)/a(i) is a horizontal stripe. Such
objects generilize semi-standard Young tableaux (and pairs (P, @)) and they
are called oscillating tableaux.

In this paper we use the following notation: N := {0,1,2,...}; s(8) :=
B+ By + ...+ B for B=(B1,0B,...,0) € Z*.

We are grateful to S. Fomin, and 77?7 for useful discussions.

2 Diagrams and tableaux

Recall basic definitions from combinatorics of Young diagrams (see [10]).

A partition X of n is a sequence of positive integers (A1, Az, ..., A;) such
that Ay > Ay > ... > A >0and |A] ;=X + X+ ...+ X = n. We will also
write A F n. Let P denote the set of all partitions. By 0 denote a unique
partition of zero.

With each partitions A we can associate its Young diagram which is the
set of pairs (i,7) € N* such that 1 < 57 < X\; , 7 = 1,2,...,[. Pairs (1,7)
are arranged on the plane R? with ¢ increasing downwards and j increasing
from left to right. Young diagrams will be presented in the form of sets of
I x1-boxes centered at (z,7). We denote partitions and the associated Young
diagrams by the same letter A.

Let “D7 be the partitial order on P by inclusion of Young diagrams, i.e.,
A D pif A; > p; for all i. For X D p, skew Young diagram X/u is the
set theoretical difference of the Young diagrams A and p. For example, if
A=(6,4,4,1), p = (4,3,2) then the skew Young diagram A/ is the shaded
region in Figure 1.

A partition A = (M, ..., AL) is conjugale to a partition A = (Aq,...,\;)
if their Young diagrams are symmetric to each other with respect to the
principal diagonal.

A horizontal (respectively, vertical) m-stripe is a skew Young diagram
A/p such that every column (respectively, row) contains at most one box of
Ap and [A|=|p| = m.

Let 3 = (B1,532,-.-,8:) € N*. A Young tableau of shape \/u and weight



Figure 1: A skew Young diagram A/u

Figure 2: A tableau T and a supertableau S

B is a sequence of partitions (a@) = A, an),aq@),...,or) = p) such that
agi-1y D o) and a(i_y)/ o is a horizontal Bi-stripe for all i = 1,2,..., k. Let
YT (A p, 3) denote the set of all Young tableaux of shape A/u and weight 3.
Note that such tableaux are also called column-strict or semi-standard. A
Young tableau is said to be standard if it has weight 5= (1,1,...,1).

Let ¢ = (e1,69,...,65) € {1,—1}* and 3° denote the sequence b =
(b1,ba,...,b) in the alphabet {m,m | m € Z} such that b; = 3; (respec-
tively b; = 3;) if &; = 1 (respectively &; = —1).

A supertableau (see [2]) of shape A/p and superweight 3° is a sequence
of partitions (a(o) = X, (1), 0(2), - -, Ok) = ) such that agi—1) D o) and if
g; = 1 (respectively, ¢; = —1) then o(_1)/a( is a horizontal (respectively,
vertical) B;-stripe for all © = 1,2,... k. Let ST(A/u,b) denote the set of
all supertableaux of shape A/u and superweight b = (5. It is clear that
ST(\p, B0 = YT\ p. ).

When we present tableaux and supertableaux, we insert the integers k —
i+ 1 into the boxes of ay;_1)/a for i = 1,2,..., k. Figure 2 shows examples
of a tableauT' € YT (A, (1,2,3)) and a supertableau S € ST(A/u,(2,1,3)).



3 Oscillating tableaux

We can view tableaux as paths in certain graph ). The vertices of ) are
Young diagrams and diagrams A and p are connected by an edge in YV if A\/u
(or p/A) is a horizontal stripe. Let ), denote the nth level of Y, ie., Y,
is the set of all diagrams A with |A\| = n. We call Y the extended Young
graph because it is obtained from the Young graph by adding some edges
connecting non-adjacent levels.

It is clear that Young tableaux correspond to decreasing paths in the
graph ). An oscillating tableau is an arbitrary path in ).

Definition 3.1 Let \,u be partitions and 3 = (B1,B4,...,3:) € Z*. An
oscillating tableau of shape (A, u) and weight (3 is a sequence of partitions
a = (ag) = Aoy, ), ...,am = @) such that for all i = 1,2,... k lhe
following conditions hold:

1. If B; > 0 then a1y D oy and Oé(i_1)/0t(¢) is a horizontal 3;-stripe;
2. If B; < 0 then agy D agi—1y and oy /ag-1y is a horizontal (—f3;)-slripe.

By OT'(X\, i, 8) denote the set of all oscillating tableaux of shape (X, ) and
weight (3.

It is clear that OT'(A, i, 3) is nonempty only when |A| — s(3) = |p|. If all
3; are nonnegative then OT' (A, i, 3) = YT (X p, B3).

4 Intransitive graphs

Definition 4.1 Let § = (81,02,...,0;) € Z* be a sequence such that s(§) =
0. An intransitive graph of type & is an oriented graph ~ on the verlices
{1,2,...,k} (multiple edges allowed) such that:

1. If (¢,7) is an edge of v then 1 < j.
2. If §; > 0 then indegree of 1 is §; and outdegree of 1 is 0.
3. If §; <0 then ouldegree of 1 is —9; and indegree of 1 is 0.

Denote by G(8) the set of all intransitive graphs of type 6.



Figure 3: An intransitive graph v € G(-2,1,-2,0,—2,2, 3)

Note that G/(§) is nonempty if and only if 2221 0; <0forl=1,2,... k.
Figure 3 shows an example of an intransitive graph.

Remark 4.2 Lel x1,x3,...,z; be variables. Consider the following q-analo-
gue of Kostant’s partition function

Pq _ H(l N qer,‘—zj)—l _ Z Pq(5)651$1+...+xkpk.

>] §:5(8)=0

Then the number G(§) of intransitive graphs of type § is equal to the coeffi-
cient of the least power of q in P,(8). So we can view the number G(§) as an
analogue of P,(0) as ¢ — 0, i.e., “christal analogue of P,(§)”.

Intransitive graphs are closely related to oscillating tableaux. In Sec-
tions 5 and 7 we present several theorem illustrating this connection. Here
we formulate a special case which is especially clear.

Theorem 4.3 Let 3 € Z* be such that s(3) = 0. Then the number of
oscillating tableauz of shape (0,6) and weight ( is equal to the number of
intransitive graphs of type (3

0T(0,0,8)| = |G(3)].

In Section 77 we construct a bijection ®,,3 which in the case A =y = 0
is is a bijection between OT(O, ﬁ,ﬁ) and G(3).

We call an oscillating tableau of weight 8 = (54,...,8k) standard if 3; =
+1 for all :. Clearly, standard oscillating tableux correspond to paths in the
Young graph.

Corollary 4.4 The number of paths in the Young graph from 0 to 0 of length
2k is equal to (2k — 1)!! = (2k —1)(2k —3)...1.

Proof — 1f g; = £1 for all ¢ then an intransitive graph of type 3 is a perfect
matching. Therefore, by Theorem 4.3 the number of standard tableux of
shape (ﬁ, 6) with weight of length 2k is equal to the number perfect matchings
on the set of vertices {1,2,...,2k} which is equal to (2k — 1)!L. O



In the end of this section we show how oscillation tableaux and intran-
sitive graphs are connected with classical Robinson-Shensted-Knuth corre-
spondence [9].

Let 3" = (81,85, ...,0%) € N°, g" = (B7,84,...,3) € N', and 3 be the
sequence (=84, =B, _ 1, ..., =01, 087,08y, ...,0{) € Z**'. 1t is clear that every
oscillating tableau o € OT(@, 0, ) can be presented by a pair (P, Q) of Young
tableux of the same shape and with weights 3’ and 3" respectively. We can
associate with an intransitive graph v € G(3) the sxt-matrix A = (a,;) such
that a;; is equal to the multiplicity of the edge (s+1—i,s+7) in v. We get
the following corollary of Theorem 4.3.

Corollary 4.5 Let 3’ € N° and " € N'. Then the number of pairs (P, Q)
of Young lableaux of the same shape and with weights 3’ and (3" respectively
is equal to the number of sxt-matrices A = (a;;) such that

1. ai; €N fori=1,2,...,s, 1=1,2,...,1,
2. > sai; = fori=1,2,... s,

3. Yiai =0 forj=1,2,... 1.

In [9] D. E. Knuth generalized the constructions of G. de B. Robinson
[12] and C. Schencted [13] and obtained a one-to-one correspondence between
such pairs (P, Q)) and matrices A. In this special case the bijection ®),4 (see
Section 77) coincides with Robinson-Schensted-Knuth correspondence.

5 S,xS,module M(p,f,q)

In this section we consider a permutational representation of S,x.S, in the
linear space generated by intransitive graphs. Multiplicities of irreducible
components in this representation are given by the numbers of oscillating
tableaux.

Let p,g € N, 8= (B1,...,3) € Z* such that p — s(8) = q, r = p + k,
and n = p+ k + q. Let G(p,[3,q) be the set of intransitive graphs of type
d = (61,09,...,6,), where

-1 fore=1,...,p,
0i=1% Bicp fori=p+1,....r,
1 fore=r+1,...,n.
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The direct product of two symmetric groups 5,x 5, acts on the graphs
v € G(p,3,q) as follows: the group S, permutes the first p vertices in v
and the group S, permutes the last ¢ vertices in 4. More precisely, if g =
(o,p) € S,xS8,, v € G(p,3,q) then (¢,7) is an edge of graph ¢ - if and only
if (g7 ),g_l(j) is an edge of 7, where

o(s) s=1,...,p,
g(s) = s s=p+1,...,r
pls=r)+r s=r+1,...,n

Let M(p,3,q) be the linear space over C with basis {v,}, v € G(p, 5, q).
The action of the group S,xS, on G(p,[3,q) gives a linear representation
M(p,3,q) of Sx.5,.

Example 5.1 Lel p = q and 3 = ) be the emply sequence. Then graphs from

G(p,0,p) can be identified with permutations in S,. In this case M (p,{, p) is
the regular representaion Reg(S,) of S, x S,. That is M(p, @, p) is isomorphic
to the group algebra C[S,] on which one copy of S, acts by left multiplications
and the other copy of S, acts by righl multiplications.

Example 5.2 Let ¢ = 0 and 5; > 0 for all e = 1,2,...,k. Then a graph
v € G(p,3,0) can be identified with the word w = wyw, . .. w, in the alphabet
{1,2,...,k} where w; = j if (1,p+7) is an edge of v. Clearly, the word w
conlains 1 1’s, By 2’s, etec. The symmetric group S, acts on such words
w by permutation of letters w;. The representation Mg = M(p,3,0) is the
well-known monomial representation, see [§],

Mg = IndZ? 1d,

8 XX Sg,
where Id is the identity representation of Sg, x ... xS, .

Now we can give a combinatorial interpretation of multiplicities of irre-
ducible components in M (p, 3, q) in terms of oscillating tableaux.

Let 7y be the irreducible S,-module associated with a partition A F n
(see [8, 10]). Every irreducible representation of the group S,x.S, is of the
form 7y @ m,, where |A| = p and |u| = q¢.

Theorem 5.3
M(p,B,q) = Y |OT (A, 1, B)] - w3 @ 7,

where the sum is over all partitions A = p and p F q.
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The following two Corollaries present classical identities.
For p, q, 3 such as in Example 5.1 Theorem 5.3 gives

Corollary 5.4
Reg( S, Z T & .

Abp

This is a standard fact from representation theory of finite groups.
For p,q, 3 such as in Example 5.2 Theorem 5.3 gives

Corollary 5.5

Mﬁ_ paﬁ7 Z|YT)‘B| T

Abp

This is the classical Young rule for decomposition of monomial representa-
tions Mg of symmetric groups (see [18, 8, 10]).
Clearly, Theorem 4.3 is a special case of Theorem 5.3 for p = ¢ = 0.

6 Proof of Theorem 5.3

Let M be the category whose objects Oby, are finite groups and mor-
phisms Morm (G, H) (or simply Mor(G, H)) from a group G to a group H
are equivalence classes of complex finite dimensional G'x H-modules. Let
V € Mor(G,H) and W € Mor(H,K), G, H, K € Oba, then composition
Vo W of morphisms V' and W is the following G'x K-module

VoW =V @qmW

(the tenzor product over the group algebra C[H]). In other words, the tenzor
product V@cW is a Gx Hx Hx K-module. Then VoW is the Gx K-module
of H-invariants in V ®c W (with the diagonal action of H on V ®@c W). The
composition is a bilinear operation with respect to the direct sum of modules.

Let ¢ denote the set of equivalence classes of irreducible representations
of G. Then any irreducible G x H-module is of the form a®@ 3*, where a € G,
B e H and (3* denotes the conjugate to 3 (which is also irreducible). It is
clear that these irredusible modules form a N-basis of Mor(G, H).

Let Reg((7) be the regular representation of GxG, i. e. Reg(() is the
group algebra C[(G] on which one copy of G acts by left multiplications and
the other copy of G acts by right multiplications.
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Figure 4: Composition of graphs

The following proposition presents two simple facts from representation
theory of finite groups:

Proposition 6.1 1. LetaE@,BEﬁ,vEﬁﬁEK'. Then

a®dé iff=
@amyepor={ 20 1o

2. The regular representation Reg(G) = Y .aa® o is the identity mor-
phism in the category M from G to G.

Now construct a category T. The objects of T are nonnegative integers
Obs = N and for p, ¢ € Obs morphisms Mory(p, ¢) from p to ¢ are sequences
B = (B1,...,0) of integers such that p — s(3) = ¢ and p — 5:1 Bi >0
for y = 1,2,...,k. The composition of morphisms ' = (41,...,03;) and
B" = (By,...,0) is the sequence ' o 3" = (B, ..., 0., 87, ..., 5]).

Consider the following maps from Obs to Ob and from Mors to Mor ag

My pEObT%SPEObM,

Mmor . 5 S MOI‘T(p, Q) — M(P,ﬁ#]) € MorM(Sp7SQ)‘

Theorem 6.2 These maps give a functor M from category T lo category
M. In other words, if 3" € Mory(p,q) and 3" € Mory(q,r) then M(p, ', q)o

M(q,p",r) = M(p,3" 0 3", r).

Proof — Define an operation of “composition” for intransitive graphs. Let
v € G(p,f,q),y" € G(q,3",r), the sequence 3" has k elements, and 3" has
[ elements. Join the vertex p+k+i of the graph 4’ with the vertex i of graph
~" for i = 1,2,...,q. Delete all these vertices and renumber the remaining
vertices by the numbers 1 through p+k+I+r (all vertices of 4" are less then
vertices of v”). As a result we get the graph v 0o~" € G(p, 3" 0 3”,r). See an
example on Figure 4.

Let {vy,}, v € G(p,f',q) be the basis of M(p, ', q) and {v,n}, " €
G/(q,8",r) be the basis of M(q, 8", r). Then vectors v, @ v.,» form a basis of
M(p, 3, q) @c M(q,3",r). We must select S,-invariants in this space. To do
this we should symmetrize the space M(p, ', q) @c M(q,3",r) by diagonal
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action of 5,. Let Sym denote this symmetrization. Then we can identify
Sym(vy & vyn) with vy,n. Hence vectors of the type v, generate the
representation M(p,3’,q) o M(q,3",r). On the other hand, it is clear that
every element of G(p, 3" o 3”,r) is of the form 4" 0 4" and vice versa.

Therefore, M(p, 3, q) o M(q, ", r) ~ M(p,3 o 3", r). O

Now we are able to prove Theorem 5.3. We will do it in two steps. First,
we prove it in the case when the sequence (3 consists of one number 3 = (b).
Then we prove it for arbitrary (3.

1. Let 8 = (—b) and b > 0 (the case when b < 0 is dual). Then ¢ =p+b
and
M(p, (~b), q) = Indg 1% Reg(5,) © I,
where Idy is the identity representation of Sy. Now

M(p,(=b),q) = Indgﬁgz;bsb Z T @ my @ 1dy
Abp

= Zm\ ® Indgﬁ;b&,m\ =* Z |OT' (X, (=b),p)| - 1\ @ 7.

Abp Abp, pukg

The first equality is true by Proposition 6.1(2) and the fact that for the
symmetric group we have 75 = m\. The equality (*) uses the Pieri rule:

S
IndSZ;tiS‘bﬂ-/\ = Z s
where the sum is other all  such that u/A is a horizontal b-stripe, see [8].
2. Let B = (Bi,...,5%) be a sequence of integers and p; = p — >, 3,
q = pr. Then

M(p757 Q) :(1) M(p07 (/81)7])1) 0...0 M(pk—la (ﬁk)vpk)

=) (Z Ty & 7TM(l)) ©...0 (Z T @ W““”)

—(3) Z |OT (X, p, B)] - ™\ @ 7y,

Abp, ubq
where in the second line the direct sums are over A¢;) = p;_y and p;) = p; such
that Ay/p) is a horizontal Bi-stripe (if B; > 0) or p;)/Aq) is a horizontal
(—B:)-stripe (if 3; <0) for all 1 =1,2,... k.
Equality (1) follows from Theorem 6.2; (2) follows from p. 1; (3) follows
from Proposition 6.1(1) and definition of oscillating tableaux. O
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7 Combinatorial theorem

In this section we give a combinatorial analogue of Theorem 5.3.

A sequence 7 = (71,7y,...,7;) € ZF is called normal if there exist 0 <
r <l <ksuchthat my,7,....,7 >0 71 =...=71=0; 7iy1,...,7 < 0.
For a sequence 3 € ZF, let nor(3) denote the normal sequence obtained
from (3 by shuffling all positive entries of 3 into the beginning and all neg-
ative entries into the end. For example, nor(0,—-3,1,—1,0,—-2,0,1,3) =
(1,1,3,0,0,0,—-3,—1, —2).

For 3,6 € Z* the expression § < (3 means that forall i = 1,2,..., k either
0<6;<Bior0>6; >3

Now we can state the combinatorial theorem.
Theorem 7.1 Let A\, u € P be some partitions, 3 € Z*. Then
OT (s B)] = Y |G()] - [OT (A, p, nor(3 = 6))],

where the sum is over all § € Z* such that 5(§) =0 and § < 3.

In order to deduce Theorem 7.1 from Theorem 5.3 we need one simple
lemma.

Lemma 7.2 Let p,q € N, 8 € Z* be such that p— s(3) = q. Then

M(p,B,q) =Y _|G(8)| - M(p,nor(8 —§),q),
where the direct sum is over all § € ZF such that s(§) = 0 and § < 3.

Proof — Let £ € G(J), where § = (81,...,8,) € Z*, s(§) = 0. Let
G/(p, 0, q)e be the set of graphs from G(p, §, ¢) whose restriction on the vertices
p+1,p+2,...,p+k is the graph & If G(p, 3, q)¢ is nonempty then § < 3.

It is clear that when § < 3 and £ € G(§) the submodule in M(p,3,q)
generated by {v, | v € G(p,B,q)¢} is equivalent to M (p,nor(3 —4),q). O

Now Theorem 7.1 immediately follows from Theorem 5.3 and Lemma 7.2.

We will give a combinatorial proof of Theorem 7.1. In Section 77 we will
construct a bijection ®,,3 which establishes a one-to-one correspondence
between the following two sets.

By OT (M, 11, B) = [ G(8) x OT (A, pr,nor(3 — 6)).
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Let A\=pu = 0. Then there is a unique oscillating tableau of shape (0, 0)
of normal weight. Namely, (6, 0,... ,O) € OT(O, 0, (0,0,...,0)). We have

0 = [ in Theorem 7.1. Hence Theorem 4.3 is a special case of Theorem 7.1.

8 Superanalogue

In this section we give superanalogues of definitions and theorems from Sec-
tions 4-7.

Definition 8.1 Let A,y be partitions, 3 € Z* , & = (&1,...,ex) € {1,—1}*.
An oscillating supertableau of shape (A, ) and superweight b = 3 (see Sec-
tion 2) is a sequence of partilions (@) = A, o1y, Q2), . . ., o) = ) such thal
foralle =1,2,...,k the following conditions hold.

1. Ife; = 1 and B; > 0 then ag_1)Dagy and a(i_l)/a(i) ts a horizontal
Bi-stripe;

2. If e, = 1 and 3; < 0 then ayDai_y) and oz(i)/oz(i_l) ts a horizontal
(_/Bi)'Stripe;

3. Ife; = =1 and 3; > 0 then ai_Dagy and Oz(i_1)/0é(¢) ts a vertical
Bi-stripe;
4. If ei = =1 and 3; < 0 then apnDai-yy and a(i)/a(i_l) ts a vertical

(—3;)-stripe.

The set of all oscillating supertableaux of shape (A, 1) and superweight b = 3°
is denoted by OST (A, p,b).

It is clear that OST(A, p,b) is nonempty only when |A| — s(8) = |p|. If
all B > 0 then OST(\, p,3%) = ST(Mp, 37). And OST(A, p, BO1-D) =
OT(A, i, 3).

Definition 8.2 Let § € Z* be such thal 5(§) = 0 and ¢ = (€1, €2,...,¢€;) €
{1, —1}*. An intransitive graph of supertype d = 8¢ is an oriented graph~ on
the set of vertices {1,2,...,k} salistying the conditions 1-3 of Definition 4.1
and also the condition:

4. If €, # ¢ then v contlains at most one edge (1,7).
Let SG(6%) be the set of all such graphs.

12



The following algebra A(¢) is closely related to Definition 8.2.

Definition 8.3 Let ¢ = (e, ¢€3,...,¢;) € {1, —1}*. The algebra A(c) gener-
ated by variables x;;,1 <1 < j <k with the following relations.

1. 2, =0 forany 1 <1< j<r <k,

2.zt = (—1)79%m g, x4, where

P 0 €, = 6]‘,
e 1 €; 7£ €;.
Relation 2 implies that z;; with o;; = 0 are commutative variables and
T, with o, = 1 are anticommutative variables.

For any oriented graph v on the set of vertices {1,2,...,k} we can con-
struct (up to a sign) a monomial m., in the algebra A(e):

m~y = + H Tijy
where the product is over all edges (z, j) of graph ~.

Nonzero monomials in A(€) correspond to intransitive graphs of type
(3 with fixed € and arbitrary 3. Indeed, condition 4.1(2) corresponds to
condition 8.3(1) and 8.2(4) corresponds to the fact that z} = 0 for an
anticommutative variable z;,, with o, = 1.

Let Ajs(e) denote the subspace of A(e) which is generated (as a linear
space) by monomials m., for v € SG(6%). It is clear that A(e) = @, As(e).
Let P,q € N7 /8 = (617"'7/816)7 € = (517---7519) € {17_1}k7 and 77Z)7w €
{1, —1}. Suppose that

§ =(—-1,—1,....=1,B1,B2, ..., Bk, 1, 1,.... 1);
—_———
p times q times
€ = (U, 0, 61,80, . Ep W W, L, W),
N—_— —— —_— ——
p times q times

Let SG(p, 3%, q) be the set of intransitive graphs of supertype §°. Denote
by M(p, 5%, q) the subspace A;(c), where p = p¥ and q = ¢*. Then {m,, :
v € SG(p,3°,q)} is a basis of the space M(p, 3%, q).

The group S, x5, acts on this space, cf. Section 5. The symmetric group
S, permutes the first index of variables z;; with ¢ = 1,2,...,p and S, per-
mutes the second index of variables z;; with j = p+k+1,..., p+k+q.

13



The following example gives an odd analogue of the regular representation
of S, (see Example 5.1).

Example 8.4 Let 3° = () be the empty sequence, p = p and and q = P,
p € N. Then M(p,0,p) is the representation of S,x.S, on the group algebra
C[S,] given by the formula

(0,7)- | = sgn(on™") o fr",

where (o,m) € S,x5,, f € C[S,] and sgn denotes the sign of permutation.
Denole this representation by Alt,.

We use the following notation. For a partition A € P and ¢ € {1,—1},
M = Xif p =1 and \¥ = X (the conjugate partition) if ¢ = —1.
Now we can present a superanalogue of Theorem 5.3.

Theorem 8.5
M(pd)’ﬁi’qw) ~ Z |OST(/\¢”MW’5€)| T Ty

where the sum is over all partitions A = p and p F q.

For p, q, #° such as in Example 8.4 we have by Theorem 8.5

Corollary 8.6
A[tp = Zﬂ'/\ & TN .

Abp

This is an odd analogue of Corollary 5.4. Of course this formula easily follows
from definition of Alt,,.

Sketch of proof of Theorem 8.5 — The proof is analogous to the proof of The-
orem 5.3. The only difference is the definition of “composition” for intransi-
tive graphs. If we define the composition as in Section 6 then it may happen
that the composition of two graphs 4 € SG(p, b, q) and v € SG(q,b",1) is
not a graph from SG(p,d ob”,r). We define “supercomposition” 7' o8 4" of
graphs 4" and " by

18— L ey iy o e SGp, Yo b r),
v 7= 0 otherwise.
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This convention is consistent with interpretation of composition in terms
of symmetrization. Indeed, if /04" is not in SG(p, b'ob”, r) then Sym(m(y")®
m(~")) = 0. O

Now we give a superanalogue of Theorem 7.1. Let b = (by,by,...,b;) =
(3° (see Section 2). Let nor(b) denote the word obtained from the word
b= (b1,bs,...,b;) by shuffling all negative entries into the beginning and all
positive entries into the end. For example, nor(0,3,—1,1,0,2,0,—1,-3) =

(-1,-1,-3,0,0,0,3,1,2).

Theorem 8.7 Let A\, i € P be some partitions, 3 € Z*, ¢ € {1,—1}*. Then

OST(X, 1, 8)] = Y 1SG(8°)] - [OST (A, i, nor((5 = 8)7))l.

where the summation is over all § € Z* such that s(§) =0 and § < 3.

This theorem can be deduced from Theorem 8.5 in the same way as
Theorem 7.1 from Theorem 5.3.
In Section 77 we will construct a bijection

OET OST (A, 1, 8°) — [[ SG(67) x OST (A, mor((8 — 6)%)).
5<p

This will give a combinatorial proof of Theorem 8.5.
If X\ = =0 then Theorem 8.7 implies the following

Corollary 8.8 Let 3 € ZF be such that s(3) = 0, ¢ € {1,—1}*. Then the
number of oscillating tableauz of shape (0,0) and superweight b = 3° is equal
to the number of intransitive graphs of sypertype b

0ST(0,0,0)| = |G(b)].

Let /6/ S NS? B// S Ntv /6 = (_ ;7_ ;—17"'7_617 1/7 ga"'v 1{/)7 and
e=(=1,—-1,...,=1,1,1,...,1) (s =1’'s and ¢ 1’s). It is clear that oscillating

supertableaux of shape (0, ﬁ) and superweight (3 correspond to pairs (P, Q)
of Young tableaux with conjugate shapes and with weights 3’, 3" respectively,
cf. Section 4.

We can identify an intransitive graph v € SG(5°) with a sxt-matrix
A = (ai;) satisfying conditions 1-3 of Corollary 4.5 and such that a;; = 0
or 1 for all 2 and 5. We get the following
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Corollary 8.9 Let ' € N° and 3" € N'. Then the number of pairs of
tableaux (P, Q) with conjugated shapes and with weights 3" and (3" respec-
tively is equal to the number of sxt-matrices salisfying the conditions 1-3 of
Corollary 4.5 with all entries equal to 0 or 1.

Knuth in [9] construct also an odd analogue of RSK-correspondence which
is a bijection between the set of such sx#-matrices and the set of such pairs
of tableaux (P, Q). In this special case the bijection ®5™ coincides with
Knuth’s correspondence.

9 Increasing and decreasing operators

First we give another description of the category M from Section 6.

Let G be a finite group. By Rep(() denote the set of equivalence classes
of complex finite dimensional representations of . It is clear that Rep(G) =
Morm({id}, G) (see Section 6), where {id} denote the group with one element
id.

Let W € Morp(G, H). Consider the N-linear map (W) from Rep(()
to Rep(H) which is defined by (W)V = V o W, where V € Rep(G) =
Mora({id}, ). On the other hand, if we know a map (W) then we can
reconstruct the morphism W in M.

By R denote the direct sum R = Rep(So)@Rep(S1)BRep(S2)P .. ..

Let (M(p,b,q)) be the operator from Rep(S,) to Rep(S,) which cor-
responds to S,xS,-module M(p,b,q). Recall that b = [3° is a sequence
in the alphabet {m,m | m € Z}). Let (b) be the endomorpism of R
such that (b) = > (M(p,b,q)), where the sum is over p — s(3) = ¢. In
the case when the sequence b has only one element m or m, m € Z, we
denote these operators by (m) or (m). It is clear from Section 8 that
((b1,bg, ..., b)) = (b1) - (by) ... (bg).

If n € N then we call operators (n) and (%) increasing and denote them
by I(n) or I(w). If —n € N then we call operators (n) and (7) decreasing
and denote them D(n) or D(7). The following description of operators /(n),
I(7), D(n), and D(n) follows from Sections 6 and 8.

Let V € Rep(S,). Then

I(n) -V = IndZ*V;
[(@)-V = Indg}5, (V ®sen,),
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where sgn, is the sign representation of 5.

Let V € Rep(Sp+r). Then

D(n)-V = Invn(Resgi;gnV);

D() -V = Skew,(Resg's V),

where Inv,, i1s the space of S,-invariants and Skew, is the space of skew
invariants of \9,,.

The space R has the basis {my | A € P} consisting of all irreducible
representations of all symmetric groups. Therefore a linear operator on the
space R can be represented as an infinite matrix indexed by partitions.

All increasing and decreasing operators in coordinates are given below.

1 if A D g and Ay is a horizontal n-stripe,
0 otherwise,

D(n) B 1 if g D Xand p/X is a horizontal n-stripe,
" = 0 otherwise,

1 if A D g and Ay is a vertical n-stripe,
0 otherwise,

D) _ 1 if g D Xand p/AX is a vertical n-stripe,
"hu = 0 otherwise.

It is clear that <b>/\# = ((b1) - (ba) - ...~ (bg))ru = |OST (X, b, p)|.

All increasing operators commute and all decreasing operators commute.
But increasing and decreasing operators do not commute with each other.
The following theorem gives the relations between these operators. Here
[a,b] = ab — ba denotes the commutator of operators.

Theorem 9.1 Let m,n € N. The following relations hold.
1 [I(m), I(n)] = [ (m), [(m)] = [D(m), D(n)] = [D(m), D(7)] = 0.
2. [I(m), [(n)] = [D(m), D(n)] = 0.

3. [I(m+ 1), D(n + 1) = I(m)D(n), [I(m + 1), D(n + 1)] = () D(7).
4. [I(m+1),D(r T 1)] = D@)I(m), [[(m+ 1), D(n +1)] = D(n)I(7).

In the following section we give a combinatorial proof of Theorem 9.1.
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10 Local bijections

Let m,n € N. In this section we construct the following four bijections:
1. 1 YT\ v, (m,n)) — YT(\v, (n,m)),
2. 1 ST(M . (m, 7)) = ST(Mv, (7, m)),
3. s : OT(\, v, (=m0, 1)) = [locremingrmm OT (v, (n—k, —m-+k)),

4. g : OST (M, v, (—m, 7)) — HOSksmin(me) OST (A, v,(n—k, —m+k)).

It is clear that these bijections are sufficient to prove Theorem 9.1. Later
we will use bijections 3 and 4 in combinatorial proofs of Theorems 7.1
and 8.7

In all examples, when displaying an (oscillating) (super)tableau o =
(A, p,v), we insert 2’s into the boxes of the skew diagram A/u ( or u/A )
and 1’s into the boxes of u/v (or v/u ). The symbol 1/2 in a box means
that we insert simultaneously integers 1 and 2 into this box.

We say that a skew diagram A/p falls into a disjoint union of skew dia-
grams 7,7y, ..., if A/ = U;7; and for all 1 <4 < j <[ any box of 7; is
below and the to the left of any box of 7;. For example, the skew diagram
on Figure 1 falls into a disjoint union of three diagrams. We also say that a
(super)tableau of shape A/p falls into a disjoint union of so does the shape

A .

Constructions:

1. Let a = (A p,v) € YT(AN p,(myn)), A = (A, Ay .0), o= (pa, g2, - 0),
and v = (v1,v2,...). Then we have \; > p; > Xy, 0 = 1,2..; and py; >

vi > piv1, ¢t = 1,2,.... Set by convention vy = oc. On the following diagram
arrow = — y denotes the inequality x > y.

M A2 A3 o N\ Ait1
NSNS NS
M1 H2 ce i
N SN 7N\
oo 141 12%4] o Vi Vi
Let a; = min(X\;,v5-1) and b; = max(Ai41,v4), ¢ = 1,2,.... Then a; >

i > b Set gy = a; +b; —py, 0 =1,2,... ie., i; is symmetric to y; in the
interval (b;,a;).
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Figure 5: Bijection ¢
Figure 6: Bijection 3

Now i = (g1, fiz, . ..) is a partition and a = (A, iz, v) € YT (A, (n,m)).
Define ¢ : a — a. It is easy to see that 1, is a bijection between the sets
YT (A p,(m,n)) and YT (N, (n,m)). Figure 5 shows an example of the
bijection ;.

2. Let o= (A p,v) € ST(A p,(m,7)) ...
3. Leta=(\u,v) € OTA p,(=m,n), A= (A, he,...), = (pa, 2, .. .),

and v = (v1,v2,...). Then we have p; > A > piv1, i > vy > fita,
Z:1727’ |/,L|—|/\|:m,and |N|_|V|:n

)\1 )\2 )\3 e )‘z )‘H-l

141 V9 V3 N 03 Vit

Let a; = min(\;, ;) and b; = max(Ai41,v41), ¢ = 1,2.... Then a; >
fip1 > b Set 1 = a; + by — pipr, 1 = 1,2,... (cf. p. 1) and k = py —
min(Aq,v1). Clearly, 0 < k < min(n, m).

Now g = (pi1, fi2,...) is a partition and a@ = (A, g,v) € OT(A pu,(n —
k,—m + k)). We define ¢35 : a — a. Then 13 gives a bijection between the
sets OT(X, p, (—m,n)) and [[, OT' (A, i, (n—k,—m+k)), 0 < k <min(m,n).
Indeed, if we have a partition g = (g1, fi2,...) and 0 < k < min(m,n) then
we can reconstruct p setting g1 = k + min(Ay,11) and pip1 = a; + b — i,
1 =1,2,.... See an example of the bijection 3 on Figure 6.

4. Let a= (M u,v) € OST(A\ v, (—m, 7)) ...
11 Generalized Gelfand-Tsetlin patterns
Let a = (aqy, a1y, - -, o)) € OT(X, 1, B) be an oscillating tableau of weight

B = (01, B2,...,0k). Let w =wiws...w; be a word in the alphabet {4, —}
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Figure 7:

k.

such that if §; is positive (negative) then w; = + (w; = =), 1 = 1,2,...,
Let p(i) be the number of +’s in the word wywy...w;, 1 =1,2,... k.

The generalized Gelfand-Tsetlin pattern P of type w corresponding to
the oscillating tableau « is the two-dimensional array P = {p;;}, where
i = 1,2,...,k, 7 > p(i), and pij = a(i)j—,). For example, a generalized
Gelfand-Tsetlin pattern of type w = ++—... is an array of the following
form (as above * — y means x > y).

o) (0)2 @ (0)3 (0)4
NN SN S
aq a(1)2 a(1)3
NN SN
() (2)2 (2)3
N N S
@ (3)2 (3)3

Note that standard Gelfand-Tsetlin patterns have type w = +++... in
our terminology.

We can present a generalized Gelfand-Tsetlin pattern P (and the cor-
responding oscillating tableau) in more convinient form as a plane partition
with cutted off corners. For example, Figure 7 presents the oscillating tableau

((211),(3211), (221), (211), (421), (321)).
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