

Discrete Mathematics 226 (2001) 355-358

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Note On characters of Weyl groups

Ron M. Adin^{a,*,1}, Alexander Postnikov^b, Yuval Roichman^{a,1}

^a Department of Mathematics and Computer Science, Bar-Ilan University, Ramat Gan 52900, Israel ^bDepartment of Applied Mathematics, Massachusetts Institute of Technology, MA 02139, USA

Abstract

In this note a combinatorial character formula related to the symmetric group is generalized to an arbitrary finite Weyl group. © 2001 Elsevier Science B.V. All rights reserved.

1. The case of the symmetric group

The length $\ell(\pi)$ of a permutation $\pi \in S_n$ is the number of inversions of π , i.e., the number of pairs (i, j) with $1 \le i < j \le n$ and $\pi(i) > \pi(j)$.

For any permutation $\pi \in S_n$ let $m(\pi)$ be defined as

$$m(\pi) := \begin{cases} (-1)^m & \text{if there exists } 0 \le m < n \text{ so that} \\ & \pi(1) > \pi(2) > \dots > \pi(m+1) < \dots < \pi(n); \\ 0 & \text{otherwise.} \end{cases}$$
 (1)

Let $\mu = (\mu_1, ..., \mu_t)$ be a partition of n, and let $S_{\mu} = S_{\mu_1} \times S_{\mu_2} \times \cdots \times S_{\mu_t}$ be the corresponding Young subgroup of S_n . For any permutation $\pi = r \cdot (\pi_1 \times \cdots \times \pi_t)$, where $\pi_i \in S_{\mu_i}$ $(1 \leq i \leq t)$ and r is a representative of minimal length of a left coset of S_{μ} in S_n , define

$$\operatorname{weight}_{\mu}(\pi) := \prod_{i=1}^{t} m(\pi_i), \tag{2}$$

where $m(\pi_i)$ is defined in S_{μ_i} by (1).

0012-365X/01/\$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

PII: S0012-365X(00)00165-5

^{*} Corresponding author.

E-mail addresses: radin@math.biu.ac.il (R.M. Adin), apost@math.mit.edu (A. Postnikov), yuvalr@math. biu.ac.il (Y. Roichman).

¹ Research supported in part by the Israel Science Foundation and by internal research grants from Bar-Ilan University.

Denote by χ_{μ}^{k} the value, at a conjugacy class of type μ , of the character of the natural S_n -action on the kth homogeneous component of the coinvariant algebra. The following combinatorial character formula was proved in [4, Theorem 1].

Theorem. With the above notations

$$\chi_{\mu}^{k} = \sum_{\{\pi \in S_{n}: \ell(\pi) = k\}} \text{ weight}_{\mu}(\pi).$$

2. Arbitrary weyl group

Let W be an arbitrary finite Weyl group. Denote the set of positive roots by Φ_+ . Let t_α be the reflection corresponding to $\alpha \in \Phi_+$, and let $\check{\alpha}$ be the corresponding coroot. Let α_i be the simple root corresponding to the simple reflection s_i . Denote by \mathfrak{G}_w the Schubert polynomial indexed by $w \in W$.

The following theorem describes the action of the simple reflections on the coinvariant algebra. This theorem is a reformulation of [2, Theorem 3.14 (iii)].

Theorem 1. For any simple reflection s_i in W and any $w \in W$,

$$s_{i}(\mathfrak{G}_{w}) = \begin{cases} \mathfrak{G}_{w} & \text{if } \ell(ws_{i}) > \ell(w) \\ -\mathfrak{G}_{w} + \sum_{\{\alpha \in \Phi_{+} \mid \alpha \neq \alpha_{i} \land \ell(ws_{i}t_{\alpha}) = \ell(w)\}} \alpha_{i}(\check{\alpha})\mathfrak{G}_{ws_{i}t_{\alpha}} & \text{if } \ell(ws_{i}) < \ell(w). \end{cases}$$

Proof. In the above notations, [2, Theorem 3.14 (iii)] states that

$$s_{i}(\mathfrak{G}_{w}) = \begin{cases} \mathfrak{G}_{w} & \text{if } \ell(ws_{i}) > \ell(w), \\ \mathfrak{G}_{w} - \sum_{\{\gamma \in \Phi_{+} | \ell(t_{\gamma}ws_{i}) = \ell(w)\}} w(\alpha_{i})(\check{\gamma})\mathfrak{G}_{t_{\gamma}ws_{i}} & \text{if } \ell(ws_{i}) < \ell(w). \end{cases}$$

Obviously, for any $\gamma \in \Phi_+$ there exists a unique $\alpha \in \Phi_+$ such that $t_{\gamma}ws_i = ws_it_{\alpha}$. In this case $s_iw^{-1}(\gamma) = \alpha$. If $\ell(ws_i) < \ell(w)$ and $t_{\gamma}ws_i \neq w$ then the coefficient of $\mathfrak{G}_{ws_it_{\alpha}} = \mathfrak{G}_{t_{\gamma}ws_i}$ in $s_i(\mathfrak{G}_w)$ is equal to

$$-w(\alpha_i)(\check{\gamma}) = -\alpha_i(w^{-1}(\check{\gamma})) = -\alpha_i(s_i(\check{\alpha})) = \alpha_i(\check{\alpha}).$$

If $t_{\gamma}ws_i = w$ then $t_{\alpha} = s_i$. Hence, the coefficient of \mathfrak{G}_w in $s_i(\mathfrak{G}_w)$ is $1 - w(\alpha_i)(\check{\gamma}) = 1 - \alpha_i(\check{\alpha}) = -1$ if $\ell(s_iw) < \ell(w)$, and 1 otherwise. \square

Let \langle , \rangle be the inner product on the coinvariant algebra defined by $\langle \mathfrak{G}_v, \mathfrak{G}_w \rangle = \delta_{v,w}$ (the Kronecker delta). Theorem 1 implies

Corollary 2. Let s_i be a simple reflection in W, and let $z \in W$ such that $\ell(zs_i) < \ell(z)$. Then for any $w \in W$

$$\langle s_i(\mathfrak{G}_w), \mathfrak{G}_z \rangle = \begin{cases} 0 & \text{if } z \neq w, \\ -1 & \text{if } z = w. \end{cases}$$

Proof. For z=w this follows from the second case of Theorem 1. For $z\neq w$ if $\langle s_i(\mathfrak{G}_w),\mathfrak{G}_z\rangle\neq 0$ then (by Theorem 1) $z=ws_it_\alpha$ for some $\alpha\in\Phi_+$ such that $\alpha\neq\alpha_i$ and $\ell(ws_it_\alpha)=\ell(w)>\ell(ws_i)$. Now, for $\alpha\in\Phi_+$, $\ell(ws_it_\alpha)>\ell(ws_i)$ if and only if $ws_i(\alpha)\in\Phi_+$. On the other hand, $\alpha_i\neq\alpha\in\Phi_+\Rightarrow s_i(\alpha)\in\Phi_+$. Since $ws_i(\alpha)\in\Phi_+$ it follows that $\ell(wt_{s_i(\alpha)})>\ell(w)$. But $wt_{s_i(\alpha)}=ws_it_\alpha s_i$. Hence, $\ell(zs_i)=\ell(ws_it_\alpha s_i)>\ell(w)=\ell(ws_it_\alpha)=\ell(z)$. \square

The following is, surprisingly, an exact Schubert analogue of a useful vanishing condition for Kazhdan–Lusztig coefficients [3, Lemma 4.3].

Corollary 3. Let s_i, s_j be commuting simple reflections in W, and let $w, z \in W$ such that $\ell(ws_i) > \ell(w)$ and $\ell(zs_i) < \ell(z)$. Then

$$\langle s_j(\mathfrak{G}_w), \mathfrak{G}_z \rangle = 0.$$

Proof. Obviously, $z \neq w$. If $\ell(ws_j) > \ell(w)$ then our claim is an immediate consequence of Theorem 1. Assume that $\ell(ws_j) < \ell(w)$, and denote $\langle s_j(\mathfrak{G}_w), \mathfrak{G}_z \rangle$ by $b_z^{(j)}(w)$. By Corollary 2

$$s_i(1+s_j)(\mathfrak{G}_w)=s_i\left(\sum_{\ell(zs_j)>\ell(z)}b_z^{(j)}(w)\mathfrak{G}_z\right)=\sum_{\ell(zs_j)>\ell(z)}b_z^{(j)}(w)s_i(\mathfrak{G}_z).$$

On the other hand, by Theorem 1, \mathfrak{G}_w is invariant under s_i . Thus,

$$s_i(1+s_j)(\mathfrak{G}_w) = (1+s_j)s_i(\mathfrak{G}_w) = (1+s_j)(\mathfrak{G}_w) = \sum_{\ell(zs_j) > \ell(z)} b_z^{(j)}(w)\mathfrak{G}_z.$$

We conclude that

$$\sum_{\ell(zs_i)>\ell(z)} b_z^{(j)}(w)(1-s_i)\mathfrak{G}_z = 0.$$

But

$$\sum_{\ell(zs_j) > \ell(z)} b_z^{(j)}(w)(1 - s_i)(\mathfrak{G}_z) = \sum_{\ell(zs_j) > \ell(z) \land \ell(zs_i) < \ell(z)} b_z^{(j)}(w)(1 - s_i)(\mathfrak{G}_z)$$

$$= \sum_{\ell(zs_j) > \ell(z) \land \ell(zs_i) < \ell(z)} b_z^{(j)}(w) [2\mathfrak{G}_z - \sum_{\ell(ts_i) > \ell(t)} b_t^{(i)}(z)\mathfrak{G}_t].$$

This sum is equal to zero if and only if $b_z^{(j)}(w) = 0$ for all z with $\ell(zs_j) > \ell(z)$ and $\ell(zs_i) < \ell(z)$.

It remains to check the case in which $\ell(zs_j) < \ell(z)$. By assumption $\ell(zs_i) < \ell(z) \Rightarrow z \neq w$. Corollary 2 completes the proof. \square

Let H be a parabolic subgroup of W, which is isomorphic to a direct product of symmetric groups. In the following definition we refer to cycle type and weight_{μ} of elements in H under the natural isomorphism, sending simple reflections of H to simple reflections of W.

Definition. Let μ be a cycle type of an element in H. For any element $w = r \cdot \pi \in W$, where $\pi \in H$ and r is the representative of minimal length of the left coset wH in W, define

$$\operatorname{weight}_{\mu}(w) := \operatorname{weight}_{\mu}(\pi).$$

Here weight_{μ}(π) is defined as in Section 1.

Note that weight_{μ} is independent of the choice of H, provided that H is isomorpic to a direct product of symmetric groups and that μ is the cycle type of some element in H.

Let R^k be the kth homogeneous component of the coinvariant algebra of W. Denote by χ^k the W-character of R^k . Let $v_u \in H$ have cycle type μ . Then,

Theorem 4. With the above notations

$$\chi^k(v_\mu) = \sum_{\{w \in W: \ell(w) = k\}} \operatorname{weight}_{\mu}(w).$$

Proof. Imitate the proof of [4, Theorem 1]. Here Corollary 2 plays the role of [4, Corollary 3.2] and implies an analogue of [4, Corollary 3.3]. Alternatively, one can prove Theorem 4 by imitating the proof of [3, Theorems 1 and 2], where Corollary 3 plays the role of [3, Lemma 4.3]. □

Note. A formally similar result appears also in Kazhdan–Lusztig theory. The Kazhdan–Lusztig characters of W at v_{μ} may be represented as sums of exactly the same weights, but over Kazhdan–Lusztig cells instead of Bruhat levels [3, Corollary 3]. This curious analogy seems to deserve further study. For a q-analogue of the result for the symmetric group see [1]. A q-analogue of Theorem 4 is desired.

References

- R. M. Adin, A. Postnikov, Y. Roichman, Hecke algebra actions on the coinvariant algebra. J. Algebra, to appear.
- [2] I. N. Bernstein, I. M. Gelfand, S. I. Gelfand, Schubert cells and cohomology of the spaces G/P. Usp. Mat. Nauk. 28 (1973) 3–26.
- [3] Y. Roichman, A recursive rule for Kazhdan-Lusztig characters. Adv. Math. 129 (1997) 25-45.
- [4] Y. Roichman, Schubert polynomials, Kazhdan-Lusztig basis and characters. Discrete Math. 217 (2000) 353–365.