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Abstract

In this paper, we give a combinatorial proof via lattice paths of the following result due
to Andrews and Bressoud: for ¢ < 1, the number of partitions of n with all successive ranks
at least ¢ is equal to the number of partitions of n with no part of size 2 — ¢. The identity
is a special case of a more general theorem proved by Andrews and Bressoud using a sieve.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we show how to use a lattice path counting technique to establish a
relationship between partitions defined by rank conditions and partitions with forbidden
part sizes. We begin with some background on identities of this form.

A partition A of a non-negative integer n is a sequence A= (4y,...,4;) of integers
satisfying Ay > 2, =2 --- > /4 >0 and 1y + A4, + --- + 4 =n. We regard the Ferrers
diagram of A as an array of unit squares, left justified, in which the number of squares
in row i is ;. The largest square subarray in this diagram is the Durfee square and
d(2) refers to the length of a side. The conjugate of ), denoted ', is the partition
whose ith part is the number of squares in the ith column of the Ferrers diagram of /.
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The successive ranks of / are the entries of the sequence (41 — 4},...,4s — 4}), where
d=d() [1,7].

In [2] Andrews proved Theorem 1 below, showing a relationship between partitions
defined by a constraint on the successive ranks and partitions defined by a congru-
ence condition on the parts. Theorem 1 is a significant generalization of the Rogers—
Ramanujan identities [12] which can be interpreted in this framework. Andrews’ orig-
inal result was for odd moduli M, but Bressoud proved in [3] that the result holds for
even moduli as well.

Theorem 1. For integers M, r, satisfying 0 < r < M/2, the number of partitions of n
whose successive ranks lie in the interval [ —r +2,M —r — 2] is equal to the number
of partitions of n with no part congruent to 0, r, or —r modulo M.

Andrews used a sieve technique to prove Theorem 1. No bijective proof is known.
For the special case of the Rogers—Ramanujan identities ((r,M)=(1,5) and (r,M)
=(2,5)) Garsia and Milne used their involution principle to produce a bijection [9],
which, though far from simple, was the first bijective proof of these identities.

Recently, Theorem 1 attracted the attention of the graph theory community when
Erdés and Richmond made use of it to establish a lower bound on the number of
graphical partitions of an integer n [8]. A partition is graphical if it is the degree
sequence of some simple graph. It was observed in [8] that the conjugate of a partition
with all successive ranks positive is always graphical and that setting » =1 and M =
n+ 2 in Theorem 1 gives:

Corollary 1. The number of partitions of n with all successive ranks positive is equal
to the number of partitions of n with no part ‘1°.

Rousseau and Ali felt that since Corollary 1 is such a special case of Theorem 1, it
should have a simple proof. In [13] they give a generating function proof which makes
use of a generating function of MacMahon for plane partitions and an identity due to
Cauchy. Venkatraman and Wilf, using a generating function for plane partitions due
to Bender and Knuth, with the help of g-Ekhad, verified that Corollary 1 remains true
when the number of parts is fixed [14]. In [6] a simple bijective proof of Corollary
1 was given, inspired by a result of Cheema and Gordon [5]. It turns out that a
(different) bijection can be recovered from a result of Burge [4]. Setting M =n+r+1
and » =2—¢ in Theorem 1 gives the following generalization of Corollary 1. A bijective
proof appears in [6].

Corollary 2. For t <1, The number of partitions of n with all successive ranks at
least t is equal to the number of partitions of n with no part 2 —t’.

So, for example, the number of partitions of 7 with all successive ranks at least —1:

{(7),(6,1),(5,2),(5,1,1),(4,3),(4,2,1),(4,1,1,1),(3,3,1),(3,2,2),(3,2, 1, 1)}



A. Burstein et al. | Discrete Mathematics 249 (2002) 31-39 33

Fig. 1. A north—east lattice path p and the associated partition A(p)=(5,5,3,1).

is the same as the number of partitions of 7 with no part 3:

{(7),(6,1),(5,2),(5,1,1),(4,2,1),(4,1,1,1),(2,2,2,1),

(2,2,L,1,1),2, LL1L,LD,(1L,LLLLL D}

In this paper, we show how to use a lattice path counting argument to give simple
proofs of Corollaries 1 and 2 and several generalizations (all previously known).

In Section 2, we state and prove the ‘lattice path identity’ and then derive its con-
sequences in Section 3.

2. Lattice paths

For integers x| < x; and y; < y,, define a north—east lattice path p[(xi,y1) —
(x2,y2)] to be a path in the plane from (x,y;) to (xz, ;) consisting of unit steps
north and east. The region enclosed by p and the lines x =x;, x;, and y=y, + 1 can
be regarded as the Ferrers diagram of a partition A, (see Fig. 1). Let a(4,) denote
the area of this region. In this way, we get a bijection between north—east lattice
paths [(x1,)1) — (x2,)2)] and partitions whose Ferrers diagram fits in an (x; — x;)
by (y2 — y1 + 1) box. Two lattice paths are called non-crossing if they have no point
in common. Let P(n,k) be the set of partitions of n with k parts and let P(n,k,1),
P(n,k, > 1), and P(n,k, < 1) be, respectively, those partitions in P(n,k) with largest
part /, those with largest part greater than /, and those with largest part at most /. Let
R-,(n k) be the set of partitions in P(n, k) with all successive ranks at least ¢ and
similarly for R>,(n,k, 1) and R ,(n,k, > I).

Theorem 2 (Lattice path identity). For ¢t <1,

R>i(n, k)| =|P(n b, >k +t—1)| —|P(n—24+t,k—2+¢t,>k+ 1) (D)
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(@ (b) H

Fig. 2. For t = — 2, (a) partition 4 with d =5, k=11, /=09, and all ranks at least 7 and (b) the associated
lattice paths p,, and py.

Proof. Let 1 be a partition in P(n,k, /) with Durfee square size d and define partitions
wand vby u=(4 —d, A —d,...,2g —d) (allowing entries to be 0 if necessary) and
v=_(Ag+1,2d+2,---, 2k ). Note that for £ < 1 and / — k >t the lattice paths

pul(1—=10)—= 1A —t+1—-d,d—-1)]
and

pvl(0,1) — (k —d.,d)],

associated with p and v/, are non-crossing if and only if p; — v, > ¢ for i=1,...,d,
that is, 2 € R>,(m,k, 1) (see Fig. 2).

Now, assume / —k > t. (Otherwise, no partition in P(n,k, 1) is in R>,(n,k,[).) Then
to count the partitions in Rs,(n,k,[) with Durfee square size d we subtract from
|P(n,k,1)| the count of those partitions in P(n,k, [) with Durfee square size d whose
corresponding pairs (g, v') give rise to a pair of crossing lattice paths. We count them
using the method of Gessel and Viennot [10,11].

Let p,[(1-%0)—- (1 —t+1I1—-d,d—1)] and p,[(0,1) — (k —d,d)] be crossing
lattice paths associated with the pair (u,v') corresponding to a partition 1€ P(n,k, 1)
with Durfee square size d. We find the first point of intersection of these paths (moving
north—east) and exchange the parts of those paths before the first intersection to obtain
a pair of paths ¢[(1 —10) — (k —d,d)] and 7[(0,1) — (1 —¢t+ [ —d,d — 1)] (see
Fig. 3).

Let the partitions /i and ¥ be such that (fi, V') is the pair of partitions associated with
the lattice paths » and ¢, respectively. Then

a(ft) +-a(v) = a(p) + a(v) — (1 = 1), (2)
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(b)

Fig. 3. For = —2, (a) crossing paths corresponding to / and (b) the paths after swapping, together with
their corresponding .

since all the unit squares in both sums of the associated areas are counted with the
same multiplicities except for the area defined by 0 <x <1 —1¢ d < y<d+ 1. This
area is counted once by the right-hand sum of areas (as part of a(v)) and not counted
by the left-hand sum. Hence,

a(f) +a()y=n—d* — (1 —1).

Now, associate to the pair (ji,#) the partition 4 obtained by taking a (d — 1) x (d + 1)
rectangle (of area d> — 1) and adjoining [i to the east and ¥ (the conjugate of V') to
the south. Then A has the largest part

(I-d)y+(1—-t)+d+1)=1+2-1
the total area of / is

(-1 +m—d*—(1—1)=n—Q2—1)
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and the number of parts of 7 is
(k=d)y—-(A—-t)+d—-1)=k—-(2—1).

So, /is a partition in P(n —2+t,k —2+1t,[+2 —¢) in which d is the largest integer
for which the Ferrers diagram of J. contains a (d — 1) x (d + 1) subarray. Conversely,
any such partition in P(n —2+t,k —2+1¢,1+2 —1¢), by removing the partitions to the
east and south of the (d — 1) x (d 4 1) rectangle, corresponds to a pair of lattice paths
[(1-%0)— (k—d,d)] and [(0,1) — (1 — ¢+ [ —d,d — 1)], which must necessarily
cross since, because [/ — k > ¢,

l—t+l—-dz214+k—-d>k—d.
Summing over all values of d gives, for t <1 and / —k > ¢,
[Rs/(n,k, )| =|P(n,k, )| — |P(n — 2+ t,k —2+6,1+2—1)|

Finally, summing over all / > k + ¢ gives exactly (1). O

3. Consequences

Let R ;(n) denote the set of partitions of n with all successive ranks at least ¢ and,
as in the previous section, let R ,(n, k) denote those with exactly & parts. Similarly,
let R_;(n) denote the set of partitions of » with minimum rank equal to t and R_,(n, k)
denote those with & parts. P(n) is the set of all partitions of n. Let Py(n) denote the
set of partitions of » with no part ‘s’ and Py(n,k) those with k parts. The partitions
of n which do contain a part ‘s’ are counted by |P(n — s)|. So, by splitting P(n) into
those partitions which do not contain a part ‘s’ and those which do, we get

|[Ps(n)| = [P(n)| — |P(n — s)|. (3)

If a partition in P(n,k) has no part ‘1°, we can decrease every part by 1 and still have
k parts, so

|Pi(n, k)| =|P(n — k. k). 4)
For P(n,k,[), note that, by taking the conjugate,
|P(n,k, )| =|P(n, 1, k)| (%)

Also, by partitioning into those partitions which do have a part of size 1 and those
which do not,

|P(n, ke, > )| =|P(n— 1,k —1,> )|+ |P(n — k. k, > | — 1)| (6)
and
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Therefore, we can write for ¢ < 1, applying the lattice path identity (1) for the second
equality,

|R=i(n, k)| = [R>(n, k)| — [R>11(n, k)]
+HPn+t—1L,k—14+¢t>k+1)

—|P(n+t—2,k—2+1t>k+1).

The first two terms on the right-hand side of the last equality give |P(n,k, k + t)| and
applying (6) to the last two terms gives

R, 1) = |P(nkok + 0)] + |P(n — ko — 141, > k). (8)
Theorem 3. |R> (n,k)|=|P(n — k, k)| =|Pi(n,k)|.
Proof.

IRs1(n,k)| =|P(n,k, > k)| — |P(n—1,k—1, > k+1)| (from (1))
= |P(n kb + D)| + [P(n.k, > k + 1)
—P(n—1,k—1,>k+1)|

=|P(n,k,k + )| + |P(n — k, k, > k)| (applying (6) to second
two terms)

=|P(n,k + 1,k)| + |P(n — k,k, > k)| (from (5))
=|P(n—kk <k)|+|P(n—kk >k)| (removingk in first term)

The last equality in the theorem follows from (4). [
We can now prove the first corollary of the Andrews—Bressoud theorem.
Proof of Corollary 1. From Theorem 3, summing over k, and from (3) we get
[R=1(n)| = [P1(n)| = [P(n)| — |[P(n—D)|. [

We can also use the lattice path identity to prove the following four lemmas from
[6] and the second corollary of the Andrews—Bressoud theorem.

Lemma 1. For t <0, |R_,(n,k)|=|R=is1(n — Lk — 1)|.
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Proof. From (8),

IR_(n, k)| = |P(n, b,k + 1) + [P(n — ke — 1 + 1, > k).

Thus, for ¢t < 0,

R_pi(n— Lk —1)|=P(n— Lk—Lk+t)|+|Pn—kk—1+t>k—1)|

Use (7) on the first term of the right-hand side and split the second term into those
that do and do not have largest part k£ to get

Reip1(n— Lk — 1) =|P(n,k,k+¢t)| — |P(n — k,kk +t —1)]
+P(n—kk—1+tk)|+ |P(n—kk—1+1¢>k)
=|P(n,k,k +t)| — |P(n —k,k — 1+ t,k)| from (5)
+P(n—kk—1+6k)+|P(n—kk—1+1t>k)
= |P(n,k,k + )| + |P(n — k,k — 1 + £, > k)|
= |R—/(n,k)|. |
Lemma 2. |R_o(n,k)|=|R>1(n— 1,k —1)|.
Proof. From (8),
|R-o(n,k)| = |P(n,k, k)| + |P(n — k,k — 1, > k)|
=|Pn—kk—1,<k)+|P(n—kk—1,>k)

= |P(n — kk —1)|

=|R>1(n— 1,k —1)| from Theorem 1. O
Lemma 3. For t <1, |R_/(n,k)|=|Rs1(n—1+t,k—14+1)|=|P(n—kk—1+1).

Proof. Repeated application of Lemma 1, followed by application of Lemma 2 gives
the first equality. The second follows from Theorem 3. [

Summing over £ in Lemma 3 gives the following.

Lemma 4. For t <0, |R—/(n)|=|R>1(n—1+1)|.
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Proof of Corollary 2. (|Rx.(n)|=|Pr—:(n)|).

Rz = [ D[R] | + [R=1(n)

Jj=t
1
:Z|R>1(”—1+j)| by Lemma 4
=
1
:Z |Pi(n— 1+ /)] by Corollary 1
Jj=t

1
=> [(P(n— 1+ )| = [P(n =2+ j)]) by (3)

Jj=t
=|P(n)| — |P(n —2 +1)|
=|Py—(n)| by 3). O
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