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Abstract. In this paper we study the hypergeometric system on unipotent matrices.

This system gives a holonomic D-module. We find the number of independent solu-
tions of this system at a generic point. This number is equal to the famous Catalan

number. An explicit basis of Γ-series in solution space of this system is constructed in

the paper. We also consider restriction of this system to certain strata. We introduce
several combinatorial constructions with trees, polyhedra, and triangulations related

to this subject.
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1. General Hypergeometric Systems

In this paper we use the following notation: [a, b] := {a, a+1, . . . , b} and [n] :=
[1, n].

Recall several definitions and facts from the theory of general hypergeometric
functions (see [GGZ, GZK, GGR2]).

Consider the following action of the complex n-dimensional torus T = (C∗)n

with coordinates t = (t1, t2, . . . , tn) on the space CN

(1.1) x = (x1, x2, . . . , xN ) 7−→ x · t = (x1t
a1 , . . . , xN t

aN ),

where aj = (a1j , . . . , anj) ∈ Zn, j = 1, 2, . . . , N and taj denotes ta1j

1 . . . t
anj
n .

Definition 1.1. The General Hypergeometric System associated with action of
torus (1.1) is the following system of differential equations on CN

N∑
j=1

aijxj
∂f

∂xj
= αif, i = 1, 2, . . . , n;(1.2)

∏
j: lj>0

(
∂

∂xj

)lj

f =
∏

j: lj<0

(
∂

∂xj

)−lj

f,(1.3)

where α = (α1, α2, . . . , αn) ∈ Cn and l = (l1, l2, . . . , lN ) ranges over the lattice L of
integer vectors such that l1a1 + l2a2 + · · ·+ lNaN = 0.

Solutions of the system (1.2), (1.3) are called hypergeometric functions on CN

associated with action of torus (1.1). The numbers αi are called exponents.

Remark 1.2. Equations (1.2) are equivalent to the following homogeneous condi-
tions

(1.4) f(x · t) = tαf(x),

where t = (t1, t2, . . . , tn) ∈ T and tα = t1
α1t2

α2 . . . tn
αn .

Remark 1.3. For generic α system (1.2), (1.3) is equivalent to the subsystem, where
L ranges over any set of generators for the lattice L.

By A denote the set of integer vectors a1, a2, . . . , aN . Let HA be the sublattice in
Zn generated by a1, a2, . . . , aN and m = dimHA be the dimension of HA. Let PA

denote the convex hull of the origin 0 and a1, a2, . . . , aN . Then PA is a polyhedron
with vertices in the lattice HA.

Let VolHA
be the form of volume on the space HA⊗Z R such that volume of the

identity cube is equal to 1. The volume of a polyhedron with vertices in the lattice
HA times m! is an integer number. In particular, m! VolHA

PA is integer.

Theorem 1.4. The general hypergeometric system (1.2), (1.3) gives a holonomic
D-module. The number of linearly independent solutions of this system in a neigh-
borhood of a generic point is equal to m! VolHA

PA.

If there exist an integer covector h such that

(1.5) h(aj) = 1 for all j = 1, 2, . . . , N
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then we call the corresponding system (1.2), (1.3) flat or nonconfluent.
Theorem 1.4 in nonconfluent case was proved in [GZK]. Very close results were

found by Adolphson in [Ad], but his technique is quite different from ours.
In this paper we study one special case of systems (1.2), (1.3) when condition

(1.5) does not hold. We define these systems in the following section.

2. Hypergeometric System on Unipotent Matrices

Let R ⊂ Zn be a root system and R+ ⊂ R be the set of positive roots (see [Bo]).
Then we can define the hypergeometric system (1.2), (1.3) associated with the set
of integer vectors A = R+.

We consider the case of the root system An in more details.
Let ε0, ε1, . . . , εn be the standard basis in the lattice Zn+1. The root system An

is the set of all vectors (roots) eij = εi − εj , i 6= j. Let A = A+
n be the set of all

positive roots A = {eij ∈ An : 0≤i<j≤ n}.
It is clear that positive roots generate the n-dimensional lattice HA ' Zn of all

vectors v = v0ε0 + v1ε1 + · · ·+ vnεn, vi ∈ Z such that v0 + v1 + · · ·+ vn = 0.
By Zn denote the group of unipotent matrices of order n+1, i.e. the group of

upper triangular matrices z = (zij), 0≤i≤j≤n with 1’s on the diagonal zii = 1.
The n-dimensional torus T presented as the group of diagonal matrices t =

diag(t0, t1, . . . , tn), t0 · t1 . . . tn = 1 acts on Zn by conjugation z ∈ Zn → tzt−1, or
in coordinates

(2.1) z = {zij} 7−→ {zijtit
−1
j }.

Clearly, action of torus (1.1) associated with the set of vectors A = A+
n is the

same as action (2.1). Here N =
(
n+1

2

)
and zij , 0≤i<j≤n are coordinates in CN .

The main object of this paper is the hypergeometric system associated with
action (2.1). Write down this system explicitly.

Definition 2.1. The Hypergeometric System on the Group of Unipotent Matrices is
the following system of differential equation on the space Zn ' CN with coordinates
zij , 0≤i<j≤n

−
j−1∑
i=0

zij
∂f

∂zij
+

n∑
k=j+1

zjk
∂f

∂zij
= αjf, j = 0, 1, . . . , n;(2.2)

∂f

∂zik
=

∂2f

∂zij ∂zjk
, 0≤i<j<k≤n,(2.3)

where α = (α0, α1, . . . , αn) ∈ Cn+1 is a vector such that
∑
αj = 0.

Solutions of system (2.2), (2.3) are called hypergeometric functions on the group
of unipotent matrices.

In order to prove that system (2.2), (2.3) is a special case of the system (1.2),
(1.3) we need the following simple lemma.

Lemma 2.2. It follows from equations (2.3) that

(2.4)
∏

(i,j): lij>0

(
∂

∂zij

)lij

f =
∏

(i,j): lij<0

(
∂

∂zij

)−lij

f,



4 I. M. GELFAND, M. I. GRAEV, AND A. POSTNIKOV

for all l = (lij), 0≤i<j≤n, lij ∈ Z such that
∑

i lij −
∑

k ljk = 0, j = 0, 1, . . . , n.

Proof. It follows from (2.3) that

∂f

∂zij
=

∂j−if

∂zii+1 ∂zi+1i+2 . . . ∂zj−1j

Now change in (2.4) all occurrences of ∂
∂zij

to ∂j−i

∂zii+1 ∂zi+1i+2...∂zj−1j
. We get the

same expressions in LHS and in RHS.

Let Pn = PA+
n

be the convex hull of the origin 0 and of eij , 0≤i<j≤n. The first
part of the following theorem is a special case of Theorem 1.4.

Theorem 2.3.
(1) The hypergeometric system (2.2), (2.3) gives a holonomic D-module. The

number of linearly independent solutions of this system in a neighborhood
of a generic point is equal to n! VolPn.

(2) n! VolPn is equal to the Catalan number

Cn =
1

n+ 1

(
2n
n

)
.

3. Integral Expression for Hypergeometric Functions

In this section we present an integral expression for hypergeometric functions on
unipotent matrices (see [GG1]).

Consider the following integral

(3.1) f(z) =
∫

C

exp
(∑

zijtit
−1
j

)
t−α dt

t
,

where the sum in exponent is over 0≤i<j≤n; t is a point of torus T = {(t0, . . . , tn) :
t0 · . . . · tn = 1} ' (C∗)n; t−α dt/t = t−α1

1 . . . t−αn
n dt1/t1 . . . dtn/tn; and C is a real

n-dimensional cycle in 2n-dimensional space T .

Theorem 3.1. The function f(z) given by integral (3.1) is a solution of the hy-
pergeometric system (2.2), (2.3).

4. Γ-series and Admissible Bases

In this section we construct an explicit basis in the solution space of system
(1.2), (1.3). In case of nonconfluent systems this construction was given in [GZK].
In this section we basically follow [GZK].

Recall that A = {a1, a2, . . . , aN}, where aj ∈ Zn. Without loss of generality we
can assume that vectors aj generate the lattice Zn, i.e. HA = Zn.

Let γ = (γ1, γ2, . . . , γN ) ∈ CN . Consider the following formal series

(4.1) Φγ(x) =
∑
l∈L

xγ+l∏N
j=1 Γ(γj + lj + 1)

,

where x = (x1, x2, . . . , xN ), L is the lattice such as in Definition 1.1, and xγ+l =∏N
j=1 x

γj+lj
j .
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Lemma 4.1. The series Φγ(x) formally satisfies system (1.2), (1.3) with α =∑
j γjaj.

For a fixed vector of exponents α = (α1, . . . , αn) the vector γ = (γ1, . . . , γN )
ranges over the affine (N −n)-dimensional plane Π(α) = {(γ1, . . . , γN ) :

∑
j γjaj =

α}. In this section we construct several vectors γ such that all series Φγ(x) converge
in certain neighborhood and form a basis in the space of solutions of system (1.2),
(1.3) in this neighborhood.

A subset I ∈ [N ] is called a base if vectors aj , j ∈ I form a basis of the linear
space HA ⊗ R. So we get a matroid on the set [N ]. Let ∆I be the n-dimensional
simplex with vertices 0 and aj , j ∈ I.

Let I be a base. By Π(α, I) denote the set of γ ∈ Π(α) such that γj ∈ Z for
j /∈ I. It is clear that for every l ∈ L (see Definition 1.1) Φγ(x) = Φγ+l.

The following lemma was proven in [GZK].

Lemma 4.2. Let I be a base. Then |Π(α, I)/L| = n! Vol(∆I).

Definition 4.3. We call a base I ∈ [N ] admissible if the (n − 1)-dimensional
simplex with vertices aj , j ∈ I belongs to the boundary ∂PA of the polyhedron PA.
In this case the simplex ∆I is also called admissible.

Remark 4.4. If vectors aj satisfy condition (1.5) then all bases are admissible.
Let B = {b1, b2, . . . , bN−n} be a Z-basis in the lattice L. We say that a base I

is compatible with a basis B if whenever l = (l1, . . . , lN ) ∈ L such that lj ≥ 0 for
j /∈ I then l can be expressed as l =

∑
λkbk, where all λk ≥ 0. Clearly, the set

ΠB(α, I) = {γ ∈ Π(α, I) : γ =
∑
λkbk, where 0≤λk<1} is a set of representatives

in Π(α, I)/L.
Let yk = xbk , k = 1, 2 . . . , N − n.

Proposition 4.5. Let an admissible base I be compatible with a basis B. Then
for all γ ∈ ΠB(α, I) the series Φγ(x) is of the form Φγ(x) = xγ

∑
m c(m)ym, where

the sum is over m = (m1, . . . ,mN−n), mk ≥ 0. The series
∑
c(m)ym converges

for sufficiently small |yk|.

Proof. Let bk = (bk1, . . . , bkN ) ∈ L, k = 1, . . . , N−n. By definition, Φγ(x) =
xγ

∑
m c(m)ym, where c(m) =

∏
j Γ(γj +

∑
k mkbkj +1)−1, m = (m1, . . . ,mN−n) ∈

ZN−n. Let γ ∈ ΠB(α, I). Then γj+
∑

k mkbkj+1 ∈ Z, for j 6∈ I. Hence, if c(m) 6= 0
then γj +

∑
k mkbkj + 1 ≥ 0, j 6∈ I. Since I is compatible with B, we can deduce

that c(m) 6= 0 only if mk ≥ 0, k = 1, . . . , N−n (see details in [GZK]). Convergence
of the series

∑
c(m)ym follows from the next lemma.

Lemma 4.6. Let c(m) =
∏

j Γ(µj(m) + γj + 1)−1, m = (m1, . . . ,mr), mk ≥ 0,
where µj are linear functions of m such that

∑
µj(m) = s1m1 + · · ·+srmr, sk ≥ 0.

Then |c(m)| ≤ Rcm1
1 . . . cmr

r for some positive constants R, c1, . . . , cr.

It is not difficult to prove this Lemma using Stiltjes formula.
Thus, by Proposition 4.5 for every admissible base I we have n! Vol(∆I) series

Φγ(x), γ ∈ ΠB(α, I) with nonempty common convergence domain.

Remark 4.7. It can be shown that if γ ∈ Π(α, I), where I is not admissible, then
Φγ(x) diverges.

Recall that PA is the convex hull of 0 and aj , j = 1, 2, . . . , N .
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Definition 4.8. The set of bases Θ is called a local triangulation of PA if
(1) ∪I∈Θ∆I = PA;
(2) ∆I1 ∩∆I2 is the common face of ∆I1 and ∆I2 for all I1, I2 ∈ Θ.

We call such triangulation Θ local because all simplices ∆I , I ∈ Θ contain the
origin 0.

Remark 4.9. Note that if Θ is a local triangulation then all bases I ∈ Θ are admis-
sible

Definition 4.10. A local triangulation Θ is called coherent if there exist a piece-
wise linear function φ on PA such that φ is linear on simplices ∆I , I ∈ Θ and φ is
strictly convex on PA.

Lemma 4.11. There exists a coherent local triangulation of PA.

Lemma 4.12. Let Θ be a coherent local triangulation of PA. Then there exist a
basis B of HA such that B is compatible with every base I in Θ.

Theorem 4.13. Let Θ be a coherent local triangulation of PA; and B = {b1, b2, . . .
. . . , bN−n} a basis such as in Lemma 4.12. Let yk = xbk . Then for every γ ∈
ΠB(α, I), I ∈ Θ the series Φγ(x) is equal xγ times a series of variables yk, which
converges for sufficiently small |yk|. If exponents α1, α2, . . . , αn are generic then
all these series Φγ(x) are linearly independent.

Hence, for generic α = (α1, α2, . . . , αn) we constructed n! Vol(PA) independent
solutions of system (1.2), (1.3), which converge in common domain. Therefore, by
Theorem 1.4, these series form a basis in the space of solutions of system (1.2),
(1.3).

5. Admissible Trees

In this section we describe admissible bases in the case of the hypergeometric
system (2.2), (2.3).

It is well known that a subset I ⊂ {(i, j) : 0≤i<j≤n} is a base in the set of
positive roots A = A+

n if and only if I is the set of edges of a tree TI on [0, n].

Definition 5.1. A tree T on the set [0, n] is called admissible if there are no
0≤i<j<k≤n such that both (i, j) and (j, k) are edges of T .

Proposition 5.2. A subset I ⊂ {(i, j) : 0≤i<j≤n} is an admissible base in A =
A+

n if and only if TI is an admissible tree.

Lemma 5.3. n! Vol∆I = 1 for any base I.

Therefore, by Lemma 4.2 |Π(α, I)/L| = 1 and by Proposition 4.5 for every
admissible tree T we have a series ΦT (z) = Φγ(z), where γ ∈ Π(α, I), T = TI . The
series ΦT (z) converges in some domain and presents a solution of the system (2.2),
(2.3).

There exists a formula for the number of all admissible trees on the set [0, n].

Theorem 5.4. The number Fn of admissible trees on the set of vertices [0, n] is
equal to

Fn =
1

2n(n+1)

n+1∑
k=1

(
n+1
k

)
kn.
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The proof of this formula is given in [Po].
First few numbers Fn are given below.

n

Fn

0
1

1
1

2
2

3
7

4
36

5
246

6
2104

7
21652

6. Standard Triangulation of Pn

Recall that Pn is the convex hull of 0 and eij , 0≤i<j≤n.
In this section we construct a coherent triangulation of the polyhedron Pn. This

will give us an explicit basis in the solution space of system (2.2), (2.3).
Let T be a tree on the set [0, n]. We say that two edges (i, j) and (k, l) in T

form an intersection if i<k<j<l.

Definition 6.1. A tree T on the set [0, n] is called standard if T is admissible and
does not have intersections. The corresponding base I ⊂ {(i, j) : 0≤i<j≤n} is also
called standard .

Example 6.2. All standard trees for n = 0, 1, 2, 3 are shown on Figure 6.1.

Figure 6.1. Standard trees.

Theorem 6.3. The set Θn of standard bases forms a coherent local triangulation
of the polyhedron Pn.

Theorem 6.4. The number of standard trees on the set [0, n] is equal to the Catalan
number

Cn =
1

n+ 1

(
2n
n

)
.

As a consequence of these two theorems we get Theorem 2.3.(2).

Proof of Theorem 6.4. Construct by induction an explicit 1–1 correspondence ψn

between the set STn of standard trees on [0, n] and the set BTn of binary trees
with n unmarked vertices ψn : STn → BTn.
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If n = 1 then ψ1 maps a unique element of ST1 to a unique element of BT1.
Let n > 1. Every standard tree T ∈ STn has the edge (0, n). Delete this edge.

Then T splits into two standard trees T1 ∈ BTk and T2 ∈ BTl, k+ l+1 = n on the
sets [0, k] and [k+1, n]. Let as define ψn(T ) as the binary tree whose left and right
branches are equal to ψk(T1) and ψl(T2) correspondingly. See example on Figure
6.2.

It is well known that the number of binary trees is equal to the Catalan number
(e.g. see [SW]).

Figure 6.2. Bijection between standard and binary trees.

Now prove Theorem 6.3.

Proof of Theorem 6.3. Recall that ε0, ε1, . . . , εn is the standard basis in Zn+1; and
eij = εi − εj .

Let P̃n ⊂ Zn+1 ⊗ R denote the cone with vertex at 0 generated by all positive
roots eij , i < j. Let ∆̃I denote the simplicial cone generated by eij , (i, j) ∈ I,
where I is a base (the cone over the simplex ∆I).

First, prove that the collection of cones ∆̃I , where I range over all standard
bases, is a conic triangulation of P̃n. Then it follows that Θn is a local triangulation.

It is not difficult to show that the cone P̃n is the set of v = (v0, v1, . . . , vn) ∈ Rn+1

such that

v0 + v1 + · · ·+ vi ≥ 0, i = 1, 2, . . . , n− 1;(6.1)

v0 + v1 + · · ·+ vn = 0.(6.2)

We must show that every generic point v subject to (6.1), (6.2) can be uniquely
presented in the form

(6.3) v =
∑

(ij)∈I

ρijeij , ρij ≥ 0,

for some standard base I.
Prove it by induction on n.
Let v′ = (v′0, v

′
1, . . . , v

′
n−1) ∈ Rn be a vector such that v′i = vi, i = 0, 1, . . . , n−2,

and v′n−1 = vn−1 + vn. Then v′ ∈ P̃n−1. By induction we may assume that v′ is
expressed in the form

v′ =
∑

(ij)∈I′
ρ′ijeij , ρ′ij ≥ 0,

for a standard base I ′ ⊂ {(i, j) : 0≤i<j≤n−1}.
Let i1<i2< . . .<is be all vertices of T ′ = TI′ connected with the vertex n−1 in

T ′.
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Consider two cases.
1. vn−1 ≥ 0. Define I = I ′∪{(n−1, n)}∪{(ik, n) : k ∈ [s]}\{(ik, n−1) : k ∈ [s]}.

And ρij = ρ′ij for 0≤i<j≤n−2; ρikn = ρ′ikn−1 for k ∈ [s]; ρn−1n = vn−1. Then we
get expression (6.3) for v.

2. vn−1 < 0. Then −vn ≤
∑s

k=1 ρ
′
ikn−1. Let t be the minimal integer 0≤t≤s

such that
∑t

k=1 ρ
′
ikn−1 ≥ −vn. Then define I = I ′ ∪{(ik, n) : k ∈ [t]} \ {(ik, n−1) :

k ∈ [t−1]}. And ρij = ρij for 0≤i<j≤n−2; ρikn = ρ′ikn−1 for k ∈ [t−1]; ρitn =
−

∑t−1
k=1 ρ

′
ikn−1 − vn; ρikn−1 = ρ′ikn−1 for k ∈ [t+1, s]; ρitn−1 = −

∑s
k=t+1 ρ

′
ikn−1 −

vn−1. Then we get expression (6.3) for v.
Therefore, Θn is a local triangulation.
Prove that Θn is coherent triangulation (see Definition 4.10). We must present

a piecewise linear function φ on Pn such that φ is linear on all simplices in Θn and
φ is strictly convex on Pn.

It is sufficient to define φ on vertices of Pn. Let φ(0) = 0 and φ(εij) = (i− j)2.
It is not difficult to show that such φ satisfy the condition of Definition 4.10.

Now we can complete the proof of Theorem 2.3.

Proof of Theorem 2.3.
The first part of Theorem 2.3 is a special case of Theorem 1.4.
The second part follows from Theorems 6.3, 6.4 and Lemma 5.3.

In conclusion of this section we present a construction of another coherent tri-
angulation of Pn.

Let T be a tree on the set [0, n]. We say that two edges (i, j) and (k, l) in T are
enclosed if i<k<l<j.

Definition 6.5. A tree T on the set [0, n] is called anti-standard if T is admissible
and does not have enclosed edges. The corresponding base I ⊂ {(i, j) : 0≤i<j≤n}
is also called anti-standard .

Theorem 6.6. The set of anti-standard bases forms a coherent local triangulation
of the polyhedron Pn.

The proof of this theorem is analogous to the proof of Theorem 6.3.

Corollary 6.7. The number of anti-standard trees on the set [0, n] is equal to the
Catalan number Cn.

7. Coordinate Strata

Let Zn be the group of unipotent matrices zij , 0≤i≤j≤n, zii = 1 (see Section
2).

Consider a subset S ⊂ {(i, j) : 0≤i<j≤n}. By ZS denote the set of all z =
{zij} ∈ Zn such that zij 6= 0 if and only if (i, j) ∈ S. We call ZS coordinate strata
in the space Zn. Let ZS ' C|S| be the closure of the stratum ZS .

We can construct two sheaves of hypergeometric functions on the manifold ZS ,
where S ⊂ {(i, j) : 0≤i<j≤n}.

First, the sheaf ResS of restrictions of hypergeometric functions on Zn to the
manifold ZS .

Second, the sheaf SolS of solutions of the hypergeometric system (1.2), (1.3)
associated with A = AS = {eij : (i, j) ∈ S} (equivalently, associated with action
(2.1) of torus on ZS).
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The question is: when these two sheaves coincide?

Definition 7.3. Let P = {b0, b1, . . . , bn} be a partially ordered set (poset) such
that if bi <P bj then i < j. Consider the set SP = {(i, j) : bi <P bj}. We call this
set associated with poset P

Theorem 7.4. Let S = SP be the set associated with a poset. Then sheaf ResS

coincides with sheaf SolS for generic exponents α0, . . . , αn,
∑
αi = 0.

Remark 7.5. By Theorem 1.4 the dimension of SolS in a neighborhood of a generic
point is equal tom! VolH(S) P (S), whereH(S) is the lattice generated by eij , (i, j) ∈
S, m = dimHS , and P (S) is the convex hull of the origin and eij , (i, j) ∈ S.

Proposition 7.6. A set S ⊂ {(i, j) : 0≤i<j≤n} is associated with a poset P if
and only if there exists a cone C with vertex at 0 such that S = {(i < j) : eij ∈ C}.

Proof. A set S is associated with a poset if and only if S satisfies the following
transitivity: if (i, j), (j, k) ∈ S then (i, k) ∈ S. The set S = {(i < j) : eij ∈ C}
satisfies transitivity because if eij , ejk ∈ C then eik = eij + ejk ∈ C. Inversely,
let C be the cone generated by all eij , (i, j) ∈ S. If S satisfy transitivity then
S = {(i < j) : eij ∈ C}.

Now we can prove Theorem 7.4

Proof of Theorem 7.4. Clearly, ResS is a subsheaf of SolS . Suppose for simplicity
that eij , (i, j) ∈ S generate Zn. The dimension of the sheaf SolS at a generic point
is equal to n! Vol(P (S)) (see Remark 7.5). Hence, it is sufficient to prove that the
dimension of ResS at a generic point is greater than or equal to n! Vol(P (S)).

Let Θ be a coherent local triangulation of P (A). It follows from Proposition 7.6
that Θ extends to a coherent local triangulation Θ′ of Pn. Consider n! Vol(P (S))
Γ-series Φγ(z) on Zn, where γ ∈ Π(α, I), I ∈ Θ ⊂ Θ′. By Theorem 4.13 these series
linearly independent and have common convergence domain. Then restrictions of
these series to ZS give n! Vol(P (S)) independent sections of the sheaf ResS in some
neighborhood. Therefore, ResS = SolS .

8. Face Strata

Describe faces of the polyhedron Pn.
Let I, J ⊂ [0, n], I ∩ J = ∅. Let SIJ be the set of all (i, j), 0≤i<j≤n such that

i ∈ I and j ∈ J .

Proposition 8.1. Faces f of the polyhedron Pn such that 0 6∈ f are in 1–1 cor-
respondence with sets SIJ . And (i, j) ∈ SIJ whenever eij is a vertex of the corre-
sponding face f .

Clearly, we may assume that min(I∪J) ∈ I and max(I∪J) ∈ J (if SIJ is
nonempty).

Construct a coordinate stratum associated with a face f of Pn 0 6∈ f .
Let S = SIJ . By ZIJ denote the stratum ZS (see Section 3). We will call such

strata face strata.
Note that condition (1.5) holds for vectors eij , (i, j) ∈ SIJ , because all such eij

belong to a supporting hyperplane of the corresponding face f .
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Definition 8.2. The Hypergeometric System on ZIJ is the hypergeometric system
(1.2), (1.3) associated with the set of vectors A = {eij : (i, j) ∈ SIJ}. Solutions of
this system are called Hypergeometric Functions on ZIJ .

Remark 8.3. Let 0≤p<n, I = {0, 1, . . . , p}, and J = {p+1, p+2, . . . , n}. Then
ZIJ is the space of rectangular matrices z = {zij}, i ∈ [0, p], j ∈ [p+1, n]. The
hypergeometric system on ZIJ is also called the Hypergeometric System on the
Grassmannian Gn+1 p+1. This system was studied in the works [GGR1, GGR2,
GGR3].

It is clear that the set S = SIJ is associated with a poset (see Definition 7.3).
Therefore, by Theorem 8.4, the sheaf ResS coincides with the sheaf SolS of hyper-
geometric functions on ZIJ (for generic α).

We will find the dimension of this sheaf in a neighborhood of a generic point.
Denote this dimension by DIJ . In other words, DIJ is the number of independent
solutions of the hypergeometric system on ZIJ in a neighborhood of a generic point.

Let PIJ be the convex hull of 0 and eij , (i, j) ∈ SIJ . Let HIJ be the sublattice
generated by eij , (i, j) ∈ SIJ , and m = dimHIJ . By Theorem 1.4 the number DIJ

is equal to m! VolHIJ
(PIJ).

We present an explicit combinatorial interpretation of this number DIJ .

Definition 8.4.
(1) A word w of type (p, q) is the sequence w = (w1, w2, . . . , wp+q), wr ∈ {1, 0}

such that |{r : wr = 0}| = p and |{r : wr = 1}| = q.
(2) Let w = (w1, w2, . . . , wp+q) and w′ = (w′

1, w
′
2, . . . , w

′
p+q) be two words of

type (p, q). We say that w′ is exceeds w if w′
1 + · · ·+w′

r ≥ w1 + · · ·+wr for
all r = 1, 2, . . . , p+q.

w = (0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1)
w′ = (0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1)

Figure 8.1. The word w′ exceeds the word w.

We can present a word w of type (p, q) as the path π = (π0, π1, . . . , πp+q) in
Z2 such that πs = (is, js) for all s = 0, 1, . . . , p+q, where is (correspondingly,
js) is the number of 0’s (correspondingly, 1’s) in w1, w2, . . . , ws. See example for
(p, q) = (10, 7) on Fig. 8.1.

Clearly, a word w′ exceeds a word w if and only if the path π′ corresponding to
w′ is above the path π corresponding to w. (See Fig. 8.1.)



12 I. M. GELFAND, M. I. GRAEV, AND A. POSTNIKOV

Let a = min I and b = max J . Then DIJ 6= 0 if ond only if a < b.
Suppose that a < b, I = {a} ∪ I ′ and J = {b} ∪ J ′, where I ′, J ′ ⊂ [a+1, b−1],

I ′ ∩ J ′ = ∅. Let |I ′| = p, |J ′| = q and I ′ ∪ J ′ = {t1<t2< · · · < tp+q}. Associate
with the pair (I, J) the word wIJ = (w1, . . . , wp+q) of type (p, q) such that wr = 0
if tr ∈ I and wr = 1 if tr ∈ J for all r = 1, 2, . . . , p+q.

Theorem 8.5. The number DIJ is equal to the number of words w′ of type (p, q)
which exceed the word w = wIJ . In other words, DIJ is the number of paths π′

from (0, 0) to (p, q) such that π′ is above the path π = πIJ corresponding to wIJ .

Corollary 8.6. Let I = {0, 2, 4, . . . , 2k} and J = {1, 3, 5, . . . , 2k+1} then DIJ is
equal to the Catalan number Ck.

Proof. Words w′ = (w′
1, w

′
2, . . . , w

′
2k) of type (k, k) which exceed the word w =

(1, 0, 1, 0, . . . , 1, 0) are called Dyck words. It is well know (see e.g. [SW]) that the
Catalan number Ck is equal to the number of Dyck words.

9. Standard Triangulation of PIJ

Let I, J ⊂ [0, n], I ∩ J = ∅ be two subsets such that min(I∪J) ∈ I and
max(I∪J) ∈ J (see Section 8).

Recall that PIJ = Conv(0, eij : (i, j) ∈ SIJ).
In this section we present a coherent local triangulation of the polyhedron PIJ

and prove Theorem 8.5.

Definition 9.1. Let T be a tree on the set I ∪ J . We say that T is of type (I, J)
if for every edge (i, j) in T i ∈ I and j ∈ J . The base I ⊂ {(i, j) : 0≤i<j≤n}
corresponding to T is also called of type (I, J). (Do not confuse I with I.)

Clearly, all trees of type (I, J) are admissible (see Definition 5.1).

Theorem 9.2. The set ΘIJ of all standard (see Definition 6.1) bases of type (I, J)
forms a coherent local triangulation of the polyhedron PIJ .

The proof of this theorem is essentially the same as the proof of Theorem 6.3.
It is clear that DIJ = m! Vol(PIJ) is equal to the number of all standard bases

(trees) of type (I, J). Prove that this number coincides with the number given by
Theorem 8.5.

Theorem 9.3. Let |I| = p+1 and |J | = q+1. Then the number of all standard
trees T of type (I, J) is equal to the number of words w′ of type (p, q) which exceed
the word w = wIJ .

Proof. Let DIJ be the number of all standard trees of type (I, J) and D̃IJ be the
number of words w′ of type (p, q) which exceed the word w = wIJ (we use the same
notation as in Theorem 8.5).

We prove that DIJ = D̃IJ by induction on p + q. Obviously, this is true for
p = q = 0.

Let d be the minimal element of J and c be the maximal element of I such that
c ≤ d. Let Ĩ = I \ {c} and J̃ = J \ {d}.

Prove that if p+ q > 0 then

(9.1) DIJ = DĨJ +DIJ̃ .



HYPERGEOMETRIC FUNCTIONS ASSOCIATED WITH POSITIVE ROOTS 13

Every standard tree of type (I, J) has the edge (c, d). In every such tree either c
or d is an end-point. The first choice corresponds to the term DĨJ and the second
choice corresponds to the term DIJ̃ in (9.1).

The numbers D̃IJ also satisfy the relation (9.1). The first term corresponds to
the case when the word w′ starts with 0 and the second term to the case when w′

starts with 1.
Therefore, we get by induction DIJ = D̃IJ .

Theorem 8.5 is a corollary of Theorem 9.3.

10. Examples

In this and the next sections we present several examples which illustrate the
notions introduced in the paper and show the direction for following study.

10.1. Case n = 2.
In this case the solutions f of the system (2.2), (2.3) are functions of variables

z01, z02, z12.
Let β1 = 1

3 (α2−2α0) and β2 = 1
3 (2α2−α0). Because of homogeneous conditions

(1.4) we can write f(z01, z02, z12) = zβ1
01 z

β2
12 F (y), where y = z02

z01z12
. Now system

(2.2), (2.3) is equivalent to the following equation on F (y).

(10.1)
dF

dy
=

(
y
d

dy
− β1

) (
y
d

dy
− β2

)
F.

This is the degenerate hypergeometric equation and its solutions can be written
in terms of the degenerate hypergeometric function 1F1 (see [BE]).

This system has two dimensional space of solutions, which is compatible with
the fact that C2 = 2.

10.1. Upper triangular matrices.
Let I = {0, 2, . . . , 2n} and J = {1, 3, . . . , 2n+1}. It is natural to identify the

space ZIJ with the space of all upper triangular matrices with arbitrary elements
on the diagonal. Consider the hypergeometric system on ZIJ . The call this system
the hypergeometric system on upper triangular matrices.

This system has the same dimension Cn of solution space as system (2.2), (2.3)
(see Corollary 8.6). But it is nonconfluent unlikely system (2.2), (2.3).

If fact, system (2.2), (2.3) can be obtained as a limit of the hypergeometric
system on upper triangular matrices.

For example, if I = {0, 2, 4} and J = {1, 3, 5} then the corresponding hypergeo-
metric system on ZIJ can be reduced to the Gauss hypergeometric equation. And
equation (10.1) is a limit of the Gauss hypergeometric equation.

11. Concluding Remarks and Open Problems

11.1. Characteristic manifold.
We do not prove here Theorem 1.4. There exist a proof of this theorem general-

izing the proof from [GZK] for nonconfluent case.
This proof is based on consideration of characteristic manifold Ch for system

(1.2), (1.3). The characteristic manifold for system (1.2), (1.3) is the submanifold
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in the space CN × CN with coordinates (x, ξ), x = (x1, . . . , xN ), ξ = (ξ1, . . . , ξn)
given by the following algebraic equations.

N∑
j=1

aijxjξj = 0, i = 1, 2, . . . , n;

∏
j: lj>0

ξj
lj =

∏
j: lj<0

ξj
−lj if

∑
j

lj = 0;

∏
j: lj>0

ξj
lj = 0 if

∑
j: lj>0

lj >
∑

j: lj<0

lj ,

where l = (l1, l2, . . . , lN ) ranges over the lattice L of integer vectors such that
l1a1 + l2a2 + · · ·+ lNaN = 0.

Then system (1.2), (1.3) is holonomic if dimCh = N . The number of indepen-
dent solutions at a generic point is equal to degree of Ch along the zero section
{(0, ξ) : ξ ∈ CN} (see [Ka]).

11.2. Other root systems.
We can define (see Section 2) the hypergeometric system for arbitrary root sys-

tem R.
It is interesting to find analogues of all results in this paper for other root systems.
Let PR+ be the convex hull of 0 and all positive roots r ∈ R+. Then by

Theorem 1.4 the dimension of the system at a generic point is equal to D(R) =
n! Vol(PR+), where n is the dimension of R.

These numbers D(R) can be viewed as a generalization of the Catalan numbers
for arbitrary root system.

11.3. Discriminant and Triangulations of Pn.
We can associate with system (2.2), (2.3) the discriminant Dn(z). The discrimi-

nant Dn(z) is a polynomial of z = (zij), 0≤i<j≤n such that Dn(z) = 0 if and only
if there exists (z, ξ) ∈ Ch such that ξ 6= 0, where Ch is the characteristic manifold
for system (2.2), (2.3).

It is an interesting problem to find an explicit expression for Dn(x) and describe
all monomials in Dn(x).

The Newton polytope Sn for Dn(x) is called Secondary polytope. Vertices of Sn

correspond to coherent local triangulations of Pn (cf. [GKZ]).
In Section 6 we constructed two coherent local triangulations of Pn. The impor-

tant problem is to find all such triangulations.
Analogously, one can define discriminant DIJ(z) associated with face strata ZIJ

(see Section 8). Vertices of the Newton polyhedron for DIJ(z) correspond to co-
herent triangulations of PIJ . (Note that all triangulations of PIJ are local.) How
to describe triangulations of PIJ?

The special case of this problem for the pair (I, J) such as in Remark 8.3 (the
hypergeometric system on the grassmannian) is connected with triangulations of
the product of two simplices ∆p×∆q, p+q = n+1. In this case DIJ is the product
of all minors of (p+1)× (q+1)-matrix z (see [GKZ], cf. [SZ, BZ]).
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