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Abstract

The graph invariant M, , known under the name first Zagreb indez , equal to the
sum of the squares of the degrees of the vertices of the respective (molecular) graph,
was first considered by Trinajsti¢ and one of the present authors in 1972. We show
that M, is related to a number of other quantities of interest in chemical graph theory,
and point out some of its general mathematical properties. In particular, the trees
with minimal and maximal M; are the path and the star, respectively. Several lower
and upper bounds for M, are reported.
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INTRODUCTION

In a paper [1], published more than 30 years ago, Trinajsti¢ and one of the present
authors examined the dependence of total m-electron encrgy on molecular structure.
They found that in the approximate expressions for total #-electron energy two terms

occur:

Moo= Y (8
vertices

M2 == Z 6u'6u
edges

with 8, standing for the degree (= number of first neighbors) of the vertex u of the
molecular graph. It was immediately recognized that M, and M) reflect the extent of
branching of the molecular skeleton (and are thus responsible for the decrease of total
m-electron energy with increasing branching). This viewpoint was then elaborated in
the paper {2 Eventually, M, and M, were named [3] the first Zagreb-Group index
and the second Zogreb-Group indez, respectively. These names were later abbreviated
into first Zagreb indez and second Zagreb indez [4]; note that some authors call M,
the Gutman indez [4].

Recently. on the occasion of the 30th anniversary of the Zagreb indices, a paper {5]
was published in which their main properties were summarized. However, the authors
of [3] failed to mention a number of known results, especially for M, . The purpose of

the present zrticle is to fill this gap. We also offer a few hitherto unpublished results
for M, .

NOTATION AND BASIC DEFINITIONS

Let &' be a graph, possessing n vertices and m edges. In whal follows we assume
that n > 2 The vertices of G are denoted by v, vs, .., vn. The number of first
neighbors of the vertex v; is its degree, and will be denoted by & . The vertices of

are labelled so that &, > §; > ... > &, The average of the degrees of the vertices

adjacent to v, is denoted by m, .
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The first Zagreb index, pertaining to the graph G, is defined as
M, = My(C) = 3 (&) (1)
i=1

an expression which should be compared with the well known resnlt

Yo di=2m. (2)
i=1
Let nx denote the number of vertices of G, possessing degree k. Then, of course,
): nE=n (3)
k>0

and, in view of (2),

Y kny=2m. (4)

k>0
Then the first Zagreb index conforms to the relation

My =Y Kng. (5)
k>0
A graph in which §, = &, = .-+ = §, = r is said to be regular, of degree r. For
regular graphs, M; = nr? and therefore these graphs are of little interest as far as the
ficst Zagreb index is concerned. Yet, it should be mentioned that in recent studies
in chemical graph theory regular graphs of degree 3 were much investigated, because
these provide a representation for fullerenes, nanotubes and similar carbon-atom
clusters.
An acyclic connected graph is called a tree. For all trees, §,., =4, = 1.
The tree with & = 2 is the path I, ; the tree with §, = n — 1 is the star S, . For

the path, ny =2, ny=n -2, and ny = 0 for k # 1,2. Therefore,
Mi(P)=2x1"4+(n-2)x2%=dn-6.
For the star, ny =n —~ |, n,y =1, and np = 0 for k£ # 1, n — 1. Therefore,
Mi(Sa)=(n-DxP+1x(n=~1)¢=n(n-1).

In molecular graphs it must be é, < 4. Trees with the property §; < 4 are called

chemical trees. For chemical trees, as a special case of (5),

M| =ﬂ|+4ﬂ2+9ﬂ3+ 16 ny
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as pointed out in [3).
For additional concepls from graph theory and chemical graph theory sce the

books [6, 7, 8, 9].

CONNECTION OF M; TO OTHER GRAPH INVARIANTS

1. Number of pairs of incident edges.
Denote by £(G,2) the number of pairs of edges which have a common endpoint.
There are (‘;) pairs of edges meeting at vertex v;. Therefore,

€G,2) = Z(‘;) = %M. —m

i=1

where we have taken into account relation (2).

2. Number of pairs of independent edges.
Denote by m(G,2) the number of pairs of edges which have no vertex in commeon.

Then, because the total number of pairs of edges is (’;‘) , we get

m 1 1
m(G,2) = (2) -G, 2) = gm(m+1) -5 M, .
Note that m(G,2) is also the second coefficient of the matching polynomial.

3. Fourth coefficient of the characteristic polynomial.

Using the Sachs theorem (7] we immediately get
1 ]
ag =m(G,2) -2Q = im(m +1) - §M| -2Q
where @@ denotes the number of 4-membered cycles contained in G. This expression

was first time reported in [1] and was eventually deduced by many other authors.

4. Fourth spectral moment.
The sum of the fourth powers of the eigenvalues of G, denoted here by S, , can be
calculated from a4, using the Newton identities [1, 9]. A more direct way is to notice

that Sy is equal to the number of self-returning walks of length 4. There are three
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types of such self-returning walks: (v,v,u,v,u), involving two vertices, (u,v,w, v,u),
involving three vertices, and walks along a four-membered cycle: (u,z,y,z,u). The
number of self-returning walks of the first type is equal to twice the number of edges
because (u,v,u,v,u) and (v,u,v,u,v) both pertain to the same edge uv. The number
of self-returning walks of the second type is equal to four times the number of pairs of
incident edges because (u,v,w,v,u), (v,w,v,u,v), (v,u,v,w0,v), and (w,v,u,v,w)
all pertain to the same pair of incident edges uv and vw. The number of self-
returning walks of the third type is 8Q, because we may start at any vertex of the

four-membered cycle and go in two opposite directions. Thus,
Se=2m+4£G,2)+8Q=2M, -2m+8Q .

This expression was first time reported in [10].

5. Second coefficient of the Laplacian characteristic polynomial.

Using the Kel’'mans theorem [7, 11, 12] we get

¢z = 34(G,2) + 4m(G,2) = 2m? —m — %Ml ,

6. Second Laplacian spectral moment.
If pt1, p2, . .., jin are the Laplacian eigenvalues of G, then

& o Tipuys % [)f: iuu‘.t,‘ - g(#i)’] = % Ki:#.) (?;lp,-) as ‘"l(m)"'} =

1< i=1 j=1 =1 =

= 5 [(2m)’ - i(p.)’]

which together with the previously deduced expression for ¢, yields

()= M +2m .
=1

7. Variance of vertex degrees.

The variance Var(é) of vertex degrees was recently examined in the mathematical

literature [13]. In view of the fact that by definition,

Var(s) = % 3= (Ji - 2—"‘)2

=1 n
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we obtain by direct calculation

Ve (B 5:—’ - (24’3)2 _

n

LOWER AND UPPER BOUNDS FOR M,

Bearing in mind the relations between M, and numerous other graph invariants, it
is not fully surprising that the quantity M, attracted the attention of mathematicians
[14, 15, 16). They, however, studied M, unrelated to its (earlier) chemical applications.

In this section we state several bounds for M;, existing in the mathematical
literature and, most probably, not known to scholars active in chemical graph theory.

Recall first that for a graph with n vertices and m edges, the average value of
the vertex degrees is 2m/n. Let p={2m/n],i. e, pis the integer part of 2m/n .
Then the first Zagreb index is bounded from both below and above by expressions

depending solely on the parameters n and m:
2m
2(2p+l)m—p(p+1)n5M1Sm(ﬁ-kn—?). (6)

The right--hand side inequality (6) is due to de Caen [15] whereas the left-hand side
inequality is obtained by one of the present authors [16].
The inequalities (6) hold for all graphs. In the case of trees (both chemical and

non-chemical), m = n — 1 and p = 1 and (6) is significantly simplified:
aln=1)>2M >4n -6

Earlier we have shown that n(n — 1) = Mi(S.) and 4n — 6 = M;(P,). Bearing this

in mind, we arrive at a noteworthy (yet not surprising) result:

Theorem 1. Among n-vertez trees, the star S, has mazimum and the path P,
minimum value of the first Zagreb indez. If Ty is an n-vertez tree, different from the

star or path, then M(S,) > M(Tn) > M (P,) .

In the case of molecular graphs which contain cycles (when m > n), the parameter

p is always equal to 2, except in the case of molecular graphs of fullerenes, where it
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is equal to 3. Therefore,

My >210m-6n

excepl in the case of fullerene graphs, for which the lower bound in (6) is equal to
l4m — 12n, which is equal to 9n = 3" n. This, in turn, is the M;-value of any
n-vertex regular graph of degree 3.

Another very simple upper bound for the first Zagreb index reads [16]:
My Sm(m+1).

Knowing the value of d; , the greatest vertex degree in the graph G, the bounds

(6) can be somewhat sharpened [16].

Lower bound in parameters n, m, d;:
Let p* = |2(m —d\)/(n = 1)} and i =2(m — dy) — p" (n — 1).
(a) Ifdy >n—1=t, then

My > (2p" +1)(2m—d) + ()’ +2(di —n+1+8) = p°(p" + 1)(n - 1)
(b)Ifdy <n—1-—t,then

My 2 (29" +1)2m —di) +(d)’ = p (0" + )(n - 1) (™

Upper bound in parameters n, m, d;:

4 1
M, gm(Zm -}-n—?)—dl (_m —2d|—r—z—t—d1+n—l)
n—1 n-—1 n-—1

Note that for molecular graphs, for which d; < 4, only the case (7) is applicable.
For acyclic, monocyclic and bicyclic molecular graphs, as well as tricyclic graphs
without vertex of degree 4, p* = 1. For all other molecular graphs, p* = 2.

Some more complicated bounds for the first Zagreb index can be found in the

paper [16]. Of them we mention here only the following:

Upper bound in parameters n, m, dy,m,:

2 4 1
M,gm( o +n_2)—dl (—m_zml—?—idlw-l)
n—1 n-1 n-1
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AN ALTERNATIVE PROOF OF THEOREM 1

In this section we give a proof of Theorem 1 which uses arguments from lincar
programming. With pertinent modifications this method can be used to characterize
unicyclic, bicyclic, etc. graphs with minimum cnd maximum first Zagreb index.

Consider a graph G without isolated vertices (i. e., ng = 0), in which the greatest

vertex degree is D . Write Eqs. (3) and (4) in the form

D
n+n, = n-— Zﬂk
k=3

D
n +2ny = 2m - Zkﬂk
k=3
and solve them in variables n; and ny. This gives

n)

D
2n—2m+ Y (k—2)n
k=3

ng = 2m—n— i(kA 1) ng
k=3
which substituted back into (5) results in
D
M =6m-2n+) (k—1){k—2)ng. (8)
k=3
Because all the terms in the summation on the right-hand side of equality (8) are
positive-valued, we see that M, will attain its minimal value ifallny , k = 3,4,...,D,
are equal to zero (of course, under the assumption that a graph with such properties
does exist).
In other words, the graph with minimum first Zagreb index should possess only
vertices of degree 1 and 2. In the case of trees, such graph does exist and is unique: it
is the path P, . Hence, the path P, has minimum M,;-value among all n-vertex trees.

This proves the first halfl of Theorem 1. In order to verify its second half, write

Eqgs. (3) and (4) in the form

D-1
m+np = n.fzn;,
k=2
D-1
n+Dnp = 2m—ank

k=2
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and solve them in variables n; and np. This gives

2m—n it ] |
("" D-1 )+Z(D~l~l) "

¥ k=2

m

Im-n 221k

Api = e § iy
D-1 S D-1
which substituted back into (5) results in
D-1
My=n+(D+1)(2m—n)= > [(D—k)}k-1)] ng. (9)
k=2

Again, all the terms in the summation on the right-hand side of equality (9)
are positive-valued. Because the entire summation has a ncgative sign, we see that
M, will attain its maximal value if all ng , & = 2,3,...,0 — 1, are equal to zero,
provided that a graph with such properties does exist. In other words, the graph with
maximum first Zagreb index should possess only vertices of degree 1 and D .

In the case of general trees, D should be set equal to n — 1. If so, then for any n
there exists a unique tree with the property ny,nn,_; # 0 and na,n3,...,n,2 = 0: it
is the star S, . Hence, the star S, has maximum M,-value among all n-vertex trees.

This completes the proof of Theorem 1.

Acknowledgement. This research was supported by the Ministry of Sciences, Tech-
nologies and Development of Serbia, within the Project no. 1389.

References

(1] I. Gutman, N. Trinajstic, Graph theory and molecular orbitals. Total 7-clectron
energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.

[2] I. Gutman, B. Ruséi¢, N. Trinajstié, C. F. Wilcox, Graph theory and molecular
orbitals. XI1. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.

(3] A. T. Balaban, [. Motoc, D. Bonchev, O. Mekenyan, Topological indices for
structure-activity correlations, Topics Curr. Chem. 114 (1983) 21-35.

(4] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH,
Weinheim, 2000.



92
{5] S. Nikoli¢, G. Kovacevié¢, A. Milicevi¢, N. Trinajsti¢, The Zagreb indices 30 years
after, Croat. Chem. Acta 76 (2003) 113-124.
[6] F. llarary, Graph Theory, Addison-Wesley, Reading, 1969.

[7] D. Cvetkovi¢, M. Doob, H. Sachs, Spectra of Graphs - Theory and Application,
Academic Press, New York, 1980.

[8] N. Trinajsti¢, Chemical Graph Theory, CRC Press, Boca Raton, 1983; 2nd re-
vised ed. 1992.

[9] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry,
Springer-Verlag, Berlin, 1986.

[10] [. Gutman, Some topological properties of benzenoid systems, Croal. Chem. Acla
46 (1974) 209-215.

[11] N. Trinajsti¢, D. Babié¢, §. Nikoli¢, D. Plavi¢, D. Amié, Z. Mihali¢, The Lapla-
cian matrix in chemistry, J. Chem. Jnf. Comput. Sci. 34 (1994) 368-376.

(12] L. Gutman, D. Vidovi¢, B. Furtula, Chemical applications of the Laplacian spec-
trum. VIL Studies of the Wiener and Kirchhoff indices, Indian J. Chem. 42A
(2003) 1272-1278.

[13] F. K. Bell, A note on the irregularity of graphs, Lin. Algebra Appl. 161 (1992)
45-54.

(14] L. A. Székely, L. H. Clark, R. C. Entringer, An incquality for degree sequences,
Diser. Math. 103 (1992) 293-300.

(15] D. de Caen, An upper bound on the sum of squares of degrees in a graph, Discr.
Math. 185 (1988) 245-248.

(16] K. C. Das, Sharp bounds for the sum of the squares of the degrees of a graph,
Kragujevac J. Math. 25 (2003) 000-000.



