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We study the class of trees T on the set [1, 2, ..., n] such that for any
1�i<j<k�n the pairs [i, j] and [ j, k] cannot both be edges in T. We derive
a formula for the number of such trees. We also give a functional equation and a
differential equation for the generating function. We mention some additional
combinatorial interpretations of these numbers. � 1997 Academic Press

1. MAIN THEOREMS

Definition. An intransitive tree or alternating tree T on the set of
vertices [n] :=[1, 2, ..., n] is a tree satisfying the following condition: if
1�i< j<k�n then [i, j ] and [ j, k] cannot both be edges in T. In other
words, for every path i1 , i2 , i3 , i4 , ... in T we have i1<i2>i3<i4> } } } or
i1>i2<i3>i4< } } } .

These trees first appear in the work [1] on hypergeometric functions.
Recently, there were found interesting connections between these trees and
hyperplane arrangements (see [4, 5] and Section 4.2 below).

Let Fn denote the number of intransitive trees on the set of vertices [n].

Theorem 1. The number Fn of intransitive trees on the set [n] is equal to

Fn=
1

n } 2n&1 :
n

k=1
\n

k+ kn&1.

The first few numbers Fn are given below.
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n 1 2 3 4 5 6 7 8
Fn 1 1 2 7 36 246 2104 21652

n 9 10 11 12
Fn 260720 3598120 56010096 971055240

In Section 4 we outline two other approaches to the numbers Fn . There
exists a combinatorial interpretation of Fn as the number of certain binary
trees. On the other hand, the number Fn is equal to the number of regions
of a certain hyperplane arrangement. These results will appear elsewhere in
more detail (see [4, 5]).

Consider the generating function

F(t) := :
n�0

Fn+1

t n

n !
.

Theorem 2. The function F=F(t) satisfies the following functional
equation:

F=e(t�2)(F+1).

Remark. Let Tn denote the number of all trees on [n] and T(t)=
�n�1 Tn (tn�(n&1)!). Then Tn=nn&2 (Cayley's formula) and T=T(t)
satisfies the functional equation T=teT (e.g., see [3]). Theorems 1 and 2
can be viewed as analogs of these classical results.

In Section 2 we prove Theorem 2 and deduce Theorem 1 from it. An
interesting open problem is to find a direct combinatorial proof of
Theorem 1.

Let n�2 and T be an intransitive tree on [n]. Two vertices in T are
called adjacent if they are connected by an edge in T. All vertices in T are
of two types: left vertices and right vertices. The set L of left vertices con-
sists of all vertices i such that all vertices adjacent to i are greater than i
and the set R of right vertices consists of all vertices j such that all vertices
adjacent to j are less than j.

For n�1 let fnk denote the number of all intransitive trees on the set
[n+1] with k right vertices. Set f00=1 and f01=0.

It is clear that for n�1 the numbers fnk are symmetric in k : fnk= fn, n&k+1.
Let

fn(x)=:
k

fnk xk.
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Consider the generating function for the polynomials fn(x):

F(x, t) := :
n�0

fn(x)
tn

n!
.

Clearly, fn(1)=Fn+1 and F(1, t)=F(t).

Theorem 3. The function F=F(x, t) satisfies the following functional
equation:

F } (F+x&1)=xet(F+x).

The first few polynomials fn(x) are

f0=1;

f1=x;

f2=x+x2;

f3=x+5x2+x3;

f4=x+17x2+17x3+x4;

f5=x+49x2+146x3+49x4+x5;

} } }

2. DECOMPOSITION OF INTRANSITIVE TREES

In this section we give a combinatorial proof of Theorem 2 and deduce
Theorem 1 from it.

An intransitive tree T with a chosen vertex (root) is called a rooted
intransitive tree. If the root is a left vertex we call such a tree left-rooted.

Let Ln denote the number of all left-rooted intransitive trees on the
set [n].

It is clear that for n�2 the number Ln is half of the number of all rooted
intransitive trees on the set [n] which is equal to n times the number Fn

of all intransitive trees:

Ln=
n
2

Fn , L1=
1
2

(F1+1)=1.
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Let L(t) be the generating function for left-rooted intransitive trees:

L(t) := :
n�1

Ln
t n

n !
.

We have

L(t)=
t
2

(F(t)+1).

Now to get an intransitive tree on the vertex set [n+1] take a forest of
left-rooted trees on the vertices [n] and connect n+1 to each root. By the
exponential formula (e.g., see [3, p. 166]), we get

F(t)=eL(t).

This completes the proof of Theorem 2.
Now we can deduce Theorem 1. Let D(t)=t(F(t)+1). Then by

Theorem 2

D=t(1+eD�2).

Apply Lagrange's inversion theorem (see [3, p. 17]) to get

[tn]D=
1
n

[*n&1] (1+e*�2)n

=
1
n

[*n&1] \ :
n

k=0
\n

k+ e*}�2+
=

1
n

:
n

k=0
\n

k+
(k�2)n&1

(n&1)!
,

where [tn]D denotes the coefficient of tn in D.
On the other hand, [tn]D=Fn �(n&1)! for n�2, so we get

Fn=
1

n } 2n&1 :
n

k=1
\n

k+ kn&1.

3. RECURRENCE RELATIONS AND
A DIFFERENTIAL EQUATION

In this section we obtain recurrence relations for the numbers fnk and
prove Theorem 3.

Let T be an intransitive tree on [n+1] with k right vertices. Delete all
edges going from vertex 1. Then T falls into several branches. Let T $ be the
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branch which contains the vertex n+1, and let T" be the tree obtained
from T by deleting the branch T $ and the edge connecting vertex 1 with T $.

Consider two cases:

1. T $ is the tree with one vertex n+1. Then T" is an intransitive tree
on the set [n] with k&1 right vertices. The number of such trees is equal
to fn&1, k&1.

2. T $ is a tree with l+1 vertices, l�1, and with s right vertices. Then
T" has n&l vertices and k&s right vertices. The number of intransitive
trees T with such T $ and T" is equal to ( n&1

l ) } s } fls } fn&l&1, k&s .

We get

fnk= fn&1, k&1+:
l, s \

n&1
l + } s } fls } fn&l&1, k&s ,

where the sum is over 1�l�n&1 and 1�s�l.
Now we have the following recurrence for the polynomials fn(x):

fn(x)=x \ fn&1(x)+ :
1�l�n&1

\n&1
l + fl$(x) fn&l&1(x)+ .

We get the following differential equation for F(x, t)=�n�0 fn(x) tn�n ! :

�F
�t

=x } F } \1+
�F
�x + , F(x, 0)=1.

It is not difficult to check that the function F(x, t) defined by the func-
tional equation F } (F+x&1)=xet(F+x) satisfies this differential equation.
Thus we have proved Theorem 3.

4. OTHER INTERPRETATIONS OF THE NUMBERS Fn

4.1. Local Binary Search Trees

A local binary search (LBS) tree is a labeled binary tree such that every
left child has a smaller label than its parent, and every right child has a
larger label than its parent. LBS trees were first considered by Gessel [2].

Theorem. For n�1 the number of LBS trees on the set [n&1] is equal
to the number Fn of intransitive trees on the set [n].
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Proof. Let In be the set of intransitive trees on [n] with a chosen root.
Let Bn be the set of LBS trees on [n] such that the root has only one child
(left or right).

Clearly, |In |=nFn . On the other hand, |Bn | is n times the number of
LBS trees on [n&1]. Indeed, for a LBS tree B # Bn the root r of B can be
any number r # [n]. If we delete the root r we get a LBS tree T $ on
[n]"[r]. Conversely, we can always reconstruct T from T $. If r$ is the root
of T $ then we set r$ to be the left child of r for r$<r and the right child
of r for r$>r.

Now construct a bijection , : In � Bn . Let T be a rooted intransitive tree
T # In . Construct B=,(T ) # Bn using the following procedure:

1. Orient the tree T from the root (e.g. all vertices adjacent to the
root are children of the root).

2. If v is a left vertex in T and i1<i2< } } } <ik are all children of v
in T, then set i1 to be the right child of v in B ; i2 to be the right child of
i1 in B ; i3 to be the right child of i2 in B ; etc.

3. If v is a right vertex in T and i1>i2> } } } >ik are all children of
v in T, then set i1 to be the left child of v in B ; i2 to be the left child of
i1 in B ; i3 to be the left child of i2 in B ; etc.

The construction of the inverse map is clear.

4.2 Deformed Coxeter Hyperplane Arrangements

Consider the arrangement An of hyperplanes in Rn given by

xi&xj=1, i< j,

where (x1 , x2 , ..., xn) # Rn. Denote by Rn the number of regions of An , i.e.,
the number of connected components of the space Rn&�H # An

H.
This hyperplane arrangement was considered by Nati Linial and

Shmulik Ravid. They calculated the numbers Rn for n�9.

Theorem. For all n�1, the number Rn is equal to the number of intran-
sitive trees Fn+1.

This statement was conjectured by Richard Stanley on the basis of the
data provided by Linial and Ravid. The proof of this theorem will appear
elsewhere. For further results and conjectures on this and related hyper-
plane arrangements see [4, 5].

I am grateful to my advisor Richard Stanley for interest in this work and
helpful suggestions.
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