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ABSTRACT: Recently, Berenstein et al. have proposed a duality between a sector of N’ = 4
super-Yang-Mills theory with large R-charge J, and string theory in a pp-wave back-
ground. In the limit considered, the effective 't Hooft coupling has been argued to be
N = g% N/J? = 1/(upTa')?. We study Yang-Mills theory at small X' (large u) with a
view to reproducing string interactions. We demonstrate that the effective genus count-
ing parameter of the Yang-Mills theory is g2 = J%/N2 = (4mgs)?(upTa’)?, the effective
two-dimensional Newton constant for strings propagating on the pp-wave background. We
identify gov/ N as the effective coupling between a wide class of excited string states on the
pp-wave background. We compute the anomalous dimensions of BMN operators at first
order in g2 and X' and interpret our result as the genus one mass renormalization of the
corresponding string state. We postulate a relation between the three-string vertex func-
tion and the gauge theory three-point function and compare our proposal to string field
theory. We utilize this proposal, together with quantum mechanical perturbation theory,
to recompute the genus one energy shift of string states, and find precise agreement with
our gauge theory computation.

KEYWORDS: 1/N Expansion, String Field Theory, Penrose limit and pp-wave
background, AdS-CFT and dS-CFT Correspondence.
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1. Introduction

Many years ago 't Hooft [1] demonstrated the existence of a nontrivial large N limit of
SU(N) gauge theories

N — o0, o — 0, A= g¢2uN fixed. (1.1)

In the 't Hooft limit (1.1), Yang-Mills interactions are controlled by the 't Hooft coupling
A= g%,MN . Away from the strict N — oo limit, Yang-Mills perturbation theory may be
organized as a double expansion. Feynman graphs are summed over their genus (controlled
by the genus counting parameter 1/N?2) and over Feynman loops (controlled by the effective
coupling A). These observations led 't Hooft to conjecture a duality between large N gauge
theories and weakly interacting string theories. 't Hooft proposed that the genus expansion
on the two sides of this duality could be identified, leading to the identification of 1/N
as the effective string coupling. The AdS/CFT conjecture and its generalizations have
generated dramatic evidence for these proposals by supplying several concrete examples of
such dualities. The study of these special examples has also led to the identification of \}/4
as the effective string scale of the dual string theory, in units appropriate for comparison
with the gauge theory. This implies, in particular, that as A — oo, all string oscillator
states have infinite mass and all unprotected single trace gauge theory operators have
infinite dimension.

Recently, Berenstein, Maldacena, and Nastase [2] have drawn attention to a different
N — oo limit of the N = 4, d = 4 Super Yang-Mills theory. The N = 4 theory has an
SO(6) R symmetry group under which its six scalar fields X' ... X° transform in the vector
representation. Consider an arbitrarily chosen U(1) subgroup of this R-symmetry group;
for definiteness let this U(1) represent rotations in the X° and X% plane. BMN study the
sector of this theory with R charge J, and let J scale with N according to

N — o0, with I and g%y and A —J fixed. (1.2)

VN

Note that A — oo and 1/N — 0 in the BMN limit. Consequently, according to the
't hooftian lore reviewed above, SYM theory in the limit (1.2) is infinitely strongly coupled.
Furthermore its string dual appears to be a free string theory with infinite effective string
mass. None of these expectations is true; usual 't hooftian reasoning fails as a consequence
of the fact that observables in BMN limit are not held fixed, but scale to infinite charge as
N — o0. We will explain these remarks further below. However, it is useful to first review
the string dual of Super Yang-Mills theory in the BMN limit.

BMN were led to the large N scaling (1.2) by the consideration of a limit of the
AdS/CFT duality. Super Yang-Mills in the seemingly singular regime (1.2) is actually dual
to a well behaved closed string theory: IIB theory on the Ramond-Ramond pp-wave [4]:

d82 = —4d.’L'+diL'7 —/L222d$+2+d22, F+1234 = F+5678 = L] s 6(1) = Gs - (13)
A3 gsal?



According to this duality,! the R charge J of a Yang-Mills operator is proportional to
the light-cone momentum p* of the corresponding string state, while A — J of the Yang-
Mills operator is proportional to the light-cone energy p~ of the same state. The detailed
dictionary between charges of the string theory and the gauge theory is given by

ppTa = \/LX 2% =A-J,  ghm = 4dngs. (1.4)
Consequently, the AdS/CFT duality predicts that Super Yang-Mills theory in the limit (1.2)
is dual to an interacting string theory with finite effective scale. This prediction is in conflict
with the ’t hooftian expectations of the previous paragraph.

We first address the puzzle of the effective string mass [2]. It is certainly true that all
fized unprotected single trace operators scale to infinite anomalous dimension (consequently
the corresponding modes in the dual string theory scale to infinite mass) as A is taken to
infinity. However, as we have emphasized above, observables are not held fixed, but scale
with N in the BMN limit. While most such operators leave the spectrum in the N — oo,
A — oo limit (1.2), BMN have identified a special set of operators whose anomalous
dimension remains finite in this limit. These operators are dual to stringy oscillator states
on the background (1.3). These operators are special; though they are not BPS, in the
large N limit they are ‘locally’ chiral (see section two for more details), and so are nearly
BPS. Scaling dimensions of these special operators do receive loop corrections; however
the supersymmetric cancellations responsible for the non renormalization of exactly chiral
operators also ensure that the anomalous dimensions of these almost BPS operators are
much smaller than the power series in g%MN that naive perturbative estimates suggest.
Indeed BMN have argued that the anomalous dimensions of these special operators are
not just finite, but actually computable perturbatively, even though the 't Hooft coupling A
diverges in the limit (1.2). Supersymmetric cancellations produce a new coupling constant

J? (upta)?’

(1.5)

which appears to play the role of the loop counting parameter in the computation of two
point functions of these operators.

Like their scaling dimensions, three point functions of chiral operators are not renor-
malized [6, 7]. Consequently we expect analogous supersymmetric cancellations to permit
the perturbative computation of three point couplings of BMN operators (hence interac-
tions of the corresponding string modes) at small X’'. In the rest of this paper (which is
devoted to the study of PP-wave string interactions from perturbative Yang-Mills theory)
we proceed on this assumption. The coherence and consistency of the picture that emerges
provide some justification for this assumption.

We now turn to the puzzle of the effective string coupling. String loops certainly
contribute to scattering of modes of IIB theory at nonzero g5 on the background (1.3)
(see [8]), consequently generic correlation functions in Yang-Mills must also receive contri-
butions from higher genus graphs even though N = oo, as in the limit (1.2). As we will

!This duality and its generalizations have been studied further by many authors, see [13]-[49].



demonstrate in section 3 of this paper, this puzzle has a simple resolution. It is certainly
true that each graph at genus h is suppressed relative to a planar graph by the factor
1/N?h. However we will demonstrate below that the number of diagrams at genus A is
proportional to J**, so that the effective genus-counting parameter is actually is g3,

J2
g = (F) — 167297 (up™a’)?. (16)

This effective genus counting parameter, must also control the mixing between single and
multi trace operators; this is easy to see directly. The two point function between single
trace and double trace operator is of order go/v/J (see section 3). A single trace operator of
size J mixes with J different double trace operators; consequently this mixing contributes
to two point functions at order J x (go/v/J)? = g2, in agreement with (1.6) for a genus one
process.

The identification of g2 with the Yang-Mills genus counting parameter fits naturally
into duality between Yang-Mills and String theory, as g has a rather natural interpretation
in IIB theory on (1.3). In the pp-wave background, the worldsheet fields for the eight
transverse directions are massive, so low energy excitations are confined to a distance
1 /\/pp—+ from the origin. Thus, g3 = g2+/’ up+8 is simply the effective two dimensional
Newton’s constant, obtained after a ‘dimensional reduction’ on the 8 transverse dimensions.

In summary, despite first appearances, Yang-Mills theory in the limit (1.2) appears to
develop a new perturbative parameter ). In particular the theory is weakly coupled at
small X' or large p. Further, the genus expansion and mixing between single and multi
trace operators — effects related to interactions in the string dual — are controlled by gs,
the effective two dimensional Newton’s constant of the string theory. With this framework
in place we proceed, in the rest of this introduction, to describe the precise relationship
between string interactions and Yang-Mills correlators. As Yang-Mills correlators are per-
turbatively computable only at small A or large u, some of the discussion that follows
applies only to this limit.

The first and most important qualitative issue concerns the identification of the ef-
fective string coupling in the background (1.3). Following our discussion of the genus
expansion in gauge theory, it is tempting to identify the effective string coupling with gs.
This guess is incorrect. In section 5 we will argue that the effective string coupling between
states with the same Ay — J (at small \’) in the pp-wave background is gov/ X, where Ag
is the scaling dimension at X' = 0. Note that the genus expansion of Yang-Mills theory
(governed by the parameter g2) survives even in the free limit (A = 0) when the effective
string coupling is zero. This genus expansion appears to be rather unphysical; we believe
it contains information about the map between string states and Yang-Mills operators,
but does not appear to directly encode interesting stringy dynamics. Physical effects (like
anomalous dimensions) from higher genus graphs are obtained only upon adding some
Yang-Mills interaction vertices to these graphs; this addition leads to the re-identification
of the string coupling as gov/X. Note that string states in the pp-wave background blow
up into giant gravitons [12] when J?/N > 1/gs, i.e. precisely when goV N, the effective
string coupling, is large.
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Figure 1: Hierarchy of energy scales for large upta'. Only the transitions between states with
the same Ag — J, i.e. with the same number of impurities, can be calculated perturbatively. The
big jumps change the energy by an amount 1/\' times bigger and therefore they result from non-
perturbative effects in Yang-Mills theory.

Let us explain our proposal for string interactions in more detail. The spectrum of
string states in the pp-wave background clumps into almost degenerate multiplets at large
p. The splittings between states of the same multiplet are of order p)', while the energy
gap between distinct multiplets is of order y. In section 5 we propose that the matrix
element of the light-cone hamiltonian between single and double string states within the
same multiplet is the three-point coefficient of the suitably normalized operator product
coefficient of the corresponding operators (this quantity is O(gs)), multiplied by the dif-
ference between their unperturbed light-cone energies. Since energy splittings within a
multiplet are of order p)’, hamiltonian matrix elements between such states are of order
pga X', corresponding to an invariant string coupling of order gov/A'. For a class of BMN
states we compute these matrix elements perturbatively in Yang-Mills theory. Note that
transitions between states with different Ay — J involve large changes in energy; such
transitions appear to be non-perturbative in the gauge theory (see figure 1).

In the paragraphs above we have presented a specific proposal relating interaction
amplitudes in string theory with correlation functions of the dual gauge theory. In the
next two paragraphs we describe the evidence in support of our proposal. As we describe
below, our proposal passes a rather nontrivial consistency check. Further we have also
partially verified our proposal by direct comparison of three point functions (computed in
Yang-Mills perturbation theory) with three string light-cone matrix elements (computed
using light-cone string field theory).

We first describe the consistency check on our proposal. In section 5 we compute the
shift in dimension of a class of BMN operators to first order in A’ and first order in g2, i.e.
on the torus. We find that the anomalous dimensions receive non-zero corrections from



the torus diagrams with a quartic interaction between “non-nearest neighbor” fields (see
figure 10). The anomalous dimensions are proportional to g2\, the square of the effective
string coupling, and are interpreted as mass renormalizations of excited string states. We
then proceed to recompute the mass renormalization of excited string states using second-
order quantum mechanical perturbation theory. We obtain the light-cone matrix elements
needed for this computation from correlators computed in perturbative gauge theory, utiliz-
ing our prescription described above. These two independent computations agree exactly,
constituting a highly nontrivial “unitarity” check on the consistency of our proposals.

In section 5 we also compare our proposal for string interactions with matrix elements
of the light-cone hamiltonian of string field theory. The light-cone hamiltonian is generated
by a two-derivative prefactor acting on a delta functional overlap. In section 5 we demon-
strate that the three-point function of three BMN operators, computed in free Yang-Mills
theory, reproduces the delta functional overlap between three string states at large . We
conjecture that, in the same limit, the prefactor of this delta functional overlap reproduces
the second element of our formula for matrix elements (the difference between the unper-
turbed energies of the corresponding states). We sketch how string field theory predicts a
modification of our prescription for the case of the operators involving D, Z and fermions.

We conclude this introduction with a digression that may help to put our work in
perspective. Yang-Mills/String theory dualities have hitherto been understood, even qual-
itatively, only in regimes of strong gauge theory coupling. For instance, it has long been
suspected that confining gauge theories may be reformulated as string theories, with tubes
of gauge theory flux constituting the dual string. However, as flux tubes emerge at distance
scales larger than 1/Agcp, their dynamics is nonperturbative in the gauge theory. More
recently the Maldacena conjecture has established a duality between a conformal gauge
theory (with a fixed line of couplings) and string theories on an AdS background. How-
ever these dualities are well understood only at large values of the gauge coupling. In this
paper, utilizing the BMN duality, we have taken the first steps in explicitly reformulating
an effectively weakly coupled gauge theory as an interacting sting theory (IIB theory on
the pp-wave background at large p). As perturbative gauge theories are under complete
control, a detailed understanding of this extremely explicit duality holds the promise of
significantly enhancing our understanding of gauge-string dualities in general.

The rest of this paper is organized as follows. Section 2 contains a review of subtle
aspects of the BMN paper of importance to us. In section 3 we explain the counting
that identifies go = J?/N as the genus counting parameter in free Yang-Mills. We also
present the computation of planar three-point functions and torus two-point functions of
BMN operators in free Yang-Mills theory. In section 4 we compute the torus contribution
to the anomalous dimensions of BMN operators. In section 5 we present our proposals
relating Yang-Mills computations to amplitudes of the string hamiltonian. We also present
a nontrivial unitarity check of our proposals, and compare our proposals to string field
theory. In section 6 we conclude with a discussion of our results and directions for future
work. The reader who is uninterested in the details of perturbative computations of Yang-
Mills correlators can skip from section 3.1 to section 5. In appendix A we present a
precise definition of a class of BMN operators. In appendix B we prove that D-terms



interactions do not contribute to the correlation function computations presented in this
paper. In appendix C we present a rigorous and self-contained derivation of two point
functions of BMN operators. In appendix D we present an alternative method for Yang-
Mills computations.

Note. As we were completing our manuscript, related papers appeared on the internet
archive [9, 10, 11]. [9] overlaps with parts of sections three and four of our paper, while [10]
overlaps with parts of section 3 and section 5.3 of this paper. Our results disagree with
those of [9] and [10] in certain important respects. Unlike both of these papers we find non
vanishing anomalous dimensions for BMN operators on the torus at first order in Yang-
Mills coupling. We identify goV/X rather than go as the effective string coupling at large
1. As noted above, we have presented a rather non-trivial unitarity check of our proposals.
We have also compared our proposal for the three-string vertex with the Green-Schwarz
string field theory [8].

2. Preliminaries

2.1 The BMN operators

The simplest single-trace operator with R-charge J is

1
07 = VAN (2.1)
JNJ
where 5 6
X°4+iX
g2 (2.2)

V2
This is a chiral primary operator, with scaling dimension exactly equal to J at all ).
According to the BMN proposal it corresponds to the light-cone ground state |0,p*),
where the map between parameters is given by (1.4).
Other protected operators may be generated from O by acting on it with SO(6),
conformal, or supersymmetry lowering operators. For example, by acting on O7*! with a
particular SO(6) lowering operator yields

1
of = \/W’I‘r(QSZJ), (2.3)

where we have defined the complex combinations of the scalars:

X +ix? w_X3+iX4
v2 o v2 oo
Of is chiral with scaling dimension A = Ay = J + 1; it corresponds to the string state

al'0,p*), where af’ = (ag" +iag')/v/2. To take another example, O7+2 acted on by two
distinct SO(6) lowering operators yields the protected operator

¢ (2.4)

J _
Opp =

J
\/J;U+2 lzg o (¢ZZ¢ZJ71) (2:5)



which corresponds to the BPS string state ag)TagT\O, pT). Proceeding in this manner, all

protected operators (operators dual to supergravity modes) of the Yang-Mills theory may
be obtained by acting on O”, for some J, with the appropriate number of lowering operators
of various sorts.

As noted in the introduction, only protected operators remain in the spectrum as N
is taken to infinity with g2, held fixed, in any sector of fixed charge J. However when .J
is taken to infinity together with IV, it is possible to construct operators that are locally
BPS. These operators consist of finite strings of fields (all of which are BPS) that are sewn
together (in the trace) with varying phases into an operator of length J — oo that is not
precisely BPS. An example of such a near BPS operator is

J
1 .
J _ 2minl/J l J—1
Oln= Ty 3 emintld y (¢Z b7 ) (2.6)

We will usually abbreviate this as O;; however we must be careful to distinguish between
the two chiral operators Of and O()” o- In an inspired guess, BMN conjectured that the
operator O; corresponds to the string state aﬁTalfMO, pt). As we have emphasized above,
for n # 0 this operator is weakly non-chiral and its scaling dimension is corrected. However
these corrections are finite, and may be expanded in a power series in A’ (this result follows
to low orders from direct computation, but independently, to all orders by comparison
with the exactly known string spectrum). Operators corresponding to more than two
string oscillators acting on the vacuum are discussed in appendix A.

O; was obtained from O7*2 by replacing two Z’s by the ‘impurities’ ¢ and ), and
sprinkling in position dependent phases. The impurities ¢ and 1 were obtained by the
action of SO(6) lowering operators on Z. In an analogous manner the impurity D,Z may
be obtained by acting on Z with the generators of conformal invariance. Similarly, su-
persymmetry operators acting on Z produce gauginos. General BMN operators consist
of these impurities sprinkled in a trace of Z’s, together with phases. For the purposes
of this paper it will be sufficient to consider only scalar impurities, but we will explain
in section 5 how our ideas can be extended and checked with the other types of impuri-
ties.

As we have stressed in the introduction, the dimensions of operators such as O; re-
main finite (and perturbatively computable at small )') in the limit of infinite 't Hooft
coupling only because these operators differ very slightly from protected chiral operators.
It is very important that the operator O; is defined to reduce precisely to the chiral op-
erator O({’ o When n is set to zero. Even a small modification in the definition of this
operator (such as a modification of the range of summation of the variable [ to 1,...,.J,
as originally written in [2]) introduces a small — O(1/+/J) — projection onto operators
that are far from chiral, resulting in perturbative contributions to scaling dimensions like
g%y N/J, which diverges in the BMN limit, and hence a breakdown of perturbation the-

ory.?

2The importance of the summation range 0, ..., J has been also recognized by the authors of [9].



2.2 On the applicability of perturbation theory in the BMN limit

Consider the perturbative computation of, say, the planar scaling dimension A of a BMN
operator such as O;{ in (2.6) above. Suppressing all dependence on n, the results of a
perturbative computation may be organized (under mild assumptions) as

) 2 N\™
A= (P957) ntebarm). 2.)

where f,, are unknown functions of the 't Hooft coupling. BMN computed the planar
part of f1(0) using Yang-Mills perturbation theory, and deduced f;(oo) using the duality
to string theory on the pp-wave background. Quite remarkably they found that f;(0) =
f1(00). This result suggests that fi(z) is a constant function at the planar level. Recently,
the authors of [11] have demonstrated that f2(0) = f2(c0), and have presented arguments
which suggest that the planar components of f,,,(x) are constant functions for all m. Note
that a term proportional to z™ in f,,(z) would result in the breakdown of perturbation
theory, in the BMN limit, at order (g3,,N)™™. Consequently, the conjecture that f,(z)
are constant functions for all m is identical to the conjecture that \' = ¢2,,N/J? is the
true perturbation parameter, for the computation under consideration, in the BMN limit.

In this paper we will proceed on the assumption that )\’ is indeed the perturbative
parameter for the computations we perform, namely low order calculations of non-planar
anomalous dimensions and three-point functions of BMN operators. We will see that (2.7)
acquires extra non-planar contributions proportional to (J*/N?)" from genus h diagrams.
These contributions are finite in the BMN limit but they can be expanded in X' just
like (2.7). All our results are consistent with this conjecture, and lend it further support;
however, it would certainly be interesting to understand this issue better.

3. Correlators in free Yang-Mills theory

3.1 Correlators of chiral operators at arbitrary genus

Consider a correlation function involving operators of typical size (R-charge) J in free U(N)
Yang-Mills theory.> Following BMN, we study this correlator in the large N limit; J is
simultaneously scaled to infinity with J?/N held fixed. In this section we will demonstrate
that the number of graphs that contribute to this correlation function at genus h scales
with J like J4. Since any particular genus h graph is suppressed by a factor of 1/N??
compared to a planar graph, we conclude that the net contribution of all genus A graphs
remains finite in the BMN limit, scaling like g%h where g = J?/N. Consequently g2 is a
genus counting parameter; it determines the relative importance of higher genus graphs in
free Yang-Mills theory.*

3Most formulae simplify for U(N) as compared to SU(N) and the relative difference is of order 1/N.
We therefore choose to work with the gauge group U(N).

It was previously observed in [52, 53] that operator mixing and higher genus contributions to correlation
functions are important, even as N — oo for operators whose size scales with N. [53] has also presented
detailed formulae for free field correlators at all IV in a basis different from that employed in this paper.
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Figure 2: Genus one diagram drawn on a square.
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Figure 3: The same genus one diagram in an alternative representation. The diagram can be
interpreted so that (a) the blue string Tr Z3+4+2+3 gplits into Tr Z5** and Tr Z2*3; these two
strings rotate by 5 or 2 units, respectively, to get the final state contracted with Tr Z4+5+3+2, The
same free theory diagram however also counts (b) a similar split of the string into Tr Z4+2 and
Tr Z3+5,

The free Yang-Mills genus expansion encodes a modification in the dictionary between
string states and Yang-Mills operators, but does not in itself appear to contain information
about string interactions. We will return to the question of true string interactions in
sections 4 and 5 below.

Consider the two-point function (O”(0)O”(z)) in free Yang-Mills theory, where the
operators O7 are defined in (2.1). The planar contribution to this two-point function is

1
(4m2z%)7

To find the genus 1 contribution to the correlator, we must find all the free diagrams

<OJ(O)OJ($)>plana,r = (31)

that can be drawn on the torus but not on the sphere. To do this the J propagators must
be divided into either 3 or 4 groups (see figure 2). The number of ways to do this is

()+(-(1)-%

~10 -



Figure 4: (a) Genus two surface represented as an octagon. The vertices of the octagon are all
identified, while the edges are identified pairwise. The usual homology one-cycles with intersection
numbers #(a;, b;) = d;; are depicted.

(b) Genus two diagram. One operator is located at the center, and the other at the vertices. This
way of drawing the diagram immediately generalizes to any genus.

This must be multiplied by J for overall cyclic permutations, but then divided by J again
due to the normalization of the operator, and also by N2 due to the genus. The resulting
quantity is finite in the BMN limit, and proportional to g2:

2

(0”(0)0” (@)orws = sy (3:3)

This counting is easily extended to arbitrary genus. A genus A Feynman graph can be

drawn on a 4h-gon with sides identified pairwise. As we see from figure 4, the number of

graphs that can be drawn on a 4h-gon is the number of ways of dividing J lines into 4h

groups, which is J**/(4h)!. (The lines may also be divided into 4h — 1 groups, but this

gives a vanishing contribution in the BMN limit.) We must multiply this by the number

of inequivalent ways of gluing the sides of a 4h-gon into a genus h surface. This number
has been computed [51]; the result is

1.3+ (4h —1)

2h+1 (34)

Consequently a total of 272774 /(2] + 1)! graphs contribute to this correlator at genus h.

Summing over genera we find

o0

~ _ 1 1 g2\2h _ 2sinh(go/2)
(000" @) = (zzys h% T (£)" - m (3.5)

This method can easily be generalized to show that the two-point function for an
arbitrary chiral BMN operator such as Of or O(‘)], o (defined in (2.3) and (2.6) respectively)
has the same coefficient as in (3.5). Thus for example,

(040(0)0dp(a) = 2ol (3.5)

-11 -



The easiest way to generalize to higher-point functions of chiral operators is probably
via a gaussian matrix model. For example, it is not difficult to compute

/DZDZ

yielding simple explicit formulae that generalize (3.5).5

k ) k
(H ﬂz%) TrZ7e T*<ZZ>] : Z Ji=J (3.7)
=1

i=1

3.2 Planar three-point functions

In this subsection we compute free planar three-point functions for the BMN operators
defined in subsection 2.1. The results we obtain will be used in section 5 when we discuss
the construction of string interactions.

We will first compute
(07 (0)05 (1) 07 (2)) (3.8)

where J; + Jo = J. The planar, free field computation of this correlator is summarized in
figure 12. The only complication is that we must sum over all of the possible positions for
the ¢ and v fields and carefully keep track of combinatorial factors as well as normalizations.
The summation over the position of ¢ and 4 in O;' may be converted into integrals in the
large N limit,

1 1 ' ' .2
J12/ da/ db e?ma(mfny)ef%mb(mfny) _ le 2Sln 7:ny - (3.9)
0 0 m*(ny —m)

where y = J1/J. The final result for the correlator is obtained by multiplying this integral
by Jo (from cyclic rotations of O’2) and dividing by +/JiJ2J (from the normalization of
each operator) and by N (from 1/N counting). We find

~ 3/2 —ysin?(mn
(G003 10" w2) = 2 m\/);@ﬂg;)éw é‘fiwzz%)JQ . (3.10)

A similar calculation yields

go sin?(mny)
\/j7r2n2(47r2x%)‘71+1(47r2x%)‘72+1 ’

(07 (0)0y" (21)05” (w2)) = (3.11)

where 06] ! and Og 2 have ¢ and % impurities respectively.

These expressions for the three-point functions will play an important role in our
comparison between perturbative string theory and perturbative Yang-Mills theory in sec-
tion 5.

®These formulae have been obtained in collaboration with M. van Raamsdonk. They have also been
presented in detail in the recent paper [9].
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Figure 5: A typical free genus one graph for the two-point function of an operator with two
impurities.

3.3 Torus two-point functions of BMN operators

In this subsection we present an explicit computation of the two-point functions for the
BMN operators (2.6) at genus one in free Yang-Mills theory. The operator O; differs from
the chiral operator O({ o only in the presence of phases. Torus (and, indeed all genus)
two point functions of O({, o were computed rather easily in (3.6). The additional phases
complicates matters somewhat, as we will see below. Nonetheless, it is not difficult to
convince oneself that these additional complications affect only the details of the result,
but not its scalings with J and N. Indeed, g3 is the correct genus counting parameter for
all free Yang-Mills computations in the BMN limit.

We consider first the correlator (O; (0)O;! (x)). The free genus one diagrams are given
by the torus diagrams presented in the last section (figure 3) with J+ 2 lines, summed over
all ways of replacing one line by a 1 line and another by a ¢ line, with the rest becoming Z
lines. There are four groups of lines, and if the 1 and ¢ are in different groups then their
relative positions will be different in the first and second operators, giving a non-trivial
phase (unlike in the case of planar diagrams where they are always the same distance apart
in the first and second operators).

In fact it is convenient always to put the ¢ line at the beginning of both the first and
second operator. With this convention every torus diagram with one ¢ line and J + 1
other lines can be drawn as in figure 5, where each solid line represents a group of Z lines,
and J; + -+ J5 = J+ 1. Now we must put in the % line. If it is in the first group
(J1 possibilities) or the last group (J5 possibilities), then the phase associated with the
diagram is 1, because it doesn’t move relative to the ¢ line. On the other hand if it’s
in the second group (J2 possibilities) then it moves to the right by J3 + Jy steps, giving
a phase exp(2min(Js + Jy)/J). Similarly for the third and fourth groups, giving in all
Jy + Jpe2rin(Js+da)/T o pe2min(Ja=J2)/J 4 e=2min(J2+J3)/J L I We must now sum this

—13 -



over all ways of dividing the J + 1 lines into five groups:
<O7{ (O)O;{ ($)>free torus —
— % Z (Jl + JQeQWin(J3+J4)/J + J3627rin(J4*J2)/J + J4e—27rin(J2—|—J3)/J + J5)

1
—>/d' -djs 0(j1 4+ 4 js — 1) X

N—oo
(]1+j262mn ]3+]4)+J e27rm(]4 _]2)_|_] e 27rm(]2+]3)_|_]5>

1

24 n = 03
2 . ; (3.12)
8 — 8@ T @an)to n#0.

In taking the limit N — oo the fractions j; = J;/J go over to continuous variables.

If we now consider a correlator of two different operators O; and O/, then the phase
associated with a diagram depends not just on which group the % is inserted into, but on
where in the group it is inserted. The formulae are therefore somewhat more complicated,
but it’s clear that again in the limit N — oo the two-point function will reduce to g3 times
a finite integral:

47!'2([)2 J
%<07{(0)07{1($)>free torus —— (3.13)
95 N—oo
. /1 dj1---djs 6(j1 +---+j5 — 1) y
Nooo 0 i(u —v)

% (ez(u V)it _ ] 4 efui—w(j 1+J3+J4)( i(u—v)j2 _ 1) +
+ etulirtiz)=iv(ji+ia) (giu=v)is _ 1) 4 gtulitiatis)—ivji (gilu—vlia _ 1) 4

+ eHuv)(itsatis+ia) (giu—viis _ 1))

o m=mn=0;
0, m=0,n#0orn=0,m #0;
= dw—mrta, m=n#0; (3.14)
L m), = —n£0:
\(u—lv)2 (%+%+%—%—ﬁ), all other cases

where u = 2am, v = 2wn. The result for the free two-point function including genus one
corrections can thus be summarized as

A bnm + g3 A
<Og(0)07{1 (w)>free torus — nT(rleZ—iEQQ)Jnm ’ (315)

where the entries for A,,, are given above. As (O;]O;) is non-zero for n # m (unless either
n or m is zero), we see that O; and O; mix with each other, and that the mixing matrix
elements are O(g3).

—14 -



\X
X

A
/R /A

Figure 6: A typical graph with nearest neighbor interaction. Four (blue) lines coming from the
vertex should be replaced by all possible terms from figure 7. The dashed line is a 1 propagator.

It is clear that the above procedure generalizes to the higher genus free diagrams
described in section 2, in which the lines are divided into 4h groups. The genus h contri-
bution to the two point function may be written as g3" times a finite integral over 4h + 1
parameters. See appendix C for a rigorous, general discussion.

4. Anomalous dimensions from torus two-point functions

The planar anomalous dimension of the operator O;! is related, via the duality with string
theory, to the light-cone energy (or dispersion relation) of the corresponding free string
state. The planar anomalous dimension was computed to first order in g2, in [2]. Their
result was of order O()'), in precise agreement with the free spectrum of strings in the pp-
wave background (1.3). On the other hand, the contribution to the anomalous dimensions
from genus one gauge theory diagrams is related to the string one loop corrected dispersion
relation for the corresponding state (see section 5 for more details). In this section we
compute the anomalous dimension of O; on the torus, to first order in g%,;,. We find a
result proportional to g2)\, in accord with the identification of g3 as the gauge theory genus
counting parameter, and )\’ as the effective gauge coupling. This result is a prediction for
the one string loop ‘mass renormalization’ of the corresponding state.

Below we present a diagrammatic computation of this anomalous dimension; in ap-
pendices C and D two independent rigorous calculations confirm and generalize the results
of this section.

We will find it convenient to think of the N” = 4 lagrangian in N' = 1 language; Z, ¢,
are the lowest components of the three adjoint chiral superfields of this theory. Most of the
interactions of the theory, including scalar-gluon (and ghost) interactions and scalar-scalar
interactions of the form Tr|[Z, q@]|2
of these terms to this correlator is identical to their contribution to (O70”); consequently
they vanish to order g2,; by the theorem proved in [7] (see appendix B for more details).

are ‘flavor blind’ (see appendix B). The contribution
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Figure 7: The quartic Z-¢ vertices coming from the F-term (4.1).

Consequently, only flavor sensitive terms in the lagrangian, i.e. F-terms, contribute to our
calculation. The F-term interactions between scalars are very simple

Vi = —4gin Tr ([1Z, 6] + (12,911 + |16, 91 ) - (4.1)

Further, at the order under consideration, the last term does not contribute, as it is the
square of a term anti-symmetric under ¢ <> 1) and so has vanishing Wick contractions with
O; and its conjugate, as these operators are symmetric in ¢ and . In summary, to the
order under consideration, the two impurities do not talk to each other, and may be dealt
with individually. Further, each impurity effectively only interacts quartically with the Z
fields through the interactions in (4.1).

We now turn to the computation of all diagrams with a single F-term interaction.
Consider contributions to the two point function

(07(0)0; () - (4.2)

from Feynman diagrams with a single Z, ¢ interaction vertex. All such graphs (see fig-
ure 6 for one example) have identical spacetime dependence and their Feynman integral is
proportional to

1 / d'y  In(A%2?) (4.3)

1674 ) yi(y —z)* 82zt
We work in position space in (4.3); y represents the position of the interaction point, which
must be integrated over all space. The integrand in (4.3) consists of two propagators from
07 (0) to the interaction point multiplied by two propagators from O;! () to the interaction
point y, (see figures 6 and 2.1).
In order to complete the computation of the torus two point function we must

a. Enumerate all graphs that can be drawn with a single F-term interaction on the
torus.

b. Evaluate each of these graphs ignoring the propagators from the two operators to the
interaction point (this corresponds to evaluating the corresponding free graph) and
then multiply the result by (4.3).

c. Sum over the contribution from all these graphs.
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In the rest of this section we carefully carry through this process to compute
(O(0)0;] (x)) on the torus, to first order in the Yang-Mills coupling. It turns out that
the graphs that contribute may be categorized into three separate groups; nearest neigh-
bor, semi-nearest neighbor, and non-nearest neighbor graphs, respectively.

4.1 Nearest neighbor interactions

Consider for example the diagram shown in figure 6, in which two adjacent lines in a
free diagram such as figure 3 are brought together at an interaction vertex. We use the
convention that diagrams at figure 6 actually represent the sum of four different Feynman
diagrams. In diagrams such as figure 6, one of the lines connecting each of the operators to
the interaction point is always ¢ propagator (two choices for each operator) and the other
line always represents a Z propagator. The four Feynman diagrams correspond to the four
possible choices. The dashed line on the right in figure 6 represents a 1 propagator. The
four Feynman graphs that constitute the process depicted in figure 6 each contributes with
the same weight; but graphs in which a ¢ line crosses the Z line contribute with a relative
minus sign (this follows from the fact that the interaction is derived from g¢3,; Tr|[Z, ¢]|?),
as shown in figure 7. The total contribution of these four diagrams is thus

2 !
_9y™m (1 2min/J _e2min/J\ o _ A 2. 2
o (1 e ) (1 e ) 25 (2m)n (4.4)

times the phase associated to the corresponding free diagram. (4.4) is independent both of
which two lines in the free diagram figure 3 we are considering. It also does not depend
on which particular free diagram is under consideration. Consequently, the sum of all such
“nearest-neighbor” diagrams is simply (4.4) multiplied by A, the genus one contribution
to the free correlator (3.15) calculated in the previous section (with an additional factor of
two from diagrams in which the interaction involves the 1) rather than the ¢ field).

Summing up all these diagrams, together with the free torus diagrams computed in this
section, and adding these contributions to the free and one loop planar results computed
in BMN we obtain the following correlator:

1
(4m242)T+2

Consequently, the diagrams studied in this subsection merely correct the coefficient of

(01(0)0] (2)) = (1= Xn2 (M%) (14 g3dnn) +---  (45)

the logarithm in the two point function to account for the changed normalization of the
operator O, as computed in the previous section. If there were no further contributions
to the coefficient of the logarithm, this result would imply that torus diagrams do not
contribute to the anomalous dimensions of the BMN operators.® In fact other diagrams we
describe in the next two sections do modify the scaling dimensions, as we describe below.

4.2 Semi-nearest neighbor interactions

There are two other classes of diagrams, illustrated in figures 8 and 9 (see also figure 10)
that could potentially contribute to the correlator at order g3\, and thus to the anomalous
dimension. As we will demonstrate below, the “semi-nearest-neighbor” diagrams of figure 8,

5The unphysical nature of these contributions to the two-point function was also recognized in [9].
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Figure 8: A typical graph with semi-nearest neighbor interaction.

J 1 JS JZ

Figure 9: A typical graph with non-nearest neighbor interaction. Those graphs contribute to the

actual anomalous dimension.

in which the fields involved in the interaction are adjacent in one but not the other operator,
contribute to the two point function (O; (0)O/ (x)) only when m # n. However, the “non-
nearest neighbor” diagrams of figure 9 contribute to the logarithmic divergence of this
correlator whether or not n = m. Consequently, these diagrams result in a genuine shift

in the anomalous dimension of O;.

It is not difficult to argue that no other classes of diagrams contribute to this process.
To verify this claim, consider all diagrams with a single quartic interaction, that can be
drawn on a torus. Each such diagram involves two propagator loops involving the inter-
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action point. All diagrams fall into four classes; diagrams in which each of these loops is
contractible, in which one loop is contractible and the other wraps a cycle of the torus,
in which both loops wrap the same cycle of the torus, and finally those in which the two
loops wrap different cycles of the torus. Further dressing these diagrams with all sets of
propagators that leave it genus one, we find that the first class constitutes nearest neighbor
graphs of the form figure 6, the second set constitutes semi-nearest neighbor graphs of the
form figure 8, the third set constitutes nonnearest neighbor graphs of the form 9 and the
last set cannot be implemented with F-term interactions. In appendix C and D we verify
this result using different techniques.

In this subsection we discuss the semi-nearest-neighbor diagrams. There are exactly
eight diagrams of this type corresponding to the number of ways one may choose the last
member of a given group in figure 8 to interact with the first member of the next group. The
number of semi-nearest neighbor diagrams is smaller than the number of nearest neighbor
diagrams by a factor of O(1/J) as either ¢ or 9 must be located at the edge of one of
the four ‘groups’ of lines in figure 8. Consequently such diagrams are naively negligible in
the J — oo limit. However, each individual semi-nearest neighbor diagram is enhanced
by O(J) relative to a nearest neighbor diagram. In order to understand this, consider for
example the case illustrated in figure 8. As in the previous case, this figure really represents
four diagrams, which contribute a total

g%’_MM (627rinJ2/J _ e—27rinJ1/J) p2minds/J (4.6)
N J

(the last factor is due to the 1) field, which in this particular example happens to sit in
the fourth block, but whose position should be summed over). The fact that there is only
one power of J in the denominator, rather than two as in (4.4), compensates the fact that
these diagrams are rarer by a factor of 1/J than the nearest-neighbor ones. Consequently,
such diagrams could make non-vanishing contribution in the BMN limit J — oo, and they
do contribute to (O (0)0/, (z)) for m # n. However it turns out that the full contribution
from semi-nearest neighbor graphs to the correlator above vanishes for the case m = n
considered in this section. One can see this by considering the other semi-nearest neighbor
diagrams at fixed Jy, Jo, J3, Jy (there are 32 such diagrams in total), and seeing the
cancellations explicitly.

4.3 Non-nearest neighbor interactions

Finally, we turn to the non-nearest-neighbor graphs described in the figure 9 (redrawn
differently in figure 10). The external legs of our operator are divided into three groups
containing J; and Jy or J3 Z’s, respectively. Because we have divided the Z propagators
into three rather than four lines, these diagrams are rarer still by a factor 1/J than the
semi-nearest-neighbor diagrams, or by a factor of O(1/J?) compared to nearest neighbor
diagrams. However, this is compensated by the fact that each non-nearest neighbor dia-
gram is enhanced by a factor O(.J) compared to semi-nearest neighbor diagrams, or O(J?)
compared to non-nearest neighbor diagrams. In order to see this note that in the diagram
of figure 9 both ends of the ¢ propagator jump by a macroscopic (i.e. order J) distance
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Figure 10: Figure 9 represented as a periodic square.

along the string of Z’s. Let the impurity ¢ be located on the left and/or right end of the
group Ji whose first and last propagators are “pinched”. The four diagrams represented
by figure 9 consequently contribute equally, but weighted by phase 1, (for the two diagrams
in which ¢ does not jump) or — exp(£2minJ;/J) for the diagrams in which ¢ jumps either
to the left/ right; consequently the sum of these four diagrams is proportional to

(1 _ eZm'nJl/J) (1 _ e—27rinJ1/J) .

We now turn to the contribution to the diagram from the phase associated with the
second impurity 1. If 9 is in one of Ji places inside the first vertical block its relative
position on the two operators is the same, and so these J; diagrams contribute with no
phase. On the other hand, if 9 is in the block with J, propagators; its relative position on
the two operators is different by J3; the corresponding Jo diagrams contribute with phase
exp(2minJs/J). Finally, if ¢ can be located in the third block (with J3 propagators) its
relative position on the two operators slides to the left by Jy units. Consequently, these
Js diagrams are each proportional to exp(—2winJy/J). Replacing the sum over J* (with
Ji + Jo + J3 = J) by an integral over j; = J;/J (with j; + jo + j3 = 1), we arrive at the
integral

1
Cgminie o 1 5
/ djndjads O(ji + o+ ja —1) (jo€™™" + jae 22 4 1) [1— TN = S ooy (A7)
0

(for n # 0). The two-point function is thus, at first order in )\’ and g2, given by

(47°2®)T+(0;(0)0;1 () =

Ng2 (1 5
— 2 2 2,2 2 2,2
= (14 g54nn) (1 — n°X In(A%2?)) + 12 (5 + 27r2n2> In(A“z%), (4.8)

and the anomalous dimension is given by

2\/
_ 9 g\ (1 5
A_J+2+/\’n—m<§+m>. (4.9)
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The methods described in this section, or the ones described in appendices C and D,
may also be used to calculate the two-point function between different operators. We
summarize the result here; the reader will find the details in the appendices:

(47°2%)"+2(0;(0) O () =

A 2
2 Bum In(A%%).  (4.10)

(Onm + g%Anm) (1 — (n2 —nm+ m2))\' ln(AZxQ)) + i

Here the first, factorized term contains the contributions of the nearest-neighbor (propor-
tional to nm) and semi-nearest-neighbor (proportional to (n —m)?) diagrams. The second
term contains the contribution of the non-nearest-neighbor diagrams:

0, n=0orm=20;
1, 10
—+_a n=m 0’
Bpm = ’ 15u2 i’ (410
—5uZ n:—m#o;
uﬁ_v 4 ﬁ, all other cases,

where U = 27m and V = 27n.

The classification of diagrams into nearest-, non-nearest-, and semi-nearest-neighbor
continues to be valid at higher genus (at first order in \’). Interestingly, the factorization
of the first two contributions, as in (4.10), is true at all genera.

5. String interactions from Yang-Mills correlators

In this section we finally turn to the relationship between correlation functions in Yang-
Mills and dual string interactions. We make two specific proposals at large u:

e Three-point functions of suitably normalized BMN operators, multiplied by the dif-
ference in p~ between the ingoing and outgoing operators, may be identified with the
matrix elements of the light-cone hamiltonian between the corresponding one string
and two string states.

e The one string loop mass renormalization of a class of excited string states is repro-
duced by the O(g3) anomalous dimensions of the corresponding operators.

We believe that these proposals form part of a larger dictionary relating the Yang-Mills the-
ory and the string theory; however we leave the determination of the rest of this dictionary
to future work.

This section is organized as follows. In subsection 5.1 we motivate and explain our
proposals in detail, and elaborate on some of their consequences. In the rest of this section
we provide evidence for the validity of our proposals. In subsection 5.2 we demonstrate
that our proposals pass a nontrivial self-consistency check. In subsection 5.3 we compare
our proposals (together with the computations of Yang-Mills correlators in section 3 and 4)
with the predictions of string field theory, and find substantial agreement.
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5.1 Three-string light-cone interactions from Yang-Mills three-point functions

Let O;, Oj, and Oy, represent three single-trace BMN operators, of U(1) charges J;, J;, and
Ji, and normalized so that

_ 8ij

(0i(0)0(z)) = (@rz)

Let |') represent the free single string states that correspond to these operators at zero

(5.1)

bulk string coupling, normalized such that
(i'l5") = & (5.2)
Let

0,05+ Cijk
(2 ) BT RT =Bk (27, ) Di T ARG (2 ) B T AR A
(5.3)
The coefficients Cjj; have been evaluated in (3.10) and (3.11). At small X', we propose the
following formula for the matrix element of the string field theory light-cone hamiltonian

<OZ (-TZ)O] (xj)Ok (-'If'k)>free planar —

("|P|5'k") = u(Ai = Aj — Ag)Ciji - (5.4)

(5.4) is expected only to apply to leading order in \'; we leave its generalization to finite
N to future work.

Equation (5.4) is one of the central proposals of our paper. In sections 5.2 and 5.3
below we will provide rather strong evidence for its validity. Before proceeding to do so,
however, we provide initial motivation for the proposal (5.4). Inner products of Yang-Mills
states on S® (and so, presumably, states of the dual string theory) are related to correlation
functions of the euclidean Yang-Mills theory by the state operator map. Thus it is plausible
that matrix elements of the string theory light-cone hamiltonian are given by Yang-Mills
correlators, dressed by a factor of linear homogeneity in p—.

We now motivate the specific form of the dressing in (5.4). Yang-Mills correlators,
correctly normalized (see below), are of order g2. On the other hand, from section 4, torus
mass renormalizations occur at order pg3)', and so go to zero when )\ is taken to zero
at fixed go. Consequently, the dressing factor must go to zero as )\’ is taken to zero; this
suggests the specific form of the formula (5.4).

In the rest of this subsection we elaborate on the consequences of (5.4).

5.1.1 Scaling with N and J

Note that Cjj scales like J 3/2 /N for the BMN operators under consideration.” Further, in
the large p limit the energy splittings (p; + p, — p3 ) are of order pX'. Consequently, the
right-hand side of (5.4) scales like ugs ' /+/J. As J is taken to infinity in the BMN limit,

"This is easiest to verify in a simple example. The normalized chiral operators O’ = Tr Z” /VNJJ have
planar three-point functions

~J J J _ 0542,0C 0 0a0
(0 (O)O 1(331)0 2(-'EZ))planar = (27T$11)J1+J(2ﬂ-w2)J2+J (55)

where CJl,JZ,J = \/J1J2J/N.
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these matrix elements scale to zero, which is puzzling at first sight. Note, however, that the
number of intermediate states (or final states) in any process scales like J; consequently (see
subsection 5.2) the scaling of matrix elements is precisely correct to yield finite contributions
to physical processes. Stated differently, the scaling of matrix elements like pgoX'/v/J is
merely a consequence of dealing with string states that are unit normalized. Switching to
the more conventional delta function normalization for states

(ilj) = pi 6(p;" —p}) = Jids, 1, (5.6)
requires a rescaling of states
i) = V/Tli")- (5.7)

Light-cone hamiltonian matrix elements may then be written as

T; %

<Z|P_|.7k> = l(p,_ —pj_ —p,;) T Cijk p;—é(p,?— —p;— —p;:) (5.8)
1

The term in the square bracket on the r.h.s. of (5.8) is finite in the BMN limit and is of
order pugso\.

5.1.2 Effective coupling

It is instructive to perform the following exercise. Consider an effective two dimensional
field theory with scalar fields ¢;, interacting through a p* dependent cubic interaction

o /dw+dp;*dpfdpig (pf,p;’,p,j) 5 (p;’ +p;] —pf{) ¢i (=7, p]) &5 (w+,pf) ¢ (=7, pf)

(5.9)
Canonically quantizing this theory in the light-cone, it is not difficult to verify (for example,
by adapting equation (23) of [50] to our normalization) that the matrix elements for the
light-cone hamiltonian of this system are

IP713k) o [ dotdnvta (of o}t 6 (v + vf —07) (5.10)

Consequently we conclude that (5.8) would be reproduced from a two dimensional cubic

effective field theory with coupling (of dimension squared mass) given by g(p; , p;, py) =

(i —p; — )V TiJi/Ji Cijipi, iee.

LT 2 3, VJ1J2J3 0(92\07)
9 sps.py) = (AT + AT A )W(Jm ~ (5.11)

leading to the identification of gov/' A’ as the effective string coupling for these processes.

5.1.3 Vanishing of on-shell amplitudes

Recall that, in field theory, the decay of a particle is the result of the mixing between single
particle states and multi particle states of the same energy. This mixing invalidates the
use of non-degenerate perturbation theory in following the ‘evolution’ of the unperturbed
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single particle state upon turning on an interaction. It fuzzes out the very notion of a
particle; in particular the mixing broadens out delta function peaks in spectral functions,
endowing the ‘particle’ with a finite lifetime.

It is striking that (5.4) prescribes the vanishing of matrix elements of the light-cone
hamiltonian between states of equal unperturbed energy. This prescription implies the
stability of excited string states in the large p limit even upon turning on interactions. As
the notion of a single particle continues to be well defined in the interacting theory, it is
thus natural to identify the BMN operator (2.6) with the stable one-particle state, at large
i, even upon turning on interactions.® This feature (the vanishing of matrix elements be-
tween states of equal unperturbed energy) also permits the use of non-degenerate quantum
mechanical perturbation theory in an analysis of mass renormalization of excited string
states at large pu. We will utilize this observation in subsection 5.2 below.

5.2 Unitarity check

As we argued in the introduction, eight transverse coordinates in the pp-wave background
are effectively compactified. The light-like direction is also compact at finite N (its con-
jugate momentum, J, is quantized) and string theory on the pp-wave background reduces
to quantum mechanics. In this subsection, we apply standard quantum mechanical second
order perturbation theory to perform a self-consistency check of the amplitudes calculated
from the gauge theory. The hamiltonian here is A = J + P~ /p.

Consider the string state corresponding to the BMN operator O; defined in equa-
tion (2.6). We will use the well known formula for non-degenerate second order perturba-
tion theory

=Y Vel (5.12)
" EY - B '

m#n

to compute its second order energy shift.

In (5.12), the sum over states m includes two types of intermediate states:

A. the two-string states with strings corresponding to O;! and O”? (these must be
summed over the worldsheet momentum m). Using (5.4) and (3.10), the squared
matrix element that connects O; to this two-particle state is

goA?(1 — y) (ny + m)? sin* (wny)

Ven|* =
[Vin w4 Jy(ny —m)?

(5.13)

where we have defined y = J;/J. The difference in energies between our state and
the two-particle state is

N (n21y2 — m2
En_Em:%. (5.14)

81t may be possible to derive this identification, together with our proposal (5.4), from a careful analysis
of the state-operator map. We hope to return to these issues in the future.
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B. the two-string states described by the two chiral primaries O({ ! and 032, where the
impurities are ¢ and v in the two operators respectively. The squared matrix ele-
ment of the light-cone hamiltonian connecting O; to this two-particle state is easily
computed from (5.4) and (3.11):

ga N2 sin* (1ny)

mtJ )
The difference in unperturbed energies between the initial and intermediate states is
E, = \n?.

[Viol? = (5.15)

In both cases, we must sum over J; = J — Jo, i.e. integrate over y = J;/J from 0 to 1.
The total torus correction to the dimension of O; is therefore

1
AP =g / dy (B(”) +) Ag,?) : (5.16)
0

mEZ
where )
A — Vmnl™ _ g3XNy(1 —y)(ny + m) sin’ (mny) (5.17)
m T E,—-E, mtJ(ny —m)3 )
and | |2 2\/ 4
Vo 495\ sin® mny
B = "m0 72 1
E, - FE, w4 Jn? (5-18)
The sum over m in (5.16) may be performed using the identity
Z % = —n? csc?(mny) (1 — 27ny cot(mny)) . (5.19)
meEZ
Adding B™) to the result and performing the integral over y, we find
2\ (1 5
A(2) _ _92 - v .
" 472 \ 3 + 2m2n2 )’ (5:20)

which is precisely (4.9), the genus one contribution to the anomalous dimension.

In conclusion, we have computed the one loop mass renormalization from gauge theory
in two different ways; from the genus one contribution to the anomalous dimension of the
corresponding operator, and independently using our proposal (5.4) and standard second
order perturbation theory. These two computations agree exactly. In the next subsection
we will proceed to compare our prescription (5.4) with the predictions of string field theory.

5.3 Comparison with string field theory
5.3.1 The delta-functional overlap

In this subsection we show that the free planar three-point function in Yang-Mills theory
is identical to the delta-function overlap between string states in the large y limit.

In the light-cone gauge, the bosonic part of the worldsheet action of a string propa-
gating in the pp-wave background is

1
4ol

/ (O X0 X" — 0, X0, X" — > X' X"). (5.21)

— 925 —



—
v

Figure 11: A Feynman diagram for the planar three-string correlator and the corresponding light-
cone gauge history of joining strings.

18

%

Figure 12: Three-point function in free theory as the delta functional overlap of the initial and
final state.

In the limit A — 0, at finite n the sigma derivative piece in (5.21) (0, X', X*) is negligible
compared to the mass term, and may simply be ignored, to zeroth approximation. It is
convenient to discretize the worldsheet (5.21) into J bits. On neglecting 8, X0, X", the
bits decouple from each other, and the string disintegrates into J independent harmonic
oscillators.

Now consider an interaction process involving three of these strings. String split-
ting/joining interactions in light-cone gauge are local, and the most important piece of the
three-string interaction hamiltonian is the overlap delta functional

/DXl(U)DXZ(U)DX?’(U)A(Xl(a) +X%(0) = X2 (0)P(X)p(X?)9"(XP).  (5.22)

On discretizing the three strings, every bit on the third string (the biggest of the three)
is put in correspondence with a bit on one of the two smaller strings. Specifically, two bits
are in correspondence if they share the same value of 0. The wave functions ¢(X) factor
into wave functions for each bit. Any bit is either in its harmonic oscillator ground state
(we could denote that, in a diagram, by writing the letter Z in the appropriate slot) or
in the first excited state of i*" harmonic oscillator (denoted by ¢’ in the appropriate slot).
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The interaction (5.22) is simply

V=1, (5.23)
l
where the index [ runs over the bits of the larger string, |x;) is the harmonic oscillator
wave function of the [*" bit on the larger string, and | X;) is the harmonic oscillator wave
function on the corresponding bit on the corresponding smaller string (either string one or
string two, depending on the value of o). Diagrammatically, V is unity when Z’s sit on
top of Z’s and ¢'s on top of ¢'s. It is zero otherwise (see figure 12).

This is precisely the rule to compute the free planar contribution to the three-point
function term by term in the series for the operators (2.5). The sum over phases in (2.5)
is just the discrete Fourier series which may be taken simultaneously in Yang-Mills theory
and on the discretized string world sheet. It is thus guaranteed that the results (3.10)
and (3.11) from free planar gauge theory diagrams precisely reproduce the delta-functional
overlap of strings in the y — oo limit.

5.3.2 The prefactor

Our prescription (5.4) for the matrix elements of the light-cone hamiltonian involved two
elements.

a. The free Yang-Mills correlator.
b. The dressing factor (p; —p; — p3)-

Similarly, the one/two string light-cone hamiltonian involves two elements, a delta
function overlap, and a prefactor acting on that delta function overlap. In the previous
subsection we have demonstrated that the delta function overlap is precisely equal to the
free Yang-Mills correlator. In this subsection we conjecture that the action of the prefactor
on this delta function precisely produces the dressing factor (p; — p, — p; ) multiplying
the delta function overlap in (5.4).

The prefactor of string field theory involves two derivatives, and might naively have
been estimated to be of order p™u at large u. In fact, as p — oo, the prefactor vanishes
when acting on the delta functional overlap!® This striking result is consistent with our
proposal that the prefactor, acting on the delta functional produces a factor of

pr —py —p3 =0 (l) (5.24)
W
An honest verification of (5.24) appears to be algebraically involved, though it is straight-
forward in principle.

A more detailed understanding of the structure of the string field theory prefactor in
the large p limit would permit several predictions for gauge theory correlators. For example,
a preliminary analysis appears to indicate that the normalization of the prefactor (5.24) is
proportional to the number of scalar impurities minus the number of D, Z impurities (with

9This result has been derived by M. Spradlin and A. Volovich, and will be presented elsewhere.
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no contributions from fermionic impurities), and would seem to imply that the operators
with one scalar and one D,Z excitation, as well as operators with fermionic excitations
only, should have vanishing amplitudes.

6. Conclusions and outlook

In this paper we have begun an investigation into the relationship between Yang-Mills
correlators in the BMN limit and string interactions in the pp-wave background. Our
analysis is valid at large o'ptp ~ (N)~1/2 where the gauge theory appears effectively
weakly coupled. We have employed perturbative Yang-Mills theory to make verifiable
predictions for interaction amplitudes and mass renormalizations of weakly coupled strings
on the pp-wave background.

The principal observations and proposals of our paper are

e For the appropriate class of questions, it appears that Yang-Mills perturbation theory
in the BMN limit may be organized as a double expansion in an effective loop counting
parameter ' = g2,,N/J? [2] and an effective genus counting parameter g3 = J*/N2.
In particular, graphs of all genus continue to contribute, even in the strict N —
oo BMN limit. The effective genus counting parameter g2 may independently be
identified as the two dimensional Newton’s constant for the dual string theory.

e Mixing effects between single and multi trace Yang-Mills operators are also controlled
by the parameter go. This implies a modification of the dictionary between Yang-
Mills operators and perturbative string states, proposed in [2] at the same order.

e We have proposed a relationship between Yang-Mills three point functions and three
string interactions at large p. Our proposal, (5.4), implies that Light-cone hamil-
tonian matrix elements between a wide class of single and double string states are
of order pgo)', corresponding to invariant effective string coupling of order gV A
At large values of this coupling string perturbation theory breaks down and string
states blow up into giant gravitons. The detailed form of (5.4) also implies that, at
large u, excited string states are stable, even at nonzero values of the effective string
coupling.

e We have computed the one loop correction to the dispersion relation of these string
states in two different ways: first by a direct computation of the anomalous dimen-
sion associated with this operator at order g2 (i.e. on the torus), and second from
quantum mechanical perturbation theory, using matrix elements obtained from three-
point functions, as in the previous proposal. These computations agree exactly; this
constitutes a non-trivial check on our proposals. They also confirm our identification
of g2\ as the effective theoretic genus counting parameter.

This paper suggests several directions for future investigation. To begin with, it would
be useful to check the proposals of this paper, and to better understand some its assump-
tions. It is very important to check our proposal for the dictionary between Yang-Mills
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correlators and string interactions; to this end an explicit expression for the first term in
an expansion in powers of 1/4 of the string field theory interaction vertex formally derived
in [8] is required. It is certainly important to thoroughly understand when and why pertur-
bative Yang-Mills can be employed in the study of this strongly interacting gauge theory
(see [11]). Finally, in the unitarity check of section 5.2 we did not account for intermediate
states with different numbers of impurities from those in the initial state. Contributions
from such intermediate states are suppressed by large energy denominators. However, they
could also be enhanced by parametrically large couplings. It would be useful to understand
precisely when and why it is justified to omit such contributions.

Several generalizations of our work immediately suggest themselves. It should be
straightforward to generalize our calculations and proposals to BMN operators involving
D, Z and fermionic impurities. More generally, it would be very interesting to extend the
dictionary between Yang-Mills and string theory proposed in this paper, beyond the large
p limit, and to wider classes of observables. It may also be possible to derive (5.4) and its
generalizations from the more usual AdS/CFT prescriptions.

In conclusion, the BMN limit appears to allow us to re-interpret a sector of an ef-
fectively perturbative Yang-Mills theory as an interacting string theory! This remarkable
idea certainly merits further study.
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A. Specification of operators

The operators of the N' = 4 SY M theory which map into low-energy string states in the pp-
wave background involve a large number J of scalar fields Z together with several impurity
fields ¢ and 9. It simplifies things to take these fields to be holomorphic combinations
of the six real elementary scalars X of the theory, e.g. Z = (X° +iX®)/v/2,¢6 = (X! +
iX?)/V2, = (X3 +iX*)//2. We take Z, ¢, 1 to be the lowest states of the three chiral
multiplets &', &2, ®3 which appear in the N’ = 1 description of the N' = 4 theory. BMN
have outlined the rules for the construction of these operators, but there are some subtleties,
and we thus briefly describe a clear specification here.
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The principles of the construction are the following:

1. For the case of I impurity fields there are I initially independent phases g; =
exp(2min;/J). One writes a formal definition of the operators which reduces to a
BPS operator when all g; = 1, specifically a “level I” SU(4) descendent of the chiral
primary operator Tr(Z”/*!). Many of the operators so defined vanish; specifically
they vanish unless the product qi1g2 - -- gr = 1 which is the level-matching condition
on string states.

2. On the “level-matching shell” the non-vanishing operators still satisfy the BPS prop-
erty when all ¢ = 1. They reduce to the familiar BMN operator (with a minor
but necessary change) for £k = 2 and extend the construction to general k. Planar
diagrams for the 2-point correlation functions of these operators vanish (both for free
fields and order g2 ,, interactions) unless the momenta n; are conserved. This planar
orthogonality property is approximate, holding to accuracy 1/J in the BMN limit
N — o0, J ~ +/N. Since the momenta do not have any clear meaning in the field the-
ory, one should not expect strict momentum conservation. Indeed non-conservation
becomes a leading effect for diagrams of genus > 1, again both for order ¢, and
order g% ,,.

We start the discussion with the I = 2 BMN operator

J
0;=3 ¢ (¢ZZ¢ZJ—1) , (A.1)
1=0
modified so that the sum begins at { = 0 rather than [ = 1 as in [2]. With this definition
the BPS property is exact when ¢ = 1. This minor change is significant when one computes
the planar correlator including interactions. For the operator defined above one finds by
techniques described elsewhere in this paper that
J
(05(2)0(0)) = fs(@)[L + cgiprN(1 —g)(1 — ) Inlal] Y _(g7)', (A.2)
=0
where ¢ = exp(2min/J) and r = exp(27win’/J) are the phases of the operators O;(x)

and Oy;(0), respectively, and f;(z) = (N/4w%z?)’*2 involves the product of free scalar

propagators. The factor (1 — ¢)(1 — 7) is the discrete second derivative of the phases
coming from the stepping effect of the interactions noted in [2]. This factor contributes
a 1/J? suppression in the BMN limit. With the sum in the operator beginning at [ = 1
one would obtain a similar expression with the changes: a) the final sum in (A.2) starts at
[ =1, and b) there is an additional term proportional to g% ,,N(1+¢7) In|z|. The last term
arises because the construction of discrete second derivative is incomplete at one site. It is
not suppressed in the BMN limit. If present the physical interpretation would be spoiled,
which is why is we chose the definition (A.1).

The final sum in (A.1) has the value J + 1 if g = 1 and the value 1 otherwise. In the
BMN limit (to accuracy 1/J) one thus obtains the momentum conserving result Jé, , as
expected for a string in the state a*(n)b*(—n)|0) in the state dual to the operator Oy in
the limit (up™ — oo) when string interactions vanish.
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Figure 13: A circular array to indicate the J Z-fields and the impurities ¢, at positions k,[ from
a chosen origin.

The operator for two identical ¢ impurities is obtained simply by replacing ¥ by ¢
in (A.1). There are additional cross terms in the diagrams for the 2-point function. The
planar result is just (A.2) with the final sum replaced by

J
Z I:(qf)l + (q,’,)l] =J (571,11’ + 5n,—n’) (A3)
=0
in the BMN limit. This is the correct orthogonality condition for (non-interacting) strings
in the level-matched state a*(n)a*(—n)|0).

We now turn to the general program of defining operators off the “level-matching
shell”. The general method is embodied in figure 13 which shows a circular array of J
points, the J Z’s in the trace, with ¢ and % in interstitial positions at distances & and
I from an arbitrary origin. The associated phase is ¢¥gh. Tt is clear from the figure that
if we fix the relative distance, say [ between 1 and ¢, and sum over rigid displacements
of the positions of ¢ from k¥ = 0 to ¥ = J — 1, we accumulate the phase polynomial
¢5[1 + q1go + - -+ (q1g2)”’ '] which vanishes unless the level-matching condition n; +mng = 0
is obeyed.

The analytic expression for the operator depicted in figure 13 involves a sum over the
two relative orders of ¢, within the trace. It is

O =01+ 0;

O1= > qfghTx(Z* 42" Fpz77Y);
0<k<I<J—1

Or= > qfgy (Zypz" gz (A.4)
0<U<k'<J—-1

It is straightforward although a bit awkward to carry out analytically the sum over rigid
displacements of a configuration of fixed relative phase [ pictured above. Cyclicity of
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the sum is vital, of course. Starting from k£ = 0 in O; of (A.4) and moving to position
k = J —1— 1, one accumulates the phase polynomial g5[1 + q1g2 + - - - (q1g2)” ~'~!]. The
next step takes us into Oy with I’ =0, ¥’ = J — [, and we sum over [’ in [ — 1 rigid steps
until ¢ is in next-to-last position in the trace. The phase polynomial from this traversal of
Oy is ql‘]_l[l + q1g2 + -+ - (q1g2)""']. The sum of these two polynomials is equal to the full
polynomial in the previous paragraph, thus giving the level-matching condition exactly.
One may now impose the condition g;go = 1 and show that in non-vanishing cases the
operator in (A.4) is just a factor of J times that of (A.1). The first step is to substitute
g2 = 1/q1 in Oq, and use the relative position index a = [ —k to rewrite the double-summed

expression in (A.4) as
J

O1 =) (J —a)gs Tx(¢Z°pZ7 ). (A.5)
a=0
We have used the fact that, for fixed a, there are J — a values of the original index k& which
make identical contributions to O;. The sum over a in (A.5) actually stops at a = J — 1,
but it is useful to add the vanishing entry as we will see. The operator Os is handled
similarly using b = k' — I’ as the relative phase index. By symmetry one finds

J
Oy = > (J = b)g} Te($2°¢Z7 ")
bjo
=Y ags Tr(p2%pZ7 %), (A.6)
a=0

where we have redefined a = J — b, used cyclicity and g1 = 1/g2 in the last step. We see
that the sum of (A.5) and (A.6) is equal to J times the original on-shell operator (A.1) as
claimed.

We have gone into considerable detail in the simple case of 2 impurities in order to
avoid an impossibly awkward discussion in the general case which we now outline. In a set
of I > 3 impurities, repetition of the fields ¢, occurs. However these fields are effectively
distinguished in the construction of the operators because they carry different phases g;.
Wick contractions in the correlators will then impose Bose symmetry.

We therefore conceive of a set of I independent impurity fields ¢;, ¢ = 1,--- I, placed
at arbitrary interstitial sites in the circle of figure 13, with assigned phase qf’ The analytic
expression for the corresponding “off-level-matching-shell” operator is the sum I! terms,
one for each permutation of the impurities. The non-vanishing on-shell operator contains
(I —1)! terms including all non-cyclic permutations.

For I = 3, the first of six terms can be written as

O1= Y qighay (281 2" o2 g 27 7). (A7)
0<k<I<m<J

There are two similar terms, Oy, O3 for the cyclic permutations (¢, ¢3, $1) and (P3, 1, ¢d2)
of the impurity fields, and three more for anticyclic permutations. With due diligence one
may repeat the argument above for the case I = 2 and show that the sum O; + Oy + O3
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vanishes unless the level-matching condition gi1g2g3 = 1 holds. The same property holds
separately for the sum of the three operators for anti-cyclic permutations. The on-shell
operator is the sum O = O, + O, with the cyclic term

a+b<J

DR (VAT VALY A (A.8)
0<a, 0<b

and an analogous expression O, for the anti-cyclic permutation (¢1, ¢3, ¢2), namely

a+b<J
> a3asT Te(p1 2320y 0) (A.9)
0<a, 0<b
With care, and with the I = 2 case as a model, one can insert the on-shell condition
g1 = 1/(g2g3) in the operator Oy, introduce relative position indices a =1 — k,b = m — [,
and rewrite Oy as
a+b<J
Or= Y (J—a—b)gsest Tr(¢1 2% 20 ¢3 27 ?). (A.10)
0<a, 0<b

Cyclic symmetry implies similar expressions for Os, O3, namely

c+d<J
Oy = > (J—c—d)g§giT Te(poZ°¢3 21 Z7777);
0<c, 0<d
e+f<J
Os = Y (J—e—fatas™ Te(¢sZ°h1 27 227 <7 T). (A.11)
0<e, 0<f
With the redefinitionsc=b,d =J—a—b, f = a, e = J —b—a, creative use of the relation
q19293 = 1, and cyclic symmetry, one may show that the sum O + Oy + O3 = JO,.. The
analogous result relating the on-shell sum of three anti-cyclic permutations to J copies of
the anti-cyclic O, may be derived in the same way. This discussion shows that when the
level matching condition holds, the off-shell operator for 3 impurities is just J times the
on-shell operator O = O, + O,.

The 2-point correlation function of the operator with I = 3 impurities may be denoted
by ((Oc(z) + Og(z))(0(0) + Og(0))). Planar diagrams come only from the diagonal terms
(O¢(2)0.(0)) and (O, ()0, (0)). Contributions from both terms are required for planar
orthogonality in the two independent momenta.

To order O(g%,,) we obtain

J J
(0)0(0)) = F@) [1+ g2 NPgi ) Infol] S (@) S (asma)™,  (A12)
=0 m=0

P(gi,ri) = (1 =gy A =77) + (1 = g2)(1 = 72) + (1 — g3) (1 — 73) -

F(z) = (N/4n%2?)7+3 is the product of J + 3 scalar propagators and the corresponding
color factor. P(g;,r;) is of order 1/J? exactly like the O(g2,,) expression for the two-point
function of operators with two insertions (A.2). In the expression for P(g;,7;) we have
neglected higher order terms in 1/J that multiply terms of order 1/.J2.

- 33—



200

Figure 14: Cancellations at order g% ,,.

It is easy to understand how the structure of the interaction term arises. We are
interested in planar contributions so we consider the nearest neighbor interactions only.
The interactions can take place between any of the marked fields ¢; and the neighboring
fields Z. The interaction in the conjugate operator O has to take place between the same
marked field and neighboring fields Z. Thus, we get the sum of three contributions with
different phase dependence for each of the marked fields.

We hope that the discussion for I = 2,3 impurities in this section makes the construc-
tion of the case of arbitrary I clear.

B. Irrelevance of D-terms

In this appendix we will show that the F-term interactions studied in the main text are
the only interactions which need to be considered at order g2 ,, in Yang-Mills perturbation
theory. The sum of the other contributions, from D-terms, gluon exchange and self-energy
insertions, precisely vanishes at this order in both 2- and 3-point functions (for an example
see figures 14 and 15). This simple but useful fact can be proved by minor modifications
of the techniques used for the same purpose in the studies of BPS operators in either [7]
or [54]. We use the technique of [7].
We are concerned with the operators

J
07=Y ¢ (¢ZZ¢ZH) , (B.1)
=0

and we will show that the sum all non-F-term contributions vanishes term-by-term in the
expansion in phases of (0;0;) and (0;0;, Tr(Z'2)).

The first relevant observation comes from inspection of the form of the D-term potential
in the N’ = 4 lagrangian which is

Vo = gyn Tx (12, 2112, Z) + 2(¢, 6112, Z) + 2[4, 9](Z, Z] + 2]¢, $)[, 1)), (B.2)

where we have dropped similar ¢* and 4* terms which do not contribute to the correlators
listed above. One now sees that all quartic vertices contribute to Feynman diagrams with
the same combinatorial weight, independent of SU(3) flavor. Similar remarks hold for
gluon exchange diagrams. The 1-loop self-energy insertion is also flavor blind. Thus for
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Figure 15: Gluon exchange contributions to a three-point function.

the purposes of this appendix, each summand in (A.1) can be replaced by Tr(Z7*?). One
can now simply use the result of [7] which shows that all order g2 ,, radiative corrections
to (Tr(Z7%2)Z7+2) cancel. Nevertheless, we will repeat the argument of [7] briefly because
we will make a somewhat new application to 3-point functions below.

The first step is to observe that gluon exchange diagrams and those from Vp ~
Tr([Z, Z)?) have the same color structure, and must be summed over all pairs of lines
in the second Feynman diagram of figure 14. Self-energy insertions on each line must also
be summed. The following identity holds for any set of matrices M;, N:

zn:Tr(Ml---[Mi,N]---Mn)zo. (B.3)

Let K = J + 2. Each diagram in figure 14 includes a sum over k! permutations of the
fields in Tr(Z*) relative to a fixed permutation of the fields of Tr(Z*). Let T4 ...T%
denote the fixed permutation of color generators of the fields in Tr(Z*), and let T°t - - . T
denote one of the permutations of fields in Tr(Z*). For each pair of fields i # j the gluon
exchange or D-term has a color structure which may be expressed as a commutator with
the generators 7% and 77 in the product 7% - - - T% . Summing over all pairs, we obtain the
net contribution

k
~B(z) Te(T™ ---T%) Y Tr(Tbl ---[Tbi,Te]---[Tbi,Te]---Tbk), (B.4)
1£j=1

where B(z) = by + by In(x?M?) is the space-time factor associated with the interaction.
We now use (B.3) on one of the commutators to rewrite (B.4) as

k
B(e) Tr (T ---T%) Y Tr (7% - (7%, 1), T7] - T ) =
=1

k
= NB(z) Tr (T ---T%) Y Tr (T”l T Tbk) . (B.5)
=1

In the last step we recognize [[ ,7°¢], T¢] as the SU(N) Casimir operator in the adjoint
representation which gives [[T%,7°],T°¢] = NT* for any generator. The final sum thus has
k identical terms. Each self energy insertion also contains the adjoint Casimir and has the
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Figure 16: Two representations of a diagram which cancels with others.

form NA(z) = N(ag + a1 In(z?M?)), and there are k such terms. The sum of all diagrams
in figure 14 is thus

EN(B(z) + A(z)) Te(T™ - - - T%) Tr(T® - - - TO%) (B.6)

which must be summed over all permutations {b; = o(a;) : 4 = 1---k} and finally con-
tracted on pairwise identical color indices. All manipulations above are valid for the case
k = 2 which is known to satisfy a non-renormalization theorem. Hence B+ A = 0, and ra-
diative corrections (other than from F-terms) cancel for all k. Figure 16 shows a D-term dia-
gram which cancels with others despite the intuition that a gauge theory vertex at the string
interaction point, i.e. the saddle point of the toroidal stringy diagram, should be significant.
Next we study the 3-point function (07O, Tr(Z’2)) with J = J; + Jo. The flavor
blind property again means that the JJ; summands are all identical. Gluon exchange
interactions among pairs of lines are indicated in figure 15. Quartic vertices from Vp are
similarly summed. We consider a fixed permutation of fields in O;, and in Tr(Z”2) and
sum over permutations (i.e. orderings of generators T¢! - --T¢/+2) in the central operator
O and sum over permutations of fields from Oy, and from Tr(Z”2). For interacting pairs
which are connected to Oj, the previous argument applies mutatis mutandis. Radiative
corrections cancel when self-energy insertions on J; lines are included. Idem for interacting
pairs connected to Tr(Z”2). The remaining pair interactions include one line connected to
each operator. For these we use the color structure to place one commutator in each
position in Tr(7% ---T%1) and one commutator in each position within 7% ... T2, The
resulting structure is then
J1,J2
Clz,y,2) Y. ’I‘r(T“l---[Ti,Te]---T“Jl)’IEr<Tb1---[Tj,Te]---TbJ2)Tr(TCl---TCJ“),
i=1,j=1
(B.7)
where C(z,y, z) is a spacetime factor which need not be specified. However, for each fixed 1,
the sum on j vanishes by (B.3), and our task is complete.
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C. Feynman diagrams and combinatorics

In this appendix we give a self-contained approach to the two-point correlation function
discussed in the text. The purpose is to provide the detailed basis of results for planar and
genus one contributions and to outline an algorithm to calculate genus A > 1 results. We
hope that the treatment below is readable both by physicists and mathematicians.

Let us summarize the results of this appendix. We show that genus A two-point
function in the free case is given by a sum of (4h — 1)!!/(2h + 1) terms that correspond
to the types of genus h Feynman diagrams with 4h nonempty groups of edges. The
two-point function with a single interaction equals (27)?(nn' + (n — n')?) x (free case)
plus sum of (4h — 1)(4h — 1)!'/[3(2h + 1)] terms given by explicit formulas. The ex-
pression (27)2nn’ x (free case) comes from nearest neighbor interactions, the expression
(27)%(n —n")? x (free case) comes from semi-nearest neighbor interactions, and the remain-
ing expression comes from non-nearest neighbor interactions. The latter correspond to the
types of genus h diagrams with 4h — 1 nonempty groups of edges. For genus h = 1, there
is exactly one type of diagrams with 4 groups of edges, and there is one type of diagrams
with 3 groups of edges. For genus h = 2, there are 21 type of diagrams with 8 blocks and
49 types of diagrams with 7 blocks, etc.

It is natural to assume that, for 2 interactions, we need to go one level lower, i.e.,
the two-point function should be given by terms that depend on the free case and the
single interaction case plus new additional part given by diagrams with 4h — 2 groups of
edges, and so on for higher h. This gives a natural hierarchy of genus h Feynman diagrams
according to their numbers of blocks.

It is important to note that the notation used in this appendix differs from that used
in the main body of the paper in some respects. In this appendix, we will usually use the
symbols u, v for these quantities. The indices n, m will be denoted n,n’. The symbol Ay, ,
used repeatedly in sections 3 and 4 of the main body of the paper is identical to the symbol
Al(n,n') in this appendix. Finally, the contribution of non-nearest interactions denoted
By in (4.10) is identical to GL,(n,n') in the appendix.

C.1 Correlation functions

For a positive integer J and two integers n and n/, the operators O; and Oi, are given by
J J B )
0 =3 ¢'Tr (qszlquj —l) and  Of =3 T (Z%Z" —l’¢) : (C.1)
1=0 I'=0

where ¢ = exp(2my/—1n/J) and r = exp(2my/—1n'/J). (Here i = /—1). All fields Z, Z,
¢, ¢, 1, 9 are given by N x N hermitean matrices. We will discuss the free two-point
correlation function:

(07(2) Oy () = (4n*(z — 9)*) ™77 Ay (n, 1) (C.2)
and the two-point function with one interaction:

_¢°Nln|z —y|
272

(07 () [Z,4]1Z,4] 05, (y)) = G (n,n'). (C.3)
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The functions Ay and G ;N can be written as series in powers of N:

Ajn=NTP2Y N AL and  Guy=NTPY NG (C.4)
h>0 h>0

This is called the genus expansion of correlation functions, because Af} and G? are given
by sums over Feynman diagrams of some type drawn on an oriented genus h surface.
As we will see, A’} is of order J**1 and G’} is of order J*~1! as J — oco. Let

Al(n,n') = Jli)nc}o Al gthtl and  GM'(n,n') = }Lnolo Ghyth=1, (C.5)

The limits A(go;n,n') = lim Ay n/(J - N72) and B(go;n,n') = imG n/(J7" - N/¥3),
where J, N — oo so that J? ~ goN for a fixed constant g, can be written as

A(ga;n,n') = 2(92)% Al (n,n") and G(ga;n,n') = Z(gg)% G"(n,n"). (C.6)
h>0 h>0

For any integer values of n and n/, A(ge;n,n’) and B(ge;n,n') are analytic functions of go.
In particular,
2 sinh 2
A(QZ;Oa 0) = (92/ ) s
92
A(g2;m,0) = A(g2;0,n") = G(g2;0,0) = G(g2;71,0) = G(g2;0,n') =0,  (C.7)

for n,n' # 0. We will see that

b N C(dh -1t
A"(n,n') = sum of (4h +1) htl integrals,
G"(n,n') = (2m) - (=’ + (n —n')?) - AM(n,n') + Ghy (n, 1),
b , (4h — )N .
where G (n,n') = sumof 4.(4h —1)- hE1l integrals. (C.8)

Each of these integrals is given by an explicit formula. As an example, we will present
closed formulas for A*(n,n’) and G"(n,n') for small values of genus h. In general, the
expressions for A?(n,n’) and G"(n,n') have the form

polynomial in n and n'/
(n-n)-(n—n)b-(n+n)e

(C.9)

C.2 Free two-point function via permutations

Feynman diagrams for the free two-point function are basically given by permutations.
Let us recall a few basic facts about permutations. A permutation of order m is a
bijective map w : {1,...,m} — {1,...,m}. Multiplication of permutations is given by
composition of maps. All permutations of order m form the symmetric group Sp,. A cycle
in a permutation w is a subset of the form {w(:), w?(i),...,w" (i) = i}. In particular, each
fixed point w(i) = 7 is a cycle of size 1. Thus each permutation gives a decomposition of
{1,...,m} into a disjoint union of cycles. The number of cycles of w is the total number of
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cycles in this decomposition. Let the long cycle ¢ € S;;, be the permutation that consists
of a single m-cycle given by c¢: i+ i+ 1 (mod m).

Feynman diagrams that describe Wick couplings in the free case (O} (z) O/, (y)) are
given by permutations w of order m = J 4 2 corresponding to mappings between the fields
in OJ(z) and the fields in O, (y). The diagram with permutation w produces a term with
some power N¢() of the rank N of the gauge group U(N). The exponent C(w) is related
to the genus h(w) of the corresponding diagram by Euler’s formula:

C(w)=m —2h(w). (C.10)

In physics language, C'(w) is the number of closed quark loops in the ribbonized diagram
(a.k.a. fat graph) corresponding to the Feynman diagram with U(V) adjoint fields. Combi-
natorially, C(w) is the number of cycles in the twisted permutation ¢ *w~lcw € S,,, where
c is the long cycle in Sy,. The expression A; y, which gives the free two-point function,
can be written as the following polynomial in the variables ¢, 7, and N

AjN = Z NCw) Zqi_sz(i)_Z , (C.11)

where the sum is over all permutations w such that w(1) = 1 (the first marked field ¢
is always contracted with ¢), and the product is over all 4 # 1 (choice of position of the
second marked field ).

Let us say that the number h(w) = (m — C(w))/2 is the genus of a permutation
w € Sp. It is always a nonnegative integer because the parity of the number C(w) of
cycles in the twisted permutation ¢~ 'w'cw is the same as the parity of m. Clearly, the
genus of any cyclic shift wc™ of w is the same as the genus of w. Thus without loss of
generality we will assume that w(1) = 1. The h-th term A" in the genus expansion of
Ay is given by the terms in (C.11) with w of given genus h. Since the only genus 0
permutations are the identity permutation and its cyclic shifts, we have

AY = (P + (¢7) 4+ --- + (¢7)” . (C.12)

In the next section we will show that AG is a polynomial in ¢ and 7 given by a sum of order

J*H1 terms ¢t .

C.3 Block-reduction of permutations

For large values of J, the expression (C.11) involves a summation over permutations of
large orders. This makes it difficult to calculate the limit J — oo of this expression.
Nevertheless it is possible reduce a permutation w of arbitrary large order m and small
genus h to a permutation o of order < 4h. The permutation ¢ is the block-reduction of w
and is formally defined below.

For a permutation w € Sy, with w(1) = 1, let us subdivide the set {1,...,m} into
blocks as follows. If there are consecutive indices i,% + 1,...,7 + k in the cyclic order
such that w(i) = j,w(@i +1) =j+1,...,w(i + k) = j + k then we combine the indices

-39 —



1 2 3 4 5 6 7 8 9 10 11 12

Figure 17: Two genus 1 permutations with block-reductions (a) 132 and (b) 143 2.

i,i+ 1,...,% + k into a single block. Here all indices 7 and values w(i) are understood
modulo m. We will choose the blocks to be as maximal as possible. Thus the permutation
w gives a subdivision of the set {1,...,m} into disjoint union of blocks By,..., By (where
1 € Bj) formed by cyclically consecutive elements and a permutation o € Sy of blocks.
We call the permutation o the block-reduction of w. A permutation o € Si, kK > 2, is a
block-reduction for some w if and only if

a(1) =1; o(i+1)#0o(i)+1, fori=1,...,k—1; and o(k)#k. (C.13)

Let us say that a permutation o € Sy, is block-reduced if it satisfies these conditions; and
let BR? be the set of block-reduced permutations of order k and genus h. We will assume
that BR8 contains one element — the empty permutation () of order 0 — which is the
block-reduction of the identity permutation of any order.

Figure 17 shows two genus h = 1 Feynman diagrams given by permutations 1 2 5
67348910and 12910678 345 11 12. The first permutation has 3 blocks
B; =1{8,9,10,1,2}, B, = {3,4,5}, B3 = {6, 7} and its block-reduction is 132. The second
permutation has 4 blocks By = {11,12,1,2}, By = {3,4}, B3 = {5,6,7}, By = {8,9,10}
and its block-reduction is 14 3 2.

Lemma 1. A permutation w and its block-reduction o have exactly the same genera h(w)=
h(o). For each block-reduced permutation o € Sy of genus h, we have k < 4h.

Proof. Recall that genus of w was defined in terms of the twisted permutation @ =
¢ 'w™lcw. The similar twisted permutation & for the block-reduction o of w is obtained
from w by removing all its fixed points. Thus ¢ and w have same genera. Also, & € S, is
a fixed-point free permutation. Thus its number of cycles is C(o) < k/2 and the genus of

o is h(o) = (k — C(0))/2 > k/4. O

There is only one genus 0 block-reduced permutation () and two genus 1 block-reduced
permutations 132 and 1432. For genus 2, there are 21 elements in BR% and 49 elements in
BR2. In general, the following statement holds.

Proposition 1. For h > 1, the numbers of elements in BRZh and in BRZh_l are given by'°

4h — N 4h —1

(
IBR},| = 1 and  |BRE_ | = ; IBR%,| . (C.14)

ORecall that (4h —1)!!=1-3-5--- (4h — 1).
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Proof. Elements of the set BRZh are in one-to-one correspondence with gluing of the 4h-gon

lg=leo €

into a genus h surface. An element o € BR/, is determined by its twist & = ¢~
Sun, where ¢ is the long cycle in S4,. The permutation & is a fixed-point free permutation
with 2h cycles. Thus ¢ is given by the product of 2h commuting transpositions. Let us
label the sides of the 4h-gon by the numbers 1,...,4h (in the clockwise order) and glue
the side labelled ¢ with the side labelled (%), for i = 1,...,4h. This will produce a genus
h surface.

The numbers of gluings of any 2k-gon into a genus h surface were calculated by Harer
and Zagier [51]. In the case k = 2h, their result implies the number of gluings is (4h —
HN/(2h + 1).

For o' € BRffh_l, the twist &' € Sy,_1 should be a permutation given by the product
of 2h — 2 commuting transpositions and a single 3-cycle. Such &' can be obtained from
g, for o € BRZh, by merging the first vertex 1 with the last vertex 4h and replacing 2
transpositions (1,5(1)) and (4h,5(4h)) with a single 3-cycle (1,5(4h),5(1)). We will get
all &’ such that the vertex 1 belongs to the 3-cycle. In order to get all possible &' we need
to take all cyclic shifts, which gives the factor 4h — 1, and then divide by 3, because we
counted all elements 3 times. Thus [BR?, | = (4h —1)/3 - |BRA,|. O

In order to recover a permutation w € S, from its block-reduction ¢ € S; we need
to know the sizes of the blocks B; and the position of 1 in the first block, which is the
placement of the marked field ¢ in (C.1). This information can be encoded as the sequence
(b1,...,bg+1) of integers, where b; = |B;| for i = 2,...,k; by is the number of elements
of By after 1 and byy1 is the number of elements of By before 1 (in the cyclic order). So
by + bx1 + 1 = |B1|. This sequence satisfies the following conditions:

b+ +bpr1=m—-1=J+1; b1,bg+1 > 0; bo,..., by > 0. (015)
For a block-reduced permutation o € S; and a sequence by,...,bgy1 as above, let
1,bh, .-+, b, be the sequence given by b} = b,-1(i) for i = 1,...,k and b}, = bgy1.

Then the h-th term in the genus expansion of the free two-point function can be written as

k+1
A=35% 3o et ((qf)O +(g?) +--- + (qf)’”) :
k>1geBRE =1 \bit-tbpp1=J+1
(C.16)
where the sum is over all block-reduced permutations o of arbitrary orders and fixed
genus h and the internal sum in the parenthesis is over sequences by, ..., bk, that satisfy
conditions (C.15).

The number of terms ¢'#/ (each of absolute value 1) in the internal sum is of order
Jk+1. Thus only the terms with maximal possible value k = 4h survive in the limit J — oo
and the whole expression is of order J***1. Let
Ah

AM(n,n') = lim

J
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Then Ay (n,n’) is given by the sum over ¢ € BRY, and i = 1,...,4h + 1. In the limit
J — 00, each sum over by,...,bg11 turns into a (k 4+ 1)-dimensional integral. In the next
section we show how to compute integrals of this type.

C.4 Calculation of integrals

Let us fix » numbers uq,...,u, € C. For a positive integer J, let ¢; = evilV j=1...,r,
and let
Silg,-a)= Y, @tegr, (C.18)
b1t tbr=J+1
where b1,...,b, > 0 run over all decomposition of J + 1 into a sum of positive integers.

We are interested in the asymptotics of Sy as J — oo. Clearly, S; is a sum of order of
J™~! monomials in the g;- The expression S;/ J"~1 is just the J-th Riemann sum for an
(r — 1)-dimensional integral. Thus

ARE R /A et gy dg, y, (C.19)
r—1

there the integration is over the (r — 1)-dimensional simplex

Aoy ={(z1,...,2) |z1 4+ +z, =1, 21,...,2, > 0}. (C.20)
Proposition 2. The functions F,(u1,...,u,) are recursively determined by the following
relations. If uy = --- = u, = u then
eu
F.(u,u,...,u) = (C.21)

(r—1)"

If u; # uj; for some i and j then F, is obtained though F,._, by the divided difference
operator:

Froa(eey iy ey @) = Foq (oo Gy, e
R >
i j

where U; means that the variable u; is omitted.

Proof. In the first case u; = -+ = u, = u we just integrate the constant e“ over the simplex
A,_1, whose volume is 1/(r — 1)!. In the second case we may assume that i = r — 1 and
j = r. The integral can be written as

/ e“1z1+---+ur—2$r—2 (/a euT—1$r—1+ur(a_$‘r)dﬂ)7‘—l) d:c1 te d-T'r—Q ; (0-23)
Aq_o 0

where « stands for 1 — xy; — -+ — x,_2. The 1-dimensional integral in the parenthesis is
equal to (u, 1 — u,) "t (e*® — e¥-19), which gives the right-hand side of the recurrence
relation. 0

For nonnegative integers a1, ..., a,, let

F(al,___,ar)(ul,...,ur) = Fr(Uty . U1, U2y ey Uy ey Upy e ey Uy ), (C.24)
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where kK = a1 + --- + a, and we have a; copies of u;, 1 = 1,...,r, in the right-hand side.
The function F(,, . 4,)(u1,---,ur) is invariant under simultaneous permutation of a;’s and
u;’s. Proposition 2 gives the following recurrence relations for these functions:

F(...,aq;,...,aj—l,...) - F(...,ai—l,...,aj,...)

F(a‘lj""a"') = u; — u; if u; # Uj, Q5,05 >1,
Flay, )W osur) = F(aivag,ag) (oo Wipees Gy ) if u; = uy,
F(a1,...,ar)(lu’1, s auT) = F(...,di,...)(' .- aﬂia s ) ifa; = 0,
eu
F(a) (’U,) = (a 1)' (025)
where a; and 1; means that the corresponding terms are omitted.
The next theorem presents an explicit expression for all these functions.
Theorem 1. The function F.(uy,...,u,) is a continuous function of ui,...,u, defined on

C". If u; # u; for all i and j then F; is given by

F.(uy,...,up) = Ze“" l_I(uZ —uj)~t. (C.26)

=1 j#i

For arbitrary u1,...,u,, the function F,. is obtained from this expression by continuity.
Also, F, with repeated arguments can be obtained by differentiation of the above expression
as follow. For distinct uq,...,u, and a1,...,a, > 0, we have

(0/0u1)™ ~ (8/0ur)™

Flait1,mars1) (Ut oo ur) = ol .- 1 F.(ug,...,up). (C.27)
! !

Proof. The first claim follows from Proposition 2 by induction on r. In order to prove
the second claim, remark that the (K — 1)-dimensional integral for Flayt1,.a41), b =
r+aj +---+ a,, can be reduced to the following (r — 1)-dimensional integral:

T a;
F(a1+1,...,ar+1) (ul, - ,ur) = /A (H ﬁ ) 6u1$1+ Furtr d.’I?l cee d:l?,,_l . (028)
r—1 \4j=1 ¥

Now this integral for F4, 1. 4,41) 18 obtained from the integral for F; = F; 1) by
applying the differential operator []|_; (a;!)~(8/0u;)% to the integrand. O

Formula (C.26) says that F.(uj,...,u,) is the top coefficient of the Lagrange inter-
polation of the exponent f(z) = e* at points u,...,u,. The second claim (C.27) can be
reformulated in terms of the generating function, as follows:

Z 21 Flay i, an1) (W5 - up) = Fr(ur + 215 ur + 24) - (C.29)

a1,...,a7-20
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For example, according to Theorem 1, we have, for distinct u, v, w,

Fuy(u) = Foy(u) =€,  Fg(u) = —,
et — v el et — eV
F(l,l)(%“) = u—v ' F(2,1)(uav) = w—v (u—v)2’
e¥ ev eV

F(1,1,1)(U,’an) = (C.30)

(u —v)(u —w) B (u—v)(v —w) + (u —w)(v —w)
C.5 Formula for free two-point function

In this section we put everything together and give a formula for free two-point function.
For a permutation o € S; and 1 <4 < k + 1, let us define the numbers 1l;(o), Ir;(0),
rli(o), and rr;(o) as
(o) = #{j | j <1, 0'(j) Iri(o) = #{j | j <1, 0'(j) > o'(i)},
rli(o) = #{j | J > 1, 0'(j) (o) = #{j | j > i, 0'(j) > o'(i)}, (C.31)

where o’ € Si1 is the permutation obtained from o by adding a fixed point k + 1.

Q
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<

Q
—
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Theorem 2. The ht* term of the genus ezpansion of the free two-point function is given by

4ht1
3 D Fli(o)+Lin(o)li()yrie)+1)s (C.32)
oc€BRY, =1

where the arguments of all F’s are (2nv/—1(n — n'), 21/ —1n, —27/—17/,0).

The functions F' are explicitly given by Theorem 1. This formula is valid for any complex
values of n and n'. It involves rational expressions in n and n’ and in the exponents of
2my/—1n, —2my/—1n’, and 2my/—1(n —n'). If n and n' are integers then all exponents are
equal to 1.

C.6 Example: free case, genus = 1, 2

Assume that v = 27n and v = 27n/.
In the case of genus h = 1, there exists only one permutation o = 1432 in BRj.
Theorem 2 gives the following expression for A'(n,n'):

Al(n,n') = Fl1,005) + F2,022 + Fo,,1,2) + 22,02 + F5,00,1) (C.33)

all functions F' are in the variables (i (u — v),iu, —iv,0).
The above formula is valid for arbitrary complex n and n’. Assume now that n and
n' are integers. Then e'* = e!¥ = 1 and A'(n,n’) does not involve any exponents. In
the cases when some of the arguments i(u — v), iu, —iv, and 0 coincide, we can use the
reduction relations (C.25) to simplify the expression (C.33):
A'(0,0) = 5F),
Al(n,0) = AN0,n') = Fi5 1) + Fg) + Fz3) + Foa) + Fu5 =0,
Al(n,n) = 2F06) + Flo24) + Fo04) + F1,1,4) »
Al(n,—n) = Fu o5 + 3F2292) + Fs0,1) (C.34)
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where n is non-zero, the arguments of F’s in the third line are (iu, —iu,0), and (2iu, iu, 0)
in the fourth line.

We can calculate the expression for A!(n,n’) explicitly using Theorem 1. There are
several cases that depend on which pairs of arguments i(u — v), iu, —iv, and 0 coincide.
The function A!(n,n') is given by

f% ifn=n'=0;
0 if exactly one n or n' is 0;
1 n_ )1 1 7 fn=n .
A (n,n') =< =+ + 5 if n = n' are non-zero C.35
’ 60 6u? u ?
— 121u2 + % if n = —n' are non-zero;
1 1, 4 4 6 2 .
LW (-g + w2 + 22 ww (u_v)g) OtherWISe.

The genus h = 2 free two-point function A%(n,n’) can be written as a sum of 9-[BR2| =
189 integrals. We can calculate all these integrals using Maple. Explicitly, A%(n,n') is

given by
(%22%5! ifn=n"=0;
0 if exactly one n or n' is 0;
A’(n,n/) = 2. 4 i + 17 + o5 + 3.5 if n = n/ are non-zero; (C.36)
— g + % + 258 if n = —n/ are non-zero;
\ some POlynsgiazlu(lfggg(zej Ul)éi in u and v otherwise.

We have skipped the numerator in the last case.
For genus h = 3, there are 11!!/7 = 1485 elements in BR3, and each gives 13 terms.
In total we need to calculate 19305 terms. This can also be done on a computer.

C.7 Two-point function with an interaction

The Feynman diagrams that correspond to Wick couplings in the case of the two-point
function with a single interaction (O(z)[Z%][Z]O(y)) can also be easily described in
terms of permutations. A coupling is given by a permutation w € S,, of order m = J + 2
with w(1) = 1 together with a choice of two indices 4,7 = 2,...,m, i # j, that correspond
to the interacting fields. The corresponding diagram is obtained from the free Feynman
diagram, given by permutation w, by adding an “interaction edge” ¢ ~~ j between the ith
and jth edges of the free diagram. Each such diagram given by a triple (w, 1, j) produces
four terms in G;x that correspond to four terms in the expansion of the product of
commutators [Z1][Z1]. All these terms come with a factor N¢(:%3) where the exponent
C(w,1i,7) counts the number of closed loops in the ribbonized Feynman diagram. It is not
hard to express this number combinatorially in terms of cycles in permutations:

C(w,i,5) = #{cycles in @} + dys), j—1, (C.37)
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where w = tw(i)’j,lc_lw_lcw and t,(;), ;-1 is the transposition of w(i) and j — 1. Notice
that the number C(w,1,j) depend on the order of 7 and j. The genus of the Feynman
diagram associated with triple (w,4, ) is combinatorially determined by Euler’s formula
(n+1-Cw,i,7))
5 .
The two-point function with an interaction G x can now be written as
WESm,w(1)=1 4,j=2,...,n;i#j

X (qifw@ — g7V — i@ 4 quw@) (gr)"%.  (C.39)

h(w,i,j) =

(C.38)

The h-th term of the genus expansion is given by the sum
Gh = Z (qi,]:w(i) _ qi,,:w(j) _ jfw(i) + qj,,:w(j)) (qf)_2 (040)

over all triples (w, i, ) with fixed genus h(w,i,7) = h.
We will see that G’} is of order J*~ 1. Let

h i . G}}

We have h(w,i,j) > h(w), where h(w) is the genus of the free Feynman diagram as
defined in section C.2. According to section C.3, the total number of permutation w € S,
of genus h is of order J**. This implies that the total number of all triples (w,i, ) with
h(w) < h(w,3,7) = h is of order J*P=1D J2 = J*=2 and each of these triples give 4 terms
of absolute value 1. Thus, in the limit of expression (C.39), the pairs (i,j) such that
h(w,4,5) > h(w) will not make any contribution to G”(n, n').

It is natural to subdivide all possible choices for the interaction (i,7) that does not
increase the genus h(w,4,j) = h(w) into the following there classes: nearest-neighbor in-
teractions (j =i+ 1 and w(j) = w(i) + 1), semi-nearest neighbor interactions (exactly one
of the conditions j =i+ 1 or w(j) = w(i) + 1 holds), and non-nearest neighbor interac-
tions (j # i+ 1 and w(j) # w(i) +1). Let G (n,n'), G&(n,n'), and G2, (n,n') be the
contributions to G"(n, n’) of these tree case, respectively. Thus

G"(n,n') = GRo(n, ') + Giu(n,n') + Gia(n,n') (C.42)

Let us show how to calculate these three expressions. First, for a given permutation
w € Sy, we describe all pairs (i, 7) such that h(w,i,5) = h(w). Suppose that By,..., By
are the blocks of a permutation w € S,,,. Let us connect all blocks By, ..., By by directed

b2l

edges of two types “—” and “--»" as follows:

By «— By «— - 4+— B, «— B
Bs) —* Bo(z) —=* -+ == Bog) —* Boq) (C-43)

An alternating chain of blocks of length [ is a chain of the following type:

By, —» By, — By, ——» By, — By, - «-- (C.44)
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The length of a chain is its number of edges. An alternating cycle of blocks is a closed
chain By, —» --- — B, = By, .

Lemma 2. Let w € Sy, and let i,j € {2,...,m}, i # j. Then h(w,i,7) = h(w) if and
only if one of the following two conditions is satisfied:

1. =1+ 1 and i,j belongs to the same block B;.

2.

1 the last element in some block Bg; j is the first element in some block By; and B
is connected with B; by an alternating chain of odd length:

Bs —» .-+ —-» B;. (C.45)

According to section C.3, the total number of permutations w € S, of genus h with

k blocks is of order J*. Since Gf} is of order J**~1 only permutations with k = 4h or

k = 4h — 1 blocks can give a nonzero contribution to G*(n, n’).

L.

II.

Let us first consider the case k = 4h. We have two options:

Nearest neighbor interactions. Suppose that ¢ and j are such as in case (1) of
Lemma 2. Then

¢'7® — gi7e0) — g7 @ 4 @i7w0) = (1 - g)(1 — 7) ¢'7 @ (C.46)

The contribution of these terms to G% is asymptotically equal to (1—q)(1—7)J*+1 A%,
Note that it of order J** ! because (1 — q)(1 — 7) is of order J 2. Thus the contri-
bution of these terms to G"(n,n') is equal to

G (n,n") = uv AM(n,n'), (C.47)

where A”(n,n’) is the h-th term in the free two-point function given by Theorem 2.
As before, u = 27n and v = 27n/.

Semi-nearest neighbor interactions. This is case (2) of Lemma 2. For k = 4h all
possible alternating cycles of blocks have length 4. Thus the only possible pairs ¢
and j are the following: ¢ is the last element of By; j is the first element of By; and
(Bs --» By or B; «— By). In this case we can recombine the terms as follows:

Z <qi,,:w(i) - qi,FW(j) _ quw(i) + qj,’;w(j)) — (048)

=Q2-g-7| >, ™V +@-¢'-r| > ¢V

i€ELAST(w) JEFIRST (w)

where LAST(w) is the set of last elements in blocks of w and FIRST(w) is the set
of first elements in blocks of w. The right-hand side of this expression involves 8h
terms, each come with a factor (2 —q—7) ~ —/—1(u—v)J lor (2—¢ ' —771) =
vV=1(u —v) J~!. Since the number of elements w with o € BR}, is of order J**,
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III.

the total contribution of terms of this type is of order J**J~! = J*~1  In the
limit J — oo, the sum over w of given genus h becomes a finite sum integrals given
by Theorem 1. Using the notation of Theorem 2, we can write two terms in the
right-hand side of (C.49) as the following sums over o and ¢ such as in (C.32):

(2-q—7) Z @0 = —/=1(u—v) Z Fong41,10,05,0m7) 5

JELAST(w) 0,1
(2 - qil - fil) Z quw(j) =V _1(u - ’U) Z F(lli,lri,rli,rri+1) ’ (049)
JEFIRST(w) 0,1

where the arguments of F’s are (v/—1(u—v),+/—1u, —v/—1v,0). According to (C.25),
the sum of the two summands in the right-hand sides of (C.49) is

(u - U)Z F(llq;—l—l,lri,rli,rri—kl) ) (050)

which is exactly (u — v)? times the summand in (C.32). Thus the total contribution
of semi-nearest interactions is equal to

Gl (n,n') = (u —v)2 A" (n,n'), (C.51)

where A"(n,n') is the free two-point function given by Theorem 2. If n = n' then
G (n,n) = 0.

Let us now consider the case k = 4h—1. The total number of permutations w with o €
BRY, | is of order J*~. In this case we may ignore the nearest neighbor interactions
because their contribution comes with a prefactor (1 —q)(1 — ) ~ J~2, which makes
the total order J**~1J~2 subdominant to J**~1. In this case all alternating cycles of
blocks have size 4, except a single cycle of size 6. The 4-cycles produce semi-nearest
interactions that come with a prefactor (2 — ¢ —7) or (2 — ¢~ — 7 1) of order J 1,
which again makes their contribution negligible in the limit J — oo.

Non-nearest neighbor interactions. Suppose that ¥ = 4h — 1 and w is a genus h
permutation with 4h — 1 blocks. Then there exists a unique alternating 6-cycle

B;, —-» By, — B,, ——» By, — B, -—» Bs, — By, . (C.52)

Let f, and I, be the first and the last elements, respectively, in the block B, . There
are only 3 possible choices (,5) = (l1, f1), (I3, f6), (I5, f2) for the interaction edge,
whose contribution survive in the limit J — oco. Each of these 3 pairs produces 4
terms, which gives the following 12 terms:

ql17:W(l1) + qf4r,7w(f4) — qllf“’(ﬂ) — qf4,,:w(l1)
garwlis) 4 glepw(fs) — glapw(fe) — gfepw(ls)
ql57:W(ls) + qf2,,7w(f2) — qlsfw(fZ) — qf2'Fw(l5)_ (C.53)

Since the number of genus h permutations w with 4h — 1 blocks is of order J*"~1,
the total contribution of these terms to G’} is again of order J**~!. The sum of the
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12 terms in (C.53) over all genus h permutations w with 4h — 1 blocks can be written
as the sum
Z (qz’fl,,:u")(z’fl) — 2gi7 @) 4 qi—|—1,,:1i1(i—|—1)) , (C.54)
w
over all genus h permutations 1 with 4h blocks such that @ contains a block Bging
with a single element, |Bging| = 1, and ¢ # 1 is the position of the block Biing in 1.

Indeed, there are the following 3 ways to transform w with 4h — 1 blocks to a per-
mutation w with 4h blocks by inserting a block with a single element and preserving
the genus. Let w() be the permutation obtained from w by inserting a new edge to
its Feynman diagram between the blocks B; and Bg on the top and the blocks Bs
and By on the bottom. Similarly, we construct the permutation w® by inserting a,
new block with a single element between B3 and Bs on the top and Bs and Bg on
the bottom; and the permutation w(? by inserting a new block between Bs and By
on the top and B; and Bs on the bottom. One can easily check that the sum of the
summands in (C.54) for 3 permutations @ = w®, w® wG) produces exactly the 12
terms in (C.53).

As before, in the limit J — oo, the sum (C.54) reduces to a finite sum of integrals
over block-reduced o € BRffh. Using the notation of Theorem 2, we can write the
contribution G (n,n') of non-nearest neighbor interactions as follows:

4h
ng(n’n,) = -2 Z ZF(lli,lri,rli,rri) + (055)
oc€BRY, 1=2
0;<0} 4, Ti>00 14
+ Z Z F(11i+1,1r¢,rli,rr¢71) + Z F(lli+1,lri,rli71,rri) +
s€BRE, \i=l,.dh—1 i=1,...,4h—1
oi_1<0; 0i_1>0;
+ Z Z F(lli—l,lri,rli,rri—l—l) + Z F(ll,-,lri—l,rl,- ori+1) | o
o€BRA, \i=3,..,4h+1 i=3,...,4h+1

where the arguments of all F’s are (v/—1(u — v),v/—1u, —/—1v,0).

C.8 Example: interaction case, genus = 1

Then the contribution of nearest and semi-nearest interactions is equal to
Glo(n,n') + Gl (n,n') = (uwv + (u —v)?) A'(n,n') = (u® + v> — wv) A'(n,n"). (C.56)

This reduces to the free genus 1 case given in section C.6.
Formula (C.56) gives the following expression for Gpn(n,n’):

Gun(n,n') = =2(Fu20,1) + Faa,1,0) + Fraopn) +
+ Fl1,00,3) + Fi2,01,1) + Flo,,01) +
+ Fap1,2) + Fa,02) + 300,15 (C.57)
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where, as usual, the arguments of all F’s are (i(u — v),4u, —iv,0). Using relations (C.25),
we can simplify this expression:

Gllln(Oa 0) = Grlm(na O) = Gllm(oa nl) =0,
Gn(n,n) = 2(F(0,04) — Flo2,2) — Fl2,02 + Fo,1,3) + Fli03) — F1,1,2) »
Grn(n, —n) = Fruop) + Fapa) +2F1,12) +2Fo,1,1) — 6Fu ) - (C.58)
where 7 is non-zero, the arguments in the second line are (iu, —iu,0), and the arguments

in the third line are (24u,iu, 0).

Finally, using Theorem 1, we obtain

GY(n,n') = (u® + v* — uv) Al(n,n') + GL (n,n"), (C.59)
where )
0 if n or n' is 0;
% + % if n = n' are non-zero;
Grn(n,n') = 4 (C.60)
—% if n = —n' are non-zero;
{ % + (u—2u)2 otherwise.

D. Effective operator approach to Wick contractions

In this appendix we outline an approach to handling the color combinatorics of planar and
toroidal Feynman diagrams which makes use of perhaps more familiar techniques based on
Wick contractions. To demonstrate these methods we consider the planar and genus one
contributions to the two-point function at O(g%,,). This provides an independent check
of many of the calculations presented elsewhere in this paper.

Once again the BMN operators are,

J J
0=>qTr(¢z'y2"") and 0= T (27"42'9) (D)
=0 =0

with ¢ = exp(27in/J) and r = exp(2win'/J).
As discussed in appendix B it is only necessary to consider the F-term interactions in
the A/ =4 SYM action. These can be written,

—4gy 0 T ((Z, 9112, ¢]) = 4g3 3 [P0 2040 fPeize gt (D.2)

where the fP% are the structure constants of SU(IV), and we trivially extend them to U(N)
by adding the N x N matrix T° = I/v/N to the standard set of N2 —1 SU(N) generators
T a=1,...,N? — 1. The full basis of U(N) generators is then normalized by'!

(ab) = Tr TT® = 6% (D.3)

1 This normalization differs from that common in physics by a factor of 2 so that the fP*® differ by /2.
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Using equation (D.2) we define an effective operator, Oeg, as the sum of Wick contrac-
tions of ¢ and each Z in (D.1) with the factor fP?®Z%¢" of the interaction. After trivial
manipulation this produces

J
=—i) q'x (D.4)
=0

-1 J—1-1
% (Z Tr ([Tu,Tp]ZmTaZl_m_l’t/}ZJ_l) + Z Tr(Ta TP Zl’(/JZJ l—-m— lTaZm)>

From now on we compactify the notation by replacing all explicit generators by their
index values, i.e. T® — a and replace the explicit trace of an arbitrary N x N matrix M by
Tr(M) — (M). The following ‘splitting/joining’ rules can then be used to evaluate traces
and products thereof which involve summed repeated color indices:

(MaM'a) = (M)(M'") (ab) = 6%
(Ma)(a') = (MM)) (a) = VNG
aa = NI ()=N (D.5)

These follow from results derived in ref. [55].

Finally it is useful to write Ot = Ol + O%; where Ol includes only the ‘nearest
neighbor interactions i.e., the m = 0 terms in (D.4). The m > 0 terms are contained
in Ogﬁ and represent interactions between fields which are non-nearest neighbors. These
operators may be expressed as

J-1

Ok = =iN(g-1)>_d (p7'7"771) ; (D-6)
1=0
J-1
2 m J—m—1 —l_m_—m—l_
O = —i — 1m: (pz™) (277" ) L+ a7 —a" —q ™)
J-1 J
ZZ Z ¢ (1-q ™) (2™ <le—m—1¢ZJ—l>_ (D.7)
m=1[=m+1

In obtaining equations (D.6) and (D.7) we have applied the U(N) trace identities in equa-
tion (D.5) and explicitly summed several of the geometric progressions in ¢! by reversing
the order of summations.

With equations (D.6) and (D.7) at our disposal we may now discuss the order g%,
contributions to the correlator

(O(2)0(y)) = (OeOanr) + (OegO2) + (025 Oegt) + (025 O%) - (D.8)

From now on we omit reference to the space-time points z,y since our main concern is to
capture the order N”/*2 planar and order N”/*! genus one contributions to this correlator.
This is handled here by performing the Wick contractions of the fields Z, Z and evaluating
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the ensuing color contractions and traces. Evaluating the various terms in equation (D.8)
requires the following ‘contraction identities’,

a+2
4

Tr(Z%) Tr(Z%) = aN® + O(N*™?) (D.9)
TI‘(Za) Tr(Za—I—be) — a(b + 1)Na+b + O(Na+b_2)
Tr(Z°Z°2°Z%) = (min(a, b, c,d) + 1) NoTo+1 4 O(N+0-1) with a+b=c+d

Tr(ZaZa) — Na—l—l + ( )Na—l +O(Na—3)

which are derived by counting the number of ways one may perform the Wick contractions
within each trace structure while obtaining a maximal power of N. The remaining O(N”/*1)
contributions are the semi-nearest and non-nearest diagrams of section 4 of the main text.
In the effective operator formalism the semi-nearest diagrams are given by the second and
third terms in (D.8), and computation shows that they vanish in the special case ¢ = r
we are considering. The non-nearest diagrams are given by the last term in (D.8). It is
straightforward to evaluate and sum the relevant Wick contractions and obtain

J-1J-1
(OO = N*(a - 1)(@—1) ) Y d'd(2'2") (2’77277 (D.10)
1=0 =0
for which planar contributions are only possible for [ = [. It is interesting to note that up to
the (¢—1)(g—1) prefactor this is exactly the same expression which generates the all-genus
polynomial at order g¥,,. Use of the identities in equation (D.9) and explicit evaluation
of the resulting sums yields an expression which in the limit of large J is given by

(OigOd) = g5Ann (1 — n°XN In(A%2%))

1 1 1 7
h, Ay == —= . D.11
where " (60 6 (27n)? + (27rn)4) ( )

Notice that the non-planar corrections are of order g3 as has been emphasized throughout
this paper. In order to obtain the remaining O(N”*!) contributions we need only consider
the final term in equation (D.8) since in the special case we are considering, i.e., ¢ = r, the
other terms conspire to precisely vanish at leading order in a large J expansion. Evaluation
of the final term in equation (D.8) is a straightforward calculation which yields,

247 2,2
~ g N In(A°z”) (1 5
(OOe) = == 5 5+ 533 (D.12)

Putting the results of equations (D.11) and (D.12) the complete planar and torus contri-
butions to the g2, piece of the two-point function is given by,

2/ 2,.2
g\ In(A°x 1 5
(1 + g%Ann) (1 - 7?,2)\’ ]n(AQ.TQ)) + % (5 + 27!'27’L2> (D13)

which is precisely the same answer as obtained in the main text. Extending these techniques
to arbitrary g, r is straightforward and in all cases is found to agree with the methods used
elsewhere in this paper.
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