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We investigate several hyperplane arrangements that can be viewed as deforma-
tions of Coxeter arrangements. In particular, we prove a conjecture of Linial and
Stanley that the number of regions of the arrangement xi&x j=1, 1�i< j�n, is
equal to the number of alternating trees on n+1 vertices. Remarkably, these
numbers have several additional combinatorial interpretations in terms of binary
trees, partially ordered sets, and tournaments. More generally, we give formulae for
the number of regions and the Poincare� polynomial of certain finite subarrangements
of the affine Coxeter arrangement of type An&1 . These formulae enable us to prove
a ``Riemann hypothesis'' on the location of zeros of the Poincare� polynomial. We
give asymptotics of the Poincare� polynomials when n goes to infinity. We also con-
sider some generic deformations of Coxeter arrangements of type An&1 . � 2000
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1. INTRODUCTION

The Coxeter arrangement of type An&1 is the arrangement of hyper-
planes in Rn given by

xi&xj=0, 1�i< j�n. (1.1)

This arrangement has n! regions. They correspond to n! different ways of
ordering the sequence x1 , ..., xn .
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In the paper we extend this simple, nevertheless important, result to the
case of a general class of arrangements which can be viewed as deforma-
tions of the arrangement (1.1).

One special case of such deformations is the arrangement given by

xi&xj=1, 1�i< j�n. (1.2)

We will call it the Linial arrangement. This arrangement was first con-
sidered by N. Linial and S. Ravid. They calculated its number of regions
and the Poincare� polynomial for n�9. On the basis of these numerical
data the second author of the present paper made a conjecture that the
number of regions of (1.2) is equal to the number of alternating trees on
n+1 vertices (see [29]). A tree T on the vertices 1, 2, ..., n+1 is alternating
if the vertices in any path in T alternate, i.e., form an up�down or down�up
sequence. Equivalently, every vertex is either less than all its neighbors or
greater than all its neighbors. These trees first appeared in [11], and in
[20] a formula for the number of such trees on n+1 vertices was proved.
In this paper we provide a proof of the conjecture on the number of regions
of the Linial arrangement. Another proof was given by Athanasiadis [3,
Thm. 4.1].

In fact, we prove a more general result for truncated affine arrangements,
which are certain finite subarrangements of the affine hyperplane arrange-
ment of type A� n&1 (see Section 9). As a byproduct we obtain an amazing
theorem on the location of zeros of Poincare� polynomials of these
arrangements. This theorem states that in one case all zeros are real,
whereas in the other case all zeros have the same real part.

The paper is organized as follows. In Section 2 we give the basic notions
of hyperplane arrangement, number of regions, Poincare� polynomial, and
intersection poset. In Section 3 we describe the arrangements we will be
concerned with in this paper��deformations of the arrangement (1.1). In
Section 4 we review several general theorems on hyperplane arrangements.
Then in Section 5 we apply these theorems to deformed Coxeter
arrangements. In Section 6 we consider a ``semigeneric'' deformation of
the braid arrangement (the Coxeter arrangement of type An&1) related to
the theory of interval orders. In Section 7 we study the hyperplane
arrangements which are related, in a special case, to interval orders (cf.
[29]) and the Catalan numbers. We prove a theorem that establishes a
relation between the numbers of regions of such arrangements. In Section 8
we formulate the main result on the Linial arrangement. We introduce
several combinatorial objects whose numbers are equal to the number of
regions of the Linial arrangement: alternating trees, local binary search
trees, sleek posets, semiacyclic tournaments. We also prove a theorem on
characterization of sleek posets in terms of forbidden subposets. In Section 9
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we study truncated affine arrangements. We prove a functional equation
for the generating function for the numbers of regions of such arrange-
ments, deduce a formula for these numbers, and from it obtain a theorem
on the location of zeros of the characteristic polynomial. In Sections 10 and
11 we study weighted trees and asymptotics of characteristic polynomials.

2. ARRANGEMENTS OF HYPERPLANES

First, we give several basic notions related to arrangements of hyper-
planes. For more details, see [34, 16, 17].

A hyperplane arrangement is a discrete collection of affine hyperplanes in
a vector space. We will be concerned here only with finite arrangements.
Let A be a finite hyperplane arrangement in a real finite-dimensional vec-
tor space V. It will be convenient to assume that the vectors dual to hyper-
planes in A span the vector space V*; the arrangement A is then called
essential. Denote by r(A) the number of regions of A, which are the con-
nected components of the space V&�H # A H. We will also consider the
number b(A) of ``relatively bounded'' regions of A, which will just be the
number of bounded regions when A is essential.

These numbers have a natural q-analogue. Let AC denote the com-
plexified arrangement A. In other words, AC is the collection of the hyper-
planes H�C, H # A, in the complex vector space V�C. Let CA be the
complement to the union of the hyperplanes of AC in V�C, and let
Hk ( } ; C) denote singular cohomology with coefficients in C. Then one can
define the Poincare� polynomial PoinA (q) of A as

PoinA (q)= :
k�0

dim Hk (CA ; C) qk,

the generating function for the Betti numbers of CA .
The following theorem, proved in the paper of Orlik and Solomon [16],

shows that the Poincare� polynomial generalizes the number of regions
r(A) and the number of bounded regions b(A).

Theorem 2.1. We have r(A)=PoinA (1) and b(A)=PoinA (&1).

Orlik and Solomon gave a combinatorial description of the cohomology
ring H*(CA ; C) (cf. Section 8.3) in terms of the intersection poset LA of
the arrangement A.

The intersection poset is defined as follows: The elements of LA are non-
empty intersections of hyperplanes in A ordered by reverse inclusion. The
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poset LA has a unique minimal element 0� =V. This poset is always a meet-
semilattice for which every interval is a geometric lattice. It will be a
(geometric) lattice if and only if LA contains a unique maximal element,
i.e., the intersection of all hyperplanes in A is nonempty. (When A is
essential, this intersection is [0].) In fact, LA is a geometric semilattice in
the sense of Wachs and Walker [31], and thus for instance is a shellable
and hence Cohen�Macaulay poset.

The characteristic polynomial of A is defined by

/A (q)= :
z # LA

+(0� , z) qdim z, (2.1)

where + denotes the Mo� bius function of LA (see [27, Sect. 3.7]).
Let d be the dimension of the vector space V. Note that it follows from

the properties of geometric lattices [27, Proposition 3.10.1] that the sign of
+(0� , z) is equal to (&1)d&dim z.

The following simple relation between the (topologically defined)
Poincare� polynomial and the (combinatorially defined) characteristic poly-
nomial was found in [16]:

/A (q)=qd PoinA (&q&1). (2.2)

Sometimes it will be more convenient for us to work with the characteristic
polynomial /A (q) rather than the Poincare� polynomial.

A combinatorial proof of Theorem 2.1 in terms of the characteristic poly-
nomial was earlier given by T. Zaslavsky in [34].

The number of regions, the number of (relatively) bounded regions, and,
more generally, the Poincare� (or characteristic) polynomial are the most
simple numerical invariants of a hyperplane arrangement. In this paper we
will calculate these invariants for several hyperplane arrangements related
to Coxeter arrangements

FIG. 1. The Coxeter hyperplane arrangement A2 .
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3. COXETER ARRANGEMENTS AND THEIR DEFORMATIONS

Let Vn&1 denote the subspace (hyperplane) in Rn of all vectors
(x1 , ..., xn) such that x1+ } } } +xn=0. All hyperplane arrangements that
we consider below lie in Vn&1 . The lower index n&1 will always denote
dimension of an arrangement.

The braid arrangement or Coxeter arrangement (of type An&1) is the
arrangement An&1 of hyperplanes in Vn&1 /Rn given by

xi&xj=0, 1�i< j�n (3.1)

(see Fig. 1 for an example.)
It is clear that An&1 has r(An&1)=n! regions (called Weyl chambers)

and b(An&1)=0 bounded regions. Arnold [1] calculated the cohomology
ring H*(CAn&1

; C). In particular, he proved that

PoinAn&1
(q)=(1+q)(1+2q) } } } (1+(n&1) q). (3.2)

In this paper we will study deformations of the arrangement (3.1), which
are hyperplane arrangements in Vn&1 /Rn of the type

xi&xj=a (1)
ij , ..., a (mij)

ij , 1�i< j�n, (3.3)

where mij are nonnegative integers and a (k)
ij # R.

One special case is the arrangement given by

xi&xj=aij , 1�i< j�n. (3.4)

The following hyperplane arrangements of type (3.3) are worth mention-
ing:

v The generic arrangement (see the end of Section 5) given by

xi&xj=aij , 1�i< j�n,

where the aij 's are generic real numbers.

v The semigeneric arrangement Gn (see Section 6) given by

xi&xj=ai , 1�i�n, 1� j�n, i{ j,

where the ai 's are generic real numbers.

v The Linial arrangement Ln&1 (see [29] and Section 8; also see
Fig. 2) given by

xi&xj=1, 1�i< j�n. (3.5)
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FIG. 2. Seven regions of the Linial arrangement L2 .

v The Shi arrangement Sn&1 (see [25, 26, 29] and Section 9.2) given
by

xi&xj=0, 1, 1�i< j�n. (3.6)

v The extended Shi arrangement Sn&1, k (see Section 9.2) given by

xi&xj=&k, &k+1, ..., k+1, 1�i< j�n, (3.7)

where k�0 is fixed.

v The Catalan arrangements (see Section 7) Cn&1(1) given by

xi&xj=&1, 1, 1�i< j�n, (3.8)

and C0
n&1(1) given by

xi&xj=&1, 0, 1, 1�i< j�n. (3.9)

v The truncated affine arrangement Aab
n&1 (see Section 9) given by

xi&xj=&a+1, &a+2, ..., b&1, 1�i< j�n, (3.10)

where a and b are fixed integers such that a+b�2.
One can define analogous arrangements for any root system. Let V be a

real d-dimensional vector space, and let R be a root system in V* with a
chosen set of positive roots R+=[;1 , ;2 , ..., ;N] (see, e.g., [6, Ch. VI]).
The Coxeter arrangement R of type R is the arrangement of hyperplanes in
V given by

;i (x)=0, 1�i�N. (3.11)
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Brieskorn [7] generalized Arnold's formula (3.2). His formula for the
Poincare� polynomial of (3.11) involves the exponents e1 , ..., ed of the
corresponding Weyl group W:

PoinR(q)=(1+e1q)(1+e2 q) } } } (1+edq).

Consider the hyperplane arrangement given by

;i (x)=a (1)
i , ..., a (mi)

i , 1�i�N, (3.12)

where x # V, mi are some nonnegative integers, and a (k)
i # R. Many of the

results of this paper have a natural counterpart in the case of an arbitrary
root system. We will briefly outline several related results and conjectures
in Section 9.4.

4. WHITNEY'S FORMULA AND THE NBC THEOREM

In this section we review several essentially well-known results on hyper-
plane arrangements that will be useful in what follows.

Consider the arrangement A of hyperplanes in V$Rd given by equa-
tions

hi (x)=ai , 1�i�N, (4.1)

where x # V, the hi # V* are linear functionals on V, and the ai are real
numbers.

We call a subset I of [1, 2, ..., N] central if the intersection of the hyper-
planes hi (x)=ai , i # I, is nonempty. For a subset I=[i1 , i2 , ..., il], denote
by rk(I ) the dimension (rank) of the linear span of the vectors hi1 , ..., hil .

The following statement is a generalization of a classical formula of
Whitney [32].

Theorem 4.1. The Poincare� and characteristic polynomials of the
arrangement A are equal to

PoinA(q)=:
I

(&1) |I |&rk(I ) qrk(I ), (4.2)

/A(q)=:
I

(&1) |I | qd&rk(I ), (4.3)
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where I ranges over all central subsets in [1, 2, ..., N]. In particular,

r(A)=:
I

(&1) |I |&rk(I ) (4.4)

b(A)=:
I

(&1) |I |. (4.5)

We also need the well-known cross-cut theorem (see [27, Corollary
3.9.4]).

Theorem 4.2. Let L be a finite lattice with minimal element 0� and maxi-
mal element 1� , and let X be a subset of vertices in L such that (a) 0� � X, and
(b) if y # L and y{0� , then x� y for some x # X. Then

+L(0� , 1� )=:
k

(&1)k nk , (4.6)

where nk is the number of k-element subsets in X with join equal to 1� .

Proof of Theorem 4.1. Let z be any element in the intersection poset
LA , and let L(z) be the subposet of all elements x # LA such that x�z, i.e.,
the subspace x contains z. In fact, L(z) is a geometric lattice. Let X be the
set of all hyperplanes from A which contain z. If we apply Theorem 4.2 to
L=L(z) and sum (4.6) over all z # LA , we get the formula (4.3). Then by
(2.2) we get (4.2). K

A cycle is a minimal subset I such that rk(I )=|I |&1. In other words,
a subset I=[i1 , i2 , ..., il] is a cycle if there exists a nonzero vector
(*1 , *2 , ..., *l), unique up to a nonzero factor, such that *1hi1+*2hi2
+ } } } +*l hil=0. It is not difficult to see that a cycle I is central if, in addi-
tion, we have *1 ai1+*2ai2+ } } } +*lail=0. Thus, if a1= } } } =aN=0 then
all cycles are central, and if the ai are generic then there are no central
cycles.

A subset I is called acyclic if |I |=rk(I ), i.e., I contains no cycles. It is
clear that any acyclic subset is central.

Corollary 4.3. In the case when the ai are generic, the Poincare�
polynomial is given by

PoinA(q)=:
I

qrk(I),

where the sum is over all acyclic subsets I of [1, 2, ..., N]. In particular, the
number of regions r(A) is equal to the number of acyclic subsets.

Indeed, in this case a subset I is acyclic if and only if it is central.
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Remark 4.4. The word ``generic'' in the corollary means that no k dis-
tinct hyperplanes in (4.1) intersect in an affine subspace of codimension less
than k. For example, if A is defined over Q then it is sufficient to require
that the ai be linearly independent over Q.

Let us fix a linear order \ on the set [1, 2, ..., N]. We say that a subset
I of [1, 2, ..., N] is a broken central circuit if there exists i � I such that
I _ [i] is a central cycle and i is the minimal element of I _ [i] with respect
to the order \.

The following, essentially well-known, theorem gives us the main tool for
the calculation of Poincare� (or characteristic) polynomials. We will refer to
it as the No Broken Circuit (NBC) Theorem.

Theorem 4.5. We have

PoinA(q)=:
I

q |I |,

where the sum is over all acyclic subsets I of [1, 2, ..., N] without broken
central circuits.

Proof. We will deduce this theorem from Theorem 4.1 using the involu-
tion principle. In order to do this we construct an involution @: I � @(I ) on
the set of all central subsets I with a broken central circuit such that for
any I we have rk(@(I ))=rk(I) and |@(I )|=|I |\1.

This involution is defined as follows: Let I be a central subset with
a broken central circuit, and let s(I) be the set of all i # 1, ..., N such that
i is the minimal element of a broken central circuit J/I. Note that s(I ) is
nonempty. If the minimal element s

*
of s(I) lies in I, then we define

@(I )=I"[s
*

]. Otherwise, we define @(I)=I _ [s
*

].
Note that s(I )=s(@(I)), thus @ is indeed an involution. It is clear now

that all terms in (4.2) for I with a broken central circuit cancel each other
and the remaining terms yield the formula in Theorem 4.5. K

Remark 4.6. Note that by Theorem 4.5 the number of subsets I without
broken central circuits does not depend on the choice of the linear order \.

5. DEFORMATIONS OF GRAPHIC ARRANGEMENTS

In this section we show how to apply the results of the previous section
to arrangements of type (3.3) and to give an interpretation of these results
in terms of (colored) graphs.
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With the hyperplane xi&xj=a (k)
ij of (3.3) one can associate the edge

(i, j) that has the color k. We will denote this edge by (i, j) (k). Then a sub-
set I of hyperplanes corresponds to a colored graph G on the set of vertices
[1, 2, ..., n]. According to the definitions in Section 4., a circuit
(i1 , i2)(k1), (i2 , i3) (k2), ..., (i l , i1)(kl ) in G is central if a (k1)

i1 , i2+a (k2)
i2 , i3+ } } } +

a(kl )
il , i1

=0. Clearly, a graph G is acyclic if and only if G is a forest.
Fix a linear order on the edges (i, j) (k), 1�i< j�n, 1�k�mij . We will

call a subset of edges C a broken A-circuit if C is obtained from a central
circuit by deleting the minimal element. (Here A stands for the collection
[a (k)

ij ]). Note that it should not be confused with the classical notion of a
broken circuit of a graph, which corresponds to the case when all a (k)

ij are
zero.

We summarize below several special cases of the NBC Theorem
(Theorem 4.5). Here |F | denotes the number of edges in a forest F.

Corollary 5.1. The Poincare� polynomial of the arrangement (3.3) is
equal to

PoinA (q)=:
F

q |F |,

where the sum is over all colored forests F on the vertices 1, 2, ..., n (an edge
(i, j) can have a color k, where 1�k�mij) without broken A-circuits. The
number of regions of arrangement (3.3) is equal to the number of such
forests.

In the case of the arrangement (3.4) we have:

Corollary 5.2. The Poincare� polynomial of the arrangement (3.4) is
equal to

PoinA (q)=:
F

q |F |,

where the sum is over all forests on the set of vertices [1, 2, ..., n] without
broken A-circuits. The number of regions of the arrangement (3.4) is equal
to the number of such forests.

In the case when the a (k)
ij are generic these results become especially

simple.
For a forest F on vertices 1, 2, ..., n we will write mF :=>(i, j) # F m ij ,

where the product is over all edges (i, j), i< j, in F. Let c(F ) denote the
number of connected components in F.
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Corollary 5.3. Fix nonnegative integers mij , 1�i< j�n. Let A be an
arrangement of type (3.3) where the a (k)

ij are generic. Then

1. PoinA (q)=�F mFq |F |,

2. r(A)=�F mF,

where the sums are over all forests F on the vertices 1, 2, ..., n.

Corollary 5.4. The number of regions of the arrangement (3.4) with
generic aij is equal to the number of forests on n labelled vertices.

This corollary is ``dual'' to the following known result (see, e.g., [27,
Exercise 4.32(a)]). Let Pn be the permutohedron, i.e., the polyhedron with
vertices (_1 , ..., _n) # Rn, where _1 , ..., _n ranges over all permutations of
1, ..., n.

Proposition 5.5. The number of integer lattice points in Pn is equal to
the number of forests on n labelled vertices.

The connected components of the ( n
2)-dimensional space of all

arrangements (3.4) correspond to (coherent) zonotopal tilings of the per-
mutohedron Pn , i.e., certain subdivisions of Pn into parallelepipeds. The
regions of a generic arrangement (3.4) correspond to the vertices of the
corresponding tiling, which are all integer lattice points in Pn .

It is also well known that the volume of the permutohedron Pn is equal
to the number of parallelepipeds in a tiling which, in turn, is equal to
nn&2��the number of trees on n labelled vertices. Dually, this implies the
following result.

Proposition 5.6. The number of vertices (i.e., zero-dimensional inter-
sections of hyperplanes) of the arrangement (3.4) with generic aij is equal
to nn&2.

6. A SEMIGENERIC DEFORMATION OF
THE BRAID ARRANGEMENT

Define the ``semigeneric'' deformation Gn of the braid arrangement (3.1)
to be the arrangement

xi&xj=ai , 1�i�n, 1� j�n, i{ j,

where the ai 's are generic real numbers (e.g., linearly independent over Q).
The significance of this arrangement to the theory of interval orders is
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discussed in [29, Sect. 3]. In [29, Thm. 3.1 and Cor. 3.3] a generating func-
tion for the number r(Gn) of regions and for the characteristic polynomial
/Gn

(q) of Gn is stated without proof. In this section we provide the proofs.

Theorem 6.1. Let

z= :
n�0

r(Gn)
xn

n!

=1+x+3
x2

2!
+19

x3

3!
+195

x4

4!
+2831

x5

5!
+53703

x6

6!
+ } } } .

Define a power series

y=1+x+5
x2

2!
+46

x3

3!
+631

x4

4!
+11586

x5

5!
+267369

x6

6!
+ } } }

by the equation

1= y(2&exy).

Then z is the unique power series satisfying

z$
z

= y2, z(0)=1.

Proof. We use the formula (4.4) to compute R(Gn). Given a central set
I of hyperplanes xi&xj=ai in Gn , define a directed graph GI on the vertex
set 1, 2, ..., n as follows: let i � j be a directed edge of GI if and only if the
hyperplane xi&xj=ai belongs to I. (By slight abuse of notation, we are
using I to denote a set of hyperplanes, rather than the set of their indices.)
Note that GI cannot contain both the edges i � j and j � i, since the inter-
section of the corresponding hyperplanes is empty. If k1 , k2 , ..., kr are dis-
tinct elements of [1, 2, ..., n], then it is easy to see that if r is even then
there are exactly two ways to direct the edges k1k2 , k2k3 , ..., kr&1 kr , krk1

so that the hyperplanes corresponding to these edges have nonempty inter-
section, while if r is odd then there are no ways. It follows that GI , ignoring
the direction of edges, is bipartite (i.e., all circuits have even length).
Moreover, given an undirected bipartite graph on the vertices 1, 2, ..., n
with blocks (maximal connected subgraphs that remain connected when
any vertex is removed) B1 , ..., Bs , there are exactly two ways to direct the
edges of each block so that the resulting directed graph G is the graph GI

of a central set I of hyperplanes. In addition, rk(I )=n&c(G), where c(G)
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is the number of connected components of G. Letting e(G) be the number
of edges and b(G) the number of blocks of G, it follows from Eq. (4.3) that

/Gn
(q)=:

G

(&1)e(G) 2b(G)qc(G),

where G ranges over all bipartite graphs on the vertex set 1, 2, ..., n. This
formula appears without proof in [29, Thm. 3.2]. In particular, putting
q=&1 gives

r(Gn)=(&1)n :
G

(&1)e(G)+c(G) 2b(G). (6.1)

To evaluate the generating function z=� r(Gn)(xn�n!), we use the
following strategy.

(a) Compute An :=�G (&1)e(G), where G ranges over all (undi-
rected) bipartite graphs on 1, 2, ..., n.

(b) Use (a) and the exponential formula to compute Bn :=
�G (&1)e(G), where now G ranges over all connected bipartite graphs on
1, 2, ..., n.

(c) Use (b) and the block-tree theorem to compute the sum
Cn :=�G (&1)e(G), where G ranges over all bipartite blocks on 1, 2, ..., n.

(d) Use (c) and the block-tree theorem to compute the sum
Dn :=�G (&1)e(G) 2b(G), where G ranges over all connected bipartite graphs
on 1, 2, ..., n.

(e) Use (d) and the exponential formula to compute the desired sum
(6.1).

We now proceed to steps (a)�(e).

(a) Let bk (n) be the number of k-edge bipartite graphs on the vertex
set 1, 2, ..., n. It is known (e.g., [28, Exercise 5.5]) that

:
n�0

:
k�0

bk (n) qk xn

n!
=_ :

n�0
\ :

n

i=0

(1+q) i(n&i) \n
i ++

xn

n!&
1�2

.

Put q=&1 to get

:
n�0

An
xn

n!
=\1+ :

n�1

2
xn

n!+
1�2

=(2ex&1)1�2.
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(b) According to the exponential formula [12, p. 166], we have

:
n�1

Bn
xn

n!
=log :

n�0

An
xn

n!

=
1
2

log(2ex&1).

(c) Let B$n denote the number of rooted connected bipartite graphs
on 1, 2, ..., n. Since B$n=nBn , we get

:
n�1

B$n
xn

n!
=x

d
dx

:
n�1

Bn
xn

n!

=
x

2&e&x . (6.2)

Suppose now that B is a set of nonisomorphic blocks B and w is a weight
function on B, so w(B) denotes the weight of the block B. Let

T(x)= :
B # B

w(B)
x p(B)

p(B)!
,

where p(B) denotes the number of vertices of B. Let

u(x)=:
G \`

B

w(B)+ x p(G)

p(G)!
,

where G ranges over all rooted connected graphs whose blocks are
isomorphic (as unrooted graphs) to elements of B, and where B ranges
over all blocks of G. The block-tree theorem [13, (1.3.3); 28, Exercise
5.20(a)] asserts that

u=xeT $(u). (6.3)

If we take B to be the set of all nonisomorphic bipartite blocks,
w(B)=(&1)e(B), and u=x�(2&e&x), then it follows from (6.4) that

T(x)= :
n�1

Cn
xn

n!
. (6.4)

(d) Let D$n be defined like Dn , except that G ranges over all rooted
connected bipartite graphs on 1, 2, ..., n, so D$n=nDn . Let v(x)=
�n�1 D$n (xn�n!). By the block-tree theorem we have

v=xe2T $(v),
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where T(x) is given by (6.4). Write f ( &1) (x) for the compositional inverse
of a power series f (x)=x+a2 x2+ } } } , i.e., f ( f (&1) (x))= f ( &1) ( f (x))
=x. Substitute v(&1) for x and use (6.3) to get

x=v(&1) (x) e2T $(x)

=v(&1) (x) \ x
u(&1) (x)+

2

.

Substitute v(x) for x to obtain

x v(x)=u(&1) (v(x))2.

Take the square roots of both sides and compose with u(x)=x�(2&e&x)
on the left to get

- xv

2&e&- xv
=v. (6.5)

(e) Equation (6.1) and the exponential formula show that

z=exp \& :
n�1

(&1)n Dn
xn

n!+
=exp \&|

v(&x)
x + , (6.6)

where � denotes the formal integral, i.e.,

| : an
xn

n!
=: an

xn+1

(n+1)!
.

(The first minus sign in (6.6) corresponds to the factor (&1)c(G) in (6.1).)
Let v(&x)=&xy2. Equation (6.5) becomes (one must take care to

choose the right sign of the square root)

1= y(2&exy),

while (6.6) shows that z$�z=&v(&x)�x= y2. This completes the proof. K

Note. The semigeneric arrangement Gn satisfies the hypotheses of [29,
Thm. 1.2]. It follows that

:
n�0

/Gn
(q)

xn

n!
=z(&x)&q,

as stated in [29, Cor. 3.3]. Here z is as defined in Theorem 6.1.
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An arrangement closely related to Gn is given by

G$n : x i&x j=ai , 1�i< j�n,

where the ai 's are generic. The analogue of Eq. (6.1) is

r(G$n)=(&1)n :
G

(&1)e(G)+c(G) 2b(G),

where now G ranges over all bipartite graphs on the vertex set 1, 2, ..., n for
which every block is alternating, i.e., every vertex is either less than all its
neighbors or greater than all its neighbors. The first author of this paper
has obtained a result analogous to Theorem 6.1.

7. CATALAN ARRANGEMENTS AND SEMIORDERS

Let us fix distinct real numbers a1 , a2 , ..., am>0, and let A=(a1 , ..., am).
In this section we consider the arrangement Cn&1=Cn&1 (A) of hyperplanes
in the space Vn&1=[(x1 , ..., xn) # Rn | x1+ } } } +xn=0] given by

xi&xj=a1 , a2 , ..., am , i{ j. (7.1)

We consider also the arrangement C0
n&1=C0

n&1(A) obtained from Cn&1 by
adjoining the hyperplanes xi=xj , i.e., C0

n is given by

xi&xj=0, a1 , a2 , ..., am , i{ j. (7.2)

Let

fA (t)= :
n�0

r(Cn&1)
tn

n!
,

gA (t)= :
n�0

r(C0
n&1)

tn

n!

be the exponential generating functions for the numbers of regions of the
arrangements Cn&1 and C0

n&1 .
The main result of this section is the following theorem, stated without

proof in [29, Thm. 2.3].

Theorem 7.1. We have fA (t)= gA (1&e&t) or, equivalently,

r(C0
n&1)= :

k�0

c(n, k) r(Ck&1),
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where c(n, k) is the signless Stirling number of the first kind, i.e., the number
of permutations of 1, 2, ..., n with k cycles.

Let us have a closer look at two special cases of arrangements (7.1) and
(7.2). Consider the arrangement of hyperplanes in Vn&1 /Rn given by the
equations

xi&xj=\1, 1�i< j�n. (7.3)

Consider also the arrangement given by

xi&xj=0, \1, 1�i< j�n. (7.4)

It is not difficult to check the following result directly from the definition.

Proposition 7.2. The number of regions of the arrangement (7.4) is
equal to n! Cn , where Cn is the Catalan number Cn= 1

n+1 ( 2n
n ).

Theorem 7.1 then gives a formula for the number of regions of the
arrangement (7.3).

Let R be a region of the arrangement (7.3), and let (x1 , ..., xn) # R be any
point in the region R. Consider the poset P on the vertices 1, ..., n such that
i>P j if and only if xi&x j>1. Clearly, distinct regions correspond to dis-
tinct posets. The posets that can be obtained in such a way are called semi-
orders. See [29] for more results on the relation between hyperplane
arrangements and interval orders (which are a generalization of semi-
orders).

The symmetric group Sn naturally acts on the space Vn&1 by permuting
the coordinates xi . Thus it also permutes the regions of the arrangement
(7.4). The region x1<x2< } } } <xn is called the dominant chamber. Every
Sn -orbit of regions of the arrangement (7.4) consists of n! regions and has
a unique representative in the dominant chamber. It is also clear that the
regions of (7.4) in the dominant chamber correspond to unlabelled (i.e.,
nonisomorphic) semiorders on n vertices. Hence, Proposition 7.2 is equiv-
alent to a well-known result of Wine and Freund [33] that the number of
nonisomorphic semiorders on n vertices is equal to the Catalan number. In
the special case of the arrangements (7.3) and (7.4), i.e., A=(1), Theorem
7.1 gives a formula for the number of labelled semiorders on n vertices
which was first proved by Chandon, Lemaire, and Pouget [8].

The following theorem, due to Scott and Suppes [24], presents a simple
characterization of semiorders (cf. Theorem 8.4).

Theorem 7.3. A poset P is a semiorder if and only if it contains no
induced subposet of either of the two types shown in Fig. 3
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FIG. 3. Forbidden subposets for semiorders.

Return now to the general case of the arrangements Cn&1 and C0
n&1

given by (7.1) and (7.2). The symmetric group Sn acts on the regions of
Cn&1 and C0

n&1 by permuting the coordinates of xi . Let Rn&1 denote the
set of all regions of Cn&1.

Lemma 7.4. The number of regions of C0
n&1 is equal to n! times the

number of Sn -orbits in Rn&1.

Indeed, the number of regions of C0
n&1 is n! times the number of those

in the dominant chamber. They, in turn, correspond to Sn-orbits in Rn&1 .
As was shown in [29], the regions of Cn&1 can be viewed as (labelled)
generalized interval orders. On the other hand, the regions of C0

n&1 that lie
in the dominant chamber correspond to unlabelled generalized interval
orders. The statement now is tautological, that the number of unlabelled
objects is the number of Sn-orbits.

Now we can apply the following well-known lemma of Burnside
(actually first proved by Cauchy and Frobenius, as discussed, e.g., in [28,
p. 404]).

Lemma 7.5. Let G be a finite group which acts on a finite set M. Then
the number of G-orbits in M is equal to

1
|G|

:
g # G

Fix(g, M),

where Fix(g, M) is the number of elements in M fixed by g # G.

By Lemmas 7.4 and 7.5 we have

r(C0
n&1)= :

_ # Sn

Fix(_, Cn&1),

where Fix(_, Cn&1) is the number of regions of Cn&1 fixed by the permuta-
tion _.
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Theorem 7.1 now follows easily from the following lemma.

Lemma 7.6. Let _ # Sn be a permutation with k cycles. Then the number
of regions of Cn&1 fixed by _ is equal to the total number of regions of Ck&1 .

Indeed, by Lemma 7.6, we have

r(C0
n&1)= :

_ # Sn

Fix(_, Cn&1)= :
k�0

c(n, k) r(Ck&1),

which is precisely the claim of Theorem 7.1.

Proof of Lemma 7.6. We will construct a bijection between the regions
of Cn&1 fixed by _ and the regions of Ck&1 .

Let R be any region of Cn&1 fixed by a permutation _ # Sn , and let
(x1 , ..., xn) be any point in R. Then for any i, j # [1, ..., n] and any
s=1, ..., m we have xi&xj>as if and only if x_(i)&x_( j)>as .

Let _=(c11 c12 } } } c1l1
) (c21 c22 } } } c2l2

) } } } (ck1 ck2 } } } cklk
) be the cycle

decomposition of the permutation _. Write Xi=(xci1
, xci 2

, ...) for i=1, ..., k.
We will write Xi&Xj>a if xi $&xj $>a for any x i $ # Xi and xj $ # Xj . The
notation Xi&Xj<a has an analogous meaning. We will show that for any
two classes Xi and Xj and for any s=1, ..., m we have either Xi&Xj>as or
Xi&Xj<as .

Let xi* be the maximal element in Xi and let x j* be the maximal element
in Xj . Suppose that xi*&x j*>as . Since R is _-invariant, for any integer p
we have the inequality x_ p(i*)&x_ p( j*)>as . Then, since xi* is the maximal
element of Xi , we have xi*&x_ p( j*)>as . Again, for any integer q, we have
x_ q(i*)&x_ p+q( j*)>as , which implies that Xi&Xj>as .

Analogously, suppose that xi*&x j*<as . Then for any integer p we have
x_ p(i*)&x_ p( j*)<as . Since x j*�x_p( j*) , we have x_p(i*)&x j*<as . Finally,
for any integer q we obtain x_ p+q(i*)&x_ q( j*)<as , which implies that
Xi&Xj<as .

If we pick an element xi $ in each class Xi we get a point (x1$ , x2$ , ..., xk$)
in Rk. This point lies in some region R$ of Ck&1 . The construction above
shows that the region R$ does not depend on the choice of xi $ in Xi .

Thus we get a map ,: R � R$ from the regions of Cn&1 invariant under
_ to the regions of Ck&1 . It is clear that , is injective. To show that , is
surjective, let (x1$ , ..., xk$) be any point in a region R$ of Ck . Pick the point
(x1 , x2 , ..., xn) # Rn such that xc11

=xc12
= } } } =x1$ , xc21

=xc22
= } } } =x2$ , ...,

xck1
=xck2

= } } } =xk$ . Then (x1 , ..., xn) is in some region R of Cn&1 (here
we use the condition a1 , ..., am {0). According to our construction, we
have ,(R)=R$. Thus , is a bijection.

This completes the proof of Lemma 7.6 and therefore also of Theorem
7.1. K
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8. THE LINIAL ARRANGEMENT

As before, Vn&1=[(x1 , ..., xn) # Rn | x1+ } } } +xn=0]. Consider the
arrangement Ln&1 of hyperplanes in Vn&1 given by the equations

xi&xj=1, 1�i< j�n. (8.1)

Recall that r(Ln&1) denotes the number of regions of the arrangement
Ln&1. This arrangement was first considered by Nati Linial and Shmulik
Ravid. They calculated the numbers r(Ln&1) and the Poincare� polynomials
PoinLn&1

(q) for n�9.
In this section we give an explicit formula and several different com-

binatorial interpretations for the numbers r(Ln&1).

8.1. Alternating Trees and Local Binary Search Trees

We call a tree T on the vertices 0, 1, 2, ..., n alternating (see Fig. 4) if the
vertices in any path i1 , ..., ik in T alternate, i.e., we have i1<i2>i3< } } } ik

or i1>i2<i3> } } } ik . In other words, there are no i< j<k such that both
(i, j) and ( j, k) are edges in T. Equivalently, every vertex is either greater
than all its neighbors or less than all its neighbors. Alternating trees first
appear in [11] and were studied in [20], where they were called intran-
sitive trees (see also [29]).

Let fn be the number of alternating trees on the vertices 0, 1, 2, ..., n, and
let

f (x)= :
n�0

fn
xn

n!

be the exponential generating function for the sequence fn .
A plane binary tree B on the vertices 1, 2, ..., n is called a local binary

search tree (see Fig. 5) if for any vertex i in T the left child of i is less than
i and the right child of i is greater than i. These trees were first considered
by Ira Gessel (private communication). Let gn denote the number of local
binary search trees on the vertices 1, 2, ..., n. By convention, g0=1.

FIG. 4. An alternating tree.
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FIG. 5. A local binary search tree.

The following result was proved in [20] (see also [11, 29]).

Theorem 8.1. For n�1 we have

fn= gn=2&n :
n

k=0
\n

k+ (k+1)n&1

and f =f (x) satisfies the functional equation

f =ex(1+ f )�2.

The first few numbers fn are given in the table below.

n 0 1 2 3 4 5 6 7 8 9 10
fn 1 1 2 7 36 246 2,104 21,652 260,720 3,598,120 56,010,096

The main result on the Linial arrangement is the following:

Theorem 8.2. The number r(Ln&1) of regions of Ln&1 is equal to the
number fn of alternating trees on the vertices 0, 1, 2..., n, and thus to the
number gn of local binary search trees on 1, 2, ..., n.

This theorem was conjectured by the second author (thanks to the
numerical data provided by Linial and Ravid) and was proved by the first
author. A different proof was later given by C. Athanasiadis [3].

In Section 9 we will prove a more general result (see Theorems 9.1 and
Corollary 9.9).

8.2. Sleek Posets and Semiacyclic Tournaments

Let R be a region of the arrangement Ln&1 , and let (x1 , ..., xn) be any
point in R. Define P=P(R) to be the poset on the vertices 1, 2, ..., n such
that i<P j if and only if xi&xj>1 and i< j in the usual order on Z.
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We will call a poset P on the vertices 1, 2, ..., n sleek if P is the intersec-
tion of a semiorder (see Section 7.) with the chain 1<2< } } } <n.

The following proposition immediately follows from the definitions.

Proposition 8.3. The map R [ P(R) is a bijection between regions of
Ln&1 and sleek posets on 1, 2, ..., n. Hence the number r(Ln&1) is equal to
the number of sleek posets on 1, 2, ..., n.

There is a simple characterization of sleek posets in terms of forbidden
induced subposets (compare Theorem 7.3).

Theorem 8.4. A poset P on the vertices 1, 2, ..., n is sleek if and only if
it contains no induced subposet of the four types shown in Fig. 6, where
a<b<c<d.

In the remaining part of this subsection we prove Theorem 8.4.
First, we give another description of regions in Ln&1 (or, equivalently,

sleek posets). A tournament on the vertices 1, 2, ..., n is a directed graph T
without loops such that for every i{ j either (i, j) # T or ( j, i) # T. For a
region R of Ln&1 construct a tournament T=T(R) on the vertices
1, 2, ..., n as follows: let (x1 , ..., xn) # R. If xi&xj>1 and i< j, then
(i, j) # T; while if xi&xj<1 and i< j, then ( j, i) # T.

Let C be a directed cycle in the complete graph Kn on the vertices
1, 2, ..., n. We will write C=(c1 , c2 , ..., cm) if C has the edges (c1 , c2),
(c2 , c3), ..., (cm , c1). By convention, c0=cm . An ascent in C is a number
1�i�m such that ci&1<ci . Analogously, a descent in C is a number
1�i�m such that ci&1>ci . Let asc(C) denote the number of ascents and
des(C) denote the number of descents in C. We say that a cycle C is
ascending if asc(C)�des(C). For example, the following cycles are ascending:
C0=(a, b, c), C1=(a, c, b, d), C2=(a, d, b, c), C3=(a, b, d, c), C4=(a, c, d, b),
where a<b<c<d. These cycles are shown in Fig. 7.

We call a tournament T on 1, 2, ..., n semiacyclic if it contains no ascend-
ing cycles. In other words, T is semiacyclic if for any directed cycle C in T
we have asc(C)<des(C).

FIG. 6. Obstructions to sleekness.
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FIG. 7. Ascending cycles.

Proposition 8.5. A tournament T on 1, 2, ..., n corresponds to a region R
in Ln&1 , i.e., T=T(R), if and only if T is semiacyclic. Hence r(Ln&1) is the
number of semiacyclic tournaments on 1, 2, ..., n.

This fact was independently found by Shmulik Ravid.
For any tournament T on 1, 2, ..., n without cycles of type C0 we can

construct a poset P=P(T ) such that i<P j if and only if i< j and (i, j) # T.
Now the four ascending cycles C1 , C2 , C3 , C4 in Fig. 7 correspond to the
four posets in Fig. 6. Therefore, Theorem 8.4 is equivalent to the following
result.

Theorem 8.6. A tournament T on the vertices 1, 2, ..., n is semiacyclic if
and only if it contains no ascending cycles of the types C0 , C1 , C2 , C3 , and
C4 shown in Fig. 7, where a<b<c<d.

Remark 8.7. This theorem is an analogue of a well-known fact that a
tournament T is acyclic if and only if it contains no cycles of length 3. For
semiacyclicity we have obstructions of lengths 3 and 4.

Proof. Let T be a tournament on 1, 2, ..., n. Suppose that T is not semi-
acyclic. We will show that T contains a cycle of type C0 , C1 , C2 , C3 , or
C4 . Let C=(c1 , c2 , ..., cm) be an ascending cycle in T of minimal length. If
m=3 or 4, then C is of type C0 , C1 , C2 , C3 , or C4 . Suppose that m>4.

Lemma 8.8. We have asc(C)=des(C).

Proof. Since C is ascending, we have asc(C)�des(C). Suppose asc(C)
>des(c). If C has two adjacent ascents i and i+1 then (ci&1 , ci+1) # T
(otherwise we have an ascending cycle (ci&1, ci , ci+1) of type C0 in T ).
Then C$=(c1 , c2 , ..., ci&1 , ci+1 , ..., cm) is an ascending cycle in T of length
m&1, which contradicts the fact that we chose C to be minimal. So for
every ascent i in C the index i+1 is a descent. Hence asc(C)�des(C), and
we get a contradiction. K

We say that ci and cj are on the same level in C if the number of ascents
between ci and cj is equal to the number of descents between ci and cj .
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FIGURE 8

Lemma 8.9. We can find i, j # [1, 2, ..., m] such that (a) i is an ascent
and j is a descent in C, (b) i� j\1 (mod m), and (c) ci and cj&1 are on the
same level (see Fig. 8).

Proof. We may assume that for any 1�s�m the number of ascents in
[1, 2, ..., s] is greater than or equal to the number of descents in [1, 2, ..., s]
(otherwise take some cyclic permutation of (c1 , c2 , ..., cm)). Consider two
cases.

1. There exists 1�t�m&1 such that ct and cm are on the same
level. In this case, if the pair (i, j)=(1, t) does not satisfy conditions (a)�(c)
then t=2. On the other hand, if the pair (i, j)=(t+1, m) does not satisfy
(a)�(c) then t=m&2. Hence, m=4 and C is of type C1 or C2 shown in
Figure 7.

2. There is no 1�t�m&1 such that ct and cm are on the same level.
Then 2 is an ascent and m&1 is a descent. If the pair (i, j)=(2, m&2)
does not satisfy (a)�(c) then m=4 and C is of type C3 or C4 shown in
Fig. 7. K

Now we can complete the proof of Theorem 8.6. Let i, j be two numbers
satisfying the conditions of Lemma 8.9. Then ci&1 , ci , cj&1 , cj are four dis-
tinct vertices such that (a) ci&1<ci , (b) cj&1>cj , (c) ci and cj&1 are on
the same level, and (d) ci&1 and cj are on the same level (see Fig. 8). We
may assume that i< j.

If (cj&1 , ci&1) # T then (ci&1 , ci , ..., cj&1) is an ascending cycle in T of
length less than m, which contradicts the requirement that C is an ascend-
ing cycle on T of minimal length. So (ci&1 , cj&1) # T. If ci&1<cj&1 then
(cj&1 , cj , ..., cm , c1 , ..., ci&1) is an ascending cycle in T of length less than m.
Hence, ci&1>cj&1.

Analogously, if (ci , cj) # T then (cj , cj+1 , ..., cp , c1 , ..., ci) is an ascending
cycle in T of length less than m. So (cj , ci) # T. If ci>cj then (ci , ci+1, ..., cj)
is an ascending cycle in T of length less than m. So ci<cj .

Now we have ci&1>cj&1>cj>ci>ci&1 , and we get an obvious con-
tradiction.
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We have shown that every minimal ascending cycle in T is of length 3
or 4 and thus have proved Theorem 8.6. K

8.3. The Orlik�Solomon Algebra

In [16] Orlik and Solomon gave the following combinatorial description
of the cohomology ring of the complement of an arbitrary complex hyper-
plane arrangement. Consider a complex arrangement A of affine hyper-
planes H1 , H2 , ..., HN in the complex space V$Cn given by

Hi : fi (x)=0, i=1, ..., N,

where fi (x) are linear forms on V (with a constant term).
We say that hyperplanes Hi1

, ..., Hip
are independent if the codimension of

the intersection Hi1
& } } } & Hip

is equal to p. Otherwise, the hyperplanes
are dependent.

Let e1 , ..., eN be formal variables associated with the hyperplanes
H1 , ..., HN . The Orlik�Solomon algebra OS(A) of the arrangement A is
generated over the complex numbers by e1 , ..., eN , subject to the relations

ei ej=&ejei , 1�i< j�N, (8.2)

ei1
} } } eip

=0, if Hi1
& } } } & Hip

=<, (8.3)

:
p+1

j=1

(&1) j ei1
} } } eij@ } } } eip+1

=0, (8.4)

whenever Hi1
, ..., Hip+1

are dependent. (Here eij@ denotes that eij
is missing.)

Let CA=V&�i Hi be the complement to the hyperplanes Hi of A, and
let H*DR(CA , C) denote de Rham cohomology of CA .

Theorem 8.10 (Orlik and Solomon [16]). The map ,: OS(A) �
H*DR(CA , C) defined by

, : ei [ [dfi � f i]

is an isomorphism.

Here [dfi� fi] is the cohomology class in H*DR(CA , C) of the differential
form dfi � fi .

We will apply Theorem 8.10 to the Linial arrangement. In this case
hyperplanes xi&xj=1, i< j, correspond to edges (i, j) of the complete
graph Kn .
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Proposition 8.11. The Orlik�Solomon algebra OS(Ln&1) of the Linial
arrangement is generated by evw=e(v, w) , 1�v<w�n, subject to relations
(8.2), (8.3), and also to the relations

eabebc eac&eab ebc ecd+eabeacecd&ebceacecd=0,
(8.5)

eacebc ebd&eacebcead+eac ebdead&ebc ebdead=0.

where 1�a<b<c<d�n (cf. Fig. 7).

Proof. Let C=(c1 , c2 , ..., cp) be a cycle in Kn . We say that C is balanced
if asc(C) = des(C). We may assume that in Eq. (8.4) i1 , i2 , ..., ip are edges
of a balanced cycle C. We will prove (8.4) by induction on p. If p=4 then
C is of type C1 , C2 , C3 , or C4 (see Fig. 7). Thus C produces one of the
relations (8.5). If p>4, then we can find r{s such that both
C$=(cr , cr+1 , ..., cs) and C"=(cs , cs+1 , ..., cr) are balanced. Equation (8.4)
for C is the sum of the equations for C$ and C". Thus the statement follows
by induction. K

Remark 8.12. This proposition is an analogue to the well-known
description of the cohomology ring of the Coxeter arrangement (3.1), due
to Arnold [1]. This cohomology ring is generated by evw=e(v, w) , 1�v<
w�n, subject to relations (8.2), (8.3) and also the ``triangle'' equation:

eab ebc&eabeac+ebceac=0,

where 1�a<b<c�n.

9. TRUNCATED AFFINE ARRANGEMENTS

In this section we study a general class of hyperplane arrangements
which contains, in particular, the Linial and Shi arrangements.

Let a and b be two integers such that a�0, b�0, and a+b�2.
Consider the hyperplane arrangement Aab

n&1 in Vn&1=[(x1 , ..., xn) #
Rn | x1+ } } } +xn=0] given by

xi&xj=&a+1, &a+2, ..., b&1, 1�i< j�n. (9.1)

We call Aab
n&1 a truncated affine arrangement because it is a finite sub-

arrangement of the affine arrangement of type A� n&1 given by xi&xj=k,
k # Z.

As we will see the arrangement Aab
n&1 has different behavior in the

balanced case (a=b) and the unbalanced case (a{b).
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9.1. Functional Equations

Let fn= f ab
n be the number of regions of the arrangement Aab

n&1 , and let

f (x)= :
n�0

fn
xn

n!
(9.2)

be the exponential generating function for fn .

Theorem 9.1. Suppose a, b�0.

1. The generating function f =f (x) satisfies the functional equation

f b&a=ex }
f a& f b

1& f . (9.3)

2. If a=b�1, then f =f (x) satisfies the equation:

f =1+xf a. (9.4)

Note that Eq. (9.4) can be formally obtained from (9.3) by l'Hôpital's
rule in the limit a � b.

In the case a=b the functional equation (9.4) allows us to calculate the
numbers f aa

n explicitly.

Corollary 9.2. The number f aa
n is equal to an(an&1) } } } (an&n+2).

The functional equation (9.3) is especially simple in the case a=b&1.
We call the arrangement Aa, a+1

n&1 the extended Shi arrangement. In this case
we get:

Corollary 9.3. Let a�1. The number fn of regions of the hyperplane
arrangement in Rn given by

xi&xj=&a+1, &a+2, ..., a, i< j,

is equal to fn=(a n+1)n&1, and the exponential generating function
f =�n�0 fn (xn�n!) satisfies the functional equation f =ex } f a

.

In order to prove Theorem 9.1 we need several new definitions. A graded
graph is a graph G on a set V of vertices labelled by natural numbers
together with a function h: V � [0, 1, 2, ...], which is called a grading. For
r�0 the vertices v of G such that h(v)=r form the rth level of G. Let
e=(u, v) be an edge in G, u<v. We say that the type of the edge e is the
integer t=h(v)&h(u) and that a graded graph G is of type (a, b) if
the types of all edges in G are in the interval [&a+1, b&1]=
[&a+1, &a+2, ..., b&1].
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Choose a linear order on the set of all triples (u, t, v), u, v # V,
t # [&a+1, b&1]. Let C be a graded cycle of type (a, b). Every edge (u, v)
of C corresponds to a triple (u, t, v), where t is the type of the edge (u, v).
Choose the edge e of C with the minimal triple (u, t, v). We say that C"[e]
is a broken circuit of type (a, b).

Let (F, h) be a graded forest. We say that (F, h) is grounded or that h is
a grounded grading on the forest F if each connected component in F
contains a vertex on the 0th level.

Proposition 9.4. The number fn of regions of the arrangement (9.1) is
equal to the number of grounded graded forests of type (a, b) on the vertices
1, 2, ..., n without broken circuits of type (a, b).

Proof. By Corollary 5.1, the number fn is equal to the number of
colored forests F on the vertices 1, 2, ..., n without broken A-circuits. Every
edge (u, v), u<v, in F has a color which is an integer from the interval
[&a+1, b&1]. Consider the grounded grading h on F such that for every
edge (u, v), u<v, in F of color t we have that t=h(v)&h(u) is the type of
(u, v). It is clear that such a grading is uniquely defined. Then (F, h) is a
grounded graded forest of type (a, b). Clearly, this gives a correspondence
between colored and graded forests. Then broken A-circuits correspond to
broken graded circuits. The proposition easily follows. K

From now on we fix the lexicographic order on triples (u, t, v), i.e.,
(u, t, v)<(u$, t$, v$) if and only if u<u$, or (u=u$ and t<t$), or (u=u$ and
t=t$ and v<v$). Note the order of u, t, and v. We will call a graded tree
T solid if T is of type (a, b) and T contains no broken circuits of type (a, b).

Let T be a solid tree on 1, 2, ..., n such that vertex 1 is on the r th
level. If we delete the minimal vertex 1, then the tree T decomposes into
connected components T1 , T2 , ..., Tm . Suppose that each component Ti is
connected with 1 by an edge (1, vi) where vi is on the ri th level.

Lemma 9.5. Let T, T1 , ..., Tm , v1 , ..., vm , and r1 , ..., rm be as above. The
tree T is solid if and only if (a) all T1 , T2 , ..., Tm are solid, (b) for all i the
ri th level is the minimal nonempty level in Ti such that &a+1�ri&r�
b&1, and (c) the vertex vi is the minimal vertex on its level in Ti.

Proof. First, we prove that if T is solid then the conditions (a)�(c) hold.
Condition (a) is trivial, because if some Ti contains a broken circuit of type
(a, b) then T also contains this broken circuit. Assume that for some i there
is a vertex vi$ on the ri$ th level in Ti such that r i$<ri and ri$&r�&a+1.
Then the minimal chain in T that connects vertex 1 with vertex vi$ is a
broken circuit of type (a, b). Thus condition (b) holds. Now suppose that
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for some i vertex vi is not the minimal vertex vi" on its level. Then the mini-
mal chain in T that connects vertex 1 with vi" is a broken circuit of type
(a, b). Therefore, condition (c) holds too.

Now assume that conditions (a)�(c) are true. We prove that T is solid.
For suppose not. Then T contains a broken circuit B=C"[e] of type
(a, b), where C is a graded circuit and e is its minimal edge. If B does not
pass through vertex 1 then B lies in Ti for some i, which contradicts condi-
tion (a). We can assume that B passes through vertex 1. Since e is the mini-
mal edge in C, e=(1, v) for some vertex v$ on level r$ in T. Suppose v # Ti.
If v$ and vi are on different levels in Ti then by (b), ri<r. Thus the minimal
edge in C is (1, vi) and not (1, v$). If v$ and vi are on the same level in Ti,
then by (c) we have vi<v$. Again, the minimal edge in C is (1, vi) and not
(1, v$). Therefore, the tree T contains no broken circuit of type (a, b), i.e.,
T is solid. K

Let si be the minimal nonempty level in Ti, and let li be the maximal
nonempty level in Ti. By Lemma 9.5, the vertex 1 can be on the r th level,
r # [si&b+1, si&b+1, ..., li+a&1], and for each such r there is exactly
one way to connect 1 with Ti.

Let pnkr denote the number of solid trees (not necessarily grounded) on
the vertices 1, 2, ..., n which are located on levels 0, 1, ..., k such that vertex
1 is on the r th level, 0�r�k.

Let

pkr (x)= :
n�1

pnkr
xn

n!
, pk (x)= :

k

r=0

pkr (x).

By the exponential formula (see [12, p. 166]) and Lemma 9.5, we have

p$kr (x)=exp bkr (x), (9.5)

where bkr (x)=�n�1 bnkr (xn�n!) and bnkr is the number of solid trees T on
n vertices located on the levels 0, 1, ..., k such that at least one of the levels
r&a+1, r&a+2, ..., r+b&1 is nonempty, 0�r�k. The polynomial
bkr (x) enumerates the solid trees on levels 1, 2, ..., k minus trees on levels
1, ..., r&a and trees on levels r+b, ..., k. Thus we obtain

bkr (x)= pk (x)& pr&a(x)& pk&r&b (x).

By (9.5), we get

p$kr (x)=exp( pk (x)& pr&a(x)& pk&r&b (x)),
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where p&1 (x)= p&2 (x)= } } } =0, p0 (x)=x, pk (0)=0 for k # Z. Hence

p$k (x)= :
k

r=0

exp( pk (x)& pr&a(x)& pk&r&b (x)).

Equivalently,

p$k (x)exp(& pk (x))= :
k

r=0

exp(& pr&a(x)) exp(& pk&r&b (x)).

Let qk (x)=exp(& pk (x)). We have

q$k (x)=& :
k

r=0

qr&a(x) qk&r&b (x), (9.6)

q&1=q&2= } } } =1, q0=e&x, qk (0)=1 for k # Z.
The following lemma describes the relation between the polynomials

qk (x) and the number of regions of the arrangement Aab
n&1 .

Lemma 9.6. The quotient qk&1 (x)�qk (x) tends to �n�0 fn (xn�n!) as
k � �.

Proof. Clearly, pk (x)& pk&1 (x) is the exponential generating function
for the numbers of grounded solid trees of height less than or equal to k.
By the exponential formula (see [12, p. 166]) qk&1(x)�qk (x)=exp( pk (x)
& pk&1 (x)) is the exponential generating function for the numbers of
grounded solid forests of height less than or equal to k. The lemma obviously
follows from Proposition 9.4. K

All previous formulae and constructions are valid for arbitrary a and b.
Now we will take advantage of the condition a, b�0. Let

q(x, y)= :
k�0

qk (x) yk.

By (9.6), we obtain the following differential equation for q(x, y),

�
�x

q(x, y)= &(ay+ yaq(x, y)) } (by+ ybq(x, y)),

q(0, y)=(1& y)&1,

where ay :=(1& ya)�(1& y).
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This differential equation has the solution

q(x, y)=
by exp(&x } by)&ay exp(&x } ay)
ya exp(&x } ay)& yb exp(&x } by)

. (9.7)

Let us fix some small x. Since Q( y) :=q(x, y) is an analytic function of
y, then #=#(x)=limk � � qk&1�qk is the pole of Q( y) closest to 0 (# is
the radius of convergence of Q( y) if x is a small positive number). By
(9.7), #a exp(&x } a#)&#b exp(&x } b#)=0. Thus, by Lemma 9.6, f (x)=
�n�0 fn (xn�n!)=#(x) is the solution of the functional equation

f a e&x }
1& f a

1& f = f b e&x }
1& f b

1& f ,

which is equivalent to (9.3).
This completes the proof of Theorem 9.1. K

9.2. Formulae for the Characteristic Polynomial

Let A=Aab
n&1 be the truncated affine arrangement given by (9.1). Con-

sider the characteristic polynomial /ab
n (q) of the arrangement Aab

n&1 . Recall
that /ab

n (q)=qn&1 PoinA
ab
n&1

(&q&1).
Let /ab (x, q) be the exponential generating function

/ab (x, q)=1+ :
n>0

/ab
n&1(q)

xn

n!
.

According to [29,Theorem 1.2], we have

/ab (x, q)= f (&x)&q, (9.8)

where f (x)=/ab (&x, &1) is the exponential generating function (9.2) for
numbers of regions of Aab

n&1 .
Let S be the shift operator S: f (q) [ f (q&1).

Theorem 9.7. Assume that 0�a<b. Then

/ab
n (q)=(b&a)&n (S a+S a+1+ } } } +S b&1)n } qn&1.

Proof. The theorem can be easily deduced from Theorem 9.1 and (9.8)
(using, e.g., the Lagrange inversion formula). K

In the limit b � a, using l'Hôpital's rule, we obtain

/aa
n (q)=\Sa log S

1&S+
n

} qn&1.
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In fact, there is an explicit formula for /aa(q). The following statement
easily follows from Corollary 9.2 and appears in [10, proof of Prop. 3.1].

Theorem 9.8. We have

/aa
n (q)=(q+1&an)(q+2&an) } } } (q+n&1&an).

There are several equivalent ways to reformulate Theorem 9.7, as
follows:

Corollary 9.9. Let r=b&a.

1. We have

/ab
n (q)=r&n : (q&,(1)& } } } &,(n))n&1,

where the sum is over all functions ,: [1, ..., n] � [a, ..., b&1].

2. We have

/ab
n (q)=r&n :

s, l�0

(&1) l (q&s&an)n&1 \n
l +\

s+n&rl&1
n&1 + .

3. We have

/ab
n (q)=r&n : \ n

n1 , ..., nr+ (q&an1& } } } &(b&1) nr)
n&1,

where the sum is over all nonnegative integers n1 , n2 , ..., nr such that
n1+n2+ } } } +nr=n.

Examples. 9.10. 1. (a=1 and b=2) The Shi arrangement Sn&1

given by (3.6) is the arrangement A12
n&1 . By Corollary 9.9.1, we get the

following formula of Headley [14, Thm. 2.4] (generalizing the formula
r(Sn&1)=(n+1)n&1 due to Shi [25, Cor. 7.3.10; 26]):

/12
n (q)=(q&n)n&1. (9.9)

2. (a�1 and b=a+1) More generally, for the extended Shi arrange-
ment Sn&1, k given by (3.7), we have (cf. Corollary 9.3)

/a, a+1
n (q)=(q&an)n&1.
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3. (a=0 and b=2) In this case we get the Linial arrangement
Ln&1=A02

n&1 (see Section 8.). By Corollary 9.9.3, we have (cf. Theorem
8.2)

/02
n (q)=2&n :

n

k=0
\n

k+ (q&k)n&1, (9.10)

4. (a�0 and b=a+2) More generally, for the arrangement
Aa, a+2

n&1 , we have

/a, a+2
n (q)=2&n :

n

k=0
\n

k+ (q&an&k)n&1. (9.11)

We will call this arrangement the extended Linial arrangement.

Formula (9.10) for the characteristic polynomial /02
n (q) was earlier

obtained by C. Athanasiadis [3, Theorem 5.2] (see also [4, Sect. 3]). He
used a different approach based on a combinatorial interpretation of the
value of /n (q) for sufficiently large primes q.

9.3. Roots of the Characteristic Polynomial

Theorem 9.7 has one surprising application concerning the location of
roots of the characteristic polynomial /ab

n (q).
We start with the balanced case (a=b). One can reformulate Theorem

9.8 in the following way:

Corollary 9.11. Let a�1. The roots of the polynomial /aa
n (q) are the

numbers an&1, an&2, ..., an&n+1 (each with multiplicity 1). In particular,
the roots are symmetric to each other with respect to the point (2a&1) n�2.

Now assume that a{b, with a�0 and b�0 as before (unbalanced case).
The characteristic polynomial /ab

n (q) satisfies the following ``Riemann
hypothesis'':

Theorem 9.12. Let a+b�2. All the roots of the characteristic polyno-
mial /ab

n (q) of the truncated affine arrangement Aab
n&1 , a{b, have real part

equal to (a+b&1) n�2. They are symmetric to each other with respect to the
point (a+b&1) n�2.

Thus in both cases the roots of the polynomial /ab
n (n) are symmetric to

each other with respect to the point (a+b&1) n�2, but in the case a=b all
roots are real, whereas in the case a{b the roots are on the same vertical
line in the complex plane C. Note that in the case a=b&1 the polynomial
/ab

n (q) has only one root an=(a+b&1) n�2 of multiplicity n&1.
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The following lemma is implicit in a paper of Auric [5] and also follows
from a problem posed by Po� lya [18] and solved by Obreschkoff [15]
(repeated in [19, Problem V. 196.1, pp. 70 and 251]). For the sake of com-
pleteness we give a simple proof.

Lemma 9.13. Let P(q) # C[q] have the property that every root has real
part a. Let z be a complex number satisfying |z|=1. Then every root of the
polynomial R(q)=(S+z) P(q)=P(q&1)+zP(q) has real part a+ 1

2 .

Proof. We may assume that P(q) is monic. Let

P(q)=`
j

(q&a&bj i), bj # R,

where i2=&1. If R(w)=0, then |P(w)|=|P(w&1)|. Suppose that
w=a+ 1

2+c+di, where c, d # R. Thus

}`j

( 1
2+c+(d&bj) i) }= }`j

(&1
2+c+(d&b j) i) } .

If c>0 then | 1
2+c+(d&b j) i |> |& 1

2+c+(d&bj) i |. If c<0 then we have
strict inequality in the opposite direction. Hence c=0, so w has real part
a+ 1

2 . K

Proof of Theorem 9.12. All the roots of the polynomial qn&1 have real
part 0. The operator T=(S a+S a+1+ } } } +Sb&1)n can be written as

T=San `
b&1&a

j=1

(S&zj)
n,

where each zj is a complex number of absolute value one (in fact, a root
of unity). The proof now follows from Theorem 9.7 and Lemma 9.13. K

Note. We have been considering the truncated affine arrangement
Aab

n&1 only in the case a�0 and b�0. We do not have any interesting
results otherwise. For instance, the arrangement A&1, 4

3 (with hyperplanes
xi&xj=2, 3 for 1�i< j�4) has characteristic polynomial q4&12q3+
60q2&116. The roots of this polynomial are given approximately by 0,
4.33, and 3.83\3.48i, so the Riemann hypothesis fails.

9.4. Other Root Systems

The results of Sections 9.1�9.3 extend, partly conjecturally, to all the
other root systems, as well as to the nonreduced root system BCn (the
union of Bn and Cn , which satisfies all the root system axioms except the
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axiom stating that if : and ; are roots satisfying :=c;, then c=\1).
Henceforth in this section when we use the term ``root system,'' we also
include the case BCn .

Given a root system R in Rn and integers a�0 and b�0 satisfying
a+b�2, we define the truncated R-affine arrangement Aab (R) to be the
collection of hyperplanes

(:, x)=&a+1, &a+2, ..., b&1,

where : ranges over all positive roots of R (with respect to some fixed
choice of simple roots). Here ( , ) denotes the usual scalar product on Rn,
and x=(x1 , ..., xn). As in the case R=An&1 we refer to the balanced case
(a=b) and unbalanced case (a{b).

The characteristic polynomial for the balanced case was found by
Edelman and Reiner [10, proof of Prop. 3.1] for the root system An&1 (see
Theorem 9.9), and conjectured (Conjecture 3.3) by them for other root
systems. This conjecture was proved by Athanasiadis [2, Cor. 7.2.3 and
Thm. 7.7.6; 4, Prop. 5.3] for types A, B, C, BC, and D. For types A, B, C,
and D the result is also stated in [3, Thm. 5.5]. We will not say anything
more about the balanced case here.

For the unbalanced case, we have considerable evidence (discussed
below) to support the following conjecture.

Conjecture 9.14. Let R be an irreducible root system in Rn. Suppose
that the unbalanced truncated affine arrangement A=Aab (R) has h(A)
hyperplanes. Then all the roots of the characteristic polynomial /A (q) have
real part equal to h(A)�n.

Note. (a) If all the roots of /A (q) have the same real part, then this
real part must equal h(A)�n, since for any arrangement A in Rn the sum
of the roots of /A (q) is equal to h(A).

(b) Conjecture 9.14 implies the ``functional equation''

/A (q)=(&1)n /A (&q+2h(A)�n). (9.12)

Thus /A (q) is determined by around half of its coefficients (or values).

(c) Let a+b�2 and R=An , Bn , Cn , BCn , or Dn . Athanasiadis [4,
Sects. 3�5] has shown that

/ab
R (q)=/0, b&a

R (q&ak), (9.13)

where k denotes the Coxeter number of R (suitably defined for R=BCn).
These results and conjectures reduce Conjecture 9.14 to the case a=0 when
R is a classical root system. A similar reduction is likely to hold for the
exceptional root systems.
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(d) Conjecture 9.14 is true for all the classical root systems (An , Bn ,
Cn , BCn , Dn). This follows from explicit formulas found for /ab

R (q) by
Athanasiadis [4] together with Lemma 9.13. The result of Athanasiadis is
the following.

Theorem 9.15. Up to a constant factor, we have the following charac-
teristic polynomials of the indicated arrangements. (If the formula has the
form F(S) qn or F(S)(q&1)n, then the factor is 1�F(1).)

A0, 2k+2 (Bn): (1+S2+ } } } +S2k)2 (1+S2+ } } } +S4k+2)n&1 (q&1)n

A0, 2k+2 (Cn): same as for A0, 2k+2 (Bn)

A0, 2k+1 (Bn): (1+S+ } } } +S2k)2 (1+S2+ } } } +S4k)n&1 qn

A0, 2k+1 (Cn): same as for A0, 2k+1 (Bn)

A0, 2k+2 (Dn): (1+S2)(1+S2+ } } } +S2k)4

(1+S2+ } } } +S4k+2)n&3 (q&1)n

A0, 2k+1 (Dn): (1+S+ } } } +S2k)4 (1+S2+ } } } +S4k)n&3 qn

A0, 2k+2 (BCn): (1+S2+ } } } +S2k)(1+S2+ } } } +S4k+2)n (q&1)n

A0, 2k+1 (BCn): (1+S+ } } } +S2k)(1+S2+ } } } +S4k)n qn.

We also checked Conjecture 9.14 for the arrangements A02 (F4) and
A02 (E6) (as well as the almost trivial case Aab (G2), a{b). The charac-
teristic polynomials are

A02 (F4): q4&24q3+258q2&1368q+2917

A02 (E6): q6&36q5+630q4&6480q3+40185q2&140076q+212002.

The formula for /02
F4

(q) has the remarkable alternative form:

A02 (F4): 1
8 ((q&1)4+3(q&5)4+3(q&7)4+(q&11)4)&48.

Note that the numbers 1, 5, 7, 11 are the exponents of the root system F4 .
For E6 the analogous formula is given by

A02 (E6):
1

1008
P(q)&210,

where

P(q)=61(q&1)6+352(q&4)6+91(q&5)6+91(q&7)6

+352(q&8)6+61(q&11)6,
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which is not as intriguing as the F4 case. It is not hard to see that the sym-
metry of the coefficient sequences (1, 3, 3, 1) and (61, 352, 91, 91, 352, 61) is
a consequence of Eq. (9.12) and the fact that if e1<e2< } } } <en are the
exponents of an irreducible root system R, then ei+en+1&i is independent
of i.

10. CHARACTERISTIC POLYNOMIALS AND WEIGHTED TREES

In this section we present an interpretation of the characteristic polyno-
mial /ab

n (q) of a truncated affine arrangement as a weight enumerator of
trees.

10.1. Weighted Trees

The differentiation operator D: f (q) [ df�dq is related to the shift
operator S: f (q) [ f (q&1) via Taylor's formula exp(&D)=S. By
Theorem 9.7 we can express the characteristic polynomial /ab

n (q), for
0�a<b, as

(&1)n&1 (b&a)n /ab
n (&q)=(eaD+e(a+1) D+ } } } +e(b&1) D)n } qn&1.

We can generalize this expression as follows.
Let s(t) be a formal exponential power series

s(t)=s0+s1 t+s2 t2�2!+ } } } +sk tk�k!+ } } } ,

where the si are arbitrary numbers and s0 is nonzero.
We define the polynomials fn (q), n>0, by the formula

fn (q)=(s(D))n qn&1, (10.1)

where D=d�dq. The polynomials fn (q) are correctly defined even if the
series s(t) does not converge, since the expression for fn (q) involves only a
finite sum of nonzero terms.

Let Tn be the set of all trees on the vertices 0, 1, 2, ..., n. We will regard
the vertex 0 as the root of a tree and orient the edges away from the root.
By di=di (T) we denote the outdegree of the vertex i in a tree T # Tn . For
i{0, di is the degree of the vertex i minus 1. Define the weight wq (T ) of
a tree T by

wq (T)=qd0&1sd1
sd2

} } } sdn
.

Let us also define the weighting w~ on trees T # Tn by w~ (T )=sd0
sd1

} } } sdn
.

And let gn=�T # Tn
w~ (T) be the weighted sum of all trees in Tn .
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Theorem 10.1. 1. The polynomial fn (q) is the wq -weight enumerator
for trees on n+1 vertices, i.e.,

fn (q)= :
T # Tn

wq (T ).

In particular, gn= fn+1 (0)�(n+1).

2. The coefficient of qk in fn (q) is equal to

: sk1
} } } skn \ n&1

k, k1 , ..., kn+ ,

where the sum is over all k1 , ..., kn�0 such that k+k1+ } } } +kn=n&1.

3. Let f (x, q) and g(x) be the exponential generating functions:

f (x, q)=1+q :
n�1

fn (q)
xn

n!
and g(x)= :

n�0

gn
xn+1

n!
.

Then f (x, q)=exp(q g(x)) and the series g= g(x) satisfies the functional
equation

g=xs(g). (10.2)

Proof. By (10.1), we have

fn (q)=s(D)n qn&1=s(D)n&1 :
k1�0

sk1

Dk1

k1 !
qn&1

=s(D)n&1 :
k1�0

sk1 \n&1
k1 + qn&1&k1= } } }

= :
k1 , ..., kn�0

sk1
} } } skn \ n&1

k, k1 , k2 , ..., kn+ qk,

where k=n&1&k1& } } } &kn . This proves 2. Using Pru� fer's coding of
trees [22; 28, Thm. 5.3.4], we obtain the statement 1. A standard exponen-
tial formula argument yields the statement 3. K

Now we give several examples for Theorem 10.1.

Example 10.2 (cf. Example 9.10.1). For the Shi arrangement (a=1
and b=2), we have s(t)=et and wq (T )=qd0&1. Theorem 10.1 claims that
(&1)n&1 /12

n (&q)=(q+n)n&1 is the q-enumerator for all trees in Tn accord-
ing to the degree of the root. Of course, this is a well-known statement.
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Example 10.3 (cf. Example 9.10.3). For the Linial arrangement (a=0
and b=2) we have s(t)=1+et, i.e., s0=2 and si=1 for i�1. Thus
wq (T )=2ep(T ) qd0&1, where ep(T ) is the number of endpoints i, i{0, of T.
In this case we obtain the following statement.

Corollary 10.4. For the Linial arrangement Ln&1 , we have

(&1)n&1 /02
n (&q)= :

T # Tn

2ep(T )&n qd0&1.

In particular, the number of regions of the Linial arrangement Ln&1 is equal
to �T # Tn

2ep(T )&n.

10.2. Odd Degree Trees

Let us introduce the following shift of the characteristic polynomial of
the Linial arrangement:

bn (q)=2n&1/02
n ((q+n)�2). (10.3)

The Riemann hypothesis (Theorem 9.12) implies that all roots of bn (q) are
purely imaginary. By Theorem 9.7, we have

bn (q)=\S+S&1

2 +
n

qn&1=2&n :
n

k=0
\n

k+ (q+n&2k)n&1 . (10.4)

The first ten polynomials bn (q) are given below:

b1 (q)=1

b2 (q)=q

b3 (q)=q2+3

b4 (q)=q3+12q

b5 (q)=q4+30q2+65

b6 (q)=q5+60q3+480q

b7 (q)=q6+105q4+1995q2+3787

b8 (q)=q7+168q5+6160q3+41216q

b9 (q)=q8+252q6+15750q4+242172q2+427905

b10 (q)=q9+360q7+35280q5+1021440q3+6174720q
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We can express bn (q) via the differentiation operator D=d�dq as

bn (q)=cosh(D)n qn&1. (10.5)

Thus the sequence of polynomials bn (q) is a special case of (10.1) for
s(t)=cosh(t). Equivalently, si=1 for even i 's and si=0 for odd i 's.

We say that a tree T on the vertices 0, 1, ..., n is an odd degree tree if the
degrees of the vertices 1, ..., n in T are odd. Let d0 (T) denote the degree of
the root 0 in a tree T. Note that, for an odd degree tree, d0 (T ) has the
same parity as n.

Theorem 10.1 implies the following statement.

Corollary 10.5. 1. For n�1, we have

bn (q)=:
T

qd0(T )&1 ,

where the sum is over all odd degree trees on the vertices 0, 1, ..., n.

2. The coefficient of qk in bn (q) is equal to the sum of multinomial
coefficients

\ n&1
k, k1 , ..., kn+

over all nonnegative even k1 , ..., kn such that k+k1+ } } } +kn=n&1.

Let oddn be the number of all odd degree trees on the vertices 0, 1, ..., n.
By Corollary 10.8, oddn=bn (1). We have

n 0 1 2 3 4 5 6 7 8 9 10
oddn 1 1 1 4 13 96 541 5,888 47,545 686,080 7,231,801

If n is odd then the degrees of all vertices (including the root) of an odd
degree tree are odd. The first ten numbers odd1 , odd3 , odd5 , ... appear in
[23] without further references.

Note that odd2m=b2m+1 (0)�(2m+1) and odd2m&1=b$2m (0)�(2m&1)
for m�1. Indeed, by Corollary 10.5, b2m+1 (0) is the number of odd degree
trees on the vertices 0, 1, ..., 2m+1 such that the degree of the root 0 is one.
Removing the only edge incident to 0, we obtain an odd degree tree on the
vertices 1, ..., 2m+1 with the root at any of its 2m+1 vertices. The number
of such trees is (2m+1) odd2m .

Also b$2m (0) is the number of odd degree trees on the vertices 0, 1, ..., 2m
such that the degree of the root 0 is two. Let e be the edge of such a tree
that connects the root 0 with the component which does not contain the
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vertex 1. Contracting the edge e we obtain an odd degree tree on the ver-
tices 1, ..., 2m with the root at any vertex except 1. The number of such
trees is (2m&1) odd2m&1 .

Theorem 10.1.3 gives a functional equation for the generating functions.

Corollary 10.6. Let f (x, q) and g(x) be the exponential generating
functions:

f (x, q)=1+q :
n�1

bn (q)
xn

n!
and g(x)= :

m�0

odd2m
x2m+1

(2m)!
.

Then f (x, q)=exp(q g(x)) and g= g(x) satisfies the functional equation

g=x cosh(g).

11. ASYMPTOTICS

11.1. Asymptotics of the Characteristic Polynomial

In this section we find the asymptotics of the characteristic polynomial
/a, a+2

n (q) of the extended Linial arrangement. By (9.11), we have

(&1)n&1 /a, a+2
n (q)=2&n :

n

k=0
\n

k+ (an+k&q)n&1. (11.1)

We will use this formula to define the polynomial /a, a+2
n (q) for an

arbitrary real a.
Recall that two sequences an and bn are said to be asymptotically equal

(in symbols, an tbn) if limn � � an�bn=1.

Theorem 11.1. For any a # R, a�0, and q # C, the value of the polyno-
mial (&1)n&1 /a, a+2

n (q) is asymptotically equal to

(&1)n&1 /a, a+2
n (q)tA } Bq+a+; } Cn } (n+1)n&1, (11.2)

where ; is the unique solution to the equation

;�(1&;)=e1�(;+a), 0<;<1 . (11.3)

and

A=(;+2a;+a2)&1�2,

B=;&1 (1&;),

C=2&1;&; (1&;);&1 (;+a) .
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Moreover, the asymptotical equality remains valid for the mth derivatives of
both sides with respect to q.

Corollary 11.2. For any a # R, a�0, and q # C, we have

lim
n � �

/a, a+2
n (q)

/a, a+2
n (0)

=\1&;
; +

q

,

where ; is given by (11.3). Moreover, for any q0 # C the Taylor expansion
of /a, a+2

n (q)�/a, a+2
n (0) at q=q0 converges termwise to the Taylor expansion

of the right-hand side at q=q0 .

Example 11.3. For the characteristic polynomial of the Linial arrange-
ment (case a=0) we have

;r0.7821882,

A=;&1�2
r1.1306920,

B=;&1 (1&;)r0.2784645,

C=2&1;&;+1 (1&;);&1
r0.6605498,

D=A } B;&1
r1.4937570.

The number fn of regions of the Linial arrangement Ln&1 is asymptotically
equal to

fn=(&1)n&1 /02
n (&1)tD } C n (n+1)n&1.

Recall that fn is the number of alternating trees on n+1 vertices (see
Section 8.1). The total number of trees on n+1 labelled vertices is
(n+1)n&1.

Corollary 11.4. The probability that a uniformly chosen tree on n+1
labelled vertices is an alternating tree is asymptotically equal to

D } Cn
r1.4937570 } 0.6605498n.

Compare the result that the probability that a uniformly chosen per-
mutation w1 , w2 , ..., wn of 1, 2, ..., n is alternating (i.e., a1>a2<a3>a4

< } } } ) is asymptotically equal to

\2
?+

n+1

r0.6366198n+1.
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By Theorem 2.1, the number of bounded regions of the arrangement
Aa , a+2

n&1 is equal to (&1)n&1 /a , a+2
n (1). By (11.2) this number is

asymptotically equal to B2 } (&1)n&1 /a , a+2
n (&1).

Corollary 11.5. The probability that a uniformly chosen region in the
extended Linial arrangement Aa a+2

n&1 is bounded tends to B2 as n � �. For
the Linial arrangement, B2

r0.0775425. Thus, for large n, approximately
7.754250 of the regions of the Linial arrangement Ln&1 are bounded.

Note that by (9.9) the portion of the bounded regions in the Shi arrange-
ment Sn&1 is equal to (n&1)n&1�(n+1)n&1 and tends to e&2

r0.1353353.

In the proof of Theorem 11.1 we use methods described in [9]. The
general outline of the proof is the following: (a) Use the Stirling formula
for the 1-function to approximate the summands in (11.1); (b)
approximate the summation by integration; (c) use the Laplace method to
approximate the integral. The Laplace method amounts to the following
statement; see [9, Sect. 4.2].

Proposition 11.6. Suppose that g(x) and h(x) are real smooth functions
on the interval [a, b]. Suppose that ;, a<;<b, is the absolute maximum of
h(x). We also require that h(x)<h(;) for x{;. Moreover, there exist
positive numbers c and d such that h(x)�h(;)&c for |x&;|�d. Also
suppose that h"(;) exists and h"(;)<0 and that b(;){0. Then

|
b

a
g(x) en h(x) dxt(2?)1�2 g(;) (&n h"(;))&1�2 en h(;) (as n � �).

Now we give more details.

Proof of Theorem 11.1. Let us express the kth summand an (k) in (11.1)
via the 1-function as

an (k)=
1(n+1) (k+an&q)n&1

2n 1(k+1) 1(n&k+1)

and view it as a continuous function of k on the interval [0, n]. Elementary
calculations show that |an (k)| has a unique absolute maximum k=mn

on the interval [0, n]. And, for sufficiently large n, we have 1�2<mn�n<
(1+e&2�(1+2a))&1. Actually, mn �n approaches ; as given by (11.3).

Let us fix = such that 0<=<1&(1+e&2�(1+2a))&1. Then we can write

:
n

k=0

an (k)=(1+rn (=)) } :
w(1&=) nx

k=W=nX

an (k) , (11.4)
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where |rn (=)|�2= for sufficiently large n. The Stirling formula claims that

1(z)=zz&1�2e&z(2?)1�2 (1+O(1�z)).

Therefore, the an (k) can be written as

an (k)=
1(n+1) (k+an&q)n&1

2n 1(k+1) 1(n&k+1)

=
e (n+1)n+1�2

2n (2?)1�2 }
(an+k&q)n&1

(k+1)k+1�2 (n&k+1)n&k+1�2 (1+Onk),

where Onk is an abbreviation for O((k+1)&1+(n&k+1)&1). For
=n�k�(1&=) n, we have Onk=O(1�n). Let x= k+1�2

n+1 . Making transforma-
tions, we can write, for =�x�1&=,

(an+k&q)n&1

(k+1)k+1�2 (n&k+1)n&k+1�2

=
(x+a)n&1

(xx (1&x)1&x)n+1

}
1

(n+1)2 }
\1&

q+a+1�2
x+a

1
n+1+

n&1

\1+
1�2

k+1�2+
k+1�2

\1+
1�2

n&k+1�2+
n&k+1�2

=
(x+a)n&1

(xx (1&x)1&x)n+1 }
1

(n+1)2 }
e&(q+a+1�2)�(x+a)

e1�2 e1�2 (1+O(1�n)).

Let us introduce two functions

g(x)=e&(q+a+1�2)�(x+a) (x+a)&1 x&x (1&x)x&1 ,

h(x)=log(x+a)&x log(x)&(1&x) log(1&x)

on the interval [=, 1&=]. The function h(x) has a unique maximum
; # ] =, 1&=[ given by h$(;)=1�(;+a)&log(;)+log(1&;)=0. This
equation is equivalent to (11.3). We have g(;){0. Thus the functions g(x)
and h(x) satisfy the conditions of Proposition 11.6.

Then, for k # [=n, (1&=) n], the function an (k) can be written as

an (k)=An (x)=
(n+1)n&3�2

2n (2?)1�2 } g(x) en h(x) (1+O(1�n)) . (11.5)
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Since the function |an (k)| has a unique maximum, we have

} :
w(1&=) nx

k=W=nX

an (k)&|
(1&=) n

=n
an (k) dk }� max

k # [0, n]
|an (k)| . (11.6)

We have

|
(1&=) n

=n
an (k) dkt(n+1) |

1&=

=
An (x) dxt

(n+1)n&1�2

2n (2?)1�2 } |
1&=

=
g(x) en h(x) dx.

By Proposition 11.6, this expression is asymptotically equal to

(n+1)n&1�2

2n (2?)1�2 } (2?)1�2 g(;) (&n h"(;))&1�2 en h(;). (11.7)

This expression shows that

max
k # [0, n]

|an (k)|tAn (;)tConstant } n&1�2 |
(1&=) n

=n
an (k) dk. (11.8)

Using (11.6) and simplifying (11.7), we obtain

:
w(1&=) nx

k=W=nX

an (k)t|
(1&=) n

=n
an (k) dkt

(n+1)n&1

2n g(;)(&h"(;))&1�2 en h(;).

(11.9)

Since = can be arbitrarily small, from (11.4) we conclude that
�n

k=0 an (k) is asymptotically equal to the right-hand side of (11.9). Finally,
the explicit calculation of g(;), h(;), and h"(;), left as an exercise for the
reader, produces the formula (11.2).

To prove the statement about derivatives of the characteristic polyno-
mial, we remark that the mth derivative of an (k) with respect to q is
obtained by multiplying the expression (11.5) by (&1�(x+a))m. Exactly
the same argument as that above shows that the asymptotic behavior of
the sum of the m th derivatives of an (k) is given by the expression (11.9)
times (&1�(;+a))m, which is equal to the mth derivative of the right-hand
side of (11.9). K

11.2. Asymptotics of Odd Degree Trees

In this section we find the asymptotics of the shifted characteristic poly-
nomial bn (q)=2n&1/02

n ( q+n
2 ) introduced in Section 10.2. Recall that bn (q)

is given by the sum (10.4), and it is also the enumerator for the odd degree
trees according to the degree of the root. The behavior of the polynomials
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bn (q) depends on the parity of n. For example, bn (q) is an even function
for odd n and is an odd function for even n.

Theorem 11.7. Let :r1.1996786 be the unique positive solution of the
equation

cosh(:)=: sinh(:) or, equivalently, (:&1) e2:=(:+1), (11.10)

and let C=sinh(:)�er0.5550857. Then we have two asymptotic equalities

bn (q)t2e&1 } cosh(:q) } C n } (n+1)n&1, n is odd, n � �,
(11.11)

bn (q)t2e&1 } sinh(:q) } Cn } (n+1)n&1, n is even, n � � ,

for any q # C such that the right-hand side is nonzero. Moreover, the
asymptotic equalities remain valid for the mth derivatives of both sides with
respect to q provided that the mth derivative of the right-hand side is nonzero.

Note that we can simplify the right-hand sides in (11.11) and replace
them by asymptotically equal expressions 2 cosh(:q) Cn nn&1 and
2 sinh(:q) Cn nn&1, respectively. Numerical calculations, however show
that these expressions are worse approximations for bn (q) than (11.11).

Corollary 11.8. For any q # C, we have

lim
n is odd, n � �

bn (q)�bn (0)=cosh(: q),

lim
n is even, n � �

bn (q)�b$n (0)=:&1 sinh(: q),

where : is given by (11.10). Moreover, for any q0 # C the Taylor expansions
at q=q0 of the terms in the left-hand side converge termwise to the Taylor
expansion of the right-hand side at q=q0 .

Recall that the roots of the polynomials bn (q) are located on the purely
imaginary axis in C. Theorem 11.7 gives an approximation for the roots
of bn (q).

Corollary 11.9. Let us fix a positive number R. Then the roots of the
polynomials bn (q) located in the interval I=]&i R, i R[

(a) approach the points [: ? (1�2+m) i | m # Z] & I as n � � (n is
odd),

(b) approach the points [: ? m i | m # Z] & I as n � � (n is even),

where : is given by (11.10) and i=- &1.
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Remark 11.10. Clearly, we also obtain an approximation for the
roots of the characteristic polynomials /02

n (q) of Linial arrangements by
the numbers 2&1 (n+: ? (1�2+m) i) for odd n, and by the numbers
2&1 (n+: ? m i) for even n, where m # Z.

Proof of Theorem 11.7. We will follow the proof of Theorem 11.1. If n
is odd then by (10.4) we can write bn (q) as

bn (q)= :
(n&1)�2

k=0

2&n \n
k+ ((n&2k+q)n&1+(n&2k&q)n&1) .

Let us express the k th summand an (k) in the above sum via the 1-function
as

an (k)=
1(n+1) ((n&2k+q)n&1+(n&2k&q)n&1)

2n 1(k+1) 1(n&k+1)

and view it as a continuous function of k on the interval [0, (n&1)�2].
Again, |an (k)| has a unique absolute maximum mn on [0, (n&1)�2].
Calculations shows that, for sufficiently large n, we have 0.08<mn �n<0.09.

Let us fix = such that 0<=<0.08. Then

:
(n&1)�2

k=0

an (k)=(1+rn (=)) } :
w(1�2&=) nx

k=W=nX

an (k) , (11.12)

where |rn (=)|�4= for sufficiently large n. We can approximate an (k), for
k # [=n, (1�2&=) n], via the Stirling formula as

an (k)=
e (n+1)n&3�2

2n (2?)1�2 }
(1&2x)n&1

(xx (1&x)1&x)n+1

}
\1+

q
1&2x

1
n+1+

n&1

+\1&
q

1&2x
1

n+1+
n&1

\1+
1�2

k+1�2+
k+1�2

\1+
1�2

n&k+1�2+
n&k+1�2 (1+O(n&1))

=
e (n+1)n&3�2

2n (2?)1�2 }
(1&2x)n&1

(xx (1&x)1&x)n+1

}
eq�(1&2x)+e&q�(1&2x)

e1�2 e1�2 (1+O(n&1)),
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where, as before, x=(k+1�2)�(n+1). Let us define two functions

g(x)=(eq�(1&2x)+e&q�(1&2x)) (1&2x)&1 x&x (1&x)x&1,

h(x)=log(1&2x)&x log(x)&(1&x) log(1&x)

on the interval [=, 1�2&=]. Then we can write an (k) as

an (k)=An (x)=
(n+1)n&3�2

2n (2?)1�2 } g(x) en h(x) (1+O(1�n)) .

Let ;r0.0832217 be the unique maximum of h(x) on the interval
[=, 1�2&=] given by the equation h$(;)=&2�(1&2;)&log(;)+log(1&;)
=0. And let :=1�(1&2;). The equation for ; transforms into the defining
equation (11.10) for :.

If g(;){0 or, equivalently, cosh(: q){0, then the functions g(x) and f (x)
satisfy the conditions of Proposition 11.6. Using exactly the same argument
as that in the proof of Theorem 11.1, we can write

:
w(1�2&=) nx

k=W=nX

an (k)t|
(1�2&=) n

=n
an (k) dk=(n+1) |

1�2&=

=
An (x) dx

t
(n+1)n&1

2n g(;) (&h"(;))&1�2 en h(;)

=2e&1 cosh(: q) Cn (n+1)n&1.

Since = can be chosen arbitrarily small, from (11.12) we conclude that bn (q)
is asymptotically equal to 2e&1 cosh(: q) Cn (n+1)n&1.

For asymptotics of the mth derivative of the polynomials bn (q) we need
to replace the function g(x)=cosh( q

1&2x)_( terms that do not depend on q)
by its mth derivative with respect to q. If the value of this derivative for x=;
and certain q # C is nonzero, then we can apply Proposition 11.6 and obtain
the required statement.

If n is even then by (10.4) we can write bn (q) as

bn(q)= :
n�2&1

k=0
\n

k+ ((n&2k+q)n&1&(n&2k&q)n&1)+\ n
n�2+ qn&1 .

The proof in this case goes exactly along the same lines. The additional term
( n

n�2) qn&1 is infinitesimally small with respect to bn (q); cf. (11.8). In this case
we obtain an analogous expression for the asymptotics of bn (q) with
g(x)=(eq�(1&2x)&e&q�(1&2x)) (1&2x)&1 x&x (1&x)x&1 and exactly the
same h(x). This means that in the resulting expression we just replace
cosh(: q) by sinh(: q). The argument about q-derivatives is the same. K
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11.3. Distribution of Degrees of Random Trees

In this section we study a probability distribution on labelled trees
inspired by Section 10.1.

Recall that in Section 10.1, for an arbitrary power series s(t)=
s0+s1t+s2t2�2!+s3 t3�3!+ } } } , s0 {0, we introduced the weighting w~ (T)=
sd0

sd1
} } } sdn

on the set Tn of trees on the vertices 0, 1, ..., n, where d0 , d1 , ..., dn

are the outdegrees of the vertices of a tree T # Tn . We also defined the
numbers gn=�T # Tn

w~ (T).
Let us assume that the si are nonnegative. Let I be the set of indices n for

which gn>0. For n # I, consider the probability distribution on the set Tn

given by PT=w~ (T)�gn for T # Tn . Let Pn (k) be the probability that a
uniformly chosen random vertex of a random tree in Tn has outdegree k, i.e.,

Pn (k)= :
T # Tn

w~ (T)
gn

mk (T)
n+1

,

where mk (T) is the number of vertices in T with outdegree k.

Theorem 11.11. Assume that the series s(t) converges to a holomorphic
nonlinear function on C. Let us fix k�0 and assume that there exists the limit
P(k)=limn � � Pn(k) over n # I. Then

P(k)=
sk :k

s(:) k!
,

where : is the unique positive solution of the equation

s(:)=: s$(:) . (11.13)

We can interpret P(k) as the probability that a ``random vertex'' of an
``infinite random tree'' has outdegree k.

Remark 11.12. It is interesting to find conditions on the function s(t)
that would guarantee that the sequence Pn (k), n # I, converges to a limit.

Example 11.13. Suppose that s0=s1=s2= } } } =1. In this case we have
the uniform distribution on trees in Tn . We have s(t)=et and :=1.
Theorem 11.11 predicts the Poisson distribution for outdegrees of an infinite
random tree:

P(k)=e&1�k! .

In this case it is not hard to calculate Pn (k) explicitly. For example,
Pn (0)=n nn&2�(n+1)n&1 tends to 1�e as n � �.
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Example 11.14. Suppose that s0=s2=1 and si=0 for i=1, 3, 4, 5, ... .
In this case we have the uniform distribution on trees such that each vertex
has outdegree 0 (endpoint) or 2. We have s(t)=1+t2�2 and :=- 2.
Theorem 11.11 predicts the following distribution of outdegrees:

P(0)=P(2)=1�2.

Actually, any tree in T2m with outdegrees 0 or 2 has m+1 endpoints. Thus
the probability that a random vertex is an endpoint tends to 1�2 as m � �.

Example 11.15. Assume that s2m=1 and s2m+1=0, m�0. Then
s(t)=cosh(t). In this case I is the set of nonnegative even numbers. We have
the uniform distribution on the trees in Tn with even outdegrees. These are
exactly odd degree trees if n is even. Thus gn=oddn for even n and gn=0
for odd n. Theorem 11.11 predicts the following distribution of outdegrees of
an infinite random odd degree tree,

P(2m)=
:2m

cosh(:) (2m)!
,

where :r1.1996786 is the unique positive solution of the equation

sinh(:) :=cosh(:) .

Note that we have exactly the same : as the : in Theorem 11.7.

Theorem 11.11 does not guarantee that the limit P(2m) exists. We can
prove that the sequence Pn (2m), n=0, 2, 4, ... converges to a limit using the
results of Section 11.2. For example, the argument with removing an edge
incident to an endpoint shows that, for even n,

Pn (0)t
(n+1) oddn

oddn+1

=
(n+1) bn (1)

bn+1 (1)
.

By Theorem 11.7, we have, for even n,

(n+1) bn(1)
bn+1 (1)

t
sinh(:)

cosh(:) C
}
(n+1)n

(n+2)nt
sinh(:)

cosh(:) C e
=

1
cosh(:)

.

Thus the sequence Pn (0) converges to 1�cosh(:)r0.5524341. In other words,
for large n, around 55.243410 of the vertices of a uniformly chosen random
odd degree tree are endpoints.

In order to prove Theorem 11.11, we need the following trivial statement.
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Lemma 11.16. Let I be an infinite subset of nonnegative integers. Also let
a(x)=�n # I an xn and b(x)=�n # I bn xn be two power series and xc>0 such
that

(a) both series a(x) and b(x) converge for 0<x<xc and diverge at
x=xc ;

(b) we have an , bn>0, n # I, and there exists the limit *=
limn � �, n # I an �bn .

Then there exists the limit limx � xc&0 a(x)�b(x) and it is equal to *.

Proof of Theorem 11.11. Note that I=[n�0 | gn>0] is an infinite set
unless si=0 for all i�1. Let

a(x)= :
n # I

(n+1) Pn (k) gnxn�n!,

b(x)= :
n # I

(n+1) gnxn�n!.

Then Pn (k) is the ratio of the coefficients of xn in a(x) and b(x). By our
assumption Pn (k) converges to the limit P(k). Thus the series a(x) and b(x)
satisfy condition (b) of Lemma 11.16.

We have b(x)= g$(x). Recall that g= g(x) satisfies g=x s(g); see (10.2).
Thus

b(x)=s(g)+xs$(g) d(x),

b(x)=
s(g)

1&xs$(g)
. (11.14)

Let g(k) (x, y) be the following exponential generating function

g(k) (x, y)= :
n�0

:
T # Tn

w~ (T) ymk(T)xn+1�n!.

Clearly,

a(x)=x&1 }�g(k)

�y }y=1

(x).

The function g(k)= g(k) (x, y) satisfies the equation

g(k)=x (s(g(k))+( y&1) skgk
(k) �k!).
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Then

a(x)=x s$(g) a(x)+skgk�k!,

a(x)=
skgk

k! (1&xs$(g))
. (11.15)

Let 0<R�� be the radius of convergence of g(x). All coefficients of the
expansion of s$(g(x)) are nonnegative and at least one of them is nonzero.
Thus r(x)=1&x s$(g(x)) is decreasing for positive x, r(0)=1, and r(x)<0
for sufficiently large x. This implies that there exists a unique xc # ]0, R[
such that

1&xc s$(g(xc))=0. (11.16)

Then (11.14) and (11.15) imply that a(x) and b(x) converge for 0<x<xc

and diverge for x=xc . This shows that the series a(x) and b(x) satisfy the
condition (a) of Lemma 11.16.

Now we show that Eq. (11.13) correctly defines :. All coefficients of the
expansion of p(t)=s(t)&ts$(t) are nonpositive except the constant term
s0>0. Then, as before, p(t) is decreasing for positive t, p(0)>0, and p(t)<0
for sufficiently large t. Thus p(t)=0 has a unique positive solution t=:.
Moreover, := g(xc). Indeed, by (10.2), x= g�s(g). Thus (11.16) is equivalent
to (11.13).

Therefore, by Lemma 11.16, we have

P(k)= lim
x � xc&0

a(x)
b(x)

=
sk g(xc)

k

s(g(xc)) k!
=

sk :k

s(:) k!
. K
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