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Abstract
In this paper we answer a question of Mike Freedman, regarding the efficiency of

positive topological field theories as invariants of smooth manifolds in dimensions >
4. We show that simply connected closed 5-manifolds can be distinguished by
such invariants. Using Barden’s classification, this follows from our observation
that homology groups and the vanishing of cohomology operations with finite
coefficients are detected by positive topological field theories. Moreover, we prove
that in the non-simply connected case, as well as in all dimensions d > 5, the
universal manifold pairing (and in particular, d-dimensional positive topological
field theories) are not sufficient to distinguish compact d-manifolds with boundary
S3 × Sn, n > 1 and S4k−1, k > 1. The latter case is equivalent to the same
statement for closed 4k-manifolds.

1 Introduction

In [FKNSWW] the authors study the universal manifold pairing related to positive
unitary topological quantum field theories, in short PTFT’s, see Definition 4. They
show that closed smooth oriented manifolds of dimension ≤ 2 can be detected by
PTFT’s. Moreover, they prove that in dimension 4 two s-cobordant manifolds,
with small 4-balls removed, represent the same vector in the universal vector space
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ported by a grant from the NSF. He also wishes to thank the Max-Planck Institute for
Mathematics in Bonn and the Institut des Hautes Etudes Scientifique near Paris for their
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MS3 of the 3-sphere, implying that none of the exotic structures on 4-manifolds
can be detected by PTFT’s. Using every available technique in dimension 3,
Calegari, Freedman and Walker recently showed that 3-manifolds are still detected
by the universal manifold pairing. This raises the question about dimensions > 4.
We give both positive and negative results: We show in Theorem 3 that simply
connected 5-manifolds can be detected (like dimensions ≤ 3) by PTFT’s but that
the answer is - as in dimension 4 - negative for general d-manifolds for all d ≥ 5.
The precise statement is given in Theorem 2 but we note that there are simply-
connected examples in dimension ≥ 6, so that simply connected 5-manifolds are
very exceptional in higher dimensions.

We begin with a short summary and notation. Unless stated otherwise, all
manifolds are oriented, compact and smooth. For a closed (d − 1)-manifold S,
let MS be the C-vector space freely generated by diffeomorphism classes of d-
manifolds M with ∂M = S. So elements of MS are finite sums x =

∑
i aiMi

with ∂Mi = S and unique coefficients ai ∈ C. More precisely, we consider two
basis elements M and N of MS as equal iff there is an orientation preserving
diffeomorphism, whose restriction to the boundary S is the identity map.

Remark 1. A pair (W,ϕ), where ϕ : ∂W → S is a diffeomorphism, gives a
canonical basis element of MS as follows: Pick a product collar for ∂W and glue
a copy of S × I to W via ϕ. This gives a smooth manifold with boundary equal
to S. In particular, the diffeomorphism group of S acts on MS by this gluing
operation.

If S is empty we denote MS by M, the set of oriented diffeomorphism classes
of closed oriented smooth manifolds of dimension d. There is a hermitian pairing,
called the universal manifold pairing in [FKNSWW]

〈 , 〉 : MS ×MS →M,

〈
∑
i

aiMi ,
∑
j

bjNj 〉 :=
∑
i,j

aib̄j(Mi ∪S −Nj)

The question raised in that paper is for which dimensions d this hermitian pairing
is positive definite in the sense that 〈x, x〉 = 0 implies x = 0.

Our examples in dimension ≥ 5 are rather simple counter examples to being
positive definite. We will find a (d− 1)-manifold S and two d-manifolds W and T
with boundary S such that W is not diffeomorphic to T rel. boundary, implying
W − T non-zero in MS , but

〈 W − T , W − T 〉 = (W ∪S −W )− (W ∪S −T ) + (T ∪S −T )− (T ∪S −W ) = 0.
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Since a closed manifold of the form W ∪S −W always has an orientation reversing
diffeomorphism, the latter is equivalent to the existence of diffeomorphisms

W ∪S −W ∼= W ∪S −T ∼= T ∪S −T.

We actually give two classes of examples, one which only works in dimension d = 4k
with k > 1, where S = S4k−1 is a sphere, and the other, where S = S3 × Sn for
n ≥ 1 is a product of spheres. The case of a sphere is most interesting because
then the classification of compact d-manifolds with boundary Sd−1 is equivalent
to the classification of closed d-manifolds (by gluing in the standard disk Dk).

Theorem 2. Let S = S4k−1, k > 1, or S = S3 × Sn, n > 0. Then there are
d-manifolds W and T with boundary S such that

W − T 6= 0 but 〈 W − T , W − T 〉 = 0,

Except for the case d = 4, the manifolds W and T may be chosen to be simply-
connected.

It is an open problem whether S = Sd−1 can be used if d is not divisible by 4.
In the smallest unknown (simply connected) case d = 6 this is closely related to
the algebraic classification of unimodular cubic forms, coming from the triple cup
product on H2(M6).

In the remaining case of simply-connected 5-manifolds, we prove the following
result. The new terminology will be explained after the theorem.

Theorem 3. For S = S4, the universal manifold pairing is positive on simply
connected 5-manifolds. Moreover, such manifolds (and therefore closed simply-
connected 5-manifolds) can be detected by 5-dimensional PTFT’s.

We shall now give a quick review of the terminology. A d-dimensional topo-
logical quantum field theory is a symmetric monodial functor from a bordism
category Bd to the category of finite dimensional vector spaces. Using our conven-
tion that all manifolds are oriented, compact and smooth, the objects of Bd are
closed (d−1)-manifolds and there are two types of morphisms between S1 and S2:

• orientation preserving diffeomorphisms and

• d-dimensional bordisms.

More precisely, the adjective ’topological’ forces one to use isotopy classes of dif-
feomorphisms and diffeomorphism classes (rel boundary) of bordisms. Then there
is a well defined composition of morphisms, given by gluing bordisms (and using
Remark 1 to turn a diffeomorphism into a bordism that can be glued on).
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Note that given a bordism W , every boundary component S inherits an ori-
entation from W . One considers S as ‘incoming’ if this orientation disagrees with
the one given on the object S in Bd, otherwise as ‘outgoing’. The gluing operation
is compatible with these source and target maps for Bd.

For example, the cylinder S × I is the identity morphism idS : S → S in Bd
(because gluing it to any bordism doesn’t change its diffeomorphism type) but it
can also be read as

CS : S q−S −→ ∅,

where the disjoint union q is the symmetric monoidal structure on Bd (whereas
the tensor product is used for vector spaces). Then a TQFT E gives linear maps

E(CS) : E(S)⊗ E(−S) −→ E(∅) ∼= C

and it is not hard to see that these pairings E(CS) are non-degenerate. In fact,
using the cylinder also as a bordism ∅ → −SqS, one could derive from the gluing
axioms that E(S) must be finite dimensional without assuming it in the first place!

There are interesting involutions on both categories: on Bd, the involution
flips the orientation on both, the bordisms and their boundaries: a morphism
W : S1 → S2 leads to a new morphism −W : −S1 → −S2. For a complex vector
space V , one can use the opposite complex structure, usually denoted by V̄ (and
the identity on linear maps) to define an involution. A unitary TQFT preserves
these involutions (up to natural isomorphisms). This implies that one has two
isomorphisms

E(S)∗ ∼= E(−S) ∼= Ē(S)

which together give a hermitian pairing on E(S). It is not hard to conclude from
the functoriality of E that this pairing must be symmetric but there is no reason
why it should be positive definite. However, many of the original examples of
TQFT’s, usually defined with some physical intuition, do indeed lead to Hilbert
spaces E(S). Therefore, we make the following

Definition 4. A PTFT (P for ‘positive’ or ‘physical’) is a unitary topological
quantum field theory whose hermitian pairing is positive definite. We removed the
Q from the notation because we feel that there is not enough ‘quantum’ theory
going on in our discussion.

It is important to summarize the main properties of a PTFT E:

1. For each object S in Bd, there is a finite dimensional Hilbert space E(S) and

2. for each morphism W : S1 → S2 the image E(W ′) of W ′ := −W : S2 → S1

is the Hilbert space adjoint of E(W ).
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To connect this with the universal manifold pairing discussed below, note that a
PTFT E receives linear maps

MS −→ E(S) and in particular M = M∅ −→ E∅ = C

Under these maps, the above universal manifold pairing becomes the (positive
definite) inner product on E(S). In particular, if 〈x, x〉 = 0 then the linear combi-
nation x =

∑
i aiMi of d-manifolds maps to the zero element

∑
i aiE(Mi) in E(S)

because this is a vector of length zero. As a consequence, x is undetectable by E
and our Theorem 2 implies that the manifolds W and T cannot be distinguished
by any d-dimensional PTFT.

The proof of Theorem 3 follows from Barden’s classification [Ba] via the follow-
ing general result on d-dimensional PTFT’s. The particular ones used in this the-
orem are higher dimensional versions of Chern-Simons theories with finite Gauge
group.

Theorem 5. PTFT’s detect homology and cohomology groups additively, and they
also determine whether stable cohomology operations with finite coefficients van-
ish. More precisely, if M is a closed d-manifold then there are (finitely many)
d-dimensional PTFT’s whose values on M determine the additive homology with
finite coefficients and whether stable cohomology operations with finite coefficients
vanish.

It is a consequence of the nature of our counterexamples in Theorem 2 that
PTFT’s cannot detect all cup products in cohomology.

Acknowledgement: We thank Mike Freedman for encouraging us to study this
question.

2 Proof of Theorem 2

As explained above we are looking for a closed oriented manifold S of dimension
d− 1 ≥ 4 and two d-manifolds W and T with boundary S such that

• W and T are not diffeomorphic rel. boundary and

• W ∪S−T , W ∪S−W and T ∪S−T are orientation preserving diffeomorphic.

We give two classes of examples. The first one, which also motivates the second
construction, gives examples in dimension 4k for all k > 1. We begin to describe
these manifolds where the boundary S = S4k−1 is a sphere. To construct W ,
consider the positive definite symmetric unimodular form E8(even of rank 8) and
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construct M(E8), the parallelizable 4k-dimensional manifold plumbed according
to the graph E8. It is (2k − 1)-connected with intersection form E8. Since k > 1,
the boundary of M(E8) is a homotopy sphere. Moreover, the group of homotopy
spheres is finite [KM] and hence some boundary connected sum

]2rM(E8)

has boundary diffeomorphic to the standard sphere S4k−1. Note that the bound-
ary of M(E8) is a generator for the cyclic subgroup of boundary parallelizable
homotopy spheres; the order of this subgroup is known [KM].

We choose a diffeomorphism ϕ from this boundary to S4k−1, and attach the
cylinder over S4k−1 via this diffeomorphism to obtain a manifold Wϕ with bound-
ary equal to S4k−1. To construct T we do the same using E16 instead of E8 to
plumb the parallelizable manifold M(E16). The clue is that M(E8)]M(E8) and
M(E16) have non-isomorphic intersection forms but same rank and signature 16.
Again we want to consider an appropriate boundary connected sum of copies of
M(E16), such that the boundary is S4k−1. Since the homotopy spheres which are
boundaries of parallelizable manifolds are determined by the signature of these
manifolds [KM], and the signature of M(E16) is 16, we see that ]rM(E16) has
boundary diffeomorphic to S4k−1. Again we choose a diffeomorphism ψ and at-
tach via it the cylinder over S4k−1 to get the manifold Tψ with boundary S4k−1.
Observation: The manifolds Wϕ and Tψ are not diffeomorphic since their inter-
section forms are not isomorphic.

We recall Wall’s classification of (2k−1)-connected stably parallelizable closed
manifolds [W]. If X and Y are two such manifolds with isomorphic intersection
form, then there is a homotopy sphere Σ such that X is diffeomorphic to Y ]Σ.
If X and Y are the boundary of a compact parallelizable manifold, then Σ is the
boundary of a compact stably parallelizable manifold, and so Σ is then S4k−1 by
the h-cobordism theorem. This implies that X and Y are diffeomorphic.

The double Wϕ ∪S4k−1 −Wϕ is a closed stably parallelizable manifold with
indefinite intersection form and signature 0. Since indefinite even forms are clas-
sified by the signature and rank, the intersection form is isomorphic to that of
]16rS2r × S2r. The first manifold is the boundary of the stably parallelizable
manifold W × I and the second is the boundary of the stably parallelizable man-
ifold given by the boundary connected sum of 16r copies of S2r × D2r+1. Thus
Wϕ∪S4k−1−Wϕ is diffeomorphic to ]16rS2r×S2r. The same argument implies that
Tψ ∪S4k−1 −Tψ is diffeomorphic to ]16rS2r × S2r, and so we conclude:

Wϕ ∪S4k−1 −Wϕ
∼= Tψ ∪S4k−1 −Tψ ∼= ]16rS2r × S2r.

we stress that these diffeomorphims exist for all choices of ϕ and ψ.
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Applying the same argument to Wϕ ∪S4k−1 −Tψ we conclude that there is
a homotopy sphere Σ such that Wϕ ∪S4k−1 −Tψ is diffeomorphic to ]16rS2r ×
S2r]Σ. All homotopy spheres of dimension 4k > 4 are of the form D4k ∪ρ D4k

for some diffeomorphism ρ on S4k−1. Thus composing ϕ with an appropriate
diffeomorphism ρ we conclude that

Wρϕ ∪S4k−1 −Tψ ∼= ]16rS2r × S2r

Conclusion: All manifolds Wρϕ∪S4k−1−Wρϕ, Tψ∪S4k−1−Tψ, and Wρϕ∪S4k−1−Tψ
are diffeomorphic to ]16rS2r × S2r.

Now we come to the second class of examples. The starting point are again
manifolds plumbed according to E8 ⊥ E8 and E16, but this time we plumb 4-
manifolds. In other words, we start with a 0-handle D4 and attach sixteen 2-
handles D2 ×D2 according to the linking matrices of these quadratic forms. The
boundaries are two (a priori distinct) homology 3-spheres. According to Freed-
man’s main theorem [F], given any homology 3-sphere Σ, there is a unique con-
tractible topological 4-manifold with boundary Σ.

Attaching such a manifold to our homology spheres above, we obtain two closed
topological 4-manifolds A and B with intersection forms E8 ⊥ E8 respectively E16.
We remove open disks from the smooth part of these manifolds and denote the
result A◦ and B◦. These are topological manifolds with smooth boundary equal to
the standard 3-sphere S3. Although smoothing theory [KS] does not completely
work in dimension 4, part of it works: the obstruction theory for a PL or linear
structure on the stable topological tangent bundle. In our situation this Kirby-
Siebenmann obstruction agrees for both cases (PL and smooth) and lies in Z/2.
For A and B it is the signature mod 16, and so it vanishes. Similarly we consider
the obstruction for A◦ and B◦ (rel. boundary) which is again the signature mod 16
and so vanishes. There is also an obstruction for uniqueness (rel. boundary) lying
in H3(−; Z/2). This group vanishes in our situation is 0 and thus in both cases
there is a unique reduction of the stable topological tangent bundle to a linear
structure.

Now we return to our original problem and Theorem 2. The manifold S is now
S3 × Sn, n > 0, and the manifolds with boundary S are as topological manifolds
A◦ × Sn and B◦ × Sn. Since we have a unique reduction of the stable topological
tangent bundle to a linear bundle (rel. boundary) on A◦ and B◦, we can take the
product structure with the smooth structure on Sn to obtain extensions of the
smooth structure of S3×Sn to A◦×Sn and B◦×Sn applying smoothing theory in
dimension > 4 [KS]. We denote these two smooth manifolds with boundary S3×Sn
by W and T . We also consider A◦ ∪3

S −B◦. By Freedman [F] this topological spin
manifold is up to homeomorphism classified by the intersection form, and so - as
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in our first class of examples - it is homeomorphic to ]16S2 × S2. Again there is
a unique linear structure on the stable topological tangent bundle of A◦ ∪S3 −B◦,
and so we obtain a smooth structure on (A◦ ∪S3 −B◦)× Sn. By construction this
is on the one hand diffeomorphic to W ∪S3×Sn −T and on the other hand (using
the agreement of the linear structure on the stable topological tangent bundle)
to (]16S2 × S2) × Sn. Now we repeat the same argument with A◦ ∪S3 −A◦ and
B◦ ∪S3 −B◦ and see that also W ∪S3×Sn −W and T ∪S3×Sn −T are diffeomorphic
to (]16S2 × S2)× Sn finishing the argument.

It is an exercise left to the reader to show that W and T are not diffeomorphic.
In fact, not even their cohomology rings are isomorphic. It is clear that these
manifolds are simply-connected if n > 1, i.e. in dimensions d > 5.

3 Simply connected 5-manifolds

In this section we will show that PTFT’s can distinguish simply connected closed
5-manifolds. This implies Theorem 3 by the discussion in the introduction. We
first recall Barden’s classification of such manifold from [Ba].

For any manifold M , we can define an invariant i(M) ∈ {0, 1, . . . ,∞} as
the largest integer r such that w2(M) ∈ H2(M ; Z/2) can be lifted to a class
in H2(M ; Z/2r). By convention, i(M) := 0 if and only if w2(M) = 0, i.e. M is
spin and i(M) := ∞ if and only if w2(M) 6= 0 comes from an integral cohomology
class.

Theorem 6 (Barden). Two closed smooth simply-connected 5-manifolds are dif-
feomorphic if and only if they have isomorphic second homology and equal i-
invariants.

We will show that the invariant i(M) can be detected by the vanishing of cer-
tain stable cohomology operations. This is clear for i(M) = 0 which by definition
is equivalent to w2(M) = 0. By the Wu formula, this in turn is equivalent to the
vanishing of

Sq2 : H3(M ; Z/2) → H5(M ; Z/2).

If w2(M) 6= 0, the non-spin case, we apply the following Lemma to calculate i(M)
from the vanishing of cohomology operations.

Lemma 7. For a non-spin closed simply-connected 5-manifold M , i(M) > r > 0
if and only if the following stable cohomology operation αr vanishes:

αr : H2(M ; Z/2r) βr−→ H3(M ; Z) red2−→ H3(M ; Z/2)
Sq2−→ H5(M ; Z/2)

Here βr is the relevant Bockstein, red2 is reduction modulo 2, and Sq2 is the second
Z/2-Steenrod operation.
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Proof. Since M is simply connected, we have

H2(M ; Z/2r) ∼= Hom(H2(M ; Z),Z/2r).

Applying Poincaré duality and the Wu formula we can identify w2(M) with the
homomorphism

w2 : H2(M,Z) ∼= H3(M ; Z) red2−→ H3(M ; Z/2)
Sq2−→ H5(M ; Z/2) ∼= Z/2.

Now we use the Bockstein exact sequence

H2(M ; Z/2r) βr−→ H3(M ; Z) ·2r

−→ H3(M ; Z)

to see that our operation αr is trivial if and only if the above homomorphism w2

vanishes on all elements of H2(M ; Z) that are annihilated by 2r. It follows that
w2 can be lifted over the surjection Z/2r+1 → Z/2 if and only if αr is zero.

With this information, Barden’s classification and Theorem 5 from the intro-
duction implies that PTFT’s classify simply-connected closed 5-manifolds. The-
orem 5 follows from a construction going back to Kontsevich, Dijkgraaf-Witten,
Segal and Freed-Quinn. We follow the exposition in [Q] and first introduce the
following central notion.

Definition 8. An FH-group is an H-group with finite total homotopy. A mor-
phisms between FH-groups is a product and unit preserving continuous map.

So an FH-group is a topological space X with a multiplication X × X → X
that, up to homotopy, is associative and has a unit x0 and an inverse map X →
X. Moreover, the finite total homotopy condition means that for all i ≥ 0, the
homotopy groups πiX := πi(X,x0) are finite and nonzero only for finitely many
i. Recall that for H-groups the isomorphism type of each homotopy group is
independent of the base point.

Definition 9. The homotopy order #h(X) of an FH-group is the ”alternating
product”

#h(X) :=
∞∏
i=0

|πiX|(−1)i

This is a rational number, well defined by our assumptions on X.

In the following, we will study spaces Map(Y,X) of continuous maps, with
the compact-open topology, as well as the subspaces Map0(Y,X) of maps that
preserve a base-point. Note that if X is an H-space then so are both types of
mapping spaces above, with all structures given pointwise (and units given by
constant maps with value x0).
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Lemma 10. Let X be an FH-group and C a finite CW-complex.

1. If f : Y → X is a morphims of H-groups then its homotopy fibre F is an
H-group. F is FH (i.e. has finite total homotopy) if and only if Y is FH.

2. The exponential law gives a natural bijection

πn Map(C,X) ∼= [C,Map0(S
n, X)]

3. Map(C,X) and Map0(C,X) are FH-groups.

The main construction in [Q] implies the following result.

Proposition 11. Given an FH-group X and d ∈ N, there is a d-dimensional
PTFT, TX , whose value on a closed d-manifold M is the homotopy order of the
associated mapping space:

TX(M) = #h(Map(M,X))

Our only contribution to this story is the following simple observation.

Lemma 12. Let F → E
p→ B be a Serre fibration of FH-groups. Then the above

PTFT’s satisfy the relation

TF (M) · TE(M)−1 · TB(M) = | coker([M,E]
[p]−→ [M,B])|

In particular, the number on the right hand side can be detected by PTFT’s.

Proof. Mapping M into the fibration gives a long exact sequence of groups

· · · → [M,ΩnE] → [M,ΩnB] → [M,Ωn−1F ] → · · · → [M,F ] → [M,E] → [M,B]

where these are free homotopy classes of maps and the identity elements of these
sets are the constant maps with value the identity element in the relevant H-groups
F,E or B. This identity element is also used when defining the base loop spaces
ΩF = Ωf0F etc.

Part 2 of Lemma 10 above implies [M,ΩnB] ∼= πn Map(M,B) and similarly
for F and E. Forming the alternating product of all the (finite) orders in the
above exact sequence leads to the desired equation. We use here that compact
smooth manifolds are finite CW-complexes so that all orders eventually become
trivial.
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As an example take any FH-group B and use the path-loop fibration with
base B. Since both, total space and fibre, are FH-groups and the total space is
contractible, this implies that |[M,B]| is detected by PTFT’s. A special case would
be B = K(A,n) where n ≥ 0 and A is any finite abelian group. This shows that
PTFT’s can read off the orders of all cohomology groups with finite coefficients
A and by the universal coefficient theorems (and the fact that compact manifolds
are finite CW-complexes) the additive homology and cohomology groups of M can
also be detected.

To finish the proof of Theorem 5 we need to check that PTFT’s can determine
whether stable cohomology operations with finite coefficients vanish. Such an
operation is given by a map of FH-groups

α : K(A1, n1) −→ K(A2, n2)

and by part 1 of Lemma 10 the homotopy fibre F is again an FH-group. Lemma 12
above shows that PTFT’s can compute the order of the cokernel of

α∗ : Hn1(M ;A1) → Hn2(M ;A2),

as well as the order of both these cohomology groups. This implies that PTFT’s
can detect whether α∗ is trivial or not.
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