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Abstract

It is shown that the roots of the acyclic and the charac-
teristic polynomials of homonuclear Hiickel and Mdébius cycles may
be derived as intersections of certain straight lines and the
function Qn(X) defined as

Qn(x} = Bt = B (x),

i
where P (x) and P (x) are, respectively, the characteristic
pelynomials of pa%ﬁ graphs consisting of n and n-2 centers, res-
pectively. The analogous results for alternant heteronuclear
Hiickel and Mdbius cycles are given. The eigenvalues for the
cylindrical (Hiickel) and the M8bius forms of polyacenes may be
obtained by a similar procedurc.

Further, a simple expression for the differential guotient
dP (x)/dx is derived and a generalized recurrence relation for the
polynomials Pn(x) is given.



1. Introduction

The HMO description of Hiickel |[1-3] and MObius cycles [4-T]
differ only in one respect: All the resonance integrals between
pairs of consecutive centers equal B in the case of Hiickel cycles,
but in M&bius cycles for one such pair, say n and 1, the sign of
the resonance integral is changed. Hence, the secular determinants
of these two systems differ only in one off-diagonal element,
namely D, =D, =0, ¢ = {+1,-1}, provided that both cycles
consist of the same number of centers, n; since only under this
condition does the comparison of the results obtained for the two
type of cycles make sense it is assumed throughout the paper. For
either value of p, the secular determinant of bhoth svstems
defining the respective characteristic polynomials, xn(x,p), may

be written as follows:

det D, =i x 1 0 ... 0 p|= X (x,p)

s § 5 3 (1)

Partitioning first the last row and then the last column of the
secular determinant into a sum of two rows and two columns, res-
pectively, whereby the entries of the one row/column are p or

zeros, one obtains the following expansion:
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where x = (o-c) /B and pef{+1,-1}. Obviously, the first deter-
minant equals Pn(x), the last one —pZPn_z(x), where Pn(x) denotes
the characteristic polynomial of a path graph consisting of n
centers; here, Pn(x) is also identical to the acyclic polynomial
[8-11] of this graph. The second as well as the third determinant

equals (-1)n_jp; they representing pure cyclic contributions.
It follows that eg. (1) takes the form:
- . _ gt
xn(X.D) 3 PH(X) Pn—Z(x) 2(-1)"p. (2)

The last term of eg. {2) assumes the value of -2 in the case of
even Hickel or odd Mdbius cycles, and that of +2 in the case of odd
Hickel or even M&bius cycles.

One should note that the acyclic polynomials of both the
Hiickel and the MSbius cycles are identically equal [12] and are

given as follows:



A (x) = P (x) = P _,(x). (3)

The first term is produced by the matching of all the edges ex-
cept the edge {n,1}, the second term by the matching of this
edge with all the other ones; the difference in the sign of the
two terms arises from the fact that the minimal cardinality of
the sets of matching edges amounts to O for the first, but 1 for

the second term.

2. Formulation of the problem treated here

The eigenvalues of the system considered can be obtained
alternatively either by finding the roots of the characteristic
polynomial, i.e.,

xn(X,p) = 0,

or by searching for the intersections of the function Qn(x), de-

fined by

Q,(x} =P (x) - P _,(x), (4)
with the straight line gn(x,n) = 2(—1)np, i.e.,

Q,(x) = 2(-1)"p. (5)

According to eg. (3), the zeros of Qn(x) are identically the
roots of the acyclic polynomial An(x). Despite the apparent iden-
tity of the quantities defined in egs. (3) and (4), different
notations are used because Qn(x) denotes a quite general function
(as is confirmed in Appendix B) which equals only accidentially
the acyclic polynomial of the Hiickel and the MSbius cycles.

The aim of this note is to relate the roots of the acyclic
and characteristic polynomials of Hiickel and M8bius cycles as is

expressed by the following three equations:



(i) eigenvalues of Hiickel cycles

Q (x) = 2.¢-1)" ; (6a)
(ii) eigenvalues of Mébius cycles
Q,(x) = I (6b)

(ii1i) roots of the acyclic polynomial

Q0 (x) =0 . (6c)

As is evident from these equations, the function Qn(x) plays a
central role in this task: the roots of the three polynomials

must be related to each other because they are derived from an
unique function, namely Qn(x), in a rather transparent manner.

For this reason, it seems to be worthwile to consider the function

Qn(x) in some detail.

3. Some properties of Pn(x)

Due tc the definition (4), the properties of Qn(x) depend on
those of the functions Pn(x) which, hence, should be reviewed

here briefly:

(i) The function Pn(x) may be expressed as follows:

n/2 I L P
P_(x) =7} (-1 X i (7)
n & v
v=0
(ii) the roots of Pn(x) = 0 are given by
x, = 2coskn/{n+1), k=1,2,...,n , (8)

k

and belong to the open interval (-2,+2);

(iii) as proved in appendix A, the differential quoticnt



dPn(x)/dx is given by the following expression:

n§2
dPn(x)/dx = ) {n-2¢)-P (9)

1o (X)
o n=1-2k
(iv) in the interval [-2,+2], which also contains the roots
of P _(x), the variable x may be expressed as x = 2cos8 , Oéeén,
n

and the function Pn(x) may be transformed into a function Pn(e)

given by

Pn(e) = sin(n+1)6/sin6 , (10)

<. <
X = 2co0s8, 0=6=1 :

4. Homonuclear Hiickel and M&bius cycles and some properties of

0,x)

Since both Hickel and MSbius cycles are depicted by a regqular
graph of degree 2, all their eigenvalues |13] belong to the inter-
val [-2,+2]. Hence, by the transformation of Qn(x) into Qn(e),no
eigenvalues of both cycles are lost. From eqgs. (4) and (10), one

obtains straightforwardly:
Q,(e) = 2.cosne. (11)

The following consequences of eq. (11) should be noted:

{i) in the interval of definition (11), i.e. xc¢[-2,+2], the
values of the function Qn(x) lie in the interval [-2,+2], and they
attain alternately one or the other boundary of the interval

{n+1) times (see also Fig. 1):

x & [=2:4215 G 0x] & [-2,421 3 (12)



(ii) for x = +2, corresponding with & = 0 and 8 = %, res~

pectively, the function Q (x) takes the following values:

0,(+2) =2, @ (-2) =2.(-1)"; (13)

in view of eq. (6), the first value corresponds to an eigenvalue
of an even Hiickel or an odd M&bius cycle whilst the second one
always represents an eigenvalue of either an even or an odd Hiickel
cycle;

{iii) since the values given in eq. (13) coincide with the
boundaries of the interval of Qn(x), it follows from (i) that in
the open interval (-2,+2) of the Variable x, the function Qn(x)
attains tangentially and alternately one or the other boundary
of [-2,+2], (n-1) times;

(iv) the functicn Qn(x) has n zeros expressed by

x., = 2.cos{2j+1)n/2n ,
- (14)
§ = Oylisess 31 #
in view of egs. (3) and (4), these are identically the roots of

the acyclic polynomial An(x).

Differentiating eq. (4) in respect to x and substituting
eg. (9) into the primary result, one finally obtains the follo-

wing expression:
dQn(x)/dx = n.Pn_1(x) = (15)

Hence, the function Qn(x) has its extrema exactly at the zeros

of Pn_1(x), which are given according to eq. (8) as follows:
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2.coskn/n

=
]

(16)
k =1,2,...,n=1;

they represent the (n-1) touchings of the boundaries of the inter-
val mentioned above in (iii). From this and eq. (11) the extremal

values of Qn(x) are given by
_ o k
Q (xk) = 2.coskn = 2.(-1})" . (17)

By comparison with eqg. (6), one easily recognizes that cq. (17)
represents all the doubly degenerate eigenvalues of the n-membered
Hliickel and Modbius cycle; for even n, k has to be even for Hiickel,
but odd for M&bius cycles whilst the opposite is true for odd
values of n.

All this leads to the well known expressions for the roots
of the acyclic (x?) and the characteristic polynomials of the

lickel (xﬁ) and the Mdbius (X£) cycles:

X? = 2.Cosg—]:_l-lil % ’ Oéjén—1 ;
xﬁ = 2.cos£§ T o2kin-1 ; (18)
xﬁ = 2.c052§i1 o, Oékén—1 5

In Fig. 1 the functions Qg(x) and Q1O(x) arc depicted;
these nicely illustrate the relations between the differcnt sets
of roots dencted in eq. (18): The mutual interlacing of the
eigenvalues of Hiickel and Mobius cycles results from Qn(x) being
a single-valued continous function. The mirror-image relation

between the eigenvalue spectra of these two types of odd membered



cycles is a consequence of the fact that Qn(x) is an odd function

for odd n. TFigure 1 further shows that all the roots of the

acyclic polynomial lie in intervals of minimal range which are

each bounded by an cigenvalue of the Hiickel and the M&bius cycle.
Figure 2 shows the energy band for an infinite annulene;

the roots of the acyclic and the characteristic polynomial of

the Hiickel and the MObius form of the 18-annulene, C are

18t
indicated by crosses, full, and open circles, respectively. These
all belong to the band. It can be shown guite generally [14] that
this must be essentially the case for the xﬂ's and the xt's; of
course, in the case of annulenes considered here, the xj's are
forced to belong also to the band because they have the same

analytical expression as is valid for xE and xﬂ, but this

relationship seems to be accidential.

5, Alternant hetcronuclear Hiickel and M8bius cycles

We now consider cycles of the general type (AB)n. Their

secular determinant may be written as follows:

aet DUAB) ) = [y 100 .o 00| = xp (¥,2,0)
l1 210 ...00
01 %1 con @8 |
001z ...00 —
. -
s % . & i
S
t |
looo00 ... y 11!
Ep o) s 1 % 0

where y = {(ap=€)/Ban, 2 = (0p=c)/Bpg, and o« {+1,-1}; both

variables, y and z, are linear functions of x, say, y = x + a and



z = x + b. In the same manner as the determinant of eq. (1) has
been expanded and the resulting terms have been identified, one
obtains from eq. (19) the following expression for the characte-

ristic polynomial of the cycles (AB)n:
Xon(¥s2,0) = By (y2) = By ,(y2) - 2.0 , (20)

where BZH(yz) denotes the characteristic and/or acyclic poly-
nomial of an unbranched alternant heteronuclear chain.
It can be shown that Bzm(yz) has the following analytical

form:

m 2m=- | .
B, (v2) =u£é-n“ Y S R (21)

Let us now define another variable
£2 = yoz (22)

which we substitute into eq. (21). Taking 2m = n and p = v, one
easily sees that by the substitution of eq. (22), the function

an(yz) is transformed into pzn(g) given by eq. (7):
By, lyz) = Py (E) . (23)

Hence, on recalling the definition (4), we can rewrite eq. (20)

as follows
xzn(y,z,n) = Q2n(€) - 2P (24)

the treatment performed in section 4 may now be applied analo-
gously to the problem of alternant heteronuclear Hiickel and

M&bius cycles. Bearing in mind that the cycles considered here



have a total of 2n centers, one obtains from the egs. (18) and
(22),

. 2,23+ LI, o

yj zj =.4.cos (2n 5) i 0=j=n-1 ;

yﬁ-zz = 4.c052(%%-n) 5 Oékén—1 o (25)

yt-zﬁ = 4.cosz(2%%l‘ﬂ), 0ZkEn-1 .

Since the variables y and z are linear functions [15] of x, say
y=x+aand z = x + b, the roots of the three polynomials have

the general form

(%g) 5 = ~L(a+h) + V(a=p)? + 16.cos’651/2 , (26)

where S denotes either A, H, or M, { either j or k, and e? the
corresponding argument given in eq. (25). The roots are symmetri-
cally located about x = -(a+b)/2. All the roots xE and xﬁ are

H H
doubly degenerate except the root ()(0)1,2 and for even n, (xn/2)1.2

also.

The alternant heteronuclear Hlickel and M8bius cycles exhibit
the same general properties as the homonuclear cycles, so one may
dispense with a detailed discussion. The function QZn(L), however,

requires further consideration:

If one replaces x formally by £ in QZn(x)’ only those real values
of £ are realizable which belong to [-2,+2], i.e. 025224. but, by
eq. (22), £? is defined as £? = (x+a) (x+b); hence, if x c(-a,-b),
one of these factors is positive the other negative and, conse-

quently, £? < 0. Of course, the function Q,,(E) is always defined

since it is an even function which has real values when £° < 0,



[ B

but these lie out of the range |-2,+2]. It may be shown that for
£? < 0, the function Q,,(8) > 2 if n is even, and Q, (£) < =2 if
n is odd, respectively. All this implies: (i) the interval (-a,-b)
specifies a gap to which no roots of the polynomials can belong;
(ii) the extremum of QZm(x) at x=0 in the homonuclear case does
not occur for QZm(é), the double root at x=0 generated by that
extremum is split into two single roots the one at x=-a, f (-a)=
0, and the other at x=-=b, £(-b)=0. As an illustration, in Fig. 3
there are depicted Q16(i) and Q18(E) for a=1, b=0, i.e., &2=x?+x,
The gap interval is (-1,0). In this interval one finds Q16>2 and
Q18<-2, the extrema amounts to Q16(—1/2) = 52,448257 and Q18(—1/2)

= -86,015842, respectively.

6. Cylindrical (Hiickel) and M3bius polyacenes.

As a special example of a polycyclic Hiickel and Mdbius system,

we consider certain forms of polyacene. A planar strip of this
material can be thought of as being closed in two different ways,
one leading to a cyclindrical form, termed earlier [16] the rota
polymer, R, and the other resulting in a Mobius band, M. The

structure of these two forms of polyacene is as follows:




The AO's of the centers r and 4n+l-r may be combined symmetri-
cally or antimetrically. Using these linear combinations as

basis functions, the problem is factorized. As well for the
symmetric as for the antimetric factor, we obtain a secular deter-
minant of exactly the same form as given in eq. (19). This
directly shows the applicability of the results of the preceeding
section to the problem treated here. The entries of the secular

determinants have the following meaning:

polyacene

rota form Mbbius form

(Hiickel)
symmetric Yy = X y = X
factor z =x + 1 2 =X + 1
g2 = x? + x o =1 o = -1
antimetric y = x Yy = x
factor z = x-1 z = x-1
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As a consequence of these specifications, the antimetric factor
does not differ for the Hlickel and the M6bius polymer, provided
they have the same degree of polymerisation, n. Differences appear
only in the symmetric factors of the two forms. This is illustra-
ted by Fig. 4 showing the eigenvalues of R and M for n = 6. Al-
though the formation of these compounds cannot be really anti-
cipated for such a low value of n, this value is chosen as it
illustrates the situation with optimal clarity due to the small
number of eigenvalues.

The function QZH(E) depicted in Fig. 3 corresponds to the
symmetric factor; the function for the antimetric factor is its
mirror image reflected at x=0.

A more general treatment of Mobius polymers will be pub-
lished elsewhere [9]; the treatment by means of Qm(x) functions
can be applied only to those polymers which exhibit symmetries
allowing the construction of secular determinants of the type of
eg. {(19) or a similar type.

To our knowledge, our treatment of the Mobius polyacenes is
the first time that the n electron system of a polycyclic Mébius

system has been considered.
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Appendix A: The differential guotient of Pn(x)

The function Pn(x) is defined by eg. (7), hence,
ny2 w n-v} n-1-2w%
dP (x)/dx = ¥ (=1) (n-2v) X (A.1)
n i v

The coefficients appearing in this equation may be expressed

alternatively as follows:

n-v
(n-Zv)( ) = (n-2v) v 71 L O = ) (n-1-w)!

v w1 (n-2w) ! wl {n-1-2w) 1

n-1t-v
(n-v) o (A.2)

via eg. (A.2), eg. (A.1) may be brought into the fellowing form:

. G B=1=v) n=1-2v i £t Rl U il R
dP () /dx = nef(-1) X + V=N . %

Y W

I

[5.3)

The first term in eq. (A.3) is cbviously equal to n'Pn_1(x). The
coefficients of the second term arc treated as follows (where

k = n-1 is introduced for convenience)

k-v
- (k=) ! o (k=1-vjt __ _
¥ ( i ) = VU eyl — ) mEmirmeEn T S
(k=2)=1u-1)
= L= -] [, : (. 4)

Using this result, from eq. (A.3) the following expression is
derived (u=v-1):

(n—3)—u) {n-3)-2p
X o+
u

- (n=3)=u (n-3)-2yu
+ E(—1)“ - " b'd (A.5)

G (R)fde = mP,_q (&) & ) Ji=pY (



= .=

The second term in this equation may be identified with (n-Z)Pn_3(xh
the third term has the same form as the last term of eq. (A.3).

Hence, repeated application of eqg. (A.4) leads to

dPn(x)/dx = n-Pn_1(x) + (n-2)'Pn (x) +

-3
(A.6)

+ (n-4)-Pn (x) + (n—6)-Pn_7(x) +

=5

which may be written compactly as follows:

n<2
dPn(x)/dx =K;O(n-2x)-Pn_1_2K(x) (A.7)

This expression may be verified by means of the recurrence

formula
Pn+](x) = x-Pn(x)—Pn_1(x) 5 (A.8)
Differentiating both sides, one obtains

dP_,(x)/dx = P (x) + x+dP (x)/dx - AP __,(x)/dx.
Introducing (A.7) into this expression, one obtains

J(n#1-20)P 5 (%) = Po(x) o+ XF(D“Z)\)PH_MN(X)

- Y(n=1-2p)P (x) .

n—-2-2u

As a consequence of (A.8), the following terms cancel (k=i=yu):

fn-2c)P__, (%) = x J(n-20)P __; o, (x) - J(n-2m)P (x).

n=-2-2u

In this manner, the remaining terms of eq. (A.9) express the

trivial identity,
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n/
t

2 (n-2)/2
B oo i) = B (x) + §

B 5 s iX)
0 A=0 n-2-2X

K

This result verifies eq. (A.7).

appendix B: Generalized recurrence relation of the polynomials

B (%)

It will be shown here, that the function Qn(x), defined in
eq. (4), plays some role in the generalized recurrence relation

of the polynomials Pn(x). The well-known recurrence relation

Pn+1(x) = xP (x} - P _,(x)

has already been given in Eq. (A.8).

The repeated application of this equation results in
P(x) = (x2 = 2)P_(x) - P___(x)
n+2 n n-2 %

3

Pn+3(x) = (x” = 3x)-P_(x) - Pn—B(X) '

etc.
In general, one may write
Pn+m(x) = fm(x)-Pn(x) = Pn_m(x) (B.1)

where fm(x) denotes a polynomial of degree m, mén. On substituting

eg. (10) into this expression, one obtains

sin(n+14m)e = Em(e)-sin(n+1)e - sin(n+1l-m)e .



On expanding these terms into goniometric functions of the argu-

ments either (n+1)8 or m&, one obtains
fm(e) = 2cosme .

By comparison with eq. (11), fm(e) is identified as Qm(e).

Hence, eq. (B.1) may be written as follows:

PlamX) = Q (X3P (x) - P _ (x) . (B.2)

Obviously, eq. (B.2) is a generalized recurrence relation for the
polynomials Pn{x). The combination of egs. (4) and (B.2) results

in the following identity:

Pl X) + P (x) = P (x):P (x) = P (x}-P (x) . (B.3)
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Figure captions:

Fig., 1. The functions Qg(x) and Q1o(x). The intersections with
the straight lines 94 2(x) = + 2 represent the eigenvalues of
r

the 9 and 10 membered Hiickel (H) and Mdbius (M) cycles respectively.

Fig. 2. Band of the eigenvalues of an infinite annulene. The
roots of the acyclic (+) and the characteristic polynomials of
the Hilickel (o) and the Mdbius (o) form of the annulene CigHg

belong to the band.

Fig. 3. The functions QTG(L) and 018(5) as functions of the
2

variable x with éz = x“ 4 x.

Fig. 4. Spectra of the eigenvalues of rota-(Hiickel)- and M&bius-
hexacene C24H12. The symmetric functions lead to different
level(s), the antimetric functions to the same level(a) for both

compounds.
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