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SUMMARY

A Z variation is introduced in the Thomas- Fermi, Thomas-
Fermi- Amaldi, Thomas-Fermi-pmaldi-Dirac and Thomas-Rermi-Dirac
methods. The procedure is simple, direct and easy to apply. It
is based on the concept of effective nuclear charge %, which
is modified through an energy criterion. Atomic diamagnetic
susceptibilities are calculated and the analysis of numerical

data reveals the existence of a marked improvement when 2 is
varied.

INTRODUCTICN

Since its presentation by Thomas /1/ and Fermi /2/, and
subsequent modification by Dirac /3/, the Thomas- Fermi model
(TFM) has been useful in the study of atoms, molecules and
solids. The model supposes a desenerate free electron gas for
the atom /4/. The electron gas is under the influence of a mean

potential, The electron interaction is ignored, except for the
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mean screening effect of the electron cloud. The exchange /3/
and correlation /S/ electronic energies are neglected. The sta-
tistical model works well in those cases in which one is not in-
terested in the details of the electronic structure but rather
in some integrated-quantities behaviour such as form factors,
certain moments of electron density distribution, diamagnetic
susceptibilities, polarizabilities and total energy density of
electrons of an atom /6/. However, the TFM for atoms and ions
has two important shortcomings : a)} Close to the nucleus the

=3/2 P -
, and becomes infinite as

electron density P(r) varies as r
%.———~ow(r being the distance from the nucleus), giving an in-
finite density in this limit. b} At large distances, the elec-
tron density varies as b decreasing rather exponentially /7/
(Hartree's approximation). Another error in the TFM, is that
electrons interact with themselves, in addition to the natural
interelectronic interaction., In order to tackle this, Fermi and
Amaldi /8/ (FA) simply multiplied the charge distribution that
each electron sees by a correction factor ( N - 1 )/ N, N being
the atomic number. Recently, several attempts have been made /9
-1%3/ to test the efficacy of intreducine the FA and Fermi-Amaldi
-Dirac (FAD) modifications within statistical theories for atoms
and ions. This is achieved by taking the guantum mechanical

form for the electron density close to the nucleus and matching
it with the statistical variational density corresponding to

the trial function ( Jensen's function /14/ ) at some r = T, .
This procedure usually yields improved electron densities, and

recent results /9-13/ for diamagnetic susceptibilities showed a

satisfactory agreement with experimental and SCF values. How-
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ever, a very disturbing aspect of this kind of calculation
scheme arises when one analyses the energy expressions. The TFM
leads to total electronic energies which are too large , and
subsequent introduction of correction terms makes things worse
/15/, In a very recent paper /16/,we examined the possibility
of improving total electronic energies calculated from the TFM
and TFAM with the simple Jensen's trial function, through the
consideration of the Z-variation for neutral atoms. We also per-
formed a similar calculation from the Thomas-Fermi-Dirac (TFDM)
and Thomas-Fermi-Amaldi-Dirac methods (TFADM) /17/. The compa-
rison of numerical results to other previous theoretical values
and experimental data for atomic diamagnetic susceptibilities
allowed us to verify the existence of marked improvements.

The purpose of the present work is to extend the examina-
tion of the procedure by applying it to the TFM, TFAM, TFDM and
TRADM, respectively, for several ions,

After fitting the necessary parameters associated with
the trial electronic density function in respect to the non-re-
lativistic total energy for the TF like methods, we test their
values with regard to another independent atomic property :the

atomic diamagnetic susceptibility.
RESULTS AND DISCUSSION

The atomic total energy in the TFM is given by /18/( in

what follows, atomic units were used ).

Sp
Epg = 2.8712Sp(r)év f P(r)vyav + ;Hﬂz)ﬁs.'.ldv av!

2 |r - r'l (1)
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P(r) being the electronic density function and Vy the electron
nuclear interaction, which in an atom or ion with charge Z on
the nucleus is simply ( - Z/r ). P(r) may be determined from

the numerical solution of the TF equation

d? @ ) ¢3/2 x-1/? { 2)
d x2

where
T = bx ; b = 0,8853 5=1/3 (3)
v(r) - Bp = - 2/r ( 4)
Be = p? + V(r) (5)

Py is the maximum or Fermi momentum at the position r /18/,
V(r) is the self-consistent potential energy.

It is of considerable importance to note that the density
energy relationship (1) of the statistical theory follows from
+he variational principle for the total energy /19/. In fact,
the TF equation (2) follows from eguation (1) by minimizing Enp
with respect to variations in the density P(r), and it is

subject only to the normalization condition :

SP(I‘) s ot ( 6)

¥ being the total number of electrons in the atom.
This second alternative gives us the possibility of using a
relatively simple trial density function with the appropriate

number of ajustable parameters instead of being involved with
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the awkward management of the exact P(r) in numerical form,

We deem it necessary to poimt out that this variational
principle is not the same as that for the ground state energy
in terms of a trial wave function. In particular, the approxi-
mations that underlie the TFM are of a semiclassical nature so
there is no assurance that the energy will be an upper bound to
the true ground state energy. In addition, the TFM yields a
lower energy than the true ground state values. Dirac's impro-
vement /%/ consists of including within the energy functional
(1) the exchange energy. The exchange functional K, is appro-
ximated by that corresponding to a free electiron gas and is ex=-

pressed by:

. _L —3— 1/2 [P(r)’l/}dv (7)

4 i

The FA correction removes the self-electronic interaction via
the introduction of the correction factor ¢ N-1 )/N in the
last term of the relationship in Eq.(1). Then, the TFD,the TFA,

and the TFAD energy formulas are respectively:

Egpp = 2-8T12 JP(I‘)w}'dv -{z P(z) dv H P(r)p(x')dv dv'
T [r & r'

( &)
-().7386JI’(r)4/3dv

Eppy= 2-8712 f?(r)ﬂ}dv -z[ﬂﬁ) v, (¥ -1) {J P(x)P(r')dv dv'
r 2N Ir - r'l

( 9)
Eppap= Eqpy - 0-7386 Ip(r)"”dv (10)
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We choose the trial density function proposed by Jensen /14/

Panat e P (14 x ) (11)

- g1/6 p1/? 2

t and p are variational parameters to be calculated from the
minimization of the energy equation, A being the normalization
constant.

When an atom loses one ( or mere ) electron(s), then the
resulting ion density, as we know from guantum mechanies,still
decreases exponentially at large distances from the nucleus
/?0/. Furthermore,it seems reasonable to assume thah, apart
from very low 2 atoms, the parameters describing the electron
density distribution in a moderately ionized atom cannot dif-
fer drastically from the parameters describing the same in the
neutral atom. If one performs an identical calculation of ETFA'
ETFD and ETFﬁD for ions, on the basis of the variational elec-
tron density (11), the energy formulas become the same as for
neutral atoms ( which is a particular case for N = % ). The
energy relationships for the trial density (11) were given
recently in two papers /1%//17/ for neutral atoms, so that we
consider it redundant to repeat them here again.

The habitual procedure consists in mini~izing the energy
formulas by variation of the parameters t and p, keeping cons-
tant the atomic number Z. This method mives very poor results
for the total electronic energy and the introduction of correc-

tions to the primitive TFM worsens them. In order to surmount
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this difficulty, we have already used a procedure to introduce
the Z-variation in the TF, TFA, TFD, and TFAD energy densities
/16/,/17/ for neutral atoms. Here we extend it to ions in the
following way:

a) An optimum Z value is determined from the con-

dition

(z _, N

oF ~ ) = EHP {7,N) (12)

cp
where

+
op Zop - I

I = 1,2 according to the ionization degree

N

and EHF denotes the self-consistent-field-energy values for
the non-relativistic total electron energy /21/.

b) The 2., value is empleoyed for the trial density

p
function (11) and new t and p optimum values are sought from
the variational procedure. As we have already pointed out for
neutral atoms /16/, since the consideration of the additional
condition (12) in a certain manner forces a better agreement
between statistical and SCF electronic energies, it is necessa-
ry to consider other independent properties to judge properly

the merits of the procedure. Atomic diamagnetic susceptibility

S is a convenient alternative, because it depends on <:r2>>/5/

S =-N, Lx?N 7 (607) (13)

NA is the Avogadro's number, ¢ the velocity of light and the
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average value {r2> is given by

L%y = [P(r) % dv (14)

We present in TABLE 1 total electronic energies for a set of
singly and doubly charged ions. In TABLES 2 and % we give the
results of the optimum values for the parameters of the trial
density function, comparing them with those referring to the
inert gas of the isocelectronic series /8/. Calculated and ex-
perimental atomic diamagnetic susceptibilities for ions are
displayed in TABLE 4.

A1)l of the ions here considered have a closed-shell elec-
tron configuration and consequently a spherically symmetric
electron density as assumed in the TFM.

The comparison of results in TABLE 1 shows clearly the
existence of a very poor agreement between statistical and HF
energy values. Furthermore, we can verify that the introduction
of the FA correction worsens the TFD results even more. When an
optimum Z-value is introduced within the energy formulas (1),
(8), (9), and (10), results improve markedly. Notwithstanding,
this better concordance cannot be considered as conclusive
evidence of the effectiveness of the method , because of the
particular criterion used to determine Zop via equation (12).

The analysis of results in TABLES 2 and 3 reveals that,
within each isoelectronic series, there are noticeable diffe-
rences between lt(Z) - t(Zop)l and Ip(z) - p(ZDp)I;they
tend to be null for higher 7 while the differences 27 - Z,

P
and N - Nop continue to be significant. The key role played
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by the optimization of 7 in the improvement of statistical TF,
TFA, TFD, and TFAD energy values is self evident. As regards
the t and p values, both tend asymptotically to the particular
t and p for the inert gas of the iscelectronic series.

Calculated S values by TF(Z), TFD(Z), and TFAD(Z) are
taken from previous papers /9-13/ using Jensen's electronic
density. The results of Csavinszky /20/ were obtained from an
universal analytical soclution of the TF equation for ions. The
error is similar to that of the TFA(ZOp)' method. Sha and
Srivastara's results /6/, using an eigh parameters trial densi-
ty, show that values of S are higher compared to our best result
TFAD(ZOP). Moreover, these results are in agreement with the
trend of experimental results /22/, namely : S increases with
increasing % and the agreement with experimental value for I~
is fairly good. The comparison of results permits us te judge
properly the real merits of the present procedure. We see the
existence of a definite improvement as regards TFM susceptibi-
lities, as well as in respect to TFA, TFD, and TFAD methods
without Z optimization, and with other theoretical results.

We consider that these results of Z cptimization in the
TF-like methods confirm clearly our previous conclusions /16/,
/17/ on the particular way of improving the statistical calcu-

lation.
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