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ALCOVED POLYTOPES I

THOMAS LAM AND ALEXANDER POSTNIKOV

Abstract. The aim of this paper is to study alcoved polytopes, which are
polytopes arising from affine Coxeter arrangements. This class of convex poly-
topes includes many classical polytopes, for example, the hypersimplices. We
compare two constructions of triangulations of hypersimplices due to Stanley
and Sturmfels and explain them in terms of alcoved polytopes. We study tri-
angulations of alcoved polytopes, the adjacency graphs of these triangulations,
and give a combinatorial formula for volumes of these polytopes. In particular,
we study a class of matroid polytopes, which we call the multi-hypersimplices.

1. Introduction

The affine Coxeter arrangement of an irreducible crystallographic root system
Φ ⊂ V ≃ Rr is obtained by taking all integer affine translations Hα,k = {x ∈ V |
(α, x) = k}, α ∈ Φ, k ∈ Z, of the hyperplanes perpendicular to the roots. The
regions of the affine Coxeter arrangements are simplices called alcoves. They are
in a one-to-one correspondence with elements of the associated affine Weyl group.
We define an alcoved polytope P as a convex polytope that is the union of several
alcoves. In other words, an alcoved polytope is the intersection of some half-spaces
bounded by the hyperplanes Hα,k:

P = {x ∈ V | bα ≤ (α, x) ≤ cα, α ∈ Φ},

where bα and cα are some integer parameters. These polytopes come naturally
equipped with coherent triangulations into alcoves. Alcoved polytopes include many
interesting classes of polytopes: hypersimplices, order polytopes, some special ma-
troid polytopes, Fomin-Zelevinsky’s generalized associahedra, and many others.
This is the first of two papers about alcoved polytopes. In this paper, we con-
centrate on alcoved polytopes of the Lie type A case and on related combinatorial
objects. In [AP2], we will treat the general case of an arbitrary root system.

Hypersimplices are integer polytopes which appear in algebraic and geometric
contexts. For example, they are moment polytopes for torus actions on Grassman-
nians. They are also weight polytopes of the fundamental representations of the
general linear group GLn. The (k, n)-th hypersimplex can be defined as the slice
of the hypercube [0, 1]n−1 located between the two hyperplanes

∑

xi = k − 1 and
∑

xi = k. It is well-know that the normalized volume of this hypersimplex equals
the Eulerian number Ak,n−1, i.e., the number of permutations of size n − 1 with
k − 1 descents. Stanley [Sta1] explained this fact by constructing a triangulation
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2 THOMAS LAM AND ALEXANDER POSTNIKOV

of the hypersimplex into Ak,n−1 unit simplices. Another construction of a trian-
gulation of the hypersimplex was given by Sturmfels [Stu]. It naturally appears in
the context of Gröbner bases. These two constructions of triangulations are quite
different.

In Section 2, we compare these triangulations and show that they are actually
identical to each other and that they can be naturally described in terms of alcoved
polytopes.1 In Section 3, we extend the descriptions of this triangulation to general
alcoved polytopes, and give a formula for the volume of an alcoved polytope. In
Sections 4–6, we study in detail three examples of alcoved polytopes: the matroid
polytopes, the second hypersimplex and the multi-hypersimplices.

In the second part [AP2] of this paper, we will extend the hypersimplices to all
Lie types and calculate their volumes. We will prove a general theorem on volumes
of alcoved polytopes. We will give uniform generalizations of the descent and major
index statistics, appropriate for our geometric approach.

Some alcoved polytopes have also been studied from a more algebraic perspective
earlier; see [KKMS, BGT].

2. Four triangulations of the hypersimplex

Let us fix integers 0 < k < n. Let [n] := {1, . . . , n} and
(

[n]
k

)

denote the collection

of k-element subsets of [n]. To each k-subset I ∈
(

[n]
k

)

we associate the 01-vector
ǫI = (ǫ1, . . . , ǫn) such that ǫi = 1, for i ∈ I; and ǫi = 0, for i 6∈ I.

The hypersimplex ∆k,n ⊂ Rn is the convex polytope defined as the convex hull

of the points ǫI , for I ∈
(

[n]
k

)

. All these
(

n
k

)

points are actually vertices of the
hypersimplex because they are obtained from each other by permutations of the
coordinates. This (n− 1)-dimensional polytope can also be defined as

∆k,n = {(x1, . . . , xn) | 0 ≤ x1, . . . , xn ≤ 1; x1 + · · ·+ xn = k}.

The hypersimplex is linearly equivalent to the polytope ∆̃k,n ⊂ Rn−1 given by

∆̃k,n = {(x1, . . . , xn−1) | 0 ≤ x1, . . . , xn−1 ≤ 1; k − 1 ≤ x1 + · · ·+ xn−1 ≤ k}.

Indeed, the projection p : (x1, . . . , xn) 7→ (x1, . . . , xn−1) sends ∆k,n to ∆̃k,n. The

hypersimplex ∆̃k,n can be thought of as the region (slice) of the unit hypercube
[0, 1]n−1 contained between the two hyperplanes

∑

xi = k − 1 and
∑

xi = k.
Recall that a descent in a permutation w ∈ Sn is an index i ∈ {1, . . . , n − 1}

such that w(i) > w(i + 1). Let des(w) denote the number of descents in w. The
Eulerian number Ak,n is the number of permutations in Sn with des(w) = k − 1
descents.

Let us normalize the volume form in Rn−1 so that the volume of a unit simplex
is 1 and, thus, the volume of a unit hypercube is (n − 1)!. It is a classical result,
implicit in the work of Laplace [Lap, p. 257ff], that the normalized volume of the
hypersimplex ∆k,n equals the Eulerian number Ak,n−1. One would like to present
a triangulation of ∆k,n into Ak,n−1 unit simplices. Such a triangulation into unit
simplices is called a unimodular triangulation.

In this section we define four triangulations of the hypersimplex ∆k,n. One
triangulation is due to Stanley [Sta1], one is due to Sturmfels [Stu], one arises from

1C. Haase [Haa] reported to us that he also discovered this equivalence (unpublished).
G. Ziegler [Zie] reported that the alcove triangulation of the hypersimplex appeared as an ex-
ample in his 1997/98 class on triangulations.
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the affine Coxeter arrangement of type A and the final one, which is new, we call
the circuit triangulation. The main result of this section, Theorem 2.7, says that
these four triangulations coincide. In addition, we will describe the dual graphs of
these triangulations.

2.1. Stanley’s triangulation. The hypercube [0, 1]n−1 ⊂ Rn−1 can be triangu-
lated into (n−1)-dimensional unit simplices ∇w labelled by permutations w ∈ Sn−1

given by

∇w =
{

(y1, . . . , yn−1) ∈ [0, 1]n−1 | 0 < yw(1) < yw(2) < · · · < yw(n−1) < 1
}

.

Stanley [Sta1] defined a transformation of the hypercube ψ : [0, 1]n−1 → [0, 1]n−1

by ψ(x1, . . . , xn−1) = (y1, . . . , yn−1), where

yi = (x1 + x2 + · · ·+ xi)− ⌊x1 + x2 + · · ·+ xi⌋.

The notation ⌊x⌋ denotes the integer part of x. The map ψ is piecewise-linear,
bijective on the hypercube (except for a subset of measure zero), and volume pre-
serving.

Since the inverse map ψ−1 is linear and injective when restricted to the open
simplices ∇w, it transforms the triangulation of the hypercube given by ∇w’s into
another triangulation.

Theorem 2.1 (Stanley [Sta1]). The collection of simplices ψ−1(∇w), w ∈ Sn−1,
gives a triangulation of the hypercube [0, 1]n−1 compatible with the subdivision of the
hypercube into hypersimplices. The collection of the simplices ψ−1(∇w), where w−1

varies over permutations in Sn−1 with k − 1 descents, gives a triangulation of the

k-th hypersimplex ∆̃k,n. Thus the normalized volume of ∆̃k,n equals the Eulerian
number Ak,n−1.

Proof. Let ψ(x1, . . . , xn−1) = (y1, . . . , yn−1) ∈ ∇w. For i = 1, . . . , n− 2, we have,

⌊x1 + · · ·+ xi+1⌋ =







⌊x1 + · · ·+ xi⌋ if yi < yi+1;

⌊x1 + · · ·+ xi⌋+ 1 if yi > yi+1.

Thus ⌊x1 + · · · + xn−1⌋ = des(w−1). In other words, if des(w−1) = k − 1, then

k − 1 ≤ x1 + · · ·+ xn−1 ≤ k, i.e., (x1, . . . , xn−1) ∈ ∆̃k,n. �

2.2. Sturmfels’ triangulation. Let S be a multiset of elements from [n]. We
define sort(S) to be the unique non-decreasing sequence obtained by ordering the
elements of S. Let I and J be two k-element subsets of [n], and let sort(I ∪
J) = (a1, a2, . . . , a2k). Then we set U(I, J) = {a1, a3, . . . , a2k−1} and V (I, J) =
{a2, a4, . . . , a2k}. For example, for I = {1, 2, 3, 5}, J = {2, 4, 5, 6}, we have sort(I ∪
J) = (1, 2, 2, 3, 4, 5, 5, 6), U(I, J) = {1, 2, 4, 5}, and V (I, J) = {2, 3, 5, 6}.

We say that an ordered pair (I, J) is sorted if I = U(I, J) and J = V (I, J). We
call an ordered collection I = (I1, . . . , Ir) of k-subsets of [n] sorted if (Ii, Ij) is sorted
for every 1 ≤ i < j ≤ r. Equivalently, if Il = {Il1 < · · · < Ilk}, for l = 1, . . . , r,
then I is sorted if and only if I11 ≤ I21 ≤ · · · ≤ Ir1 ≤ I12 ≤ I22 ≤ · · · ≤ Irk. For
such a collection I, let ∇I denote the (r−1)-dimensional simplex with the vertices
ǫI1 , . . . , ǫIr

.

Theorem 2.2 (Sturmfels [Stu]). The collection of simplices ∇I , where I varies
over all sorted collections of k-element subsets in [n], is a simplicial complex that
forms a triangulation of the hypersimplex ∆k,n.
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It follows that the maximal by inclusion sorted collections, which correspond to
the maximal simplices in the triangulation, all have the same size r = n.

Corollary 2.3. The normalized volume of the hypersimplex ∆k,n is equal to the
number of maximal sorted collections of k-subsets in [n].

This triangulation naturally appears in the context of Gröbner bases. Let k[xI ]

be the polynomial ring in the
(

n
k

)

variables xI labelled by k-subsets I ∈
(

[n]
k

)

. Define
the map φ : k[xI ]→ k[t1, t2, . . . , tn] by xI 7→ ti1ti2 · · · tik

, for I = {i1, . . . , ik}. The
kernel of this map is an ideal in k[xI ] that we denote by Jk,n. Recall that a suffi-
ciently generic height function on the vertices ǫI of the hypersimplex ∆k,n induces
a term order on monomials in k[xI ] and defines a Gröbner basis for the ideal Jk,n.
On the other hand, such a height function gives a coherent triangulation of ∆k,n.
This gives a correspondences between Gröbner bases and coherent triangulations.
The initial ideal associated with a Gröbner basis is square-free if and only if the
corresponding triangulation is unimodular. For more details on Gröbner bases, see
Appendix 8.

Theorem 2.4 (Sturmfels [Stu]). The marked set of quadratic binomials

Gk,n =

{

xIxJ − xU(I,J)xV (I,J) | I, J ∈

(

[n]

k

)}

,

is a Gröbner basis for Jk,n under some term order on k[xI ] such that the underlined
term is the initial monomial. The simplices of the corresponding triangulation
are ∇I, where I varies over sorted collections of k-subsets of [n]. Moreover, this
triangulation is unimodular.

In Section 4.1, we state and prove a more general statement.

2.3. Alcove triangulation. The affine Coxeter arrangement of type An−1 is the
arrangement of hyperplanes in Rn−1 given by

H l
ij = {(z1, . . . , zn−1) ∈ R

n−1 | zi − zj = l}, for 0 ≤ i < j ≤ n− 1, l ∈ Z,

where we assume that z0 = 0. It follows from the general theory of affine Weyl
groups, see [Hum], that the hyperplanes H l

ij subdivide Rn−1 into unit simplices,
called alcoves.

We say that a polytope P in Rn−1 is alcoved if P is an intersection of some half-
spaces bounded by the hyperplanes H l

ij . In other words, an alcoved polytope is a
polytope given by inequalities of the form bij ≤ zj − zi ≤ cij , for some collection of
integer parameters bij and cij . We will denote this alcoved polytope by P(bij , cij).
If the parameters satisfy bij = cij − 1, for all i, j, then the corresponding polytope
consists of a single alcove (or is empty). Each alcoved polytope comes naturally
equipped with the triangulation into alcoves. Conversely, if P is a convex polytope
which is a union of alcoves, then P is an alcoved polytope.

Assume that zi = x1 + · · · + xi, for i = 1, . . . , n− 1. The hypersimplex ∆̃k,n is
given by the following inequalities in the z-coordinates:

(1) 0 ≤ z1 − z0, . . . , zn−1 − zn−2 ≤ 1; k − 1 ≤ zn−1 − z0 ≤ k.

Thus the hypersimplex is an alcoved polytope. Let us call its triangulation into
alcoves the alcove triangulation.
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2.4. Circuit triangulation. Let Gk,n be the directed graph on the vertices ǫI ,

I ∈
(

[n]
k

)

, of the hypersimplex ∆k,n defined as follows. Let us regard the indices i
of a vector ǫ = (ǫ1, . . . , ǫn) as elements of Z/nZ. Thus we assume that ǫn+1 = ǫ1.

We connect a vertex ǫ = (ǫ1, . . . , ǫn) with a vertex ǫ′ by an edge ǫ
i
−→ǫ′ labelled by

i ∈ [n] whenever (ǫi, ǫi+1) = (1, 0) and the vector ǫ′ is obtained from ǫ by switching
ǫi and ǫi+1. In other words, each edge in the graph Gk,n is given by cyclically
shifting a “1” in vector ǫ one step to the right to the next adjacent place. It is
possible to perform such a shift if and only if the next place is not occupied by
another “1”.

A circuit in the graph Gk,n of minimal possible length is given by a sequence
of shifts of “1”s so that the first “1” in ǫ moves to the position of the second “1”,
the second “1” moves to the position of the third “1”, and so on, finally, the last
“1” cyclically moves to the position of the first “1”. The length of such a circuit is
n. We will call such circuits in Gk,n is minimal. Here is an example of a minimal
circuit in G26:

(1, 0, 1, 0, 0, 0)
3
−→ (1, 0, 0, 1, 0, 0)

1
−→ (0, 1, 0, 1, 0, 0)

↑6 ↓2

(0, 0, 1, 0, 0, 1)
5
←− (0, 0, 1, 0, 1, 0)

4
←− (0, 0, 1, 1, 0, 0)

The sequence of labels of edges in a minimal circuit forms a permutation w =
w1 · · ·wn ∈ Sn. For example, the permutation corresponding to the above minimal
circuit is w = 312456.

If we do not specify the initial vertex in a minimal circuit, then the permutation
w is defined modulo cyclic shifts w1 . . . wn ∼ wnw1 . . . wn−1. By convention, we
will pick the representative w of the class of permutations modulo cyclic shifts such
that wn = n. This corresponds to picking the initial point in a minimal circuit with

lexicographically maximal 01-vector ǫ. Indeed, if ǫ
i
−→ ǫ′ is an edge in Gk,n, then

ǫ > ǫ′ in the lexicographic order, for i = 1, . . . , n− 1; and ǫ < ǫ′, for i = n.

Lemma 2.5. A minimal circuit in the graph Gk,n is uniquely determined by the
permutation w modulo cyclic shifts. A permutation w ∈ Sn such that wn = n corre-
sponds to a minimal circuit in the graph Gk,n if and only if the inverse permutation
w−1 has exactly k − 1 descents.

Proof. The inverse permutation w−1 has a descent for each pair (i < j) such that
b = wi = wj + 1. Thus a “1” was moved from the b-th position to the (b + 1)-th
position in ǫ before a “1” was moved from the (b−1)-th position to the b-th position.
(Here ǫ denotes the initial vertex of the corresponding circuit.) This happens if and
only if ǫb = 1. Since ǫ has k “1”s, this happens exactly k times. But the occurrence
corresponding to w−1(n) = n > w−1(1) is not counted as a descent, so w−1 has
exactly k − 1 descents. Conversely, if w−1 has k − 1 descents, then we obtain a
vector ǫ with k “1”s, so that w corresponds to a minimal circuit containing ǫ. �

For a permutation, w = w1 . . . wn ∈ Sn, let (w) denote the long cycle in Sn

given by (w) = (w1, . . . , wn) in cycle notation. Two permutations u,w ∈ Sn are
equivalent modulo cyclic shifts if and only if (u) = (w). The reader should not
confuse circuits in the graph Gk,n with cycles in the symmetric group Sn.

Let Ck,n denote the set of long cycles (w) = (w1, . . . , wn−1, n) ∈ Sn such that
w−1 has exactly k− 1 descents. For (w) ∈ Ck,n, let c(w) be the corresponding min-
imal circuit in the graph Gk,n, whose edges are labelled by w1, . . . , wn. Lemma 2.5
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shows that that the map (w) 7→ c(w) is one-to-one correspondence between the set
long cycles Ck,n and the set of minimal circuits in Gk,n.

Each minimal circuit c(w) in Gk,n determines the simplex ∆(w) inside the hyper-
simplex ∆k,n with the vertex set c(w).

Theorem 2.6. The collection of simplices ∆(w) corresponding to all minimal cir-
cuits in Gk,n forms a triangulation of the hypersimplex ∆k,n.

Let us call this triangulation of the hypersimplex the circuit triangulation.

Theorem 2.7. The following four triangulations of the hypersimplex are identical:
Stanley’s triangulation, Sturmfels’ triangulation, the alcove triangulation, and the
circuit triangulation.

Let us prove Theorems 2.6 and 2.7 together. Let Γk,n be the collection of (max-
imal) simplices of the triangulation of Theorem 2.7.

Proof. The fact that Stanley’s triangulation coincides with the alcove triangulation
follows directly from the definitions. We leave this as an exercise for the reader.

Let us show that the simplices ∆(w) are exactly those in Sturmfels’ triangulation.
An ordered pair of subsets I = {i1 < · · · < ik} and J = {j1 < · · · < jk} is sorted
if and only if the interleaving condition i1 ≤ j1 ≤ i2 ≤ j2 ≤ · · · ≤ jk is satisfied.
When two vertices ǫI and ǫJ belong to the same minimal circuit, a “1” from ǫI is
moved towards the right in ǫJ but never past the original position of another “1”
in ǫI . Thus the interleaving ia ≤ ja ≤ ia+1 condition is satisfied, and similarly we
obtain the other interleaving inequalities. Conversely, the interleaving condition
implies that each sorted collection belongs to a minimal circuit in Gk,n.

Let us now show that the circuit triangulation coincides with Stanley’s triangu-
lation. Recall that the latter triangulation occurs in the space Rn−1. To be more
precise, in order to obtain Stanley’s triangulation we need to apply the projection
p : (x1, . . . , xn) 7→ (x1, . . . , xn−1) to the circuit triangulation. Let us identify a
permutation w = w1 · · ·wn−1 ∈ Sn−1 with k − 1 descents with the permutation
w1 · · ·wn−1n ∈ Sn.

We claim that the projected simplex p(∆(w)) is exactly the simplex ψ−1(∇w)

in Stanley’s triangulation. Indeed, the map ψ−1 : (y1, . . . , yn−1) 7→ (x1, . . . , xn−1)
restricted to the simplex ∇w =

{

0 < yw(1) < · · · < yw(n−1) < 1
}

, is given by x1 =
y1 and

xi+1 =

{

yi+1 − yi if w−1(i+ 1) > w−1(i),
yi+1 − yi + 1 if w−1(i+ 1) < w−1(i)

for i = 1, . . . , n − 2. The vertices of the simplex ∇w are the points v0, . . . , vn−1 ∈
R

n−1 such that vr = (y1, . . . , yn−1) is given by yw(1) = · · · = yw(r) = 0 and

yw(r+1) = · · · = yw(n−1) = 1. The map ψ−1 sends the vertex v0 = (0, . . . , 0) to the

point (x1, . . . , xn−1) such that x1 = 0 and xi+1 = 1 if w−1(i + 1) < w−1(i) and
xi+1 = 0 if w−1(i+1) > w−1(i), for i = 1, . . . , n−2. The vertex vr is obtained from
vr−1 by changing yw(n−r) from 0 to 1. Thus ψ−1(vr) differs from ψ−1(vr−1) exactly
in the coordinates xw(n−r) and xw(n−r)+1. Here xn = k − (x1 + . . . + xn−1). In

fact, going from ψ−1(vr−1) to ψ−1(vr) we move a “1” from xw(n−r)+1 to xw(n−r).
Finally, moving from vn−1 to v0 we are changing x1 from 1 to 0. Thus as we go
from ψ−1(vr) to ψ−1(vr+1) we are traveling along the edges of the graph Gk,n in
the reverse direction. So the vertices ψ−1(vr) of the simplex ψ−1(∇w) are exactly
the vertices of p(∆(w)). This completes the proof of the theorem. �
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Remark 2.8. An explicit bijection θ between maximal sorted collections of k-
subsets of [n] and permutations w ∈ Sn with k − 1 descents satisfying wn = n
can be constructed as follows. Let I = (I1, . . . , In) be such a collection. Every
number in [n] must occur in

⋃

i Ii. Set (a1, . . . , akn) = sort(
⋃

i Ii). Let αk be such
that aαk

= k and aαk+1 = k + 1. Then θ(I) = w1w2 · · ·wn−1n, where wi ≡ αi

(mod n − 1) with representatives taken from [n − 1]. This bijection is compatible
with the correspondences in Theorem 2.7. For example, αi modn− 1 tells us when
a “1” is moved from ǫi to ǫi+1 where by convention a “1” is moved from ǫn to ǫ1
in the last edge of a circuit.

2.5. Adjacency of maximal simplices in the hypersimplex. Let us say that
two simplices in a triangulation are adjacent if they share a common facet. Let us
describe the adjacent simplices in the triangulation Γk,n, using first the construction
of the circuit triangulation.

Theorem 2.9. Two simplices ∆(u) and ∆(w) of Γk,n are adjacent if and only if
there exists i = 1, . . . , n such that ui − ui+1 6= ±1 (mod n) and the cycle (w) is
obtained from (u) by switching ui with ui+1, i.e., (w) = (ui, ui+1)(u)(ui, ui+1).
Here again we assume that un+1 = u1.

Proof. The two simplices ∆(u) and ∆(w) are adjacent if and only if exactly one pair
of their vertices differ. This means that the corresponding minimal circuits c(u)

and c(w) differ in exactly one place. Let ǫ′
ui−→ ǫ

ui+1

−→ ǫ′′ be three vertices in order
along the minimal cycle c(u). Then we can obtain another cycle c(w) from c(u) by

changing only ǫ if and only if ui − ui+1 6= ±1 (mod n) so that ǫ′
ui+1

−→ ǫ∗
ui−→ ǫ′′

are valid edges. When ui− ui+1 = ±1 (mod n) we are either moving the same “1”
twice or moving two adjacent “1”s one after another. In both cases, the order of
the shifts cannot be reversed, and so ǫ cannot be replaced by another vertex. �

Alternatively, let I = (I1, . . . , In) be a sorted subset corresponding to the maxi-
mal simplex ∇I of Γk,n. Let t ∈ [n] and It = {i1, i2, . . . , ik}. Then we can replace

It in I by another I ′t ∈
(

[n]
k

)

to obtain an adjacent maximal simplex ∇I′ if and
only if the following holds. We must have I ′t = {i1, . . . , i

′
a, . . . , i

′
b, . . . , ik} for some

a 6= b ∈ [n] and i′a 6= i′b, satisfying ia − i
′
a = i′b − ib = ±1 (mod n) and also both

k-subsets {i1, . . . , i
′
a, . . . , ib, . . . , ik} and {i1, . . . , ia, . . . , i

′
b, . . . ik} must lie in I. For

example, we may replace {1, 3, 5, 8} by {1, 2, 6, 8} if and only if both {1, 2, 5, 8} and
{1, 3, 6, 8} lie in I.

Γ1,4 = 1234

Γ2,4 =

1324 3124

23142134

Γ3,4 = 3214

Figure 1. The graphs of the triangulations of ∆1,4,∆2,4 and ∆3,4.
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34125

Γ2,5 =

23415 41235

31425

23145 14235

21345 12435

13425 31245

13245

Figure 2. Graph of the triangulation of the hypersimplex ∆2,5.

We can give Γk,n the structure of a graph by letting the simplices be the vertices
and letting an edge join two simplices if the two simplices are adjacent. Figures 1
and 2 give examples of these graphs which we will also denote as Γk,n.

We will investigate degrees of vertices in these graphs for k = 2 in Section 5.2.

3. Triangulations and volumes of alcoved polytopes

In this section, we generalize (Theorem 3.1) the triangulations of Section 2 to
all alcoved polytopes (see Section 2.3). As a consequence of these descriptions of
the alcove triangulation, we obtain a curious formula (Theorem 3.2) expressing the
volume of an alcoved polytope as a sum of the number of lattice points in certain
other alcoved polytopes. This formula has a root system theoretic explanation
which we give in [AP2]. Finally, we explain a construction of the dual graph of the
alcove triangulation, which we call the alcove lattice.

3.1. Triangulations of alcoved polytopes. Let P = P(bij , cij) ⊂ Rn be an
alcoved polytope which we realize in the x-coordinates. In other words, P is a
(n− 1)-dimensional polytope lying in a hyperplane x1 + x2 + · · ·+ xn = k for some
k ∈ Z; and given by the inequalities bij ≤ xi+1 + · · ·+ xj ≤ cij for each pair (i, j)
satisfying 0 ≤ i < j ≤ n − 1. By translating P by (m, . . . ,m) for some m ∈ Z to
obtain an affinely equivalent polytope, we can assume that all the coordinates of
the points of P are non-negative. Let ZP = P ∩ Zn ⊂ Nn denote the set of integer
points lying inside P .

Let GP be the directed graph defined as follows in analogy with Gk,n in Sec-
tion 2.4. The graph GP has vertices labelled by points a ∈ ZP . Two vertices
a, b ∈ ZP are connected by an edge a → b labelled i if there exists an index
i ∈ [1, n] such that a+ ei+1 − ei = b, where ei, ei+1 are the coordinate vectors and
en+1 := e1. Let CP denote the set of minimal circuits of GP , which have length n.

For an integer vector a = (a1, a2, . . . , an) ∈ Nn with non-negative coordinates
lying on x1+x2+ · · ·+xn = k, we let Ia denote the multiset of size k of {1, 2, . . . , n}
with a1 1’s, a2 2’s and so on. If I, J are multisets of size k with elements from
{1, 2, . . . , n} then we can define U(I, J) and V (I, J) by sorting I∪J as in Section 2.2.
Similarly, we define the notions of sorted and sort-closed for collections of multisets.
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In the following theorem, note that ZP and GP are defined without needing P to
be alcoved.

The proof of the following theorem is exactly analogous to the arguments of
Theorem 2.7.

Theorem 3.1. Let P ⊂ Rn be a (n−1)-dimensional polytope lying in x1+x2+· · ·+
xn = k so that all points of P have non-negative coordinates. Then the following
are equivalent:

(1) P is an alcoved polytope.
(2) The set I = {Ia | a ∈ ZP} is sort-closed. A triangulation of P consists of

the maximal simplices with vertices {a1, a2, . . . , an} for each sorted collec-
tion (Ia1

, Ia2
, . . . , Ian

) where Iak
∈ I.

(3) The set CP of minimal circuits of GP gives rise to a triangulation of
P: if C = (c(1), c(2), . . . , c(n)) ∈ CP then a maximal simplex is given by
conv(c(1), c(2), . . . , c(n)).

When these conditions hold, all the three above triangulations agree.

An alcoved polytope also gives rise to a Gröbner basis GP of the associated toric
ideal JP . The reader will be able to write it down following Section 4.1.

Let us identify w ∈ Sn−1 with w1w2 · · ·wn−1n ∈ Sn as usual. Recall that ∆(w)

denotes the simplex (ψ ◦ p)−1(∇w) where we view p as a map from {x ∈ R
n |

x1 + . . .+ xn = k} to Rn−1. For an alcoved polytope P , define the polytopes P(w)

by

P(w) =
{

x ∈ R
n | (∆(w) + x) ⊂ P

}

.

Denote by I(P) the number |Zn ∩ P| = #ZP of lattice points in P .

Theorem 3.2. Each of the polytopes P(w) is an alcoved polytope. The normalized
volume of P is given by

Vol(P) =
∑

w

I(P(w))

where the sum is over all permutations w ∈ Sn−1.

Proof. The alcoved triangulation is obtained by copying and translating the trian-
gulations of Theorem 2.7 by an integer vector so that the corresponding simplices
cover the polytope P . For example, if (c(1), c(2), . . . , c(n)) ∈ CP then there exists
c ∈ Zn so that c(i)− c is a 0-1 vector for each i. Thus (c(1)− c, c(2)− c, . . . , c(n)− c)
is a minimal circuit in some Gk,n corresponding to some simplex ∆(w); see Sec-

tion 2.4. The simplex ∆(w) + c = conv(c(1), c(2), . . . , c(n)) will correspond to the

circuit (c(1), c(2), . . . , c(n)). This proves the second statement of the theorem.
Let P be given by the inequalities bij ≤ xi+1+· · ·+xj ≤ cij within the hyperplane

x1 + x2 + . . . + xn = l. We check that P(w) is an alcoved polytope. In fact this
follows from the fact that ∆(w) is itself an alcoved polytope and is given by some
inequalities dij ≤ xi+1 + · · · + xj ≤ fij and a hyperplane x1 + x2 + . . . + xn = k,
where we pick dij and fij so that all equalities are achieved by some point in ∆(w).
Then P(w) is the intersection of the inequalities bij−dij ≤ xi+1 + · · ·+xj ≤ cij−fij

with the hyperplane x1 + x2 + . . . + xn = l − k, which by definition is an alcoved
polytope. �

For the hypersimplex, all the polytopes P(w) are either empty or a single point.
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To conclude this section, we give one further interpretation of the volumes of
alcoved polytopes in terms of maps of the circle with marked points. Let S1 be the
unit circle and let S1

(n) denote a circle with n distinct marked points p0, p1, . . . , pn−1

arranged in clockwise order. Let P be an alcoved polytope with parameters bij and
cij as in Section 3.1. Let MP denote the set of homotopy classes of continuous
maps f : S1

(n) → S1 satisfying:

• The map f is always locally bijective and locally orientation preserving.
Informally, this means that f traces out S1 in the clockwise direction and
never stops.
• The images of marked points are distinct.
• For each 0 ≤ i < j ≤ n− 1, The number d of pre-images of f(pi) under f

in the open interval (pi, pj) satisfies bij ≤ d < cij .

Two maps f and g belong to the same homotopy class if and only if they can be
deformed into one another by a homotopy, in the usual sense, while always satis-
fying the conditions above. The following proposition follows from the preceding
discussion.

Proposition 3.3. Let P be an alcoved polytope. Then the simplices in the trian-
gulation ΓP are in bijection with the elements of MP .

3.2. Alcove lattice and alcoved polytopes. Define the alcove lattice Λn as
the infinite graph whose vertices correspond to alcoves (i.e., regions of type An−1

affine Coxeter arrangement) and edges correspond to pairs of adjacent alcoves. For
example, Λ3 is the infinite hexagonal lattice. For an alcoved polytope P , define its
graph ΓP as the finite subgraph of Λn formed by alcoves in P . For the graphs of
Section 2.4, we have Γk,n = Γ∆k,n

.
According to [LP, Sect. 14], we have the following combinatorial construction of

the lattice Λn. Let [λ0, . . . , λn−1] denote an element of Zn/(1, . . . , 1)Z. In other
words, we assume that [λ0, . . . , λn−1] = [λ′0, . . . , λ

′
n−1] whenever the λ′i are obtained

from the λi by adding the same integer. The vertices of Λn can be identified with
the following subset of Zn/(1, . . . , 1)Z, see [LP]:

Λn = {[λ0, . . . , λn−1] | the integers λ0, . . . , λn−1 have different residues modulo n}.

Two vertices [λ0, . . . , λn−1] and [µ0, . . . , µn−1] of Λn are connected by an edge
whenever there exists a pair (i, j), 0 ≤ i 6= j ≤ (n−1), such that λi +1 ≡ λj mod n
and (µ0, . . . , µn−1) = (λ0, . . . , λn−1)+ei−ej, where ei, ej are the coordinate vectors
in Z

n. In this construction, λ0, . . . , λn−1 are the z-coordinates of the central point of
the associated alcove scaled by the factor n, see [LP]. This construction immediately
implies the following description of the graph of the alcoved polytope P(bij , cij),
defined as in Section 2.3.

Proposition 3.4. For an alcoved polytope P = P(bij , cij), its graph ΓP is the
induced subgraph of Λn given by the subset of vertices

{[λ0, . . . , λn−1] ∈ Λn | n · bi,j ≤ λi − λj ≤ n · ci,j , for i, j ∈ [0, n− 1]} .

The vertices of the graph ΓP are in bijection with the elements of CP defined in
the previous section. Let C = (c(1), c(2), . . . , c(n)) ∈ CP be a minimal circuit in the
graph ΓP . The integer points {c(1), c(2), . . . , c(n)} are the vertices of an alcove AC ,
in the x-coordinates. The vertex [λ1, λ2, . . . , λn] of Λn associated to AC is given
by λi = α1 + α2 + · · ·+ αi where α := (α1, . . . , αn) is given by α =

∑n
i=1 c

(i). The
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point 1
n
[λ1, λ2, . . . , λn] ∈ Rn/(1, . . . , 1)R is the central point of the alcove AC in the

z-coordinates.

Example 3.5. The k-th hypersimplex is given by inequalities (1). Thus the vertex
set of the graph Γ∆k,n

is the subset of Λn given by the inequalities 0 ≤ λ1−λ0, λ2−
λ1, . . . , λn−1 − λn−2 ≤ n, and (k − 1) · n ≤ λn−1 − λ0 ≤ k · n.

One can give an abstract characterization of subgraphs of Λn corresponding to
alcoved polytopes. Let us say that an induced subgraph H of some graph G is
convex if, for any pair of vertices u, v in H , and any path P in G from u to v of
minimal possible length, all vertices of P are in H . In [AP2], we will prove, in the
more general context of an arbitrary Weyl group, that an induced subgraph Γ in
Λn is the graph of some alcoved polytope if and only if Γ is convex.

4. Matroid polytopes

Let M be a collection of k-subsets of [n]. The polytope PM is the convex hull
in R

n of the points {ǫI | I ∈ M} and is a subpolytope of the hypersimplex ∆k,n. In
this section we classify the polytopes PM that are alcoved and in these cases give
a combinatorial interpretation for their volumes.

Our main interest lies in the case when M is a matroid on the set [n]. In this
case the polytopes PM are known as matroid polytopes – we give explicit examples
of matroid polytopes which are alcoved. Matroid polytopes have recently been
studied intensively, motivated by applications to tropical geometry [FS, Spe]: the
amoeba of a linear subspace V ⊂ Cn is asymptotically described by its Bergman
fan, and this fan is closely related to the normal fan of the matroid polytope PM

of the matroid of V ; see also [AK]. Some of the results in this section have been
obtained earlier by Blum [Blu] in the context of Koszul algebras.

4.1. Sort-closed sets.

Definition 4.1. A collection M of k-subsets of [n] is sort-closed if for every two
elements I and J in M, the subsets U(I, J) and V (I, J) are both in M.

A sorted subset of M is a subset of the form {I1, . . . , Ir} ⊂ M such that
(I1, . . . , Ir) is a sorted collection of k-subsets of [n].

Theorem 4.2. The triangulation Γk,n of the hypersimplex induces a triangulation
of the polytope PM if and only if M is sort-closed. The normalized volume of PM

is equal to the number of sorted subsets of M of size dim(PM) + 1.

The proof is analogous to that of Theorem 2.4. We work in the polynomial ring
k[xI | I ∈ M]. The ideal JM is the kernel of the ring homomorphism φ : k[xI |
I ∈ M] → k[t1, t2, . . . , tn] given by xI 7→ ti1ti2 · · · tik

, for I = {i1, . . . , ik}. The
following result is essentially equivalent to [Blu, Proposition 3.1].

Proposition 4.3. Suppose thatM is sort-closed. Then there is a term order, ≺M,
on k[xI |I ∈ M] so that the reduced Gröbner basis of JM is given by the nonzero
marked binomials of the form

(2)
{

xIxJ − xU(I,J)xV (I,J)

}

with the first monomial being the leading term.
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(Sketch of proof.) Since this proof is essentially the same as that of Sturmfels
in [Stu, Chapter 14], we will only sketch the argument; see Appendix 8 for back-
ground.

We say a monomial xAxB · · ·xV = xa1···ak
xb1···bk

· · ·xv1···vk
is sorted if the or-

dered collection of sets (A,B, . . . , V ) is sorted. If a monomial is not sorted, then
there is a pair of adjacent variables xIxJ which is unsorted. Using the binomial
xIxJ − xU(I,J)xV (I,J) we can sort this pair. We can sort a monomial modulo the
ideal generated by the marked binomials of (2) in a finite number of steps. Us-
ing [Stu, Theorem 3.12], we conclude that there is a term order ≺M which selects
the marked term for each binomial of (2). Finally, one checks that the sorted
monomials are exactly the ≺M-standard monomials. �

Proof of Theorem 4.2. The ‘if’ direction follows from Proposition 4.3 and Theo-
rem 8.1. We may assume that ≺M arises from a weight vector since only finitely
many binomials are involved in (2). For the ‘only if’ direction, suppose P = PM

is a convex polytope which is a union of simplices in Γk,n. Since the triangulation
Γk,n is coherent, this triangulation ΓP is also coherent. We know already that all
the faces of ΓP are sorted collections of k-subsets of [n] (if we identify a simplex
with its set of vertices). By the correspondence of Theorem 8.1 and Proposition 8.2,
ΓP arises from some term-order ≺M which gives rise to an initial ideal which is the
Stanley-Reisner ideal of the triangulation ΓP . Let (I, J) ∈ M×M not be sorted,
then m1 = xIxJ ∈ in≺M

(JM). As in the proof of Proposition 4.3, this means there
is another monomial m2 so that m1 − m2 ∈ JM. After a finite iteration of this
argument, we see that xIxJ = xAxB modJM for some ≺M-standard monomial
xAxB . But this means that xAxB must be a sorted monomial since it is an edge
of an alcove. Thus A = U(I, J) and B = V (I, J) satisfy A,B ∈ M so that M is
sort-closed. �

4.2. Sort-closed matroids. Let k and n be positive integers satisfying k ≤ n. A
(non-empty) collection M of k-subsets (called bases) of [n] (the ground set) is a
matroid if it satisfies the following axiom (Exchange Axiom):

Let I and J be two bases of M. Then for any i ∈ I there exists
j ∈ J so that (I − {i}) ∪ {j} is a base ofM.

The matroid M is then said to be a rank k matroid on n elements. If I is a base
of M we write I ∈ M. To a matroid M (of rank k on n elements) we associate
the matroid polytope PM as in Section 4.1. We say that M is sort-closed if it
is sort-closed as a collection of k-subsets. Thus by Theorem 4.2, the triangulation
Γk,n of the hypersimplex induces a triangulation of the polytopes PM for sort-closed
matroidsM. Sort-closed matroids were introduced by Blum [Blu], who called them
base-sortable matroids.

We now describe two classes of matroids which are sort-closed. Let Π be a
set partition of [n] with parts {πi}

r
i=1 of sizes |πi| = ai, and b = (b1, . . . , br),

c = (c1, . . . , cr) be two sequences of non-negative integers. We will call the data
(Π, b, c) a weighted set partition. Define MΠ,b,c,k to be the collection of k-subsets
I of [n] such that

(3) bj ≤ |I ∩ πj | ≤ cj

for all j.

Lemma 4.4. The collection of k-subsetsMΠ,b,c,k defined above is a matroid.
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Proof. Let I and J be two such subsets and i ∈ I, say i ∈ πs for some s. If
|I ∩ πk| = |J ∩ πk| for all k or if |I ∩ πs| ≤ |J ∩ πs|, one can again find some
j ∈ J ∩πs− (I−{i})) to add to I−{i} form a base. Otherwise there is some t such
that |I ∩ πt| < |J ∩ πt| ≤ ct in which case one can find some j ∈ (J ∩ πt) to add to
I − {i} without violating any of the inequalities in (3). This verifies the exchange
axiom. �

This class of matroids is closed under duality. The dual ofMΠ,b,c,k isMΠ,b′,c′,n−k

where b′j = |πj | − cj and c′j = |πj | − bj. We call the polytope ∆Π,b,c,k associated to
the matroidMΠ,b,c,k a weighted multi-hypersimplex. When bj = 0 and cj = 1 for all
j we will denote the matroid and polytope byMΠ,k and ∆Π,k respectively, and we
call the polytope ∆Π,k a multi-hypersimplex. Up to affine equivalence the polytope
∆Π,k depends only on the multiset {ai}

r
i=1. The polytope ∆Π,k is the intersection

of the hyperplane x1+· · ·+xn = k with a product of simplices ∆Π ≃ ∆a1
×· · ·×∆ar

just as the hypersimplices are slices of cubes. In the z-coordinates, this polytope is
determined by intersecting the hypersimplex ∆̃k,n with the inequalities

0 ≤ za1
− z0 ≤ 1; 0 ≤ za1+a2

− za1
≤ 1; . . . ; 0 ≤ zn − za1+a2+···+ar−1

≤ 1

where we assume zn = k. A weighted multi-hypersimplex can be viewed as a slice
of a product of unions of hypersimplices. In particular, when bj = cj − 1 for all j,
the polytope ∆Π,b,c,k is the slice x1 + · · ·+ xn = k of

∆Π,b,c ≃ ∆̃c1,a1+1 × ∆̃c2,a2+1 × · · · × ∆̃cr,ar+1

where the hypersimplex ∆̃ci,ai
(in the notation of Section 2) lives in the coordinates

(xa1+···+ai−1+1, . . . , xa1+···+ai
). Let Π(a1, . . . , ar) denote the set partition

{π1 = {1, . . . , a1} , . . . , πr = {a1 + . . .+ ar−1 + 1, . . . , a1 + . . .+ ar = n}} .

Proposition 4.5. The matroid MΠ,b,c,k with Π = Π(a1, . . . , ar) and any b, c ∈ Nr

is sort-closed.

Proof. Let I, J ∈ MΠ,b,c,k. Suppose to the contrary that one of U(I, J) or V (I, J)
were not a base. Let (q1, q2, . . . , q2k) = sort(I∪J). If |U(I, J)∩πs| > cs or |V (I, J)∩
πs| > cs then it must be the case that for some i the entries qi, qi+2, . . . , qi+2cs

belonged to the same part πs ∈ Π. Then qi+1, qi+3, . . . , qi+2cs−1 belong to πs as
well since qi+2k ≤ qi+2k+1 ≤ qi+2k+2. This is impossible as I and J were legitimate
bases to begin with and contain at most cs elements from πs each. A similar
argument guarantees that |U(I, J) ∩ πs| ≥ bs and |V (I, J) ∩ πs| ≥ bs for all s. �

A matroidM is cyclically transversal if it is a transversal matroid specified by a
set of (not necessarily disjoint) cyclic intervals {S1, . . . , Sk} of [n]. Recall that the
bases of a transversal matroid are the k-element subsets I = {i1, . . . , ik} of [n] such
that is ∈ Ss.

Proposition 4.6 ([Blu, Theorem 5.2 (without proof)]). Let M be a cyclically
transversal matroid defined by the subsets {S1, . . . , Sk}. Then M is sort-closed.

Since the proof is omitted in [Blu], we give a simple direct proof here.

Proof. Let I be a k-element subset of [n]. By the Hall marriage theorem, I is a
base ofM if and only if

(4) |I ∩
⋃

r∈R

Sr| ≥ |R|
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for every subset R of [k]. Now let I and J be bases ofM and we now check (4) for
U(I, J) and V (I, J). Since each Si is a cyclic interval of [n] it suffices to consider
the case where

⋃

r∈R Sr is itself a cyclic interval [a, b]. By hypothesis, the multiset
I ∪ J intersects [a, b] in at least 2|R| elements. Thus each of U(I, J) and V (I, J)
will intersect [a, b] in at least |R| elements. �

Let us describe PM ⊂ Rn for a cyclically transversal matroid explicitly in terms
of inequalities. It is given by the hyperplane x1 +x2 + · · ·+xn = k, the inequalities
0 ≤ xi ≤ 1 together with the inequalities

∑

s∈SR

xs ≥ |R|

with SR =
⋃

r∈R Sr for every subset R of [k].
We end this section with the question: what other matroids are sort-closed?

5. The second hypersimplex

There is a description of the triangulation of the second hypersimplex, developed
in [LST] and [Stu, Chapter 9], in terms of graphs known as thrackles. In this section,
we apply this description to rank two matroids, and give a precise description of
the dual graph of the triangulation.

Triangulations of the second hypersimplex ∆2,n arise in the study of metrics on
a finite set of points [Dre], and recently a thorough classification of the triangula-
tions of ∆(2, 6) was performed in [SY]. This classification of triangulations is an
important problem in phylogenetic combinatorics. Our study of the dual graphs
of the triangulations is partly motivated by this connection: the graph Γ2,n of the
triangulation is essentially what is known as the tight span of the corresponding
metric, and generalizes the phylogenetic trees derived from the metric; see [Dre].

5.1. Thrackles and rank two matroids. When the rank k is equal to two (which
we will assume throughout this section), every matroidM arises asMΠ,2 for some
set partition Π. Throughout this section we will assume that Π has the form
Π = Π(a1, . . . , ar). Following [Stu, Chapter 9] and [LST], we associate a graph on
[n] to each maximal simplex of the matroid polytopeMΠ,2. The vertices are drawn
on a circle so that they are labelled clockwise in increasing order. Throughout this
section, a “graph on [n]” will refer to such a configuration of the vertices in the
plane. Since the bases are two element subsets of [n], we may identify them with
the edges.

Lemma 5.1. Let A = (a1, a2) and B = (b1, b2) be two bases. Then the pair A,B
is sorted if and only if the edges (a1, a2) and (b1, b2) intersect (not necessarily in
their interior) when drawn on the circle.

Proof. Sorted implies that a1 ≤ b1 ≤ a2 ≤ b2 which immediately gives the lemma.
�

Thus sorted subsets of
(

[n]
2

)

correspond to graphs on [n] drawn on a circle, so
that every pair of edges cross. These graphs are known as thrackles. Note that two
edges sharing a vertex are considered to cross.

Proposition 5.2. Let Π be a set partition and ∆Π,2 have dimension d. The maxi-
mal simplices in the alcoved triangulation of ∆Π,2 are in one-to-one correspondence
with thrackles on [n] with d+ 1 edges such that all edges are bases.
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Proof. Follows immediately from Theorem 4.2 and Lemma 5.1. �

Without the condition on the number of edges in the thrackles of Proposition 5.2,
one would obtain graphs corresponding to all simplices (not just the maximal ones)
of the triangulation.

When the dimension of ∆Π,2 is n− 1, each thrackle G is determined by picking
an odd-cycle C such that all the edges cross pairwise. The remaining edges of G
join a vertex not on C to the unique ‘opposite’ vertex lying on C (so that the
edge crosses every edge of C); see Figure 3. We will call the resulting thrackle
G(C). Let C be a cycle, with pairwise crossing edges, of length 2k+1 with vertices
V (C) = {v1, v2, . . . , v2k+1} ⊂ [n] labeled so that v1 < v2 < · · · < v2k+1. Then the
edges of C are of the form (vi, vk+i+1), where the indices are taken modulo 2k+ 1.
Thus the condition that all the edges of C are bases is equivalent to |V (C)∩πi| ≤ k
for all i. In fact this is enough to guarantee that G(C) corresponds to a valid
maximal simplex of ∆Π,2 – that the remaining edges not on the cycle are bases is
implied.

1

7
6

5

4

3
2

1b
b

b

b

b

Figure 3. A thrackle G(C). The cycle C has been drawn in bold.

Suppose G arises from a sorted subset (I1, . . . , Ir). Let w = θ(I1, . . . , Ir) where θ
is the bijection of Remark 2.8. The vertices i not on the odd cycle of G are exactly
the positions such that wi = wi−1 + 1.

Proposition 5.3. Let a1, . . . , ar be positive integers and n = a1 + · · ·+ ar. Then
the (n − 1)-dimensional volume of the second multi-hypersimplex ∆Π(a1,...,ar),2 is
given by

Vol(PΠ(a1,...,ar),2) =
∞
∑

k=1





∑

c1,..,cr≤k; c1+...+cr=2k+1

(

a1

c1

)

· · ·

(

ar

cr

)





= 2n−1 −
r
∑

i=1

∑

b,d≥0

(

ai

2b+ d+ 1

)(

n− ai

d

)

Proof. The first formula follows from enumerating odd subsets S ⊂ {1, 2, . . . , n}
with size 2k + 1 satisfying ci := |S ∩ πi| ≤ k for all i. The second formula comes
from counting the odd subsets S′ ⊂ {1, 2, . . . , n}, where |S′ ∩ πi| > |S

′|/2 for some
i ∈ {1, . . . , r}, and subtracting them from all odd subsets of {1, . . . , n}. �

One can also describe the simplices of the polytopes PM for higher rank matroids
as hypergraphs G satisfying the following conditions:

(1) Every hyperedge A ⊂ [n] of G is a base ofM.
(2) Let A = {a1 < · · · < ak}, B = {b1 < · · · < bk} be a pair of hyperedges

belonging to G. Let CA be the cycle on [n] drawn with usual edges
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aa− 1

b+ 1 b

aa− 1

b+ 1 b

↔

b

b b

b b

b b

b

Figure 4. The two simplices in Γ2,n corresponding to two thrack-
les G and G′ are adjacent if G and G′ are related by the above
move.

(a1, a2), . . . , (ak, a1) and similarly for CB . Then each edge of CA must
touch CB and vice versa.

Remark 5.4. Let Γ̃2,n be the simplicial complex associated with the triangulation

Γ2,n, and let f(Γ̃2,n) =
∑d

i=1 fi(Γ̃2,n) ti be its f -polynomial, where fi is the number
of i-dimensional simplices in this complex. Using generating function techniques,
one can deduce the following expression for these polynomials:

∑

n≥2

f(Γ̃2,n, t)x
n =

[

tq2(1 + q)(t2q2 + t2q − tq + 1)

(1− tq)2(1− 2tq − tq2)

]

q 7→ x
1−x

.

5.2. Adjacency of alcoves in the second hypersimplex. Let ∆ ∈ Γk,n be a
(maximal) simplex. We say that ∆ has degree d if it is adjacent to d other simplices.
We call ∆ an internal simplex if none of its facets lies on the boundary of ∆k,n. In
this case ∆ has maximal degree, namely n.

Proposition 5.5. The two simplices of Γ2,n corresponding to two thrackles G and
G′ (via the correspondence of Proposition 5.2) are adjacent if and only if there are
four distinct vertices labelled a, a+ 1, b, b+ 1 modn such that G contains the edges
(a, b), (a− 1, b), (b+ 1, a) and G′ is obtained from G by changing the edge (a, b) to
(a− 1, b+ 1); see Figure 4.

Proof. The proposition follows immediately from Proposition 5.2 and Theorem 2.9
applied to the case k = 2 (more precisely, the comments after the proof of the
theorem). �

In fact the proposition is true also for smaller dimensional faces of the simplices
in Γ2,n. Let C be an odd cycle such that all edges cross and let |C| denote its
length.

Theorem 5.6. Let ∆ be the simplex of Γ2,n corresponding to the thrackle G(C).
If G(C) is a triangle then ∆ = ∆2,3 is the unique simplex in Γ2,3 (and has degree
0). If |C| = 3 and G(C) has two vertices of degree two then ∆ has degree two.
Otherwise, ∆ has degree |C|.

Proof. The Theorem follows from Proposition 5.5. Indeed we can perform the move
shown in Figure 4 to an edge (a, b) if it joins two vertices a, b each of degree at least
two, with the exception of the case where a and b both have degree exactly two and
are joined to the same vertex c. When the edge (a, b) can be replaced, the change
is necessarily unique. The case where a and b both have degree two and are joined
to the same vertex c occurs only when C is a three-cycle. In all other cases, every
edge of C can be replaced, and so ∆ has degree |C|. �
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The following corollary is immediate from Theorem 5.6.

Corollary 5.7. For d > 1, the second hypersimplex Γ2,n has
(

n
2d+1

)

simplices with
degree 2d+1. No simplex has even degree greater than or equal to 4. In particular,
if n is odd then Γ2,n contains a unique internal simplex. If n is even, then Γ2,n has
no internal simplices.

6. Multi-hypersimplices and multi-Eulerian polynomials

In this section we investigate the volumes of the multi-hypersimplices, defined
in Section 4.2. They are slices of the product ∆a1

×∆a2
× · · · ×∆ar

of simplices
or more generally of hypersimplices. We define the multi-Eulerian numbers to be
the volumes of these polytopes. They are generalizations of the usual Eulerian
numbers. These numbers, like the usual Eulerian numbers, satisfy a number of
interesting enumerative identities. In the first non-trivial case (Proposition 6.3),
we determine the multi-Eulerian numbers explicitly in terms of Eulerian numbers.

6.1. Descent-restricted permutations and alcoved polytopes. Let us con-
sider an alcoved polytope P (as in Section 2.3) which lies within a hypersimplex
∆k,n. In the x-coordinates, P ⊂ Rn is defined by the hyperplane x1+x2+· · ·+xn =
k, the inequalities 0 ≤ xi ≤ 1 together with inequalities of the form

bij ≤ xi+1 + · · ·+ xj ≤ cij

for integer parameters bij and cij for each pair (i, j) satisfying 0 ≤ i < j ≤ n− 1.
Let WP ⊂ Sn−1 be the set of permutations w = w1w2 · · ·wn−1 ∈ Sn−1 satisfying

the following conditions:

(1) w has k − 1 descents.
(2) The sequence wi · · ·wj has at least bij descents. Furthermore, if wi · · ·wj

has exactly bij descents, then wi < wj .
(3) The sequence wi · · ·wj has at most cij descents. Furthermore, if wi · · ·wj

has exactly cij descents, then we must have that wi > wj .

In the above conditions we assume that w0 = 0.
Let p : Rn → Rn−1 denote the projection as in Section 2. We may apply Stanley’s

piecewise-linear map ψ to p(P). Using Theorem 2.7, we see that a unimodular tri-
angulation of p(P) is given by the set of simplices ψ−1(∇w−1) as w = w1w2 · · ·wn−1

varies over permutations in WP . As a corollary we obtain the following result.

Proposition 6.1. The volume of P is equal to |WP |.

6.2. Multi-Eulerian polynomials. Let Π be a fixed set partition with parts of
sizes {ai}

r
i=1 of total size n =

∑

i ai and let b = (b1, . . . , br), c = (c1, . . . , cr) ∈ Nr.
Define the weighted multi-Eulerian number AΠ,b,c,k = Vol(∆Π,b,c,k) as the normal-
ized (n−1)-dimensional volume of the corresponding weighted multi-hypersimplex.
We will consider polytopes of smaller dimension to have volume 0 for what follows.
Now define the weighted multi-Eulerian polynomial AΠ,b,c(t) as

AΠ,b,c(t) =

r
∑

k=1

AΠ,b,c,kt
k.

Note that when Π is the set partition with all ai = 1 and bi = 0 and ci = 1 for all
i, then AΠ,b,c(t) reduces to the usual Eulerian polynomial An−1(t) =

∑

k Ak,n−1t
k.

If Π is a set partition of [n], we denote by Π∗ the set partition of [n + 1] with an
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additional part of size one containing n+1. If d = (d1, . . . , dr) ∈ Zr, then we denote
by d∗ ∈ Zr+1 to be the integer vector with an additional coordinate dr+1 = 0 and
d′ ∈ Zr+1 similarly with dr+1 = 1. Then ∆Π∗,b∗,c′,k is affinely equivalent to (and
has the same normalized volume as) the intersection of k − 1 ≤ x1 + · · ·+ xn ≤ k
with the product of unions of hypersimplices

(

c1
⋃

i=b1+1

∆i,a1+1

)

× · · · ×

(

cr
⋃

i=br+1

∆i,ar+1

)

.

Thus

AΠ∗,b∗,c′(1) =

(

n

a1, a2, . . . , ar

)

(

c1
∑

i=b1+1

Ai,a1

)

· · ·

(

cr
∑

i=br+1

Ai,ar

)

.

In particular if bj = 0 and cj = 1 then this value is simply a multinomial
coefficient. For this special case, we will omit b and c in the notation and omit the
prefix weighted from the names. We write out the combinatorial interpretation for
AΠ,k explicitly.

Proposition 6.2. Let k be a positive integer and Π be a set partition of [n] with
parts of sizes {ai}

r
i=1 as before. The following quantities are equal:

(1) the multi-Eulerian number AΠ,k,
(2) the number of permutations of w ∈ Sn−1 with k − 1 descents such that the

substring wa1
wa1+a2

· · ·wa1+a2+···+ar−1
has k − 1 descents,

(3) the number of sorted subsets (I1, . . . , In) of MΠ of size n.

Proof. As described in Section 4.2 we may consider multi-hypersimplices subpoly-
topes of the hypersimplex so the proposition follows from Theorems 2.7, 4.2 and
Proposition 6.1. �

Note that with Π = Π(a1, a2, . . . , ar), then AΠ,k is a function symmetric in the
inputs {ai}. Let Π = Π(a, 1n−a). By Proposition 6.2(2), AΠ(t) is the generating
function by descents for permutations satisfying w1 < w2 < · · · < wa. Thus

AΠ(a,1n−a)(t) =
∑

w∈Sn−a

(

a+ w1 − 2

a− 1

)

tdes(w)+1.

We give an explicit formula for a = 2.

Proposition 6.3. For n ≥ 3, AΠ(2,1n−2)(t) = t d
dt
An−1(t), where An−1(t) is the

usual Eulerian polynomial. In other words,

(5)
∑

w∈Sn−1

w1t
des(w)+1 =

∑

w∈Sn−1

(des(w) + 1)tdes(w)+1.

We will prove this statement bijectively. Let w ∈ Sn. A circular descent of w
is either a usual descent or the index n if wn > w1. Define the circular descent
number cdes(w) as the number of circular descents. Let Cn denote the subgroup
of Sn generated by the long cycle c = (12 · · ·n), written in cycle notation. We have
the following easy lemma.

Lemma 6.4. The statistic cdes is constant on double cosets Cn\Sn/Cn.
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Proof. Left multiplication by the long cycle c maps w1w2 · · ·wn to (w1 + 1)(w2 +
1) · · · (wn + 1) where “n + 1” is identified with “1”. Right multiplication by c
maps w1w2 · · ·wn to w2w3 · · ·wnw1. The lemma is immediate from the definition
of circular descent number. �

Actually in the following we will use this Lemma for Sn+1.

Proof of Proposition 6.3. If w = w1w2 · · ·wn ∈ Sn and w′ = w1w2 · · ·wn(n + 1) ∈
Sn+1 then cdes(w′) = des(w) + 1. By this and our earlier comments, the left hand
side of (5) is the generating function for permutations in Sn+1 satisfying w1 < w2

andwn+1 = n+1, according to their circular descent number. Alternatively, we may
view this as the cdes-generating function of right cosets w̄ ∈ Sn+1/Cn+1 satisfying
the property that the two numbers wi, wi+1 cyclically located after wi−1 = n + 1
satisfy wi < wi+1 for any representative w ∈ w̄. Here the indices are taken modulo
n+1 and by Lemma 6.4, cdes(w̄) := cdes(w) does not depend on the representative
w of w̄ and so is well defined.

The right hand side of (5) is the generating function for permutations u =
u1u2 · · ·un ∈ Sn satisfying un = n where one of the circular descents has been
marked, again according to circular descent number. If ui > ui+1 is the marked
circular descent (where i+1 is to be taken modulo n), then we can insert the number
n+ 1 between ui and ui+1 to obtain a coset v̄ ∈ Sn+1/Cn+1 with the same number
of circular descents. If v ∈ v̄ and vi = n+1 then we automatically have vi−1 > vi+1

(in fact this is a cdes-preserving bijection between cosets v̄ satisfying this property
and permutations of u ∈ Sn satisfying un = n with a marked circular descent).
Let c = (123 · · · (n + 1)) be the generator of Cn+1 and consider v′ = cn+1−vi−1v
for any v ∈ v̄ where i is determined by vi = n + 1. Let v̄′ = v′C. By Lemma 6.4,
cdes(v̄′) = cdes(v̄). However, it is easy to see that v̄′ is exactly one of the cosets
which are enumerated by the left hand side of (5). Thus we obtain a cdes-preserving
bijection v̄ 7→ v̄′ between two classes of cosets in Sn+1/Cn+1, enumerated by the
two sides of (5).

We illustrate the bijection with an example, where we will pick representatives
of appropriate cosets at our convenience. Let u = 53162748 ∈ S8 satisfying u8 = 8
with marked circular descent index 4 corresponding to u4 = 6 > 2 = u5. This
is an object enumerated by the right hand side of (5), with n = 8. Inserting “9”
between “6” and “2” we obtain v = 531692748 ∈ S9. Multiplying on the left by
c3 (where c = (123456789)) adds 3 to every value, changing “6” to “9”, giving the
permutation v′ = 864935172. Multiplying on the right by c4 we move the 9 to the
last position to get w = 351728649 ∈ v̄′ = v′C, which satisfies w9 = 9 and w1 < w2.
This is exactly a permutation enumerated by the left hand side of (5). Note that
cdes(u) = 5 = cdes(w) and that all the steps can be reversed to give a bijection. �

It would be interesting if algebro-geometric proofs of some of our results con-
cerning (weighted) multi-Eulerian numbers could be given; see Section 7.4.

7. Final Remarks

7.1. The h-vectors of alcoved polytopes. Let Γ̃P denote the simplicial com-
plex associated to the collection of simplices in the alcoved triangulation of P . The
triangulation ΓP of an alcoved polytope P is unimodular and this implies that the
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h-polynomial h(Γ̃P , t) is a non-negative polynomial. We have given many interpre-

tations for the volume h(Γ̃P , 1) of an alcoved polytope. It would be interesting to

obtain statistics on these interpretations which give h(Γ̃P , t).
In fact, the Erhart polynomial of P equals to the Hilbert polynomial of the quo-

tient ring k[xI ]/JP associated to the polytope P ; see Section 8. The h-polynomial
is the numerator of the associated generating function.

7.2. Relation with order polytopes. Let P be a poset naturally labelled with
the numbers [n]. The order polytope OP ⊂ Rn is defined by the inequalities
0 ≤ xi ≤ 1 together with xi ≤ xj for every pair of elements i, j ∈ P satisfying
i > j. It is clear that OP is affinely equivalent to an alcoved polytope via the
transformation yi = xi−xi−1. The triangulation ΓP of OP thus obtained is known
as the canonical triangulation of OP .

Denote by LP the set of linear extensions of P ; see [EC1]. The simplices of ΓP

can be labelled by w ∈ LP and this is compatible with the labelling used throughout
this paper. It is known [Sta2] that we have

h(Γ̃P , t) =
∑

w∈LP

tdes(w).

The descents counted by this h-vector, however, disagree with the way we have been
counting descents in this paper. More precisely, we have been concerned with the
number of descents des(w−1) of the inverse permutations labelling the simplices.

7.3. Weight polytopes for type An and alcoved polytopes. A weight polytope
is the convex hull of the weights which occur in some highest weight representation
of a Lie algebra. For example, the vertices of the hypersimplex ∆k,n are exactly
the weights which occur in the kth fundamental representation of sln.

We will identify the integral weights L of sln with the integer vectors (a1, . . . , an)
satisfying a1 + · · · + an = l, for some fixed l. A weight polytope Pλ is specified
completely by giving the highest weight λ = (λ1, . . . , λn). We will assume all the
coordinates λi are non-negative. A weight µ lies inside Pλ if λ dominates µ in the
usual sense: λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi for all i.

Let µ, ν ∈ L be two weights. Define U(µ, ν), V (µ, ν) ∈ L by requiring that
U(Iµ, Iν) = IU(µ,ν) and V (Iµ, Iν) = IV (µ,ν), in the notation of Section 3.1. Alter-
natively, U(µ, ν) and V (µ, ν) are determined by requiring that µ + ν = U(µ, ν) +
V (µ, ν) and V (µ, ν)− U(µ, ν) =

∑

i biαi for some bi ∈ {0, 1}, where αi = ei+1 − ei

are the simple roots. We call Pλ sort-closed if the set of weights Pλ∩L is sort-closed,
as in Theorem 3.1.

Proposition 7.1. A weight polytope Pλ is sort-closed if and only if λ is equal to
awi + bwi+1 for non-negative integers a, b and where wk = (1, . . . , 1, 0, . . . , 0) (k
1’s) are the fundamental weights.

Proof. The ‘if’ direction is easy as Pλ can be specified by x1+· · ·+xn = i·a+(i+1)·b
and the inequalities 0 ≤ xj ≤ a for each j ∈ [1, n] and we can use Theorem 3.1. For
the other direction, we may assume the highest weight λ is a n-tuple with highest
value a and lowest value 0. Suppose λ is not of the form of the proposition, then
there are two more values b, c not equal to a satisfying a > b ≥ c > 0 so that λ is
of the form (a, . . . , a, b, . . . , b, c, . . . , c, . . . , 0).

Explicitly construct a pair of weights δ = (a, 0, b, c, . . .) and µ = (a−1, 1, b+1, c−
1, . . .) where the tails of the two n-tuples are identical, and δ is just a permutation
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of the coordinates of λ. Both δ and µ are dominated by λ and hence lie in Pλ.
However, U(δ, µ) = (a, 0, b+ 1, c− 1, . . .) does not lie in Pλ. �

Sturmfels [Stu, Chapter 14] considered exactly this class of sort-closed weight
polytopes. The following corollary follows immediately from Theorem 3.1 and
Proposition 7.1.

Corollary 7.2. A weight polytope in the x-coordinates with highest weight λ is
alcoved if and only if λ is of the form aωi +bωi+1 for a and b non-negative integers.
In particular, every weight polytope for A2 is alcoved.

7.4. Geometric motivation: degrees of torus orbits. Let Grk,n denote the
grassmannian manifold of k-dimensional subspaces in the complex linear space Cn.
Elements of Grk,n can be represented by k×n-matrices of maximal rank k modulo
left action of GLk. The

(

n
k

)

maximal minors pI of such a matrix, where I runs
over k-element subsets in {1, . . . , n}, form projective coordinates on Grk,n, called
the Plücker coordinates. The map Grk,n → (pI) gives the Plücker embedding of the

grassmannian into the projective space CP(n
k)−1. Two points A,B ∈ Grk,n are in

the same matroid stratum if pI(A) = 0 is equivalent to pI(B) = 0, for all I. The

matroidMA of A has as set of bases
{

I ∈
(

[n]
k

)

| pI(A) 6= 0
}

.

The complex torus T = (C \ {0})n acts on Cn by stretching the coordinates

(t1, . . . , tn) : (x1, . . . , xn) 7→ (t1x1, . . . , tnxn).

This action lifts to an action of the torus T on the grassmannian Grk,n. This action
was studied in [GGMS]. The authors showed that the geometry of the closure of a
torus orbit XA = T · A depends (only) on the matroid stratum of A. The variety
XA is a toric variety and its associated polytope is exactly the polytope PMA

associated to the the matroid MA from Section 4.2. Our study of the volume of
the polytopes PM was motivated by the well known fact (see [Ful]) that

deg(XA) = Vol(PMA
)

where deg(XA) denotes the degree of XA as a projective subvariety of CP
(n

k)−1 and
Vol denotes the normalized volume with respect to the lattice generated by the
coordinate vectors ei. Note that by definition only representable matroidsM arise
as MA in this manner. Our Theorem 4.2 gives a combinatorial description of the
degree of a torus orbit closure corresponding to a stratum of a sort-closed matroid.
In fact Proposition 4.3 (and Proposition 8.2) shows that these torus orbit closures
are projectively normal, a fact known for all torus orbit closures; see [Whi, Dab].

It has been conjectured (see [Stu, Conjecture 13.19]) that the ideal of a smooth
projectively normal toric variety is always generated by quadratic binomials. The
toric varieties associated to simple alcoved polytopes give more examples of this.

8. Appendix: Coherent triangulations and Gröbner bases

We give a brief introduction to the relationship between coherent triangulations
of integer polytopes and Gröbner bases. See Sturmfels [Stu] for further details.

Let k be a field and k[x] = k[x1, . . . , xn] be the polynomial ring in n variables.
A total order ≺ on Nn is a term order if it satisfies:

• The zero vector is the unique minimal element.
• For any a, b, c ∈ N

n, such that a ≺ b we have a+ c ≺ b+ c.
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One way to create a term order is by giving a weight vector ω = (ω1, . . . , ωn) ∈ Rn.
Then for sufficiently generic weight vectors a term order ≺ is given by b ≺ c if and
only if ω · b < ω · c . In this situation we will say that ω represents ≺.

Given a polynomial f ∈ k[x] one defines the initial monomial in≺(f) as the
monomial xa with the largest a under ≺. For an ideal I of k[x] one defines the
initial ideal in≺(I) as the ideal generated by the initial monomials of elements of I.
The monomials which do not lie in in≺(I) are called the standard monomials. A
finite subset G ⊂ I is a Gröbner basis for I with respect to ≺ if in≺(G) generates
in≺(I). The Gröbner basis is called reduced if for two distinct elements g, g′ ∈ G,
no term of g′ is divisible by in≺(g).

Now let A = {a1, a2, . . . , an} be a finite subset of Zd. We define a ring homo-
morphism k[x]→ k[t±1

1 , . . . , t±1
d ] by

xk 7−→ tak .

The kernel JA of this map is an ideal known as a toric ideal.
We now describe the relationship between Gröbner bases of JA and coher-

ent triangulations of the convex hull of A. For any term order ≺, the initial
complex ∆≺(JA) of JA is the simplicial complex defined as follows. A subset
F ⊂ {1, 2, . . . , n} is a face of ∆≺(JA) if there is no polynomial f ∈ JA such that
the support of in≺(f) is F . Thus the Stanley-Reisner ideal of ∆≺(JA) is the radical
of in≺(JA).

A triangulation of a set A ∈ Zd (more specifically, its convex hull) is coherent
if one can find a piecewise-linear convex function ν on Rd such that the domains
of linearity are exactly the simplices of the triangulation. Alternatively, the trian-
gulation is coherent if one can find a ‘height’ vector ω such that the projection of
the ‘lower’ faces of the convex hull of {(a1, ω1), (a2, ω2), . . . , (an, ωn)} is exactly the
triangulation. We will denote such a triangulation of A by ∆ω(A). The function ν
and the vector ω can be related by setting ωn = ν(an).

The main result we will need is the following [Stu, Chapter 8]:

Theorem 8.1. The coherent triangulations of A are the initial complexes of the
toric ideal JA. More precisely, if ω ∈ Rn represents ≺ for JA then ∆≺(JA) =
∆ω(A).

In the case when JA is a homogeneous toric ideal we can say more.

Proposition 8.2. Let A be such that JA is a homogeneous toric ideal. Then the
initial ideal in≺(JA) is square-free if and only if the corresponding regular triangu-
lation ∆≺ of A is unimodular. In that case, let YA be the projective toric variety
defined by the ideal JA. Then YA is projectively normal and the Hilbert polynomial
of YA equals to the Erhart polynomial of the convex hull of A.

In this last case, the ≺-standard monomials correspond exactly to the simplices
of the triangulation.
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