Chern Forms on Flag Manifolds and Forests (Extended Abstract) Alexander Postnikov Department of Mathematics M.I.T., Cambridge, MA 02139 Boris Shapiro Department of Mathematics University of Stockholm Stockholm, S-10691, Sweden and Mikhail Shapiro Department of Mathematics Royal Institute of Technology Stockholm, S-10044, Sweden November 30, 1997 ### Summary Let \mathcal{A}_n be the ring generated by the Chern 2-forms of n standard hermitian line bundles over the flag manifold $\mathrm{SL}(n,\mathbb{C})/\mathrm{B}$. We prove a conjecture from [3] that the dimension of \mathcal{A}_n is equal to the number of forests on n labelled vertices. We present an explicit construction for a monomial basis in \mathcal{A}_n . More generally, the results naturally extend to a wider class of rings, whose bases are labelled by generalized parking functions. ### 1 Main Results Let $Fl_n = \operatorname{SL}(n,\mathbb{C})/B$ be the manifold of complete flags in \mathbb{C}^n . The manifold Fl_n comes equipped with a flag of tautological vector bundles $E_0 \subset E_1 \subset \cdots \subset E_n$ and associated sequence of line bundles $L_i = E_i/E_{i-1}, i = 1, \ldots, n$. The L_i possess natural hermitian structures induced from the standard hermitian metric $\sum z_i \bar{z}_i$ on \mathbb{C}^n . For $i = 1, \ldots, n$, we denote by w_i the 2-dimensional Chern form (or curvature form) on Fl_n of the hermitian line bundle L_i . The w_i are also called the curvature forms. They represent the Chern classes $c_1(L_i)$ in the 2-dimensional cohomology of Fl_n . The forms w_i are invariant under the action of the unitary group U_n on Fl_n . The main purpose of the present paper is to investigate the ring \mathcal{A}_n generated by the forms w_1, \ldots, w_n . As an additive group, \mathcal{A}_n is a free abelian group. The ring \mathcal{A}_n is graded: $\mathcal{A}_n = \mathcal{A}_n^0 \oplus \mathcal{A}_n^1 \oplus \mathcal{A}_n^2 \cdots$. The component \mathcal{A}_n^k consists of 2k-dimensional forms. The cohomology ring $H^*(Fl_n, \mathbb{Z})$ of the flag manifold is a quotient of the ring \mathcal{A}_n , since the former is generated by the Chern classes $c_1(L_i)$. Recall that a *forest* is a graph without cycles. For a forest F on vertices labelled $1, \ldots, n$, let us construct a tree T by adding a new vertex (root) connected with the maximal vertices in the connected components of F. An *inversion* in F is a pair $1 \le i < j \le n$ such that the vertex labelled j lies on the shortest path in T from the vertex labelled i to the root. Our primary result is the following statement. Its first part was initially conjectured in [3] and the second part was then guessed by R. Stanley. **Theorem 1** The dimension of the ring A_n is equal to the number of forests on n labelled vertices. Moreover, the dimension of a graded component A_n^k is equal to the number of forests on n labelled vertices with exactly $\binom{n}{2} - k$ inversions. To formulate our further results, we need some extra notation. We say that a sequence $a = (a_1, a_2, \ldots, a_n)$ of nonnegative integers is a *strictly parking function* if it satisfies the following two conditions: - 1. For r = 0, 1, ..., n, we have $\#\{i \mid a_i \ge n r\} \le r$. - 2. For $r \in \{1, ..., n\}$ such that $\#\{i \mid a_i \ge n r\} = r$, let $j = \min\{i \mid a_i \ge n r\}$. Then $a_i = n - r$. Let P_n be the set of all strictly parking functions. We remark that a sequence a that satisfies the first of these two condition is usually called a parking function. For a sequence $a = (a_1, \ldots, a_n) \in \mathbb{Z}_+^n$, we denote $w^a = w_1^{a_1} w_2^{a_2} \cdots w_n^{a_n}$. **Theorem 2** The monomial forms w^a , $a \in P_n$, form a linear basis in the ring A_n . Theorem 2 together with the following combinatorial statement imply Theorem 1. Let $|a| = a_1 + a_2 + \ldots + a_n$. **Theorem 3** The number of elements $a \in P_n$ such that |a| = k is equal to the number of forests on n labelled vertices with exactly $\binom{n}{2} - k$ inversions. The proof of this theorem is based on an explicit bijection between forests and strictly parking functions. A description of the ring \mathcal{A}_n in terms of generators and relations was given in [3]. Let \mathcal{I}_n be the ideal in the polynomial ring $\mathbb{Z}[x_1,\ldots,x_n]$ generated by 2^n-1 polynomials of the form $$(x_{i_1} + \dots + x_{i_n})^{r(n-r)+1},$$ (1) where $\{i_1, \ldots, i_r\}$ is any nonempty subset of $\{1, \ldots, n\}$. **Theorem 4** [3] The ring A_n is canonically isomorphic, as a graded ring, to the quotient $\mathbb{Z}[x_1,\ldots,x_n]/\mathcal{I}_n$. The isomorphism is given by sending the generators w_i of A_n to the corresponding x_i . Let us also define the ideal \mathcal{J}_n generated by 2^n-1 monomials of the form $$(x_{i_1}\cdots x_{i_r})^{n-r}x_{i_1}, (2)$$ where $1 \leq i_1 < \cdots < i_r \leq n$ is any nonempty subset of $\{1, \ldots, n\}$. Finally, let $\mathcal{B}_n = \mathbb{Z}[x_1, \ldots, x_n]/\mathcal{J}_n$. **Lemma 5** The monomials x^a , $a \in P_n$, form a linear basis of the ring \mathcal{B}_n . Our proof of Theorem 2 is based on a construction of a sequence of rings that interpolates between \mathcal{A}_n and \mathcal{B}_n . We then prove by induction an analogous statement for all rings in this sequence. Lemma 5 provides the base of the induction. In particular, we deduce the following statement. Corollary 6 The rings A_n and B_n have the same Hilbert series. Let us also consider a more general ring \mathcal{A}_{nk} , $1 \leq k \leq n$, generated by the first k Chern forms w_1, w_2, \ldots, w_k (see [3]). It is not hard to show that \mathcal{A}_{nk} is isomorphic to the ring generated by any k-tuple of the Chern forms w_{j_1}, \ldots, w_{j_k} . It is clear that $\mathcal{A}_{nn} = \mathcal{A}_n$ and $\mathcal{A}_{nn-1} = \mathcal{A}_n$. (The latter is due to the identity $w_1 + \cdots + w_n = 0$.) **Theorem 7** The dimension of the ring A_{nk} is equal to the number of forests on 2n-k labelled vertices such that the first n-k vertices belong to n-k different connected components. Let $f_n(q)$ be the generating function $f_n(q) = \sum_F q^{d(F)}$, where the sum is over all forests F on n+1 labelled vertices and d(F) is the degree of the first vertex, i.e. the number of edges that emanate from it. The previous theorem is equivalent to the following statement. Corollary 8 The dimension of A_{nk} is equal to $f_n(n-k)$. The ring \mathcal{A}_{nk} is canonically isomorphic to the quotient of the polynomial ring $\mathbb{Z}[x_1,\ldots,x_k]$ modulo the ideal generated by 2^k-1 polynomials of the form (1), where $i_1,\ldots,i_r\leq k$. Analogously, let \mathcal{B}_{nk} be the quotient of the polynomial ring $\mathbb{Z}[x_1,\ldots,x_k]$ modulo the ideal generated by 2^k-1 polynomials of the form (2), where $i_1,\ldots,i_r\leq k$. Clearly, both \mathcal{A}_{nk} and \mathcal{B}_{nk} are graded rings. Corollary 6 can be generalized as follows. **Theorem 9** The rings A_{nk} and B_{nk} have the same Hilbert series. ## 2 Remarks and Open Problems A natural open problem is to extend the results to a partial flag manifold SL_n/P , where P is a parabolic subgroup. Let $E_0 \subset E_1 \subset E_2 \subset \ldots \subset E_r = \mathbb{C}^n$, dim $E_k = i_1 + i_2 + \ldots + i_k$, be the tautological bundles over SL_n/P and denote by $L_k(P)$ the quotients E_k/E_{k-1} , $k=1,\ldots,r$. The standard hermitian form in \mathbb{C}^n induces a hermitian structure on each $L_k(P)$ and gives rise to the Chern forms $w_k^1, w_k^2, \ldots, w_k^{i_k}$ of dimensions $2, 4, \ldots, 2i_k$. Explicit formulas for these forms can be found in [1]. Let $\mathcal{A}_n(P)$ be the ring generated by the forms w_k^j . It is a natural extension of the ring \mathcal{A}_n . The cohomology ring $H^*(\mathrm{SL}_n/P,\mathbb{Z})$ is a quotient of the ring $\mathcal{A}_n(P)$. **Problem 10** Investigate the ring $A_n(P)$. Find a description for this ring in terms of generators and relations. Find the dimension of the ring $A_n(P)$ and its Hilbert series. **Remark 11** In the case of the Grassmannian $G_{n,k}$ (i.e. when P is a maximal parabolic subgroup) the ring $\mathcal{A}_n(P)$ coincides with the cohomology ring $H^*(G_{n,k})$, cf. [1]. In particular, its dimension is equal to $\binom{n}{k}$. The ring \mathcal{A}_n is related to the ring of all U_n -invariant forms, which recently appeared in [4, 5]. The latter ring has an additive basis that consists of Eulerian digraphs on n labelled vertices. **Problem 12** Find an explicit description in terms of generators and relations for the ring of all U_n -invariant forms. There is an analogy between the cohomology ring $H^*(Fl_n, \mathbb{Z})$ of the flag manifold and the Orlik-Solomon algebra OS_n of the braid hyperplane arrangement, which consists of all hyperplanes $\{x_i = x_j\}$, $1 \le i < j \le n$. For example, the dimensions of these two algebras are equal to each other. Let OS_n be the Orlik-Solomon algebra of a generic affine deformation of the braid arrangement, which consists of the hyperplanes $\{x_i = x_j + \epsilon_{ij}\}$, where ϵ_{ij} are generic real numbers. The analogy between $H^*(Fl_n, \mathbb{Z})$ and OS_n seems to extend to the ring \mathcal{A}_n on one side and OS_n on the other side. For example, the dimension of OS_n is equal to the number of forests on n labelled vertices, see [2]. It would be interesting to clarify and study this relationship. The authors are grateful to Richard Stanley, Alek Vainshtein, and Andrei Zelevinsky for stimulating discussions. #### References - [1] P. Griffiths and W. Schmid, Locally homogeneous complex manifolds, *Acta Math.* **123** (1969), 253–302. - [2] A. Postnikov and R. Stanley, Deformations of Coxeter hyperplane arrangements, preprint dated April 14, 1997. - [3] B. Shapiro and M. Shapiro, On algebra generated by Bott-Chern 2-forms on SL_n/B , submitted to C. R. Acad. Sci. Paris Sér. I Math. - [4] H. Tamvakis, Bott-Chern forms and arithmetic intersections, preprint alggeom/9611005, 1996. - [5] H. Tamvakis, Arithmetic intersection theory on flag varieties, preprint alggeom/9611006, 1996.