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This note is about a remarkable law of nature discovered by George Pólya [3].
Consider a particle situated at a given point of the integer lattice Zd. Suppose that,
at each tick of the clock, the particle jumps to a randomly selected neighbouring
lattice point, with equal probability of jumping in any direction. In other words,
this particle is executing the simple random walk on Zd.

A random walk is said to be recurrent if it returns to its initial position with
probability one. A random walk which is not recurrent is called transient. Pólya’s
classic result is the following.

Theorem 1. The simple random walk on Zd is recurrent in dimensions d = 1, 2
and transient in dimension d ≥ 3.

This note presents a fairly direct proof of Pólya’s Theorem which cobbles together
basic methods from combinatorics (decompositions and generating functions), spe-
cial functions (Bessel function identities), quantum field theory (Borel transform),
and asymptotic analysis (Laplace’s method). The argument presented applies these
techniques in tandem to derive Pólya’s result.

1. Loop decomposition and a functional equation

Let E denote the event that the simple random walk on Zd returns to its initial
position, and put p = Prob(E). For n ≥ 1, let En be the event that the random
walk returns to its initial position for the first time after n steps. It is convenient to
set E0 = ∅, corresponding to the fact that the initial position of the random walk
does not count as a return (if it did, the return probability of any random walk
would be one). The events En are mutually exclusive for different values of n, and

E =
⊔
n≥0

En.

Hence

p =
∑
n≥0

pn,

where pn = Prob(En).
A loop on Zd is a walk which begins and ends at a given point. It is convenient

to consider walks of length zero as loops; such loops are called trivial. A non-trivial
loop is indecomposable if it is not the concatenation of two non-trivial loops. Choose
a particular point of Zd, and let `n denote the number of loops of length n based
at this point. Let rn denote the number of these which are indecomposable. Note
that `0 = 1 while r0 = 0. Since any non-trivial loop is the concatenation of an
indecomposable loop followed by a (possibly trivial) loop, the counts `n and rn are
related by
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`n =

n∑
k=0

rk`n−k

for all n ≥ 1. Dividing both sides of this equation by (2d)n, we obtain the relation

qn =

n∑
k=0

qkpn−k

for all n ≥ 1, where as above pn is the probability that the random walk returns to
its initial position for the first time after n steps, while qn is the probability that
the random walk is located at its original position after n steps.

Introduce the generating functions

P (z) =
∞∑
n=0

pnz
n and Q(z) =

∞∑
n=0

qnz
n.

The relation between pn and qn is then equivalent to

P (z)Q(z) = Q(z)− 1.

Since pn ≤ qn ≤ 1, each of these series has radius of convergence at least one. Thus
we may consider P (z), Q(z) as analytic functions defined on the open unit disc in
the complex plane. The function Q(z) is non-vanishing for z in the interval [0, 1),
and hence we have

P (z) = 1− 1

Q(z)
, z ∈ [0, 1).

Since

P (1) =

∞∑
n=0

pn = p,

we have

p = 1− 1∑∞
n=0 qn

.

Thus Pólya’s Theorem is equivalent to the statement that the sum Q(1) diverges
for d = 1, 2 and converges for d ≥ 3.

2. Exponential loop generating function

In order to analyze the limit in question, we will obtain a tractable representation
of the function Q(z). This amounts to finding an expression for the loop generating
function

L(z) =

∞∑
n=0

`nz
n.

Indeed, Q(z) = L( z2d ).
While the ordinary generating function L(z) is difficult to analyze directly, the

exponential loop generating function
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E(z) =

∞∑
n=0

`n
zn

n!

is quite accessible. This is because any loop on Zd is a shuffle of loops on Z1, and
products of exponential generating functions correspond to shuffles. This is a basic
property of exponential generating functions which we will review in the specific
case at hand. For a general treatment, the reader is referred to [4, Chapter 5].

In this paragraph it is important to make the dependence on d explicit, so we

write `
(d)
n for the number of length n loops on Zd and Ed(z) for the exponential

generating function of this sequence. Let us consider the case d = 2. A loop on Z2

is a closed walk which takes unit steps in two directions, horizontal and vertical.
A length n loop on Z2 is made up of some number k of horizontal steps together
with n − k vertical steps. The k horizontal steps constitute a length k loop on Z,
and the n− k vertical steps constitute a length n− k loop on Z. Thus the number
of length n loops on Z2 which take k horizontal and n− k vertical steps is(

n

k

)
`
(1)
k `

(1)
n−k,

since specifying the times at which the k horizontal steps occur uniquely determines
the times at which the n− k vertical steps occur. Thus the total number of length
n loops on Z2 is

`(2)
n =

n∑
k=0

(
n

k

)
`
(1)
k `

(1)
n−k.

This is equivalent to the generating function identity

E2(z) = E1(z)2.

The same reasoning applies for any d, and in general we have

Ed(z) = E1(z)d.

3. Bessel functions

Counting loops in one dimension is easy:

`(1)
n =

{(
2k
k

)
, if n = 2k is even

0, if n is odd
.

Indeed, any loop on Z consists of k positive steps and k negative steps for some
k ≥ 0, and the times at which the positive steps occur determine the times at which
the negative steps occur. Thus

E1(z) =

∞∑
k=0

(
2k

k

)
z2k

(2k)!
=

∞∑
k=0

z2k

k!k!
.

Now a minor miracle occurs: the exponential generating function E1(z) for lattice
walks in one dimension is a modified Bessel function of the first kind.

The modified Bessel function of the first kind, usually denoted Iα(z), is one of
two linearly independent solutions to the second order differential equation
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(
z2 d

2

dz2
+ z

d

dz
− (z2 + α2)

)
F (z) = 0, α ∈ C.

This differential equation is known as the modified Bessel equation; it appears in
a multitude of physical problems, and was intensely studied by nineteenth century
mathematicians. An excellent reference on this subject is [1, Chapter 4]. It is
known that the modified Bessel function admits both a series representation,

Iα(z) =

∞∑
k=0

( z2 )2k+α

k!Γ(k + α+ 1)
,

and an integral representation,

Iα(z) =
( z2 )α

√
πΓ(α+ 1

2 )

∫ π

0

e(cos θ)z(sin θ)2αdθ.

From the series representation, we see that E1(z) = I0(2z), and hence

E(z) = I0(2z)d.

4. Borel transform

We now have a representation of the exponential generating function E(z) of
loops on Zd in terms of a standard mathematical object, the modified Bessel func-
tion I0(z). What we need, however, is a representation of the ordinary loop gener-
ating function L(z).

The integral transform

(Bf)(z) =

∫ ∞
0

f(tz)e−tdt,

which looks like the Laplace transform of f but with the z-parameter in the wrong
place, converts exponential generating functions into ordinary generating functions.
To see why, write out the Maclaurin series of f(tz), interchange integration and
summation to obtain

(Bf)(z) =

∞∑
n=0

f (n)(0)
zn

n!

∫ ∞
0

tne−tdt,

and use the fact that ∫ ∞
0

tne−tdt = n!.

This trick is standard issue in quantum field theory, where it is constantly used in
connection with Borel summation of divergent series, see [2, §2.3].

Applying the Borel transform to our problem, we obtain

L(z) = BE(z) = BI0(2z)d =

∫ ∞
0

I0(2tz)de−tdt.

Thus we have arrived at the integral representation

Q(z) = L(
z

2d
) =

∫ ∞
0

I0

(
tz

d

)d
e−tdt,



PÓLYA’S RANDOM WALK THEOREM 5

from which we obtain

Q(1) =

∫ ∞
0

I0

(
t

d

)d
e−tdt.

It now remains to prove that this integral diverges for d = 1, 2 and converges for
d ≥ 3.

5. The Laplace principle

The divergence or convergence of Q(1) depends only on the behaviour of its tail,∫ ∞
N

I0

(
t

d

)
e−tdt, N � 0.

This tail behaviour is in turn determined by the behaviour of the integrand as
t→∞.

In order to estimate the integrand, we invoke the integral representation of the
modified Bessel function stated above to get

I0

(
t

d

)
=

1

π

∫ π

0

et(
cos θ
d )dθ.

All that remains now is to estimate this integral as t→∞.
The required estimate can be performed using a basic principle of asymptotic

analysis known as the Laplace principle, which applies to integrals of the form∫ b

a

etf(θ)dθ

with t � 0 a large parameter and f(θ) a sufficiently regular function. Here is a
brief, informal explanation of the Laplace principle; for a rigorous treatment, see
[5, §4.6]. Suppose that f(θ) is strictly maximized over [a, b] at θ = a. Then, the
integrand etf(θ) is exponentially larger at θ = a than at any other θ ∈ [a, b], and as
t → ∞ this effect becomes increasingly exaggerated, so much so that the integral
will “localize” at θ = a. To quantify this, note that f ′(a) = 0, f ′′(a) < 0, and
approximate f(θ) with its second order Taylor polynomial at θ = a,

f(θ) ≈ f(a)− |f ′′(a)|θ
2

2
.

This leads to the integral approximation∫ b

a

etf(θ)dθ ≈ etf(a)

∫ b

a

e−t|f
′′(a)| θ22 dθ.

If we extend the integral on the right over the whole real line, we get a Gaussian
integral:

∫ +∞

−∞
e−t|f

′′(a)| θ22 dθ =

√
2π

t|f ′′(a)|
.

Laplace’s principle states that the error incurred by truncating the Taylor series of
f(θ) and introducing infinite endpoints is negligible in the limit t→∞:
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∫ b

a

etf(θ)dθ ∼

√
2π

t|f ′′(a)|
etf(a), t→∞.

The integral we wish to estimate is of the Laplace type, with [a, b] = [0, π] and
f(θ) = cos θ

d . Applying the Laplace principle, we obtain

I0

(
t

d

)
∼
√

2

πt
e
t
d , t→∞.

Thus, we have

I0

(
t

d

)d
e−t ∼ constant · t− d2 , t→∞.

Putting everything together, we conclude that the recurrence or transience of
the simple random walk on Zd is equivalnent to the divergence or convergence of
the tail integral ∫ ∞

N

t−d/2dt, N � 0.

Since this integral diverges for d = 1, 2 and converges for d ≥ 3, Pólya’s Theorem
is proved.
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3. Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz,

Math. Ann. 84 (1921), 149-160.

4. R. P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, 1999.
5. H. S. Wilf, Mathematics for the Physical Sciences, available at the author’s homepage.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge,

MA 02139
E-mail address: jnovak@math.mit.edu


	1. Loop decomposition and a functional equation
	2. Exponential loop generating function
	3. Bessel functions
	4. Borel transform
	5. The Laplace principle
	References

