Oscillating Tableaux, $S_p \times S_q$ -modules, and Robinson-Schensted-Knuth correspondence

IGOR PAK

Department of Mathematics
Harvard University
Cambridge, MA 02138
pak@math.harvard.edu

ALEXANDER POSTNIKOV

Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139
apost@math.mit.edu

January 15, 1994

1 Introduction

In the recent time in the works of different authors [4, 5, 6, 7, 11, 14, 17] arose a new interest to the classical Robinson-Schensted-Knuth correspondence [9].

The Robinson-Schensted-Knuth correspondence (RSK) is a bijection between pairs (P,Q) of semi-standard Young tableaux and matrices M with nonnegative integer entries such that the column sums of M give weight of P and the row sums of M give weight of Q (see Corollary 4.5). This correspondence is important in representation theory of the general linear

group GL(N) and the symmetric group S_n and in the theory of symmetric functions.

We can view a pair of tableaux (P,Q) of the same shape as a sequence of Young digrams $\alpha_{(0)} = \hat{0} \subset \alpha_{(1)} \subset \ldots \subset \alpha_{(p)} \supset \alpha_{(p+1)} \supset \ldots \supset \alpha_{(k)} = \hat{0}$. In general, consider a sequence of diagrams $\alpha = (\alpha_{(0)}, \alpha_{(1)}, \ldots, \alpha_{(k)})$ such that for all i either $\alpha_{(i)}/\alpha_{(i+1)}$ or $\alpha_{(i+1)}/\alpha_{(i)}$ is a horizontal stripe. Such objects generilize semi-standard Young tableaux (and pairs (P,Q)) and they are called oscillating tableaux.

In this paper we use the following notation: $\mathbb{N} := \{0, 1, 2, \ldots\}; \ s(\beta) := \beta_1 + \beta_2 + \ldots + \beta_k \text{ for } \beta = (\beta_1, \beta_2, \ldots, \beta_k) \in \mathbb{Z}^k.$

We are grateful to S. Fomin, and??? for useful discussions.

2 Diagrams and tableaux

Recall basic definitions from combinatorics of Young diagrams (see [10]).

A partition λ of n is a sequence of positive integers $(\lambda_1, \lambda_2, \ldots, \lambda_l)$ such that $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_l > 0$ and $|\lambda| := \lambda_1 + \lambda_2 + \ldots + \lambda_l = n$. We will also write $\lambda \vdash n$. Let \mathcal{P} denote the set of all partitions. By $\hat{0}$ denote a unique partition of zero.

With each partitions λ we can associate its Young diagram which is the set of pairs $(i,j) \in \mathbb{N}^2$ such that $1 \leq j \leq \lambda_i$, i = 1, 2, ..., l. Pairs (i,j) are arranged on the plane \mathbb{R}^2 with i increasing downwards and j increasing from left to right. Young diagrams will be presented in the form of sets of 1×1 -boxes centered at (i,j). We denote partitions and the associated Young diagrams by the same letter λ .

Let " \supset " be the partitial order on \mathcal{P} by inclusion of Young diagrams, i.e., $\lambda \supset \mu$ if $\lambda_i \geq \mu_i$ for all i. For $\lambda \supset \mu$, skew Young diagram λ/μ is the set theoretical difference of the Young diagrams λ and μ . For example, if $\lambda = (6, 4, 4, 1)$, $\mu = (4, 3, 2)$ then the skew Young diagram λ/μ is the shaded region in Figure 1.

A partition $\lambda' = (\lambda'_1, \dots, \lambda'_r)$ is *conjugate* to a partition $\lambda = (\lambda_1, \dots, \lambda_l)$ if their Young diagrams are symmetric to each other with respect to the principal diagonal.

A horizontal (respectively, vertical) m-stripe is a skew Young diagram λ/μ such that every column (respectively, row) contains at most one box of λ/μ and $|\lambda|-|\mu|=m$.

Let $\beta = (\beta_1, \beta_2, \dots, \beta_k) \in \mathbb{N}^k$. A Young tableau of shape λ/μ and weight

Figure 1: A skew Young diagram λ/μ

Figure 2: A tableau T and a supertableau S

 β is a sequence of partitions $(\alpha_{(0)} = \lambda, \alpha_{(1)}, \alpha_{(2)}, \dots, \alpha_{(k)} = \mu)$ such that $\alpha_{(i-1)} \supset \alpha_{(i)}$ and $\alpha_{(i-1)}/\alpha_{(i)}$ is a horizontal β_i -stripe for all $i = 1, 2, \dots, k$. Let $YT(\lambda/\mu, \beta)$ denote the set of all Young tableaux of shape λ/μ and weight β . Note that such tableaux are also called *column-strict* or *semi-standard*. A Young tableau is said to be *standard* if it has weight $\beta = (1, 1, \dots, 1)$.

Let $\varepsilon = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_k) \in \{1, -1\}^k$ and β^{ε} denote the sequence $b = (b_1, b_2, \dots, b_k)$ in the alphabet $\{m, \overline{m} \mid m \in \mathbb{Z}\}$ such that $b_i = \beta_i$ (respectively $b_i = \overline{\beta_i}$) if $\varepsilon_i = 1$ (respectively $\varepsilon_i = -1$).

A supertableau (see [2]) of shape λ/μ and superweight β^{ε} is a sequence of partitions $(\alpha_{(0)} = \lambda, \alpha_{(1)}, \alpha_{(2)}, \dots, \alpha_{(k)} = \mu)$ such that $\alpha_{(i-1)} \supset \alpha_{(i)}$ and if $\varepsilon_i = 1$ (respectively, $\varepsilon_i = -1$) then $\alpha_{(i-1)}/\alpha_{(i)}$ is a horizontal (respectively, vertical) β_i -stripe for all $i = 1, 2, \dots, k$. Let $ST(\lambda/\mu, b)$ denote the set of all supertableaux of shape λ/μ and superweight $b = \beta^{\varepsilon}$. It is clear that $ST(\lambda/\mu, \beta^{(1,1,\dots,1)}) = YT(\lambda/\mu, \beta)$.

When we present tableaux and supertableaux, we insert the integers k-i+1 into the boxes of $\alpha_{(i-1)}/\alpha_{(i)}$ for $i=1,2,\ldots,k$. Figure 2 shows examples of a tableau $T \in YT(\lambda/\mu,(1,2,3))$ and a supertableau $S \in ST(\lambda/\mu,(2,1,\overline{3}))$.

3 Oscillating tableaux

We can view tableaux as paths in certain graph \mathcal{Y} . The vertices of \mathcal{Y} are Young diagrams and diagrams λ and μ are connected by an edge in \mathcal{Y} if λ/μ (or μ/λ) is a horizontal stripe. Let \mathcal{Y}_n denote the *n*th level of \mathcal{Y} , i.e., \mathcal{Y}_n is the set of all diagrams λ with $|\lambda| = n$. We call \mathcal{Y} the extended Young graph because it is obtained from the Young graph by adding some edges connecting non-adjacent levels.

It is clear that Young tableaux correspond to decreasing paths in the graph \mathcal{Y} . An oscillating tableau is an arbitrary path in \mathcal{Y} .

Definition 3.1 Let λ, μ be partitions and $\beta = (\beta_1, \beta_2, \dots, \beta_k) \in \mathbb{Z}^k$. An oscillating tableau of shape (λ, μ) and weight β is a sequence of partitions $\alpha = (\alpha_{(0)} = \lambda, \alpha_{(1)}, \alpha_{(2)}, \dots, \alpha_{(k)} = \mu)$ such that for all $i = 1, 2, \dots, k$ the following conditions hold:

- 1. If $\beta_i \geq 0$ then $\alpha_{(i-1)} \supset \alpha_{(i)}$ and $\alpha_{(i-1)}/\alpha_{(i)}$ is a horizontal β_i -stripe;
- 2. If $\beta_i < 0$ then $\alpha_{(i)} \supset \alpha_{(i-1)}$ and $\alpha_{(i)}/\alpha_{(i-1)}$ is a horizontal $(-\beta_i)$ -stripe.

By $OT(\lambda, \mu, \beta)$ denote the set of all oscillating tableaux of shape (λ, μ) and weight β .

It is clear that $OT(\lambda, \mu, \beta)$ is nonempty only when $|\lambda| - s(\beta) = |\mu|$. If all β_i are nonnegative then $OT(\lambda, \mu, \beta) = YT(\lambda/\mu, \beta)$.

4 Intransitive graphs

Definition 4.1 Let $\delta = (\delta_1, \delta_2, \dots, \delta_k) \in \mathbb{Z}^k$ be a sequence such that $s(\delta) = 0$. An intransitive graph of type δ is an oriented graph γ on the vertices $\{1, 2, \dots, k\}$ (multiple edges allowed) such that:

- 1. If (i,j) is an edge of γ then i < j.
- 2. If $\delta_i \geq 0$ then indegree of i is δ_i and outdegree of i is 0.
- 3. If $\delta_i \leq 0$ then outdegree of i is $-\delta_i$ and indegree of i is 0.

Denote by $G(\delta)$ the set of all intransitive graphs of type δ .

Figure 3: An intransitive graph $\gamma \in G(-2,1,-2,0,-2,2,3)$

Note that $G(\delta)$ is nonempty if and only if $\sum_{j=1}^{l} \delta_i \leq 0$ for l = 1, 2, ..., k. Figure 3 shows an example of an intransitive graph.

Remark 4.2 Let $x_1, x_2, ..., x_k$ be variables. Consider the following q-analogue of Kostant's partition function

$$P_q = \prod_{i>j} (1 - qe^{x_i - x_j})^{-1} = \sum_{\delta: s(\delta) = 0} P_q(\delta) e^{\delta_1 x_1 + \dots + x_k \rho_k}.$$

Then the number $G(\delta)$ of intransitive graphs of type δ is equal to the coefficient of the least power of q in $P_q(\delta)$. So we can view the number $G(\delta)$ as an analogue of $P_q(\delta)$ as $q \to 0$, i.e., "christal analogue of $P_q(\delta)$ ".

Intransitive graphs are closely related to oscillating tableaux. In Sections 5 and 7 we present several theorem illustrating this connection. Here we formulate a special case which is especially clear.

Theorem 4.3 Let $\beta \in \mathbb{Z}^k$ be such that $s(\beta) = 0$. Then the number of oscillating tableaux of shape $(\hat{0}, \hat{0})$ and weight β is equal to the number of intransitive graphs of type β

$$|OT(\hat{0}, \hat{0}, \beta)| = |G(\beta)|.$$

In Section ?? we construct a bijection $\Phi_{\lambda\mu\beta}$ which in the case $\lambda = \mu = \hat{0}$ is is a bijection between $OT(\hat{0}, \hat{0}, \beta)$ and $G(\beta)$.

We call an oscillating tableau of weight $\beta = (\beta_1, \ldots, \beta_k)$ standard if $\beta_i = \pm 1$ for all *i*. Clearly, standard oscillating tableau correspond to paths in the Young graph.

Corollary 4.4 The number of paths in the Young graph from $\hat{0}$ to $\hat{0}$ of length 2k is equal to (2k-1)!! = (2k-1)(2k-3)...1.

Proof — If $\beta_i = \pm 1$ for all i then an intransitive graph of type β is a perfect matching. Therefore, by Theorem 4.3 the number of standard tableux of shape $(\hat{0}, \hat{0})$ with weight of length 2k is equal to the number perfect matchings on the set of vertices $\{1, 2, \ldots, 2k\}$ which is equal to (2k-1)!!.

In the end of this section we show how oscillation tableaux and intransitive graphs are connected with classical Robinson-Shensted-Knuth correspondence [9].

Let $\beta' = (\beta'_1, \beta'_2, \dots, \beta'_s) \in \mathbb{N}^s$, $\beta'' = (\beta''_1, \beta''_2, \dots, \beta''_t) \in \mathbb{N}^t$, and β be the sequence $(-\beta'_s, -\beta'_{s-1}, \dots, -\beta'_1, \beta''_1, \beta''_2, \dots, \beta''_t) \in \mathbb{Z}^{s+t}$. It is clear that every oscillating tableau $\alpha \in OT(\hat{0}, \hat{0}, \beta)$ can be presented by a pair (P, Q) of Young tableux of the same shape and with weights β' and β'' respectively. We can associate with an intransitive graph $\gamma \in G(\beta)$ the $s \times t$ -matrix $A = (a_{ij})$ such that a_{ij} is equal to the multiplicity of the edge (s+1-i, s+j) in γ . We get the following corollary of Theorem 4.3.

Corollary 4.5 Let $\beta' \in \mathbb{N}^s$ and $\beta'' \in \mathbb{N}^t$. Then the number of pairs (P, Q) of Young tableaux of the same shape and with weights β' and β'' respectively is equal to the number of $s \times t$ -matrices $A = (a_{ij})$ such that

1.
$$a_{ij} \in \mathbb{N}$$
 for $i = 1, 2, \dots, s, j = 1, 2, \dots, t$,

2.
$$\sum_{i} a_{ij} = \beta'_{i} \text{ for } i = 1, 2, \dots, s,$$

3.
$$\sum_{i} a_{ij} = \beta_{j}^{"} \text{ for } j = 1, 2, \dots, t.$$

In [9] D. E. Knuth generalized the constructions of G. de B. Robinson [12] and C. Schencted [13] and obtained a one-to-one correspondence between such pairs (P,Q) and matrices A. In this special case the bijection $\Phi_{\lambda\mu\beta}$ (see Section ??) coincides with Robinson-Schensted-Knuth correspondence.

5 $S_p \times S_q$ -module $M(p, \beta, q)$

In this section we consider a permutational representation of $S_p \times S_q$ in the linear space generated by intransitive graphs. Multiplicities of irreducible components in this representation are given by the numbers of oscillating tableaux.

Let $p, q \in \mathbb{N}$, $\beta = (\beta_1, \dots, \beta_k) \in \mathbb{Z}^k$ such that $p - s(\beta) = q$, r = p + k, and n = p + k + q. Let $G(p, \beta, q)$ be the set of intransitive graphs of type $\delta = (\delta_1, \delta_2, \dots, \delta_n)$, where

$$\delta_{i} = \begin{cases} -1 & \text{for } i = 1, \dots, p, \\ \beta_{i-p} & \text{for } i = p+1, \dots, r, \\ 1 & \text{for } i = r+1, \dots, n. \end{cases}$$

The direct product of two symmetric groups $S_p \times S_q$ acts on the graphs $\gamma \in G(p, \beta, q)$ as follows: the group S_p permutes the first p vertices in γ and the group S_q permutes the last q vertices in γ . More precisely, if $g = (\sigma, \rho) \in S_p \times S_q$, $\gamma \in G(p, \beta, q)$ then (i, j) is an edge of graph $g \cdot \gamma$ if and only if $(g^{-1}(i), g^{-1}(j))$ is an edge of γ , where

$$g(s) = \begin{cases} \sigma(s) & s = 1, \dots, p, \\ s & s = p + 1, \dots, r, \\ \rho(s-r) + r & s = r + 1, \dots, n. \end{cases}$$

Let $M(p, \beta, q)$ be the linear space over \mathbb{C} with basis $\{v_{\gamma}\}, \gamma \in G(p, \beta, q)$. The action of the group $S_p \times S_q$ on $G(p, \beta, q)$ gives a linear representation $M(p, \beta, q)$ of $S_p \times S_q$.

Example 5.1 Let p = q and $\beta = \emptyset$ be the empty sequence. Then graphs from $G(p, \emptyset, p)$ can be identified with permutations in S_p . In this case $M(p, \emptyset, p)$ is the regular representation $Reg(S_p)$ of $S_p \times S_p$. That is $M(p, \emptyset, p)$ is isomorphic to the group algebra $\mathbb{C}[S_p]$ on which one copy of S_p acts by left multiplications and the other copy of S_p acts by right multiplications.

Example 5.2 Let q = 0 and $\beta_i \geq 0$ for all i = 1, 2, ..., k. Then a graph $\gamma \in G(p, \beta, 0)$ can be identified with the word $w = w_1 w_2 ... w_p$ in the alphabet $\{1, 2, ..., k\}$ where $w_i = j$ if (i, p+j) is an edge of γ . Clearly, the word w contains β_1 1's, β_2 2's, etc. The symmetric group S_p acts on such words w by permutation of letters w_i . The representation $M_{\beta} = M(p, \beta, 0)$ is the well-known monomial representation, see [8],

$$M_{\beta} = Ind_{S_{\beta_1} \times \dots \times S_{\beta_k}}^{S_p} Id,$$

where Id is the identity representation of $S_{\beta_1} \times \ldots \times S_{\beta_k}$.

Now we can give a combinatorial interpretation of multiplicities of irreducible components in $M(p, \beta, q)$ in terms of oscillating tableaux.

Let π_{λ} be the irreducible S_n -module associated with a partition $\lambda \vdash n$ (see [8, 10]). Every irreducible representation of the group $S_p \times S_q$ is of the form $\pi_{\lambda} \otimes \pi_{\mu}$, where $|\lambda| = p$ and $|\mu| = q$.

Theorem 5.3

$$M(p,\beta,q) \simeq \sum |OT(\lambda,\mu,\beta)| \cdot \pi_{\lambda} \otimes \pi_{\mu},$$

where the sum is over all partitions $\lambda \vdash p$ and $\mu \vdash q$.

The following two Corollaries present classical identities. For p, q, β such as in Example 5.1 Theorem 5.3 gives

Corollary 5.4

$$Reg(S_p) = \sum_{\lambda \vdash p} \pi_{\lambda} \otimes \pi_{\lambda}.$$

This is a standard fact from representation theory of finite groups. For p, q, β such as in Example 5.2 Theorem 5.3 gives

Corollary 5.5

$$M_{\beta} = M(p, \beta, 0) = \sum_{\lambda \vdash p} |YT(\lambda, \beta)| \cdot \pi_{\lambda}$$

This is the classical Young rule for decomposition of monomial representations M_{β} of symmetric groups (see [18, 8, 10]).

Clearly, Theorem 4.3 is a special case of Theorem 5.3 for p = q = 0.

6 Proof of Theorem 5.3

Let \mathcal{M} be the category whose objects $\operatorname{Ob}_{\mathcal{M}}$ are finite groups and morphisms $\operatorname{Mor}_{\mathcal{M}}(G, H)$ (or simply $\operatorname{Mor}(G, H)$) from a group G to a group H are equivalence classes of complex finite dimensional $G \times H$ -modules. Let $V \in \operatorname{Mor}(G, H)$ and $W \in \operatorname{Mor}(H, K)$, $G, H, K \in \operatorname{Ob}_{\mathcal{M}}$, then composition $V \circ W$ of morphisms V and W is the following $G \times K$ -module

$$V\circ W=V\otimes_{\mathbb{C}[H]}W$$

(the tenzor product over the group algebra $\mathbb{C}[H]$). In other words, the tenzor product $V \otimes_{\mathbb{C}} W$ is a $G \times H \times H \times K$ -module. Then $V \circ W$ is the $G \times K$ -module of H-invariants in $V \otimes_{\mathbb{C}} W$ (with the diagonal action of H on $V \otimes_{\mathbb{C}} W$). The composition is a bilinear operation with respect to the direct sum of modules.

Let \widehat{G} denote the set of equivalence classes of irreducible representations of G. Then any irreducible $G \times H$ -module is of the form $\alpha \otimes \beta^*$, where $\alpha \in \widehat{G}$, $\beta \in \widehat{H}$ and β^* denotes the conjugate to β (which is also irreducible). It is clear that these irreducible modules form a \mathbb{N} -basis of $\operatorname{Mor}(G, H)$.

Let Reg(G) be the regular representation of $G \times G$, i. e. Reg(G) is the group algebra $\mathbb{C}[G]$ on which one copy of G acts by left multiplications and the other copy of G acts by right multiplications.

Figure 4: Composition of graphs

The following proposition presents two simple facts from representation theory of finite groups:

Proposition 6.1 1. Let $\alpha \in \widehat{G}, \beta \in \widehat{H}, \gamma \in \widehat{H}, \delta \in \widehat{K}$. Then

$$(\alpha \otimes \beta^*) \circ (\gamma \otimes \delta^*) = \left\{ \begin{array}{cc} \alpha \otimes \delta^* & \text{if } \beta = \gamma, \\ 0 & \text{if } \beta \neq \gamma. \end{array} \right.$$

2. The regular representation $Reg(G) = \sum_{\alpha \in \widehat{G}} \alpha \otimes \alpha^*$ is the identity morphism in the category \mathcal{M} from G to G.

Now construct a category \mathcal{T} . The objects of \mathcal{T} are nonnegative integers $\mathrm{Ob}_{\mathcal{T}} = \mathbb{N}$ and for $p, q \in \mathrm{Ob}_{\mathcal{T}}$ morphisms $\mathrm{Mor}_{\mathcal{T}}(p, q)$ from p to q are sequences $\beta = (\beta_1, \ldots, \beta_k)$ of integers such that $p - s(\beta) = q$ and $p - \sum_{i=1}^{j} \beta_i \geq 0$ for $j = 1, 2, \ldots, k$. The composition of morphisms $\beta' = (\beta'_1, \ldots, \beta'_k)$ and $\beta'' = (\beta''_1, \ldots, \beta''_l)$ is the sequence $\beta' \circ \beta'' = (\beta'_1, \ldots, \beta'_k, \beta''_1, \ldots, \beta''_l)$.

Consider the following maps from $\mathrm{Ob}_{\mathcal{T}}$ to $\mathrm{Ob}_{\mathcal{M}}$ and from $\mathrm{Mor}_{\mathcal{T}}$ to $\mathrm{Mor}_{\mathcal{M}}$

$$M_{ob}: p \in \mathrm{Ob}_{\mathcal{T}} \to S_p \in \mathrm{Ob}_{\mathcal{M}},$$

$$M_{mor}: \beta \in \operatorname{Mor}_{\mathcal{T}}(p,q) \to M(p,\beta,q) \in \operatorname{Mor}_{\mathcal{M}}(S_p,S_q).$$

Theorem 6.2 These maps give a functor \mathcal{M} from category \mathcal{T} to category \mathcal{M} . In other words, if $\beta' \in Mor_{\mathcal{T}}(p,q)$ and $\beta'' \in Mor_{\mathcal{T}}(q,r)$ then $M(p,\beta',q) \circ M(q,\beta'',r) = M(p,\beta' \circ \beta'',r)$.

Proof — Define an operation of "composition" for intransitive graphs. Let $\gamma' \in G(p, \beta', q), \gamma'' \in G(q, \beta'', r)$, the sequence β' has k elements, and β'' has l elements. Join the vertex p+k+i of the graph γ' with the vertex i of graph γ'' for $i=1,2,\ldots,q$. Delete all these vertices and renumber the remaining vertices by the numbers 1 through p+k+l+r (all vertices of γ' are less then vertices of γ''). As a result we get the graph $\gamma' \circ \gamma'' \in G(p, \beta' \circ \beta'', r)$. See an example on Figure 4.

Let $\{v_{\gamma'}\}$, $\gamma' \in G(p, \beta', q)$ be the basis of $M(p, \beta', q)$ and $\{v_{\gamma''}\}$, $\gamma'' \in G(q, \beta'', r)$ be the basis of $M(q, \beta'', r)$. Then vectors $v_{\gamma'} \otimes v_{\gamma''}$ form a basis of $M(p, \beta', q) \otimes_{\mathbb{C}} M(q, \beta'', r)$. We must select S_q -invariants in this space. To do this we should symmetrize the space $M(p, \beta', q) \otimes_{\mathbb{C}} M(q, \beta'', r)$ by diagonal

action of S_q . Let Sym denote this symmetrization. Then we can identify $\operatorname{Sym}(v_{\gamma'} \otimes v_{\gamma''})$ with $v_{\gamma'\circ\gamma''}$. Hence vectors of the type $v_{\gamma'\circ\gamma''}$ generate the representation $M(p,\beta',q) \circ M(q,\beta'',r)$. On the other hand, it is clear that every element of $G(p,\beta'\circ\beta'',r)$ is of the form $\gamma'\circ\gamma''$ and vice versa.

Therefore,
$$M(p, \beta', q) \circ M(q, \beta'', r) \simeq M(p, \beta' \circ \beta'', r)$$
.

Now we are able to prove Theorem 5.3. We will do it in two steps. First, we prove it in the case when the sequence β consists of one number $\beta = (b)$. Then we prove it for arbitrary β .

1. Let $\beta = (-b)$ and $b \ge 0$ (the case when $b \le 0$ is dual). Then q = p + b and

$$M(p,(-b),q) = \operatorname{Ind}_{S_p \times S_p \times S_b}^{S_p \times S_{p+b}} \operatorname{Reg}(S_p) \otimes \operatorname{Id}_b,$$

where Id_b is the identity representation of S_b . Now

$$M(p, (-b), q) = \operatorname{Ind}_{S_p \times S_p \times S_b}^{S_p \times S_{p+b}} \sum_{\lambda \vdash p} \pi_{\lambda} \otimes \pi_{\lambda} \otimes \operatorname{Id}_b$$
$$= \sum_{\lambda \vdash p} \pi_{\lambda} \otimes \operatorname{Ind}_{S_p \times S_b}^{S_{p+b}} \pi_{\lambda} = \sum_{\lambda \vdash p, \mu \vdash q} |OT(\lambda, (-b), \mu)| \cdot \pi_{\lambda} \otimes \pi_{\mu}.$$

The first equality is true by Proposition 6.1(2) and the fact that for the symmetric group we have $\pi_{\lambda}^* = \pi_{\lambda}$. The equality (*) uses the Pieri rule:

$$\operatorname{Ind}_{S_p \times S_b}^{S_{p+b}} \pi_{\lambda} = \sum \pi_{\mu},$$

where the sum is other all μ such that μ/λ is a horizontal b-stripe, see [8].

2. Let $\beta = (\beta_1, \dots, \beta_k)$ be a sequence of integers and $p_i = p - \sum_{j=1}^i \beta_j$, $q = p_k$. Then

$$M(p, \beta, q) =^{(1)} M(p_0, (\beta_1), p_1) \circ \dots \circ M(p_{k-1}, (\beta_k), p_k)$$

$$=^{(2)} \left(\sum \pi_{\lambda_{(1)}} \otimes \pi_{\mu_{(1)}} \right) \circ \dots \circ \left(\sum \pi_{\lambda_{(k)}} \otimes \pi_{\mu_{(k)}} \right)$$

$$=^{(3)} \sum_{\lambda \vdash p, \mu \vdash q} |OT(\lambda, \mu, \beta)| \cdot \pi_{\lambda} \otimes \pi_{\mu},$$

where in the second line the direct sums are over $\lambda_{(i)} \vdash p_{i-1}$ and $\mu_{(i)} \vdash p_i$ such that $\lambda_{(i)}/\mu_{(i)}$ is a horizontal β_i -stripe (if $\beta_i \geq 0$) or $\mu_{(i)}/\lambda_{(i)}$ is a horizontal $(-\beta_i)$ -stripe (if $\beta_i \leq 0$) for all i = 1, 2, ..., k.

Equality (1) follows from Theorem 6.2; (2) follows from p. 1; (3) follows from Proposition 6.1(1) and definition of oscillating tableaux.

7 Combinatorial theorem

In this section we give a combinatorial analogue of Theorem 5.3.

A sequence $\tau = (\tau_1, \tau_2, \dots, \tau_k) \in \mathbb{Z}^k$ is called *normal* if there exist $0 \le r \le l \le k$ such that $\tau_1, \tau_2, \dots, \tau_r > 0$; $\tau_{r+1} = \dots = \tau_l = 0$; $\tau_{l+1}, \dots, \tau_k < 0$. For a sequence $\beta \in \mathbb{Z}^k$, let $\operatorname{nor}(\beta)$ denote the normal sequence obtained from β by shuffling all positive entries of β into the beginning and all negative entries into the end. For example, $\operatorname{nor}(0, -3, 1, -1, 0, -2, 0, 1, 3) = (1, 1, 3, 0, 0, 0, -3, -1, -2)$.

For $\beta, \delta \in \mathbb{Z}^k$ the expression $\delta \prec \beta$ means that for all i = 1, 2, ..., k either $0 \le \delta_i \le \beta_i$ or $0 \ge \delta_i \ge \beta_i$.

Now we can state the combinatorial theorem.

Theorem 7.1 Let $\lambda, \mu \in \mathcal{P}$ be some partitions, $\beta \in \mathbb{Z}^k$. Then

$$|OT(\lambda,\mu,\beta)| = \sum |G(\delta)| \cdot |OT(\lambda,\mu,nor(\beta-\delta))|,$$

where the sum is over all $\delta \in \mathbb{Z}^k$ such that $s(\delta) = 0$ and $\delta \prec \beta$.

In order to deduce Theorem 7.1 from Theorem 5.3 we need one simple lemma.

Lemma 7.2 Let $p, q \in \mathbb{N}$, $\beta \in \mathbb{Z}^k$ be such that $p - s(\beta) = q$. Then

$$M(p, \beta, q) = \sum |G(\delta)| \cdot M(p, nor(\beta - \delta), q),$$

where the direct sum is over all $\delta \in \mathbb{Z}^k$ such that $s(\delta) = 0$ and $\delta \prec \beta$.

Proof — Let $\xi \in G(\delta)$, where $\delta = (\delta_1, \dots, \delta_k) \in \mathbb{Z}^k$, $s(\delta) = 0$. Let $G(p, \delta, q)_{\xi}$ be the set of graphs from $G(p, \delta, q)$ whose restriction on the vertices $p+1, p+2, \dots, p+k$ is the graph ξ . If $G(p, \beta, q)_{\xi}$ is nonempty then $\delta \prec \beta$.

It is clear that when $\delta \prec \beta$ and $\xi \in G(\delta)$ the submodule in $M(p, \beta, q)$ generated by $\{v_{\gamma} \mid \gamma \in G(p, \beta, q)_{\xi}\}$ is equivalent to $M(p, \operatorname{nor}(\beta - \delta), q)$.

Now Theorem 7.1 immediately follows from Theorem 5.3 and Lemma 7.2. We will give a combinatorial proof of Theorem 7.1. In Section ?? we will construct a bijection $\Phi_{\lambda\mu\beta}$ which establishes a one-to-one correspondence between the following two sets.

$$\Phi_{\lambda\mu\beta}: OT(\lambda,\mu,\beta) \to \prod G(\delta) \times OT(\lambda,\mu,\operatorname{nor}(\beta-\delta)).$$

Let $\lambda = \mu = \hat{0}$. Then there is a unique oscillating tableau of shape $(\hat{0}, \hat{0})$ of normal weight. Namely, $(\hat{0}, \hat{0}, \dots, \hat{0}) \in OT(\hat{0}, \hat{0}, (0, 0, \dots, 0))$. We have $\delta = \beta$ in Theorem 7.1. Hence Theorem 4.3 is a special case of Theorem 7.1.

8 Superanalogue

In this section we give superanalogues of definitions and theorems from Sections 4–7.

Definition 8.1 Let λ, μ be partitions, $\beta \in \mathbb{Z}^k$, $\varepsilon = (\varepsilon_1, \dots, \varepsilon_k) \in \{1, -1\}^k$. An oscillating supertableau of shape (λ, μ) and superweight $b = \beta^{\varepsilon}$ (see Section 2) is a sequence of partitions $(\alpha_{(0)} = \lambda, \alpha_{(1)}, \alpha_{(2)}, \dots, \alpha_{(k)} = \mu)$ such that for all $i = 1, 2, \dots, k$ the following conditions hold.

- 1. If $\varepsilon_i = 1$ and $\beta_i \geq 0$ then $\alpha_{(i-1)} \supset \alpha_{(i)}$ and $\alpha_{(i-1)}/\alpha_{(i)}$ is a horizontal β_i -stripe;
- 2. If $\varepsilon_i = 1$ and $\beta_i < 0$ then $\alpha_{(i)} \supset \alpha_{(i-1)}$ and $\alpha_{(i)}/\alpha_{(i-1)}$ is a horizontal $(-\beta_i)$ -stripe;
- 3. If $\varepsilon_i = -1$ and $\beta_i \geq 0$ then $\alpha_{(i-1)} \supset \alpha_{(i)}$ and $\alpha_{(i-1)}/\alpha_{(i)}$ is a vertical β_i -stripe;
- 4. If $\varepsilon_i = -1$ and $\beta_i < 0$ then $\alpha_{(i)} \supset \alpha_{(i-1)}$ and $\alpha_{(i)}/\alpha_{(i-1)}$ is a vertical $(-\beta_i)$ -stripe.

The set of all oscillating supertableaux of shape (λ, μ) and superweight $b = \beta^{\varepsilon}$ is denoted by $OST(\lambda, \mu, b)$.

It is clear that $OST(\lambda, \mu, b)$ is nonempty only when $|\lambda| - s(\beta) = |\mu|$. If all $\beta_i \geq 0$ then $OST(\lambda, \mu, \beta^{\varepsilon}) = ST(\lambda/\mu, \beta^{\varepsilon})$. And $OST(\lambda, \mu, \beta^{(1,1...,1)}) = OT(\lambda, \mu, \beta)$.

Definition 8.2 Let $\delta \in \mathbb{Z}^k$ be such that $s(\delta) = 0$ and $\epsilon = (\epsilon_1, \epsilon_2, \dots, \epsilon_k) \in \{1, -1\}^k$. An intransitive graph of supertype $d = \delta^{\epsilon}$ is an oriented graph γ on the set of vertices $\{1, 2, \dots, k\}$ satisfying the conditions 1-3 of Definition 4.1 and also the condition:

4. If $\epsilon_i \neq \epsilon_j$ then γ contains at most one edge (i, j).

Let $SG(\delta^{\epsilon})$ be the set of all such graphs.

The following algebra $\mathcal{A}(\epsilon)$ is closely related to Definition 8.2.

Definition 8.3 Let $\epsilon = (\epsilon_1, \epsilon_2, \dots, \epsilon_k) \in \{1, -1\}^k$. The algebra $\mathcal{A}(\epsilon)$ generated by variables $x_{ij}, 1 \leq i < j \leq k$ with the following relations.

- 1. $x_{ij} x_{jr} = 0$ for any $1 \le i < j < r \le k$,
- 2. $x_{ij} x_{lm} = (-1)^{\sigma_{ij}\sigma_{lm}} x_{lm} x_{ij}$, where

$$\sigma_{ij} = \left\{ \begin{array}{ll} 0 & \epsilon_i = \epsilon_j, \\ 1 & \epsilon_i \neq \epsilon_j. \end{array} \right.$$

Relation 2 implies that x_{ij} with $\sigma_{ij} = 0$ are commutative variables and x_{lm} with $\sigma_{lm} = 1$ are anticommutative variables.

For any oriented graph γ on the set of vertices $\{1, 2, ..., k\}$ we can construct (up to a sign) a monomial m_{γ} in the algebra $\mathcal{A}(\epsilon)$:

$$m_{\gamma} = \pm \prod x_{ij},$$

where the product is over all edges (i, j) of graph γ .

Nonzero monomials in $\mathcal{A}(\epsilon)$ correspond to intransitive graphs of type β^{ϵ} with fixed ϵ and arbitrary β . Indeed, condition 4.1(2) corresponds to condition 8.3(1) and 8.2(4) corresponds to the fact that $x_{lm}^2 = 0$ for an anticommutative variable x_{lm} with $\sigma_{lm} = 1$.

Let $\mathcal{A}_{\delta}(\epsilon)$ denote the subspace of $\mathcal{A}(\epsilon)$ which is generated (as a linear space) by monomials m_{γ} for $\gamma \in SG(\delta^{\epsilon})$. It is clear that $\mathcal{A}(\epsilon) = \bigoplus_{\delta} \mathcal{A}_{\delta}(\epsilon)$. Let $p, q \in \mathbb{N}, \ \beta = (\beta_1, \dots, \beta_k), \ \varepsilon = (\varepsilon_1, \dots, \varepsilon_k) \in \{1, -1\}^k$, and $\psi, \omega \in \{1, -1\}$. Suppose that

$$\delta = (\underbrace{-1, -1, \dots, -1}_{p \text{ times}}, \beta_1, \beta_2, \dots, \beta_k, \underbrace{1, 1, \dots, 1}_{q \text{ times}});$$

$$\epsilon = (\underbrace{\psi, \psi, \dots, \psi}_{p \text{ times}}, \varepsilon_1, \varepsilon_2, \dots, \varepsilon_k, \underbrace{\omega, \omega, \dots, \omega}_{q \text{ times}}).$$

Let $SG(p, \beta^{\varepsilon}, q)$ be the set of intransitive graphs of supertype δ^{ϵ} . Denote by $M(p, \beta^{\varepsilon}, q)$ the subspace $\mathcal{A}_{\delta}(\epsilon)$, where $p = p^{\psi}$ and $q = q^{\omega}$. Then $\{m_{\gamma} : \gamma \in SG(p, \beta^{\varepsilon}, q)\}$ is a basis of the space $M(p, \beta^{\varepsilon}, q)$.

The group $S_p \times S_q$ acts on this space, cf. Section 5. The symmetric group S_p permutes the first index of variables x_{ij} with i = 1, 2, ..., p and S_q permutes the second index of variables x_{ij} with j = p+k+1, ..., p+k+q.

The following example gives an odd analogue of the regular representation of S_p (see Example 5.1).

Example 8.4 Let $\beta^{\varepsilon} = \emptyset$ be the empty sequence, p = p and and $q = \overline{p}$, $p \in \mathbb{N}$. Then $M(p, \emptyset, \overline{p})$ is the representation of $S_p \times S_p$ on the group algebra $\mathbb{C}[S_p]$ given by the formula

$$(\sigma, \pi) \cdot f = sgn(\sigma \pi^{-1}) \sigma f \pi^{-1},$$

where $(\sigma, \pi) \in S_p \times S_p$, $f \in \mathbb{C}[S_p]$ and sgn denotes the sign of permutation. Denote this representation by Alt_p .

We use the following notation. For a partition $\lambda \in \mathcal{P}$ and $\psi \in \{1, -1\}$, $\lambda^{\psi} = \lambda$ if $\psi = 1$ and $\lambda^{\psi} = \lambda'$ (the conjugate partition) if $\psi = -1$.

Now we can present a superanalogue of Theorem 5.3.

Theorem 8.5

$$M(p^{\psi}, \beta^{\varepsilon}, q^{\omega}) \simeq \sum |OST(\lambda^{\psi}, \mu^{\omega}, \beta^{\varepsilon})| \cdot \pi_{\lambda} \otimes \pi_{\mu},$$

where the sum is over all partitions $\lambda \vdash p$ and $\mu \vdash q$.

For p, q, β^{ϵ} such as in Example 8.4 we have by Theorem 8.5

Corollary 8.6

$$Alt_p = \sum_{\lambda \vdash p} \pi_{\lambda} \otimes \pi_{\lambda'}.$$

This is an odd analogue of Corollary 5.4. Of course this formula easily follows from definition of Alt_p .

Sketch of proof of Theorem 8.5 — The proof is analogous to the proof of Theorem 5.3. The only difference is the definition of "composition" for intransitive graphs. If we define the composition as in Section 6 then it may happen that the composition of two graphs $\gamma' \in SG(p,b',q)$ and $\gamma'' \in SG(q,b'',r)$ is not a graph from $SG(p,b' \circ b'',r)$. We define "supercomposition" $\gamma' \circ^S \gamma''$ of graphs γ' and γ'' by

$$\gamma' \circ^{\mathbf{s}} \gamma'' = \begin{cases} \gamma' \circ \gamma'' & \text{if } \gamma' \circ \gamma'' \in SG(\mathbf{p}, b' \circ b'', \mathbf{r}), \\ 0 & \text{otherwise.} \end{cases}$$

This convention is consistent with interpretation of composition in terms of symmetrization. Indeed, if $\gamma' \circ \gamma''$ is not in $SG(p, b' \circ b'', r)$ then $Sym(m(\gamma')) \otimes m(\gamma'') = 0$.

Now we give a superanalogue of Theorem 7.1. Let $b = (b_1, b_2, \ldots, b_k) = \beta^{\varepsilon}$ (see Section 2). Let $\operatorname{nor}(b)$ denote the word obtained from the word $b = (b_1, b_2, \ldots, b_k)$ by shuffling all negative entries into the beginning and all positive entries into the end. For example, $\operatorname{nor}(0, \overline{3}, -1, \overline{1}, 0, 2, \overline{0}, -\overline{1}, -3) = (-1, -\overline{1}, -3, 0, 0, \overline{0}, \overline{3}, \overline{1}, 2)$.

Theorem 8.7 Let $\lambda, \mu \in \mathcal{P}$ be some partitions, $\beta \in \mathbb{Z}^k$, $\varepsilon \in \{1, -1\}^k$. Then

$$|OST(\lambda,\mu,\beta^{\varepsilon})| = \sum |SG(\delta^{\varepsilon})| \cdot |OST(\lambda,\mu,nor((\beta-\delta)^{\varepsilon}))|,$$

where the summation is over all $\delta \in \mathbb{Z}^k$ such that $s(\delta) = 0$ and $\delta \prec \beta$.

This theorem can be deduced from Theorem 8.5 in the same way as Theorem 7.1 from Theorem 5.3.

In Section ?? we will construct a bijection

$$\Phi^{super}_{\lambda\mu b}: OST(\lambda,\mu,\beta^{\varepsilon}) \to \coprod_{\delta \prec \beta} SG(\delta^{\varepsilon}) \times OST(\lambda,\mu,\operatorname{nor}((\beta-\delta)^{\varepsilon})).$$

This will give a combinatorial proof of Theorem 8.5.

If $\lambda = \mu = \hat{0}$ then Theorem 8.7 implies the following

Corollary 8.8 Let $\beta \in \mathbb{Z}^k$ be such that $s(\beta) = 0$, $\varepsilon \in \{1, -1\}^k$. Then the number of oscillating tableaux of shape $(\hat{0}, \hat{0})$ and superweight $b = \beta^{\varepsilon}$ is equal to the number of intransitive graphs of sypertype b

$$|OST(\hat{0}, \hat{0}, b)| = |G(b)|.$$

Let $\beta' \in \mathbb{N}^s$, $\beta'' \in \mathbb{N}^t$, $\beta = (-\beta'_s, -\beta'_{s-1}, \dots, -\beta'_1, \beta''_1, \beta''_2, \dots, \beta''_t)$, and $\varepsilon = (-1, -1, \dots, -1, 1, 1, \dots, 1)$ (s - 1's and t 1's). It is clear that oscillating supertableaux of shape $(\hat{0}, \hat{0})$ and superweight β^{ε} correspond to pairs (P, Q) of Young tableaux with conjugate shapes and with weights β' , β'' respectively, cf. Section 4.

We can identify an intransitive graph $\gamma \in SG(\beta^{\varepsilon})$ with a $s \times t$ -matrix $A = (a_{ij})$ satisfying conditions 1–3 of Corollary 4.5 and such that $a_{ij} = 0$ or 1 for all i and j. We get the following

Corollary 8.9 Let $\beta' \in \mathbb{N}^s$ and $\beta'' \in \mathbb{N}^t$. Then the number of pairs of tableaux (P,Q) with conjugated shapes and with weights β' and β'' respectively is equal to the number of $s \times t$ -matrices satisfying the conditions 1-3 of Corollary 4.5 with all entries equal to 0 or 1.

Knuth in [9] construct also an odd analogue of RSK-correspondence which is a bijection between the set of such $s \times t$ -matrices and the set of such pairs of tableaux (P,Q). In this special case the bijection $\Phi_{\lambda\mu b}^{super}$ coincides with Knuth's correspondence.

9 Increasing and decreasing operators

First we give another description of the category \mathcal{M} from Section 6.

Let G be a finite group. By Rep(G) denote the set of equivalence classes of complex finite dimensional representations of G. It is clear that $\text{Rep}(G) = \text{Mor}_{\mathcal{M}}(\{\text{id}\}, G)$ (see Section 6), where $\{\text{id}\}$ denote the group with one element id.

Let $W \in \operatorname{Mor}_{\mathcal{M}}(G, H)$. Consider the \mathbb{N} -linear map $\langle W \rangle$ from $\operatorname{Rep}(G)$ to $\operatorname{Rep}(H)$ which is defined by $\langle W \rangle V = V \circ W$, where $V \in \operatorname{Rep}(G) = \operatorname{Mor}_{\mathcal{M}}(\{\operatorname{id}\}, G)$. On the other hand, if we know a map $\langle W \rangle$ then we can reconstruct the morphism W in \mathcal{M} .

By R denote the direct sum $R = \text{Rep}(S_0) \oplus \text{Rep}(S_1) \oplus \text{Rep}(S_2) \oplus \dots$

Let $\langle M(p,b,q) \rangle$ be the operator from $\operatorname{Rep}(S_p)$ to $\operatorname{Rep}(S_q)$ which corresponds to $S_p \times S_q$ -module M(p,b,q). Recall that $b = \beta^{\varepsilon}$ is a sequence in the alphabet $\{m, \overline{m} \mid m \in \mathbb{Z}\}$). Let $\langle b \rangle$ be the endomorpism of R such that $\langle b \rangle = \sum \langle M(p,b,q) \rangle$, where the sum is over $p - s(\beta) = q$. In the case when the sequence b has only one element m or \overline{m} , $m \in \mathbb{Z}$, we denote these operators by $\langle m \rangle$ or $\langle \overline{m} \rangle$. It is clear from Section 8 that $\langle (b_1, b_2, \ldots, b_k) \rangle = \langle b_1 \rangle \cdot \langle b_2 \rangle \cdot \ldots \cdot \langle b_k \rangle$.

If $n \in \mathbb{N}$ then we call operators $\langle n \rangle$ and $\langle \overline{n} \rangle$ increasing and denote them by I(n) or $I(\overline{n})$. If $-n \in \mathbb{N}$ then we call operators $\langle n \rangle$ and $\langle \overline{n} \rangle$ decreasing and denote them D(n) or $D(\overline{n})$. The following description of operators I(n), $I(\overline{n})$, D(n), and $D(\overline{n})$ follows from Sections 6 and 8.

Let $V \in \text{Rep}(S_p)$. Then

$$\begin{split} I(n) \cdot V &=& \operatorname{Ind}_{S_p}^{S_{p+n}} V; \\ I(\overline{n}) \cdot V &=& \operatorname{Ind}_{S_p \times S_n}^{S_{p+n}} (V \otimes \operatorname{sgn}_n), \end{split}$$

where sgn_n is the sign representation of S_n .

Let $V \in \text{Rep}(S_{p+n})$. Then

$$D(n) \cdot V = \operatorname{Inv}_n(\operatorname{Res}_{S_p \times S_n}^{S_{p+n}} V);$$

$$D(\overline{n}) \cdot V = \operatorname{Skew}_n(\operatorname{Res}_{S_p \times S_n}^{S_{p+n}} V),$$

where Inv_n is the space of S_n -invariants and $Skew_n$ is the space of skew invariants of S_n .

The space R has the basis $\{\pi_{\lambda} \mid \lambda \in \mathcal{P}\}$ consisting of all irreducible representations of all symmetric groups. Therefore a linear operator on the space R can be represented as an infinite matrix indexed by partitions.

All increasing and decreasing operators in coordinates are given below.

$$I(n)_{\lambda\mu} = \begin{cases} 1 & \text{if } \lambda \supset \mu \text{ and } \lambda/\mu \text{ is a horizontal n-stripe,} \\ 0 & \text{otherwise,} \end{cases}$$

$$D(n)_{\lambda\mu} = \begin{cases} 1 & \text{if } \mu \supset \lambda \text{ and } \mu/\lambda \text{ is a horizontal n-stripe,} \\ 0 & \text{otherwise,} \end{cases}$$

$$I(\overline{n})_{\lambda\mu} = \begin{cases} 1 & \text{if } \lambda \supset \mu \text{ and } \lambda/\mu \text{ is a vertical n-stripe,} \\ 0 & \text{otherwise,} \end{cases}$$

$$D(\overline{n})_{\lambda\mu} = \begin{cases} 1 & \text{if } \mu \supset \lambda \text{ and } \mu/\lambda \text{ is a vertical n-stripe,} \\ 0 & \text{otherwise.} \end{cases}$$

It is clear that $\langle b \rangle_{\lambda\mu} = (\langle b_1 \rangle \cdot \langle b_2 \rangle \cdot \ldots \cdot \langle b_k \rangle)_{\lambda\mu} = |OST(\lambda, b, \mu)|.$

All increasing operators commute and all decreasing operators commute. But increasing and decreasing operators do not commute with each other. The following theorem gives the relations between these operators. Here [a,b] = ab - ba denotes the commutator of operators.

Theorem 9.1 Let $m, n \in \mathbb{N}$. The following relations hold.

1.
$$[I(m), I(n)] = [I(\overline{m}), I(\overline{n})] = [D(m), D(n)] = [D(\overline{m}), D(\overline{n})] = 0.$$

2.
$$[I(m), I(\overline{n})] = [D(m), D(\overline{n})] = 0.$$

3.
$$[I(m+1), D(n+1)] = I(m)D(n), [I(\overline{m+1}), D(\overline{n+1})] = I(\overline{m})D(\overline{n}).$$

4.
$$[I(m+1), D(\overline{n+1})] = D(\overline{n})I(m), [I(\overline{m+1}), D(n+1)] = D(n)I(\overline{m})$$

In the following section we give a combinatorial proof of Theorem 9.1.

10 Local bijections

Let $m, n \in \mathbb{N}$. In this section we construct the following four bijections:

- 1. $\psi_1: YT(\lambda/\nu, (m, n)) \to YT(\lambda/\nu, (n, m)),$
- 2. $\psi_2: ST(\lambda/\mu, (m, \overline{n})) \to ST(\lambda/\nu, (\overline{n}, m)),$
- 3. $\psi_3: OT(\lambda, \nu, (-m, n)) \rightarrow \coprod_{0 \le k \le \min(m, n)} OT(\lambda, \nu, (n-k, -m+k)),$
- 4. $\psi_4: OST(\lambda, \nu, (-m, \overline{n})) \to \coprod_{0 \le k \le \min(1, m, n)} OST(\lambda, \nu, (\overline{n-k}, -m+k)).$

It is clear that these bijections are sufficient to prove Theorem 9.1. Later we will use bijections ψ_3 and ψ_4 in combinatorial proofs of Theorems 7.1 and 8.7

In all examples, when displaying an (oscillating) (super)tableau $\alpha=(\lambda,\mu,\nu)$, we insert 2's into the boxes of the skew diagram λ/μ (or μ/λ) and 1's into the boxes of μ/ν (or ν/μ). The symbol 1/2 in a box means that we insert simultaneously integers 1 and 2 into this box.

We say that a skew diagram λ/μ falls into a disjoint union of skew diagrams $\tau_1, \tau_2, \ldots, \tau_l$ if $\lambda/\mu = \bigcup_i \tau_i$ and for all $1 \leq i < j \leq l$ any box of τ_j is below and the to the left of any box of τ_j . For example, the skew diagram on Figure 1 falls into a disjoint union of three diagrams. We also say that a (super)tableau of shape λ/μ falls into a disjoint union of so does the shape λ/μ .

Constructions:

1. Let $\alpha = (\lambda, \mu, \nu) \in YT(\lambda/\mu, (m, n)), \ \lambda = (\lambda_1, \lambda_2, \ldots), \ \mu = (\mu_1, \mu_2, \ldots),$ and $\nu = (\nu_1, \nu_2, \ldots)$. Then we have $\lambda_i \geq \mu_i \geq \lambda_{i+1}, \ i = 1, 2, \ldots$; and $\mu_i \geq \nu_i \geq \mu_{i+1}, \ i = 1, 2, \ldots$. Set by convention $\nu_0 = \infty$. On the following diagram arrow $x \to y$ denotes the inequality $x \geq y$.

Let $a_i = \min(\lambda_i, \nu_{i-1})$ and $b_i = \max(\lambda_{i+1}, \nu_i)$, $i = 1, 2, \ldots$ Then $a_i \ge \mu_i \ge b_i$. Set $\widetilde{\mu}_i = a_i + b_i - \mu_i$, $i = 1, 2, \ldots$, i.e., $\widetilde{\mu}_i$ is symmetric to μ_i in the interval (b_i, a_i) .

Figure 5: Bijection ψ_1

Figure 6: Bijection ψ_3

Now $\widetilde{\mu} = (\widetilde{\mu}_1, \widetilde{\mu}_2, \ldots)$ is a partition and $\widetilde{\alpha} = (\lambda, \widetilde{\mu}, \nu) \in YT(\lambda/\mu, (n, m))$. Define $\psi_1 : \alpha \mapsto \widetilde{\alpha}$. It is easy to see that ψ_1 is a bijection between the sets $YT(\lambda/\mu, (m, n))$ and $YT(\lambda/\mu, (n, m))$. Figure 5 shows an example of the bijection ψ_1 .

- **2.** Let $\alpha = (\lambda, \mu, \nu) \in ST(\lambda/\mu, (m, \overline{n}))$...
- **3.** Let $\alpha = (\lambda, \mu, \nu) \in OT(\lambda, \mu, (-m, n), \lambda = (\lambda_1, \lambda_2, \ldots), \mu = (\mu_1, \mu_2, \ldots),$ and $\nu = (\nu_1, \nu_2, \ldots)$. Then we have $\mu_i \geq \lambda_i \geq \mu_{i+1}, \mu_i \geq \nu_i \geq \mu_{i+1},$ $i = 1, 2, \ldots; |\mu| |\lambda| = m$, and $|\mu| |\nu| = n$.

Let $a_i = \min(\lambda_i, \nu_i)$ and $b_i = \max(\lambda_{i+1}, \nu_{i+1})$, i = 1, 2, ... Then $a_i \ge \mu_{i+1} \ge b_i$. Set $\widetilde{\mu}_i = a_i + b_i - \mu_{i+1}$, i = 1, 2, ... (cf. p. 1) and $k = \mu_1 - \min(\lambda_1, \nu_1)$. Clearly, $0 \le k \le \min(n, m)$.

Now $\widetilde{\mu} = (\widetilde{\mu}_1, \widetilde{\mu}_2, \ldots)$ is a partition and $\widetilde{\alpha} = (\lambda, \widetilde{\mu}, \nu) \in OT(\lambda, \mu, (n-k, -m+k))$. We define $\psi_3 : \alpha \mapsto \widetilde{\alpha}$. Then ψ_3 gives a bijection between the sets $OT(\lambda, \mu, (-m, n))$ and $\coprod_k OT(\lambda, \mu, (n-k, -m+k)), 0 \le k \le \min(m, n)$. Indeed, if we have a partition $\widetilde{\mu} = (\widetilde{\mu}_1, \widetilde{\mu}_2, \ldots)$ and $0 \le k \le \min(m, n)$ then we can reconstruct μ setting $\mu_1 = k + \min(\lambda_1, \nu_1)$ and $\mu_{i+1} = a_i + b_i - \widetilde{\mu}_i$, $i = 1, 2, \ldots$ See an example of the bijection ψ_3 on Figure 6.

4. Let
$$\alpha = (\lambda, \mu, \nu) \in OST(\lambda, \nu, (-m, \overline{n}))$$
 ...

11 Generalized Gelfand-Tsetlin patterns

Let $\alpha = (\alpha_{(0)}, \alpha_{(1)}, \dots, \alpha_{(k)}) \in OT(\lambda, \mu, \beta)$ be an oscillating tableau of weight $\beta = (\beta_1, \beta_2, \dots, \beta_k)$. Let $w = w_1 w_2 \dots w_k$ be a word in the alphabet $\{+, -\}$

0	0	1	1		
0	1	1	1	1	
1	1	1	2	2	2
	2	2	2	2	3
'		3	4		

Figure 7:

such that if β_i is positive (negative) then $w_i = + (w_i = -), i = 1, 2, ..., k$. Let $\rho(i)$ be the number of +'s in the word $w_1 w_2 ... w_i, i = 1, 2, ..., k$.

The generalized Gelfand-Tsetlin pattern P of type w corresponding to the oscillating tableau α is the two-dimensional array $P = \{p_{ij}\}$, where $i = 1, 2, ..., k, j \geq \rho(i)$, and $p_{ij} = \alpha_{(i)j-\rho(i)}$. For example, a generalized Gelfand-Tsetlin pattern of type w = ++-... is an array of the following form (as above $x \to y$ means $x \geq y$).

Note that standard Gelfand-Tsetlin patterns have type $w = +++\dots$ in our terminology.

We can present a generalized Gelfand-Tsetlin pattern P (and the corresponding oscillating tableau) in more convinient form as a plane partition with cutted off corners. For example, Figure 7 presents the oscillating tableau

$$((211), (3211), (221), (211), (421), (321)).$$

References

- [1] A. Berele, A. Schensted-type correspondence for the sympletic group, *J. Comb. Theory, Ser. A* **43** (1986), 320–328.
- [2] A. Berele, A. Regev, Hook Young diagrams with applications to combinatories and to representation of Lie superalgebras, *Adv. Math.* **64** (1987) N. 2, 118–175.
- [3] A. D. Berenstein, A. N. Kirillov, Groups generated by involutions, Gelfand-Tsetlin patterns, and combinatorics of Young tableaux, *Algebra i Analiz* 7 (1995), N. 1. 92–152.
- [4] S. V. Fomin, Generalized Robinson-Shensted-Knuth correspondence [in Russian], Zapiski Nauchn. Sem. LOMI 155 (1985), 156–175.
- [5] S. Fomin, Duality of graded graphs, J. Alg. Comb. 3 (1994), 357–404.
- [6] S. Fomin, Shensted algorithms for dual graded posets, J. Alg. Comb. 4 (1995), 5-45.
- [7] S. Fomin, Schur operators and Knuth correspondence, to appear in J. Comb. Theory, Ser. A.
- [8] G. James, A. Kerber, The representation theory of the symmetric groups. *Encyclopedia of Math. and its Appl.*, 16, Addison-Wesley, Reading, Mass. 1981.
- [9] D. E. Knuth, Permutations, matrices and generalized Young tableaux, *Pacific J. Math.* **34** (1970), N. 3, 709–727.
- [10] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford, 1870.
- [11] T. W. Roby, Applications and extensions of Fomin's generalization of the Robinson-Schensted-Knuth correspondence to differential posets, Ph. D. thesis, M.I.T., 1991.
- [12] G. de B. Robinson, On the representations of the symmetric group, *Amer. J. Math.* **60** (1938), 745–760; **69** (1947), 268–298; **70** (1948), 277–297.

- [13] C. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math. 13 (1961), 179–191.
- [14] B. E. Sagan, R. P. Stanley, Robinson-Schensted algorithms for skew tableaux, J. Comb. Theory, Ser. A 55 (1990), 161–193.
- [15] M.-P. Schützenberger, La correspondence de Robinson, Combinatoire et représentation du groupe symétrique, D. Foata ed., Lecture Notes in Math./ 579 (1977), 59-135.
- [16] M.-P. Schützenberger, Propriétés nouvelles des tableaux de Young. Séminaire Delange-Pisot-Poitou, 19e année, 1977/78, no. 26, Secretariat Mathematique, Paris, 1977/78.
- [17] R. P. Stanley, Differential posets, J. Amer. Math. Soc. 1 (1988), 919–961.
- [18] A. Young, Collected Papers, Mathematical Expositions N. 21, Univ. of Toronto-Press, Toronto, 1977.