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3. Linear Programming and Polyhedral Combinatorics

Summary of what was seen in the introductory lectures on linear programming and
polyhedral combinatorics.

Definition 3.1 A halfspace in R" is a set of the form {x € R" : a’x < b} for some vector
a € R" and b € R.

Definition 3.2 A polyhedron is the intersection of finitely many halfspaces: P = {x € R™:
Az < b}.

Definition 3.3 A polytope is a bounded polyhedron.

Definition 3.4 If P is a polyhedron in R", the projection P, C R"™! of P is defined as
{y = (1,20, , Xp_1,Tpy1, "+ , &) : & € P for some x;, € R}.

This is a special case of a projection onto a linear space (here, we consider only coordinate
projection). By repeatedly projecting, we can eliminate any subset of coordinates.

We claim that Py is also a polyhedron and this can be proved by giving an explicit
description of P, in terms of linear inequalities. For this purpose, one uses Fourier-Motzkin
elimination. Let P = {x : Az < b} and let

[} S+:{i:aik>0},
o S_={i:ay <0},
o S():{Zam:[)}

Clearly, any element in P, must satisfy the inequality a2z < b; for all i € Sy (these inequal-
ities do not involve zy). Similarly, we can take a linear combination of an inequality in S,
and one in S_ to eliminate the coefficient of x;. This shows that the inequalities:

@ik, (Z alj%‘) — ay, (Z az‘j%‘) < apb; — aib; (1)

J J
for + € Sy and | € S_ are satisfied by all elements of P,. Conversely, for any vector
(T1,T9,++ , Tp_1,Tps1, - ,xy,) satisfying (1) for all i € S and [ € S_ and also

alz < b; for alli € S, (2)

we can find a value of xj such that the resulting = belongs to P (by looking at the bounds on
x) that each constraint imposes, and showing that the largest lower bound is smaller than
the smallest upper bound). This shows that P is described by (1) and (2), and therefore is
a polyhedron.
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Definition 3.5 Given points aV,a® ... a®) € R,
e alinear combination is ), Na® where \; € R for all i,
e an affine combination is ), \;aD where \; € R and YuN=1,
e a conical combination is ), Na® where \; > 0 for all i,
e a convex combination is ), Na® where \; > 0 for all i and A= 1

The set of all linear combinations of elements of S is called the linear hull of S and
denoted by lin(.S). Similarly, by replacing linear by affine, conical or convex, we define the
affine hull, aff(.S), the conic hull, cone(S) and the convex hull, conv(S). We can give an
equivalent definition of a polytope.

Definition 3.6 A polytope is the convex hull of a finite set of points.

The fact that Definition 3.6 implies Definition 3.3 can be seen as follows. Take P be
the convex hull of a finite set {a(k)}ke[m] of points. To show that P can be described as
the intersection of a finite number of hyperplanes, we can apply Fourier-Motzkin elimination

repeatedly on
xr — Z Aa® =0
k

d =1
k

A >0

to eliminate all variables A; and keep only the variables x. Furthermore, P is bounded since
for any x € P, we have

2]l = 11 3~ Ma®] < 37 Mella®]| < max] )]
k k

The converse will be proved later in these notes.

3.1 Solvability of System of Inequalities

In linear algebra, we saw that, for A € R™*" b € R™, Ax = b has no solution z € R" if
and only if there exists a y € R™ with ATy = 0 and bTy # 0 (in 18.06 notation /terminology,
this is equivalent to saying that the column space C'(A) is orthogonal to the left null space
N(AT)).

One can state a similar Theorem of the Alternatives for systems of linear inequalities.

Theorem 3.1 (Theorem of the Alternatives) Az < b has no solution x € R"™ if and
only if there exists y € R™ such that y > 0, ATy =0 and b7y < 0.
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One can easily show that both systems indeed cannot have a solution since otherwise
0> bTy =y"'b >y Ax = 072 = 0. For the other direction, one takes the insolvable system
Ax < b and use Fourier-Motzkin elimination repeatedly to eliminate all variables and thus
obtain an inequality of the form 072z < ¢ where ¢ < 0. In the process one has derived a vector
y with the desired properties (as Fourier-Motzkin only performs nonnegative combinations
of linear inequalities).

Another version of the above theorem is Farkas’ lemma:

Lemma 3.2 Az = b, x > 0 has no solution if and only if there exists y with ATy > 0 and
by < 0.

Exercise 3-1. Prove Farkas’ lemma from the Theorem of the Alternatives.

3.2 Linear Programming Basics

A linear program (LP) is the problem of minimizing or maximizing a linear function over a
polyhedron:

Max 'z

subject to:
(P) Az < b,

where A € R™*" b € R™, ¢ € R"™ and the variables = are in R". Any z satisfying Az < b
is said to be feasible. If no x satisfies Az < b, we say that the linear program is infeasible,
and its optimum value is —oco (as we are maximizing over an empty set). If the objective
function value of the linear program can be made arbitrarily large, we say that the linear
program is unbounded and its optimum value is 4+00; otherwise it is bounded. If it is neither
infeasible, nor unbounded, then its optimum value is finite.

Other equivalent forms involve equalities as well, or nonnegative constraints x > 0.
One version that is often considered when discussing algorithms for linear programming
(especially the simplex algorithm) is min{c’x : Az = b,z > 0}.

Another linear program, dual to (P), plays a crucial role:

Min by
subject to:
(D) ATy =c
y=>0.

(D) is the dual and (P) is the primal. The terminology for the dual is similar. If (D)
has no feasible solution, it is said to be infeasible and its optimum value is 400 (as we are
minimizing over an empty set). If (D) is unbounded (i.e. its value can be made arbitrarily
negative) then its optimum value is —oo.
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The primal and dual spaces should not be confused. If A is m x n then we have n primal
variables and m dual variables.

Weak duality is clear: For any feasible solutions = and y to (P) and (D), we have that
'z <by. Indeed, ¢’z = yT Az < bTy. The dual was precisely built to get an upper bound
on the value of any primal solution. For example, to get the inequality y* Az < bTy, we need
that y > 0 since we know that Az < b. In particular, weak duality implies that if the primal
is unbounded then the dual must be infeasible.

Strong duality is the most important result in linear programming; it says that we can
prove the optimality of a primal solution x by exhibiting an optimum dual solution y.

Theorem 3.3 (Strong Duality) Assume that (P) and (D) are feasible, and let z* be the
optimum value of the primal and w* the optimum value of the dual. Then z* = w*.

One proof of strong duality is obtained by writing a big system of inequalities in x and y
which says that (i) x is primal feasible, (ii) y is dual feasible and (iii) ¢’z > b”y. Then use
the Theorem of the Alternatives to show that the infeasibility of this system of inequalities
would contradict the feasibility of either (P) or (D).

Proof: Let x* be a feasible solution to the primal, and y* be a feasible solution to the
dual. The proof is by contradiction. Because of weak duality, this means that there are no
solution z € R™ and y € R™ such that

Ax <b
Aty =c¢
—ly <0

—cTx +bTy <0

By a variant of the Theorem of the Alternatives or Farkas’ lemma (for the case when we
have a combination of inequalities and equalities), we derive that there must exist s € R™,
teR"” ueR" veR such that:

s>0

u>0

v>0

ATs —ve=0
At —u+vb=0
s+t <.

We distinguish two cases.
Case 1: v = 0. Then s satisfies s > 0 and A”s = 0. This means that, for any a > 0,

y* + as is feasible for the dual. Similarly, At = u > 0 and therefore, for any o > 0, we have
that * — at is primal feasible. By weak duality, this means that, for any a > 0, we have

c'(z* —at) < b (y* + as)
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or
'zt = by < a(d's+ ).
The right-hand-side tend to —oco as « tends to oo, and this is a contradiction as the left-

hand-side is fixed.

Case 2: v > 0. By dividing throughout by v (and renaming all the variables), we get that
there exists s > 0, u > 0 with

ATs = ¢
At —u = —=b
s+t < 0.

This means that s is dual feasible and —t is primal feasible, and therefore by weak duality
cT'(—t) < bT's contradicting bT's + ¢t < 0. A

Exercise 3-2. Show that the dual of the dual is the primal.

Exercise 3-3. Show that we only need either the primal or the dual to be feasible for
strong duality to hold. More precisely, if the primal is feasible but the dual is infeasible,
prove that the primal will be unbounded, implying that z* = w* = 4-00.

T

Looking at ¢’z = yT Az < b"y, we observe that to get equality between ¢’z and b’y, we

need complementary slackness:

Theorem 3.4 (Complementary Slackness) If x is feasible in (P) and y is feasible in
(D) then x is optimum in (P) and y is optimum in (D) if and only if for all i either y; =0
or Y aix; = b; (or both).

Linear programs can be solved using the simplex method; this is not going to be explained
in these notes. No variant of the simplex method is known to provably run in polynomial
time, but there are other polynomial-time algorithms for linear programming, namely the
ellipsoid algorithm and the class of interior-point algorithms.

3.3 Faces of Polyhedra

Definition 3.7 {a) € R" : i € K} are linearly independent if >, \ia® = 0 implies that
AN =0 forallie K.

Definition 3.8 {aY € R":i € K} are affinely independent if >, \iaD =0 and >, \; =0
together imply that \; =0 for all 1 € K.
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Observe that {a) € R™ : i € K} are affinely independent if and only if
o) X
1 | € R :ie K

Definition 3.9 The dimension, dim(P), of a polyhedron P is the mazimum number of
affinely independent points in P minus 1.

are linearly independent.

(This is the same notion as the dimension of the affine hull aff(S).) The dimension can
be -1 (if P is empty), 0 (when P consists of a single point), 1 (when P is a line segment),
and up to n when P affinely spans R™. In the latter case, we say that P is full-dimensional.
The dimension of a cube in R? is 3, and so is the dimension of R? itself (which is a trivial
polyhedron).

Definition 3.10 oz < 3 is a valid inequality for P if a*a < 8 for all v € P.

Observe that for an inequality to be valid for conv(S) we only need to make sure that
it is satisfied by all elements of S, as this will imply that the inequality is also satisfied by
points in conv(S) \ S. This observation will be important when dealing with convex hulls of
combinatorial objects such as matchings or spanning trees.

Definition 3.11 A face of a polyhedron P is {x € P : o'z = 3} where oTx < 8 is some
valid inequality of P.

By definition, all faces are polyhedra. The empty face (of dimension -1) is trivial, and so
is the entire polyhedron P (which corresponds to the valid inequality 07z < 0). Non-trivial
are those whose dimension is between 0 and dim(P) — 1. Faces of dimension 0 are called
extreme points or wvertices, faces of dimension 1 are called edges, and faces of dimension
dim(P) — 1 are called facets. Sometimes, one uses ridges for faces of dimension dim(P) — 2.

Exercise 3-4. List all 28 faces of the cube P = {x € R3:0<a;<1lfori=1,2, 3}.
Although there are infinitely many valid inequalities, there are only finitely many faces.

Theorem 3.5 Let A € R™ ™. Then any non-empty face of P = {x € R" : Az < b}
corresponds to the set of solutions to

Zaijxj =b; foralliel

J
Zaijxj < b; foralli ¢ I,
J

for some set I C {1,--- ,m}. Therefore, the number of non-empty faces of P is at most 2™.
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Proof: Consider any valid inequality o’z < B. Suppose the corresponding face F' is
non-empty. Thus F' are all optimum solutions to

Max o’z
subject to:
(P) Az <b.

Choose an optimum solution y* to the dual LP. By complementary slackness, the face F'is
defined by those elements z of P such that alz = b; for i € I = {i : y; > 0}. Thus F is
defined by
> ajx; = foralli € I
J
> ayw; <biforalli¢ I

J

As there are 2™ possibilities for I, there are at most 2™ non-empty faces. A

The number of faces given in Theorem 3.5 is tight for polyhedra (see exercise below), but
can be considerably improved for polytopes in the so-called upper bound theorem (which is
not given in these notes).

Exercise 3-5. Let P={x €R":x; >0fori=1,--- ,n}. Show that P has 2" 4 1 faces.
How many faces of dimension k does P have?

For extreme points (faces of dimension 0), the characterization is even stronger (we do
not need the inequalities):

Theorem 3.6 Let z* be an extreme point for P = {x : Ax < b}. Then there exists I such
that x* 1s the unique solution to

Zaijxj =0b; foralli e I.

J

Proof:  Given an extreme point x*, define I = {i : ), a;;z] = b;}. This means that for
i ¢ I, we have . a;;x; <b;.
From Theorem 3.5, we know that z* is uniquely defined by

> ayr;=b;forallicl (3)

J

Zaijxj < b, forall i ¢ I. (4)

J
Now suppose there exists another solution & when we consider only the equalities for ¢ € I.
Then because of }_; a;;zj < b;, we get that (1 — €)z” + €2 also satisfies (3) and (4) for €
sufficiently small. A contradiction (as the face was supposed to contain a single point). A
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If Pis given as {x : Ax = b,z > 0} (as is often the case), the theorem still applies (as
we still have a system of inequalities). In this case, the theorem says that every extreme
point x* can be obtained by setting some of the variables to 0, and solving for the unique
solution to the resulting system of equalities. Without loss of generality, we can remove from
Ax = b equalities that are redundant; this means that we can assume that A has full row
rank (rank(A) =m for A € R™*"). Letting N denote the indices of the non-basic variables
that we set of 0 and B denote the remaining indices (of the so-called basic variables), we
can partition * into x} and x%, (corresponding to these two sets of variables) and rewrite
Ar =bas Agrp+ Ayry = b, where Ap and Ay are the restrictions of A to the indices in B
and N respectively. The theorem says that z* is the unique solution to Agxg + Ayxzy =0
and zy = 0, which means z}, = 0 and Az} = b. This latter system must have a unique
solution, which means that Ap must have full column rank (rank(Ag) = |B|). As A itself
has rank m, we have that |B| < m and we can augment B to include indices of N such that
the resulting B satisfies (i) |B| = m and (ii) Ap is a m x m invertible matrix (and thus there
is still a unique solution to Agzp = b). In linear programming terminology, a basic feasible
solution or bfs of {x : Ax = b,z > 0} is obtained by choosing a set |B| = m of indices with
Ap invertible and letting xg = A,}lb and xny = 0 where N are the indices not in B. We have
thus shown that all extreme points are bfs, and vice versa. Observe that two different bases
B may lead to the same extreme point, as there might be many ways of extending Ag into
a m X m invertible matrix in the discussion above.

One consequence we could derive from Theorem 3.5 is:

Corollary 3.7 The mazimal (inclusion-wise) non-trivial faces of a mon-empty polyhedron
P are the facets.

For the vertices, one needs one additional condition:

Corollary 3.8 If rank(A) = n (full column rank) then the minimal (inclusion-wise) non-
trivial faces of a non-empty polyhedron P = {x € R™ : Az < b} are the vertices.

Exercise 3-7 shows that the rank condition is necessary.

This means that, if a linear program max{c’z : * € P} with P = {z : Az < b} is
feasible, bounded and rank(A) = n, then there exists an optimal solution which is a vertex
of P (indeed, the set of all optimal solutions defines a face — the optimal face — and if this
face is not itself a vertex of P, it must contain vertices of P).

We now prove Corollary 3.8.

Proof:  Let F' be a minimal (inclusion-wise) non-trivial face of P. This means that we
have a set I such that
F={x: ala=0; Viel

ajx <b; Vjé¢lI}
and adding any element to I makes this set empty. Consider two cases. Either F' = {x €
R™ : alx = b; for i € I} or not. In the first case, it means that for every j ¢ I we have

a; € lin({a; : i € I}) (otherwise there would be a solution z to alx = b; for all i € I and
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afz = b; + 1 and hence not in F) and therefore since rank(A) = n we have that the system
a; x = b; for all « € I has a unique solution and thus F' is a vertex.
On the other hand, if F # {x € R" : alx = b; for i € I} then let j ¢ I such that there

exists £ with

)\]\7

alz=b; 1€l
al & > b;.
Since F' is not trivial, there exists € F. In particular, & satisfies
alt=0b; i€l
afa? < b;.
Consider a convex combination @' = AT + (1 — A\)z. Consider the largest A such that 2’

is in P. This is well-defined as A = 0 gives a point in P while it is not for A = 1. The
corresponding @’ satisfies al 2’ = b; for i € I U{k} for some k (possibly j), contradicting the
maximality of I. AN

We now go back to the equivalence between Definitions 3.3 and 3.6 and claim that we
can show that Definition 3.3 implies Definition 3.6.

Theorem 3.9 If P = {z : Ax < b} is bounded then P = conv(X) where X is the set of
extreme points of P.

This is a nice exercise using the Theorem of the Alternatives.

Proof: Since X C P, we have conv(X) C P. Assume, by contradiction, that we do not
have equality. Then there must exist £ € P \ conv(X). The fact that & ¢ conv(X) means
that there is no solution to:

Ay >0 v e X.
By the Theorem of the alternatives, this implies that dc € R", ¢t € R:

t"‘Z?:leUjZO \V/UEX
t+ Z?:l CjJNZj < 0.

Since P is bounded, min{c’x : x € P} is finite (say equal to 2*), and the face induced by
¢’z > z* is non-empty but does not contain any vertex (as all vertices are dominated by &
by the above inequalities). This is a contradiction with Corollary 3.8. Observe, indeed, that
Corollary 3.8 applies. If rank(A) < n there woule exists y # 0 with Ay = 0 and this would
contradict the boundedness of P (as we could go infinitely in the direction of y). A

When describing a polyhedron P in terms of linear inequalities, the only inequalities that
are needed are the ones that define facets of P. This is stated in the next few theorems. We
say that an inequality in the system Ax < b is redundant if the corresponding polyhedron is
unchanged by removing the inequality. For P = {z : Az < b}, we let I_ denote the indices
i such that alx = b; for all € P, and I the remaining ones (i.e. those for which there
exists x € P with al'z < ¥;).

This theorem shows that facets are sufficient:
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Theorem 3.10 If the face associated with afx < b; for i € I. is not a facet then the
inequality s redundant.

And this one shows that facets are necessary:

Theorem 3.11 If F' is a facet of P then there must exists i € I such that the face induced
by al'z < b; is precisely F.

In a minimal description of P, we must have a set of linearly independent equalities
together with precisely one inequality for each facet of P.

Exercises
Exercise 3-6. Prove Corollary 3.7.
Exercise 3-7. Show that if rank(A) < n then P = {z € R" : Az < b} has no vertices.

Exercise 3-8. Suppose P = {x € R" : Az < b,Cz < d}. Show that the set of vertices of
Q={x eR": Az <b,Czx = d} is a subset of the set of vertices of P.

(In particular, this means that if the vertices of P all belong to {0,1}", then so do the
vertices of @).)

Exercise 3-9. Given two extreme points a and b of a polyhedron P, we say that they
are adjacent if the line segment between them forms an edge (i.e. a face of dimension 1) of
the polyhedron P. This can be rephrased by saying that a and b are adjacent on P if and
only if there exists a cost function ¢ such that a and b are the only two extreme points of P
minimizing ¢’z over P.

Consider the polyhedron (polytope) P defined as the convex hull of all perfect matchings
in a (not necessarily bipartite) graph G. Give a necessary and sufficient condition for two
matchings M; and M, to be adjacent on this polyhedron (hint: think about M; A My =
(M; \ My) U (Ms \ M;)) and prove that your condition is necessary and sufficient.)

Exercise 3-10. Show that two vertices u and v of a polyhedron P are adjacent if and
only there is a unique way to express their midpoint (3(u + v)) as a convex combination of
vertices of P.

3.4 Polyhedral Combinatorics

In one sentence, polyhedral combinatorics deals with the study of polyhedra or polytopes as-
sociated with discrete sets arising from combinatorial optimization problems (such as match-
ings for example). If we have a discrete set X (say the incidence vectors of matchings in a
graph, or the set of incidence vectors of spanning trees of a graph, or the set of incidence vec-
tors of stable sets' in a graph), we can consider conv(X) and attempt to describe it in terms

LA set S of vertices in a graph G = (V, E) is stable if there are no edges between any two vertices of S.
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of linear inequalities. This is useful in order to apply the machinery of linear programming.
However, in some (most) cases, it is actually hard to describe the set of all inequalities defin-
ing conv(X); this occurs whenever optimizing over X is hard and this statement can be made
precise in the setting of computational complexity. For matchings, or spanning trees, and
several other structures (for which the corresponding optimization problem is polynomially
solvable), we will be able to describe their convex hull in terms of linear inequalities.

Given a set X and a proposed system of inequalities P = {z : Az < b}, it is usually easy
to check whether conv(X) C P. Indeed, for this, we only need to check that every member
of X satisfies every inequality in the description of P. The reverse inclusion is more difficult.
Here are 3 general techniques to prove that P C conv(X) (if it is true!) (once we know that
conv(X) C P).

1. Algorithmically. This involves linear programming duality. This is what we did
in the notes about the assignment problem (minimum weight matchings in bipartite
graphs). In general, consider any cost function ¢ and consider the combinatorial opti-
mization problem of maximizing ¢’z over € X. We know that:

max{c’z:z € X} = max{c’z:z € conv(X)}
< max{c’z: Ar < b}
= min{b’y: ATy =c,y > 0},

the last equality coming from strong duality. If we can exhibit a solution = € X (say the
incidence vector of a perfect matching in the assignment problem) and a dual feasible
solution y (values u;, v; in the assignment problem) such that ¢’z = b"y we will have
shown that we have equality throughout, and if this is true for any cost function ¢, this
implies that P = conv(X).

This is usually the most involved approach but also the one that works most often.

2. Focusing on extreme points. Show first that P = {z : Az < b} is bounded (thus a
polytope) and then study its extreme points. If we can show that every extreme point
of Pisin X then we would be done since P = conv(ext(P)) C conv(X), where ext(P)
denotes the extreme points of P (see Theorem 3.9). The assumption that P is bounded
is needed to show that indeed P = conv(ext(P)) (not true if P is unbounded).

In the case of the convex hull of bipartite matchings, this can be done easily and this
leads to the notion of totally unimodular Matrices (TU), see the next section.

3. Focusing on the facets of conv(X). This leads usually to the shortest and cleanest
proofs. Suppose that our proposed P is of the form {x € R" : Ax < b,Cx = d}. We
have already argued that conv(X) C P and we want to show that P C conv(X).

First we need to show that we are not missing any equality. This can be done for exam-
ple by showing that dim(conv(X)) = dim(P). We already know that dim(conv(X)) <
dim(P) (as conv(X) C P), and so we need to argue that dim(conv(X)) > dim(P).
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This means showing that if there are n — d linearly independent rows in C' we can find
d + 1 affinely independent points in X.

Then we need to show that we are not missing a valid inequality that induces a facet
of conv(X). Consider any valid inequality a”x < 8 for conv(X) with a # 0. We can
assume that « is any vector in R™ \ {0} and that 3 = max{a”z : x € conv(X)}. The
face of conv(X) this inequality defines is F' = conv({zx € X : o’z = $}). Assume that
this is a non-trivial face; this will happen precisely when « is not in the row space of
C. We need to make sure that if F'is a facet then we have in our description of P an
inequality representing it. What we will show is that if F' is non-trivial then we can
find an inequality alz < b; in our description of P such that (i) ' C {x : al'z = b;}
and (ii) al x < b; defines a non-trivial face of P (this second condition is not needed if
P is full-dimensional), or simply that every optimum solution to max{a®z : z € X}
satisfies alz = b;, and that this inequality is not satisfied by all points in P. This
means that if F' was a facet, by maximality, we have a representative of F' in our
description.

This is a very simple and powerful technique, and this is best illustrated on an example.

Example. Let X = {(0(1),0(2),--- ,0(n)) : ¢ is a permutation of {1,2,--- ,n}}.
We claim that

conv(X)={z eR": Y7 x=("3")

2
Sieswi > () S {1, 0}
This is known as the permutahedron.

Here conv(X) is not full-dimensional; we only need to show that we are not missing
any facets and any equality in the description of conv(P). For the equalities, this can
be seen easily as it is easy to exhibit n affinely independent permutations in X. For
the facets, suppose that a’x < 8 defines a non-trivial facet F' of conv(X). Consider
maximizing o’z over all permutations x. Let S = argmin{a;}; by our assumption
that F' is non-trivial we have that S # {1,2,---,n} (otherwise, we would have the
equality > 1" x; = (”;1)) Moreover, it is easy to see (by an exchange argument)
that any permutation ¢ whose incidence vector  maximizes o’z will need to satisfy
o(i) € {1,2,---,|S|} for i € S, in other words, it will satisfy the inequality >, o x; >
(‘S|2+1) at equality (and this is a non-trivial face as there exist permutations that do
not satisfy it at equality). Hence, F' is contained in a non-trivial face corresponding to
an inequality in our description, and hence our description contains inequalities for all
facets. This is what we needed to prove. That’s it!

Exercises

Exercise 3-11. Consider the set X = {(o(1),0(2),---,0(n)) : o is a permutation of
{1,2--- ,n}}. Show that dim(conv(X)) =n — 1. (To show that dim(conv(X)) >n —1, ex-
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hibit n affinely independent permutations o (and prove that they are affinely independent).)

Exercise 3-12. A stable set S (sometimes, it is called also an independent set) in a graph
G = (V,E) is a set of vertices such that there are no edges between any two vertices in S.
If we let P denote the convex hull of all (incidence vectors of) stable sets of G = (V, E), it
is clear that x; + z; <1 for any edge (i,7) € E is a valid inequality for P.

1.Give a graph G for which P is not equal to

{reRV: g +2;,<1 forall (i,j) € E
z; >0 for all i € V'}

2.Show that if the graph G is bipartite then P equals

{zeRV: g +2;,<1 forall (i,j) € E
z; >0 for all i € V'}.

Exercise 3-13. Let ¢, € R" (k =10,...,n — 1) be a vector with the first k£ entries being
1, and the following n — k entries being —1. Let S = {eq,e1,...,€n_1,—€0, —€1,..., —€n_1},
i.e. S consists of all vectors consisting of +1 followed by —1 or vice versa. In this problem
set, you will study conv(S).

1.Consider any vector a € {—1,0,1}" such that (i) > ' a; = 1 and (ii) for all j =
1,...,n—1,wehave 0 < > 7_, a; < 1. (For example, for n = 5, the vector (1,0,—1,1,0)
satisfies these conditions.) Show that >  az; < 1 and >  a;x; > —1 are valid
inequalities for conv(sS).

2.How many such inequalities are there?

3.Show that any such inequality defines a facet of conv(S).

(This can be done in several ways. Here is one approach, but you are welcome to
use any other one as well. First show that either e, or —ej satisfies this inequality at
equality, for any k. Then show that the resulting set of vectors on the hyperplane are
affinely independent (or uniquely identifies it).)

4.Show that the above inequalities define the entire convex hull of S.

(Again this can be done in several ways. One possibility is to consider the 3rd technique
described above.)

3.5 Total unimodularity

Definition 3.12 A matriz A is totally unimodular (TU) if every square submatriz of A has
determinant —1,0 or +1.
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The importance of total unimodularity stems from the following theorem. This theorem
gives a subclass of integer programs which are easily solved. A polyhedron P is said to be
integral if all its vertices or extreme points are integral (belong to Z").

Theorem 3.12 Let A be a totally unimodular matriz. Then, for any integral right-hand-side
b, the polyhedron
P={z:Azx <b,x >0}

18 integral.

Before we prove this result, two remarks can be made. First, the proof below will in
fact show that the same result holds for the polyhedrons {z : Ax > b,x > 0} or {z : Az =
b,z > 0}. In the latter case, though, a slightly weaker condition than totally unimodularity
is sufficient to prove the result. Secondly, in the above theorem, one can prove the converse
as well: If P = {z : Az < b,z > 0} is integral for all integral b then A must be totally
unimodular (this is not true though, if we consider for example {z : Az = b,z > 0}).
Proof: Adding slacks, we get the polyhedron @ = {(z,s) : Az +Is =b,2 > 0,s > 0}.
One can easily show (see exercise below) that P is integral iff () is integral.

Consider now any bfs of (). The basis B consists of some columns of A as well as some
columns of the identity matrix I. Since the columns of I have only one nonzero entry per
column, namely a one, we can expand the determinant of Ag along these entries and derive
that, in absolute values, the determinant of Ag is equal to the determinant of some square
submatrix of A. By definition of totally unimodularity, this implies that the determinant of
Ap must belong to {—1,0,1}. By definition of a basis, it cannot be equal to 0. Hence, it
must be equal to £1.

We now prove that the bfs must be integral. The non-basic variables, by definition, must
have value zero. The vector of basic variables, on the other hand, is equal to Aj_glb. From
linear algebra, A5' can be expressed as

1 adj
det AB B

where A%dj is the adjoint (or adjugate) matrix of Ap and consists of subdeterminants of Ap.
Hence, both b and A%’ are integral which implies that A5'b is integral since |det Ag| = 1.
This proves the integrality of the bfs. A

Exercise 3-14. Let P={z: Az <b,x >0} and let Q = {(z,s) : Az + Is=b,x > 0,5 >
0}. Show that z is an extreme point of P iff (z,b— Axz) is an extreme point of (). Conclude
that whenever A and b have only integral entries, P is integral iff () is integral.

In the case of the bipartite matching problem, the constraint matrix A has a very special
structure and we show below that it is totally unimodular. This together with Theorem
3.12 proves Theorem 1.6 from the notes on the bipartite matching problem. First, let us
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restate the setting. Suppose that the bipartition of our bipartite graph is (U, V) (to avoid
any confusion with the matrix A or the basis B). Consider

J
injzl jEV
I”ZO iGU,jGV}

= {z: Az =b,z>0}.
Theorem 3.13 The matriz A is totally unimodular.

The way we defined the matrix A corresponds to a complete bipartite graph. If we were
to consider any bipartite graph then we would simply consider a submatrix of A, which is
also totally unimodular by definition.

Proof: Consider any square submatrix T of A. We consider three cases. First, if T" has a
column or a row with all entries equal to zero then the determinant is zero. Secondly, if there
exists a column or a row of 7" with only one +1 then by expanding the determinant along
that 4+1, we can consider a smaller sized matrix T'. The last case is when 7" has at least two
nonzero entries per column (and per row). Given the special structure of A, there must in
fact be exractly two nonzero entries per column. By adding up the rows of T' corresponding
to the vertices of U and adding up the rows of 1" corresponding to the vertices of V', one
therefore obtains the same vector which proves that the rows of T are linearly dependent,
implying that its determinant is zero. This proves the total unimodularity of A. A

We conclude with a technical remark. One should first remove one of the rows of A
before applying Theorem 3.12 since, as such, it does not have full row rank and this fact
was implicitly used in the definition of a bfs. However, deleting a row of A still preserves its
totally unimodularity.

Exercise 3-15. If A is totally unimodular then A7 is totally unimodular.

Exercise 3-16. Use total unimodularity to prove Konig’s theorem.

The following theorem gives a necessary and sufficient condition for a matrix to be totally
unimodular.

Theorem 3.14 Let A be a m x n matriz with entries in {—1,0,1}. Then A is TU if and
only if for all subsets R C {1,2,--- ,n} of rows, there exists a partition of R into Ry and Ry
such that for all j € {1,2,--+- ,m}:

Z Q5 — Z Q45 S {0, 1, —1}

i€ERy 1€ERy
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We will prove only the if direction (but that is the most important as this allows to prove

that a matrix is totally unimodular).
Proof: Assume that, for every R, the desired partition exists. We need to prove that the
determinant of any k& x k submatrix of A is in {—1,0,1}, and this must be true for any k.
Let us prove it by induction on k. It is trivially true for £ = 1. Assume it is true for k — 1
and we will prove it for k.

Let B be a k x k submatrix of A, and we can assume that B is invertible (otherwise the
determinant is 0 and there is nothing to prove). The inverse B! can be written as mB*,
where all entries of B* correspond to (k — 1) x (k — 1) submatrices of A. By our inductive
hypothesis, all entries of B* are in {—1,0,1}. Let b7 be the first row of B and e; be the
k-dimensional row vector [1 0 0---0], thus bj = e; B*. By the relationship between B and
B*, we have that

biB = e;B*B = det(B)e; B! B = det(B)e;. (5)

Let R = {i: b}, € {—1,1}}. By assumption, we know that there exists a partition of R
into R; and Ry such that for all j:

Z bij — Z bij - {—170, 1} (6)

i€ER 1€ERo
From (5), we have that
det(B) j=1
> byiby = { : (7)
i€R 0 j7l

Since ) i, bij = D _icp, bij and Y, p bi;bi; differ by a multiple of 2 for each j (since bj; €
{—1,1}), this implies that
D b= biy=0 j#L (8)

For j = 1, we cannot get 0 since otherwise B would be singular (we would get exactly the 0
vector by adding and subtracting rows of B). Thus,

Z b1 — Z b1 € {—1, 1}

1€ER; 1€ERo

If we define y € R* by
1 1€ Ry
0  otherwise

we get that yB = +e;. Thus

1 * 1 *
det BelB N :l:det Bbl’

y=+e,B 1=+

which implies that det B must be either 1 or -1. A
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Exercise 3-17. Suppose we have n activities to choose from. Activity ¢ starts at time ¢;
and ends at time wu; (or more precisely just before u;); if chosen, activity i gives us a profit of
p; units. Our goal is to choose a subset of the activities which do not overlap (nevertheless,
we can choose an activity that ends at ¢t and one that starts at the same time ¢) and such
that the total profit (i.e. sum of profits) of the selected activities is maximum.

1.Defining z; as a variable that represents whether activity i is selected (z; = 1) or not
(r; = 0), write an integer program of the form max{p’z : Az < b,z € {0,1}"} that
would solve this problem.

2.Show that the matrix A is totally unimodular, implying that one can solve this problem
by solving the linear program max{p’z : Az < b,0 < z; < 1 for every i}.

Exercise 3-18. Given a bipartite graph G and given an integer k, let S; be the set of
all incidence vectors of matchings with at most k£ edges. We are interested in finding a
description of P, = conv(Sk) as a system of linear inequalities. More precisely, you'll show
that conv(Sy) is given by:

Zz’z]’:’;ijgk

JIUZO ZEA,]EB}
Without the last constraint, we have shown that the resulting matrix is totally unimodular.

1.With the additional constraint, is the resulting matrix totally unimodular? Either prove
it or disprove it.

2.Show that Py indeed equals conv(Sk).

3.Suppose now that instead of a cardinality constraint on all the edges, our edges are
partitioned into £, and F5 and we only impose that our matching has at most k£ edges
from E; (and as many as we’d like from E»). Is it still true that the convex hull of all
such matchings is given by simply replacing >, >, zi; < k by

i ji(i,4)EEn

3.6 Matching polytope

In this section, we provide an illustration of the power of the third technique to prove a
complete description of a combinatorial polytope. Consider the matching polytope, the
convex hull of all incidence vectors of matchings in a graph G = (V, E). If the graph
is bipartite, we have seen that the degree constraints are sufficient to provide a complete
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description of the polytope, but this is not the case for non-bipartite graphs. We also need
the blossom constraints, which for any set S C V with |S| odd says that

> x@_ysy—1

ecE(S)

where F(S) denotes the edges of £ with both endpoints within S. These inequalities are
clearly valid inequalities for all matchings as any matching can use at most (|S| —1)/2 edges
from E(S). But there are also sufficient:

Theorem 3.15 (Edmonds) Let X be the set of incidence vectors of matchings in G =
(V,E). Then conv(X) = P where

P Zmeg ieV
e€d(v
—1
er_ S CV,|S| odd
ecE(S)
e >0 e € E},

where §(v) denotes the edges incident to v and E(S) denotes the edges with both endpoints
n S.

Here is a proof based on the third technique, showing that we are not missing any facets.
Proof: First, it is clear that conv(X) C P. Also dim(conv(X)) = |FE| since we can
easily find |E| + 1 affinely independent points in X (and thus in conv(X)): just take the
matchings consisting of a single edge and the empty matching. Therefore we are not missing
any equality in our description.

Now consider any valid inequality a’x < 8 which is valid for all matchings: for any
matching M, we have ) __, . < 8. We need to show that the face F' induced by this
inequality is contained in the face defined by one of the inequalities in our proposed descrip-
tion P. This would mean that we have in our description P an inequality for each facet of
conv(X). Consider the eztremal matchings defined by the valid inequality oz < 3:

R={ze€S:a"zx =7}

If R is empty that the face is the trivial face and there is nothing to prove. So, we assume
that R # 0.
Consider the following three steps.

Case 1. If there exists e with a, < 0 then for all z € R, we must have x, = 0. Thus
{reX:a'v=p}C{recconv(X):a’r =8} C{reP:z =0},

and therefore this face F' is included in the face defined by the inequality z. > 0 in our
description P. Thus, in what remains, we can assume that o, > 0 for all e € E.
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Case 2.

Case 3.

If there exists v € V such that Vx € R: ) _ 5(v) Te = 1 then this face F'is included in
the face induced by ) . 5(v) Te < 1 which is part of P. Thus, in what remains, we can
assume that for every v € V| there exists an extremal matching M, not covering v.

Let By ={e € E : a, > 0}. Thus (after case 1), we have a, =0 for alle € E\ E. Let
Vi = E(V,) be the vertex set of F, and consider any connected component (V;, Ey)
of Vi, E). We will show that the face F' is a subset of the face induced by the blossom
constraint for V.

We first claim that there are no extremal matchings missing (i.e. not covering) two
vertices u,v € V;. Let us assume otherwise. Among all extremal matchings mssing at
least 2 vertices u, v of Vi, let M and u,v be such that the distance between u and v
within (V}, £) is minimized. If this distance is 1 then (u,v) € E; and M U {(u,v)}
would violate the inequality since vy, > 0. Thus, the distance is at least 2. Let
w ¢ {u,v} be on a shortest path from u to v; thus, the distances between w and both
u and v is smaller than the distance between u and v. Now, following case 2, we know
that there exists an extremal matching M., missing w. Consider M,/AM. Since this is
the symmetric difference of two matchings, this contains alternating paths and cycles,
and since w has degree 1 in this subgraph, M,AM must contain a path P with w as
an endpoint. Let My = MAP and My, = M,,AP. M; and M, are two matchings and
therefore Y, a. < B and ) ;. a. < 8. But we also have

Zae—i_zgezzae—i_zae:Qﬁa

e€ My e€ Mo ee M eeM

and therefore both M; and M, are also extremal. Neither M; nor M, covers w, and
each of them also does not cover either u or v (as P only as two endpoints, one of which
is w). This is contradiction with our choice of M, u and v to minimize the distance
between u and v.

By the claim, no extremal matching misses more than one vertex of V;. Moreover,
any extremal matching that misses one vertex of V; (and these exist) cannot use any
edge of 0(V}) since these edges have o, = 0 and thus the removal of such an e would
give another extremal matching which would then miss more than one vertex of Vi,
a contradiction. Thus the existence of an extremal matching like M, that misses
v € Vi implies that |V;] — 1 is even. We claim that every extremal matching M has
precisely (|V1| —1)/2 edges from FEj;. If this was not the case, removing the edges from
M \ E; would give another extremal matching that misses more than one vertex in
Vi, a contradiction. Thus we have shown that every extremal matching M satisfies
IMNE;| = (|Vi|—1)/2 and therefore all extremal matchings belong to the face induced
by
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Since the vertices of a face of a polyhedron are vertices of the original polyhedron, we
can deduce from Theorem 3.15 that a complete description of the perfect matching poly-
tope is obtained by simply replacing the degree inequalities ) . 5wy Te <1 by equalities:

Zeeé(v) Te = 1.



